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Abstract

In this paper, we define a family of functionals generalizing the Yang–Mills–Higgs functionals on a closed
Riemannian manifold. Then we prove the short-time existence of the corresponding gradient flow by a
gauge-fixing technique. The lack of a maximum principle for the higher order operator brings us a lot of
inconvenience during the estimates for the Higgs field. We observe that the L2-bound of the Higgs field
is enough for energy estimates in four dimensions and we show that, provided the order of derivatives
appearing in the higher order Yang–Mills–Higgs functionals is strictly greater than one, solutions to
the gradient flow do not hit any finite-time singularities. As for the Yang–Mills–Higgs k-functional
with Higgs self-interaction, we show that, provided dim(M) < 2(k + 1), for every smooth initial data the
associated gradient flow admits long-time existence. The proof depends on local L2-derivative estimates,
energy estimates and blow-up analysis.
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1. Introduction

Let (M, g) be a closed Riemannian manifold of real dimension n and let E be a
vector bundle over M with structure group G, where G is a compact Lie group.
The Yang–Mills functional, defined on the space of connections of E, is given by

YM(∇) =
1
2

∫
M
|F∇|2dvolg,
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where ∇ is a metric compatible connection, F∇ denotes the curvature and the pointwise
norm | · | is given by g and the Killing form of Lie(G).

The connection ∇ is called a Yang–Mills connection of E if it satisfies the
Yang–Mills equation

D∗∇F∇ = 0.

A solution of the Yang–Mills flow is given by a family of connections ∇t := ∇(x, t)
such that

∂∇t

∂t
= −D∗∇t

F∇t in M × [0, T).

The Yang–Mills flow was initially studied by Atiyah and Bott [2] and was suggested
to understand the topology of the space of connections by infinite-dimensional Morse
theory.

In the case that the ∇t are compatible connections on a holomorphic bundle over
a closed Kähler manifold, due to Donaldson [9] and Simpson [40], the Yang–Mills
flow exists smoothly for all time and converges to a Hermitian Yang–Mills connection
on stable bundles. This results in a correspondence, known as the Hitchin–Kobayashi
correspondence [14, 29] or the Donaldson–Uhlenbeck–Yau theorem [10, 48]. Natural
generalizations to the unstable case have been obtained by Daskalopoulos and
Wentworth [6, 7], Wilkin [51], Jacob [18], Sibley [38], Li et al. [25, 26], Nie and
Zhang [32] and so on.

For the general Riemannian context, the behavior of Yang–Mills flow is strongly
influenced by the dimension of the base manifold. It was proved by Daskalopoulos
[5] over a compact Riemann surface, and by Råde [35] in dimensions two and three,
that the flow exists for all time and converges. A finite-time blow-up phenomenon is
known to occur in supercritical dimensions (dim ≥ 5) [31]. Work on characterizing the
behavior of the flow in supercritical dimensions has been done by Tao and Tian [45]
and more recent developments have been made by Petrache and Riviére [34] in the case
of fixed boundary connections. Following the analogy with harmonic map heat flow in
dimension two [43], the foundational work of Struwe [44] gives a global weak solution
for the Yang–Mills flow over a closed 4-manifold, without excluding the possibility
that point singularities will form in finite time. Later, Schlatter et al. [37] showed that
Yang–Mills flow of SO(4)-equivariant connections on an SU(2) bundle over a ball in
R

4 admits a smooth solution for all time. This led them to conjecture that long-time
existence holds for solutions of Yang–Mills flow in general. Recently, Waldron [49]
confirmed this conjecture. He proved that finite-time singularities do not occur in
four-dimensional Yang–Mills flow, which is very different from the two-dimensional
harmonic map heat flow [4].

The study of Yang–Mills–Higgs flow has aroused a lot of attention in the present
century (see [1, 17, 27, 28, 41, 46, 52, 53] and so on). In the following, we introduce
the higher order Yang–Mills–Higgs flow that will be called Yang–Mills–Higgs k-flow.
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[3] Gradient flows of higher order Yang–Mills–Higgs functionals 259

For each k ∈ N ∪ {0}, the Yang–Mills–Higgs k-functional (or Yang–Mills–Higgs
k-energy) is defined through a connection ∇ and a section u of a vector bundle E:

YMHk(∇, u) =
1
2

∫
M

[|∇(k)F∇|2 + |∇(k+1)u|2] dvolg. (1-1)

When k = 0, (1-1) is nothing but the Yang–Mills–Higgs functional with vanishing
Higgs self-interaction [19, page 4].

The Yang–Mills–Higgs k-system, that is, the corresponding Euler–Lagrange equa-
tions of (1-1), is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)kD∗∇Δ
(k)
∇ F∇ +

2k−1∑
v=0

P(v)
1 [F∇] + P(2k−1)

2 [F∇]

+

k∑
i=0

∇∗(i)(∇(k+1)u ∗ ∇(k−i)u) = 0,

∇∗(k+1)∇(k+1)u = 0,

(1-2)

where Δ(k)
∇ denotes k iterations of the Bochner Laplacian −∇∗∇ and the notation P is

defined in (2-1).
A solution of the Yang–Mills–Higgs k-flow is given by a family of pairs

(∇(x, t), u(x, t)) := (∇t, ut) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∇t

∂t
= (−1)(k+1)D∗∇t

Δ
(k)
∇t

F∇t +

2k−1∑
v=0

P(v)
1 [F∇t ]

+P(2k−1)
2 [F∇t ] +

k∑
i=0

∇∗(i)t (∇(k+1)
t ut ∗ ∇(k−i)

t ut),

∂ut

∂t
= −∇∗(k+1)

t ∇(k+1)
t ut in M × [0, T).

(1-3)

When k = 0, the flow (1-3) is a Yang–Mills–Higgs flow [13].
Now we state our main result in this paper.

THEOREM 1.1. Let E be a vector bundle over a closed Riemannian 4-manifold
(M, g). Assume an integer k > 1. Then, for every smooth initial value (∇0, u0), there
exists a unique smooth solution (∇t, ut) to the Yang–Mills–Higgs k-flow (1-3) in
M × [0,+∞).

REMARK 1.2. To prove the long-time existence of the Yang–Mills flow (k = 0),
coupled with an extra structure (Higgs field [15] or spinor field [16]), one powerful
tool is the maximum principle. One can obtain a C0-bound of the Higgs field (or spinor
field) immediately. This brings us a lot of convenience in the analysis. When k > 0, the
order of ∇∗(k+1)

t ∇(k+1)
t is bigger than two and the maximum principle fails. When k > 0,
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we show that the L2-bound of the Higgs field is enough for energy estimates in four
dimensions.

It is not surprising to consider such higher order flow. Just recently, in [21],
Kelleher studied higher order Yang–Mills flow (with vanishing Higgs field) and,
in [36], Saratchandran studied higher order Seiberg–Witten flow (flow of connections
coupled with spinor fields). The study of higher order flow also has a long history.
In De Giorgi’s program [8] to approximate singular geometric flows with sequences
of smooth ones, he conjectured that any compact hypersurfaces in Euclidean space,
evolving by the gradient flow of certain functionals with sufficiently high derivatives,
do not hit singularities. Similar to the ones proposed by De Giorgi [8], Mantegazza
[30] studied higher order generalizations of the mean curvature flow and proved that
the flows do not hit singularities provided the order of the derivatives is sufficiently
large. Very recently, Jia and Wang [20] extended some results due to Mantegazza to a
more general ambient manifold. Actually, there have been many other important works
on higher order flow such as Escher et al. [12] and Wheeler [50] for surface diffusion
flow, Kuwert and Schätzle [23, 24] and Simonett [39] for Willmore flow of surfaces,
Streets [42] for a certain flow of Riemannian curvatures, Bahuaud and Helliwell [3]
and Kotschwar [22] for a certain flow of Riemannian metrics, Novaga and Okabe [33]
for steepest descent flow and so on.

Now we outline the structure of this paper. In Section 2, we give some basic nota-
tion. In Section 3, we derive the Euler–Lagrange equations for the Yang–Mills–Higgs
k-functional and prove the local existence of the flow. In Section 4, we obtain
L2-derivative estimates of Bernstein–Bando–Shi type and use these to derive a basic
obstruction to long-time existence. In Section 5, we address the blow-up analysis that
can be used to derive an L∞-bound from an Lp-bound. In Section 6, we prove that both
the Yang–Mills–Higgs energy and the Yang–Mills–Higgs k-energy are bounded along
the flow in four dimensions. In Section 7, we complete the proof of Theorem 1.1. In
Section 8, we show that the long-time existence of Yang–Mills–Higgs 1-flow in dimen-
sion four is obstructed by the possibility of concentration of the curvature in smaller
and smaller balls. In Section 9, we show that provided dim(M) < 2(k + 1), for every
smooth initial data the associated negative gradient flow of the Yang–Mills–Higgs
k-functional with Higgs self-interaction admits long-time existence.

2. Preliminaries

To meet the requirements in the next sections, here, in this short section, the setup
and notation are briefly presented. We use some of Kelleher’s notation in [21] and
Saratchandran’s in [36].

Let E be a vector bundle over a smooth closed manifold (M, g) of real dimension n.
The set of all smooth unitary connections on E is denoted by AE. For a given
connection ∇ ∈ AE, it can be extended to other tensor bundles by coupling with the
corresponding Levi-Civita connection ∇M on (M, g).
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Let D∇ be the exterior derivative or skew symmetrization of ∇. The curvature tensor
of E is denoted by

F∇ = D∇ ◦ D∇.

We set ∇∗, D∗∇ to be the formal L2-adjoints of ∇, D∇, respectively. The Bochner and
Hodge Laplacians are given respectively by

Δ∇ = −∇∗∇, ΔD∇ = D∇D∗∇ + D∗∇D∇.

Let ξ, η be p-forms valued in E or End(E). Let ξ ∗ η denote any multilinear form
obtained from a tensor product ξ ⊗ η in a universal way. That is to say, ξ ∗ η is obtained
by starting with ξ ⊗ η, taking any linear combination of this tensor, taking any number
of metric contractions with respect to g or h and switching any number of factors in
the product. We then have

|ξ ∗ η| ≤ C|ξ||η|.

Denote

∇(i) = ∇ · · · ∇︸�︷︷�︸
i times

.

We also use the P notation, as introduced in [24]. Given a tensor ξ, we denote

P(k)
v [ξ] :=

∑
w1+···+wv=k

(∇(w1)ξ) ∗ · · · ∗ (∇(wv)ξ) ∗ T , (2-1)

where k, v ∈ N and T is a generic background tensor dependent only on g.

2.1. Commutation formulas for connections. We collect some lemmas appearing
in [21, 36]. During the study of the higher order flow, there will be times when we
need to switch derivatives, leading us to need the following lemmas.

LEMMA 2.1 (Weitzenböck formula). Let E be a vector bundle over a Riemannian
manifold (M, g) with compatible metric connection ∇. Let ΔD∇ = D∇D∗∇ + D∗∇D∇
denote the Hodge Laplacian and Δ∇ = −∇∗∇ denote the Bochner Laplacian. For
φ ∈ Ωp(M; E),

ΔD∇φ = −Δ∇φ + (Rm + F∇) ∗ φ,

where Rm denotes the Riemannian curvature of g.

LEMMA 2.2. Let E be a vector bundle over a Riemannian manifold (M, g) with
compatible metric connection ∇. Let φ be a section of E; then

∇ik∇ik−1 · · · ∇i1∇j1∇j2 · · · ∇jkφ = ∇ik∇jk · · · ∇i1∇j1φ

+

2k−2∑
l=0

[(∇(l)
M Rm + ∇(l)F∇) ∗ ∇(2k−2−l)φ].
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LEMMA 2.3. Let E be a vector bundle over a Riemannian manifold (M, g)
with compatible metric connection ∇. Let φ be a section of E; then

∇(n)Δ
(k)
∇ φ = Δ

(k)
∇ ∇

(n)φ +

2k+n−2∑
j=0

[(∇(j)
M Rm + ∇(j)F∇) ∗ ∇(2k+n−j−2)φ].

LEMMA 2.4. Let E be a vector bundle over a Riemannian manifold (M, g) with
compatible metric connection ∇. Let ξ and ζ be sections of E; then, for k ∈ N,∫

M
〈∇(k)ξ,∇(k)ζ〉 dvolg =

∫
M

(−1)k〈ξ,Δ(k)
∇ ζ〉 dvolg

+

∫
M

〈
ξ,

2k−2∑
v=0

((∇(v)
M Rm + ∇(v)F∇) ∗ ∇(2k−2−v)ζ)

〉
dvolg.

2.2. Interpolation inequalities. The following interpolation results are used in
Section 4 when proving local derivative estimates.

LEMMA 2.5 see [21, Lemma 5.3], analogue of [24, Corollary 5.5]. Let E be a vector
bundle over a Riemannian manifold (M, g) with connection ∇. Let φ be a section of E
and γ a bump function on M. For k ∈ N, if 1 ≤ i1, . . . , ir ≤ k, i1 + i2 · · · + ir = 2k and
s ≥ 2k,∫

M
γs∇(i1)φ ∗ · · · ∗ ∇(ir)φ dvolg

≤ C(dim(M), rk(E), k, r, s, g, h, γ)‖φ‖r−2
L∞

( ∫
M
|∇(k)φ|2γsdvolg + ‖φ‖2L2,γ>0

)
,

where the subscript γ > 0 means {x ∈ M|γ(x) > 0}.

LEMMA 2.6 [21, Corollary 5.2]. Let E be a vector bundle over a Riemannian manifold
(M, g) with connection ∇ and γ a bump function on M. For 2 ≤ p < +∞, l ∈ N and
s ≥ lp, there exists C(ε−1) > 0 depending on ε−1, dim(M), rk(E), p, l, s, g, h, γ such that
for a section φ of E,

‖γs/p∇(l)φ‖Lp ≤ ε‖γ(s+jp)/p∇(l+j)φ‖Lp + C(ε−1)‖φ‖Lp,γ>0.

For p = 2 and some K ≥ 1,

K‖γs/2∇(l)φ‖2L2 ≤ ε‖γ(s+2j)/2∇(l+j)φ‖2L2 + C(ε−1)K2‖φ‖2L2,γ>0.

3. The higher order Yang–Mills–Higgs flow

We first compute the Euler–Lagrange equations of the Yang–Mills–Higgs
k-functional to determine the corresponding Yang–Mills–Higgs k-flow. We then prove
the local existence of this flow.

LEMMA 3.1. The Euler–Lagrange equations associated to the Yang–Mills–Higgs
k-functional (1-1) are given by (1-2).
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PROOF. Let ∇t be a time-dependent path of connections with initial value ∇0 = ∇. Let
ut be a time-dependent path of Higgs fields with initial value u0 = u. Then

∂

∂t

∣∣∣∣∣
t=0

1
2

∫
M
〈∇(k+1)ut,∇(k+1)ut〉 =

∫
M

〈
∂ut

∂t
,∇∗(k+1)∇(k+1)ut

〉∣∣∣∣∣
t=0

(3-1)

and

∂

∂t

∣∣∣∣∣
t=0

1
2

∫
M
〈∇(k+1)

t u,∇(k+1)
t u〉 =

∫
M

〈∂(∇(k+1)
t u)
∂t

,∇(k+1)
t u

〉∣∣∣∣∣
t=0

=

∫
M

〈 k∑
i=0

∇(i)
t
∂∇t

∂t
∗ ∇(k−i)

t u,∇(k+1)
t u

〉∣∣∣∣∣
t=0

=

∫
M

〈
∂∇t

∂t
,

k∑
i=0

∇∗(i)t (∇(k+1)
t u ∗ ∇(k−i)

t u)
〉∣∣∣∣∣

t=0
, (3-2)

where we used the following variation formula that can be proved by induction on k:

∂

∂t
(∇(k+1)

t ut) = ∇(k+1)
t
∂ut

∂t
+

k∑
i=0

(
∇(i)

t
∂∇t

∂t

)
∗
(
∇(k−i)

t ut

)
. (3-3)

Finally, we compute

∂

∂t

∣∣∣∣∣
t=0

1
2

∫
M
〈∇(k)

t F∇t ,∇
(k)
t F∇t〉

=

∫
M

〈∂(∇(k)
t F∇t )

∂t
,∇(k)

t F∇t

〉∣∣∣∣∣
t=0

=

∫
M

〈
∇(k)

t
∂F∇t

∂t
+

k−1∑
i=0

∇(i)
t
∂∇t

∂t
∗ ∇(k−i−1)

t F∇t ,∇
(k)
t F∇t

〉∣∣∣∣∣
t=0

=

∫
M

〈
∂∇t

∂t
, (−1)kD∗∇t

Δ
(k)
∇t

F∇t +

2k−1∑
v=0

P(v)
1 [F∇t ] + P(2k−1)

2 [F∇t ]
〉∣∣∣∣∣

t=0
, (3-4)

where we use [21, Corollary 2.2]

∂

∂t
(∇(k)

t F∇t ) =∇
(k)
t
∂F∇t

∂t
+

k−1∑
i=0

∇(i)
t
∂∇t

∂t
∗ ∇(k−i−1)

t F∇t ,

∂F∇t

∂t
= D∇t

∂∇t

∂t
(3-5)

and Lemma 2.4.
Hence, we prove the lemma by combining (3-1), (3-2) and (3-4). �
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Given one-parameter pairs (∇t, ut), we can define Yang–Mills–Higgs k-flow
by (1-3). Then we use De Turck’s trick to establish the local existence of the
Yang–Mills–Higgs k-flow. We refer to [21] for more details. The proof is standard; we
outline the procedures.

THEOREM 3.2. Let E be a vector bundle over a closed Riemannian manifold (M, g).
There exists a unique smooth solution (∇t, ut) to the Yang–Mills–Higgs k-flow (1-3) in
M × [0, ε) with smooth initial value (∇(0), u(0)).

PROOF. (Local existence) Consider one-parameter pairs (∇̃t, ũt) satisfying the follow-
ing system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∇̃t

∂t
= (−1)k+1D∗

∇̃
Δ

(k)

∇̃t
F∇̃t
+ (−1)kD∇̃t

Δ
(k)

∇̃t
D∗
∇̃t

(∇̃t − ∇(0))

+

2k−1∑
v=0

P(v)
1 [F∇̃t

] + P(2k−1)
2 [F∇̃t

] +
k∑

i=0

∇̃∗(i)t (∇̃(k+1)
t ut ∗ ∇̃(k−i)

t ut),

∂̃ut

∂t
= −∇̃∗(k+1)

t ∇̃(k+1)
t ũt − (−1)k(Δ(k)

∇̃t
D∗
∇̃t

(∇̃t − ∇(0)))̃ut,

∇̃(0) = ∇(0),

ũ(0) = u(0).

(3-6)

We show that the system is parabolic and has short-time existence.
Define the operator Φk := Φk(·,∇(0)) : AE → Ω1(EndE) by

Φk(∇̃t,∇(0)) = (−1)k+1D∗
∇̃t
Δ

(k)

∇̃t
F∇̃t
+ (−1)kD∇̃t

Δ
(k)

∇̃t
D∗
∇̃t

(∇̃t − ∇(0)).

For nonzero B ∈ Ω1(EndE), the symbol of Φk is given by [29, Page 223]

(σ[Φk](B))βrα = (−1)k∂q∂i1i1···ikik (∂qBβrα − ∂rB
β
qα) + (−1)k+1∂r∂i1i1···ikik∂qBβqα.

Therefore, for a nonzero cotangent vector ξ on M,

(Lξ
Φk

(B))βrα := (−1)k |ξ|2k+2Bβrα,

〈Lξ
Φk

(B), B〉 = (−1)k+1|ξ|2k+2|B|2.

Thus, 〈Lξ
Φk

(·), ·〉 is either strictly positive definite or negative definite depending on the
parity of k. We conclude that Φk is an elliptic operator.

Using Lemma 2.2,

∇̃∗(k+1)
t ∇̃(k+1)

t ũt = (−1)k+1Δ
(k+1)

∇̃t
ũt +

2k∑
i=0

(∇(i)
M Rm + ∇̃(i)F∇̃t

) ∗ ∇̃(2k−i)
t ũt.
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From [21, Lemma 3.5],

(Δ(k)

∇̃t
D∗
∇̃t

(∇̃t − ∇(0)))̃ut = −Δ(k+1)

∇̃t
ũt + δ(∇̃t, ũt),

where δ(∇̃t, ũt) is of lower order than Δ(k+1)

∇̃t
ũt. Hence, ellipticity of the highest order

term in the system (3-6) follows. Therefore, the system (3-6) is parabolic and has
short-time existence.

Define a gauge g(t) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂g(t)
∂t
= (−1)k+1Δ

(k)

∇̃t
D∗
∇̃t

(∇̃t − ∇(0))g(t),

g(0) = id.

One can check that (g(t)∗∇̃t, g(t)∗ũt) satisfies the Yang–Mills–Higgs k-flow (1-3) with
initial condition (g(0)∗∇̃0, g(0)∗ũ0) = (∇0, u0). This proves the short-time existence of
(1-3).

(Uniqueness) If we have two solutions to the Yang–Mills–Higgs k-flow (1-3),
(∇1(t), u1(t)) and (∇2(t), u2(t)), with the same initial value (∇(0), u(0)), then we can
define two gauges g1 and g2 that satisfy the above gauge transformation equations, with
∇1 and ∇2, respectively. We then find that ((g−1

1 )∗∇1, (g−1
1 )∗u1) and ((g−1

2 )∗∇2, (g−1
2 )∗u2)

both solve the parabolic system (3-6) with the same initial value (∇(0), u(0)). Unique-
ness of this system implies that

((g−1
1 )∗∇1, (g−1

1 )∗u1) = ((g−1
2 )∗∇2, (g−1

2 )∗u2),

which means that

(∇1, u1) = ((g−1
2 g1)∗∇2, (g−1

2 g1)∗u2).

Define a new gauge g3 = g−1
2 g1; a direct calculation yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂g3

∂t
= g3(−1)k+1Δ

(k)
g∗3∇2

D∗g∗3∇2
(g∗3∇2 − ∇(0))

−(−1)k+1Δ
(k)
∇2

D∗∇2
(∇2 − ∇(0))g3,

g3(0) = id.

Clearly, id is a solution to the above ordinary differential equation (ODE) with
fixed initial value. The basic existence–uniqueness theorem for ODEs implies that
g3(t) = id. �

4. Smoothing estimates

In this section, our goal is to obtain derivative estimates of F∇t and ut. To accomplish
this, we first compute the necessary evolution equations.
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4.1. Evolution equations.

LEMMA 4.1. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1-3)
defined on M × [0, T). Then

∂F∇t

∂t
= (−1)kΔ

(k+1)
∇t

F∇t +

2k∑
v=0

P(v)
1 [F∇t ] + P(2k)

2 [F∇t ]

+

k∑
i=0

D∇t∇
∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut) (4-1)

and, for l ∈ N,

∂

∂t
[∇(l)

t F∇t ] = (−1)kΔ
(k+1)
t ∇(l)

t F∇t +

2k+l∑
v=0

(P(v)
1 [F∇t ] + P(v)

2 [F∇t ])

+ P(2k+l−2)
3 [F∇t ] +

k∑
i=0

∇(l)
t D∇t∇

∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut)

+

l−1∑
j=0

k∑
i=0

[∇(j)
t (∇∗(i)t (∇(k+1)

t ut ∗ ∇(k−i)
t ut))] ∗ ∇(l−j−1)

t F∇t . (4-2)

PROOF. From (1-3) and the Weitzenböck formula (Lemma 2.1),

∂F∇t

∂t
= D∇t

∂∇t

∂t
= (−1)k+1D∇t D

∗
∇t
Δ

(k)
∇t

F∇t +

2k∑
v=0

P(v)
1 [F∇t ]

+ P(2k)
2 [F∇t ] +

k∑
i=0

D∇t∇
∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut)

= (−1)k+1ΔD∇t
Δ

(k)
∇t

F∇t +

2k∑
v=0

P(v)
1 [F∇t ] + P(2k)

2 [F∇t ]

+

k∑
i=0

D∇t∇
∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut)

= (−1)kΔ
(k+1)
∇t

F∇t + (Rm + F∇t ) ∗ (Δ(k)
∇t

F∇t ) +
2k∑

v=0

P(v)
1 [F∇t ]

+ P(2k)
2 [F∇t ] +

k∑
i=0

D∇t∇
∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut), (4-3)

which implies (4-1).
From (3-5),

∂

∂t
[∇(l)

t F∇t ] =
[
∇(l)

t D∇t

∂∇t

∂t

]
T1

+

[ l−1∑
j=0

(
∇(j)

t
∂∇t

∂t
∗ ∇(l−j−1)

t F∇t

)]
T2

. (4-4)
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We manipulate T1 first. Using the Weitzenböck formula (Lemma 2.1) and
Lemma 2.3 yields

T1 = (−1)k∇(l)
t Δ

(k+1)
∇t

F∇t + ∇
(l)
t [(Rm + F∇t ) ∗ Δ

(k)
∇t

F∇t ]

+

2k+l∑
v=0

P(v)
1 [F∇t ] + P(2k+l)

2 [F∇t ] +
k∑

i=0

∇(l)
t D∇t∇

∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut)

= (−1)kΔ
(k+1)
∇t
∇(l)

t F∇t +

2k+l∑
v=0

P(v)
1 [F∇t ] + P(2k+l)

2 [F∇t ]

+

k∑
i=0

∇(l)
t D∇t∇

∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut).

Next, we manipulate T2.

T2 =

l−1∑
j=0

[
∇(j)

t

(
(−1)k+1D∗∇t

Δ
(k)
∇t

F∇t +

2k−1∑
v=0

P(v)
1 [F∇t ] + P(2k−1)

2 [F∇t ]

+

k∑
i=0

∇∗(i)t (∇(k+1)
t ut ∗ ∇(k−i)

t ut)
)
∗ ∇(l−j−1)

t F∇t

]

= P(2k+l)
2 [F∇t ] +

2k+l−2∑
v=0

P(v)
2 [F∇t ] + P(2k+l−2)

3 [F∇t ]

+

l−1∑
j=0

k∑
i=0

[∇(j)
t (∇∗(i)t (∇(k+1)

t ut ∗ ∇(k−i)
t ut))] ∗ ∇(l−j−1)

t F∇t .

Combining T1 and T2 yields (4-2). �

LEMMA 4.2. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1-3)
defined on M × [0, T). Then

∂

∂t
[∇(l)

t ut] = (−1)kΔ
(k+1)
∇t
∇(l)

t ut +

2k+l∑
j=0

(∇(j)
M Rm + ∇(j)

t F∇t ) ∗ ∇
(2k+l−j)
t ut

+

l−1∑
j=0

∇(j)
t D∗∇t

Δ
(k)
∇t

F∇t ∗ ∇
(l−j−1)
t ut

+

l−1∑
j=0

2k+j−1∑
v=0

P(v)
1 [F∇t ] ∗ ∇

(l−j−1)
t ut

+

l−1∑
j=0

P(2k+j−1)
2 [F∇t ] ∗ ∇

(l−j−1)
t ut

+

l−1∑
j=0

k∑
i=0

[∇(j)
t ∇
∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut)] ∗ ∇(l−j−1)

t ut. (4-5)
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PROOF. From (3-3) and (1-3),

∂

∂t
[∇(l)

t ut] = ∇(l)
t
∂ut

∂t
+

l−1∑
j=0

∇(j)
t
∂∇t

∂t
∗ ∇(l−j−1)

t ut

= ∇(l)
t (−∇∗(k+1)

t ∇(k+1)
t ut)

+

l−1∑
j=0

∇(j)
t

[
(−1)k+1D∗∇t

Δ
(k)
∇t

F∇t +

2k−1∑
v=0

P(v)
1 [F∇t ]

+ P(2k−1)
2 [F∇t ] +

k∑
i=0

∇∗(i)t (∇(k+1)
t ut ∗ ∇(k−i)

t ut)
]
∗ ∇(l−j−1)

t ut.

Then using Lemmas 2.2 and 2.3 yields the desired result. �

4.2. Estimates for derivatives of the Higgs field. In this subsection, we prove local
L2-derivative estimates for the Higgs field.

The following proposition is a direct consequence of Lemma 4.2.

PROPOSITION 4.3. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T). Then

∂

∂t
‖γs/2∇(l)

t ut‖2L2

= 2(−1)k
∫

M
〈Δ(k+1)
∇t
∇(l)

t ut, γs∇(l)
t ut〉

+

∫
M

2k+l∑
j=0

〈(∇(j)
M Rm + ∇(j)

t F∇t ) ∗ ∇
(2k+l−j)
t ut, γs∇(l)

t ut〉

+

∫
M

l−1∑
j=0

〈∇(j)
t D∗∇t

Δ
(k)
∇t

F∇t ∗ ∇
(l−j−1)
t ut, γs∇(l)

t ut〉

+

∫
M

l−1∑
j=0

〈( 2k+j−1∑
v=0

P(v)
1 [F∇t ] + P(2k+j−1)

2 [F∇t ]
)
∗ ∇(l−j−1)

t ut, γs∇(l)
t ut

〉

+

∫
M

l−1∑
j=0

k∑
i=0

〈[∇(j)
t ∇
∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut)] ∗ ∇(l−j−1)

t ut, γs∇(l)
t ut〉. (4-6)

We estimate each term on the right-hand side of the above equality. We first
introduce the bump function that is highly necessary in the smooth estimates.
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Let B := {γ ∈ C∞c (M) : 0 ≤ γ ≤ 1}, that is, the family of bump functions. For l ∈ N,
we denote

J(l)
γ :=

l∑
j=0

‖∇(j)γ‖L∞(M).

We also need the following lemma. This can be proved by integration by parts and
by an induction method.

LEMMA 4.4 [21, Lemma 3.10]. Let p, q, r, s ∈ N, ∇ ∈ AE and γ ∈ B. If s ∈ N\{1}, then∫
M

(P(p)
1 [φ] ∗ P(q+r)

1 [φ])γsdvolg

≤
∫

M
(P(p+r)

1 [φ] ∗ P(q)
1 [φ])γsdvolg

+

r−1∑
j=0

J(1)
γ

∫
M

(P(p+j)
1 [φ] ∗ P(q+r−j−1)

1 [φ])γs−1 dvolg,

where φ is in some tensor product of TM, E and their corresponding duals.

Now we are ready to handle the right-hand side of (4-6).

LEMMA 4.5. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T), that Q = max{1, supt∈[0,T) |F∇t |}, K = max{1, supt∈[0,T) |ut |}
and γ is a bump function. Then, for s ≥ 2(k + l + 1), there exist λ ∈ [1, 2) and
C := C(dim(M), rk(E), s, k, l, g, h, γ) such that

2(−1)k
∫

M
〈Δ(k+1)
∇t
∇(l)

t ut, γs∇(l)
t ut〉 ≤ −λ‖γs/2∇(k+l+1)

t ut‖2L2

+ CQK2‖ut‖2L2,γ>0.

PROOF. From Lemma 2.4,

2(−1)k
∫

M
〈Δ(k+1)
∇t
∇(l)

t ut, γs∇(l)
t ut〉

=

[
− 2
∫

M
〈∇(k+1)

t ∇(l)
t ut,∇(k+1)

t (γs∇(l)
t ut)〉

]
T1

+

[ ∫
M

2k∑
j=0

〈∇(j)
M Rm ∗ ∇(2k+l−j)

t ut, γs∇(l)
t ut〉
]

T2

+

[ ∫
M

2k∑
j=0

〈∇(j)
t F∇t ∗ ∇

(2k+l−j)
t ut, γs∇(l)

t ut〉
]

T3

. (4-7)
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We manipulate T1 first. Direct computation yields

T1 = −2‖γs/2∇(k+l+1)
t ut‖2L2 +

∫
M

k+1∑
j=1

∇(j)γs ∗ 〈∇(k+l+1)
t ut,∇(k+l+1−j)

t ut〉

≤ −2‖γs/2∇(k+l+1)
t ut‖2L2 +

∫
M

k+1∑
j=1

C|γs/2∇(k+l+1)
t ut ||γ(s−2j)/2∇(k+l+1−j)

t ut |

≤ −2‖γs/2∇(k+l+1)
t ut‖2L2 + Cε1‖γs/2∇(k+l+1)

t ut‖2L2

+

k+1∑
j=1

C
ε1
‖γ(s−2j)/2∇(k+l+1−j)

t ut‖2L2

≤ (−2 + C(ε1 + ε
−1ε2))‖γs/2∇(k+l+1)

t ut‖2L2 + Cε−1
1 ε
−1
2 K2‖ut‖2L2,γ>0,

where we use the following identity ([36, Lemma 6.2]) in the second inequality:

∇(j)γs =
∑

p1+···+pj=j

Cp1,...,pj (γ, s)γs−j∇(p1)γ ∗ · · · ∗ ∇(pj)γ (4-8)

and we use Lemma 2.6 in the last inequality.
Next, we manipulate T2. We divide up the summation into cases when j is either

odd or even and apply Lemma 4.4,

T2 =

∫
M

2k∑
j:j∈2N∪{0}

P(2k+2l−j)
2 [ut]γ

s +

∫
M

2k−1∑
j:j∈2N−1

P(2k+2l−j)
2 [ut]γ

s

≤
[ ∫

M

2k∑
j:j∈2N∪{0}

P(2k+2l−j)
2 [ut]J(1)

γ γ
s−1
]

T2,Even

+

[ ∫
M

2k−1∑
j:j∈2N−1

P(�(2k+2l−j)/2�)
1 [ut] ∗ P(�(2k+2l−j)/2�)

1 [ut]γ
s
]

T2,Odd
.

For the even part of T2, applying Lemmas 2.5 and 2.6,

∫
M

P(2k+2l−j)
2 [ut]J(1)

γ γ
s−1 ≤ C

(‖γ(s−1)/2∇(k+l−j/2)
t ut‖2L2 + ‖ut‖2L2,γ>0

)
= C
(‖γ(s−1)/2∇(k+l+1−1−j/2)

t ut‖2L2 + ‖ut‖2L2,γ>0
)

≤ ε‖γs/2∇(k+l+1)
t ut‖2L2 + CK2‖ut‖2L2,γ>0.
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For the odd part of T2, applying the Hölder inequality and Lemmas 2.5 and 2.6,

∫
M

P(�(2k+2l−j)/2�)
1 [ut] ∗ P(�(2k+2l−j)/2�)

1 [ut]γ
s

≤ 2
∫

M
P(2�(2k+2l−j)/2�)

2 [ut]γ
s + 2

∫
M

P(2�(2k+2l−j)/2�)
2 [ut]γ

s

≤ C
(‖γs/2∇(�(2k+2l−j)/2�)

t ut‖2L2 + ‖ut‖2L2,γ>0
)

+ C
(‖γs/2∇(�(2k+2l−j)/2�)

t ut‖2L2 + ‖ut‖2L2,γ>0
)

≤ ε‖γs/2∇(k+l+1)
t ut‖2L2 + CK2‖ut‖2L2,γ>0.

Therefore,

T2 ≤ ε‖γs/2∇(k+l+1)
t ut‖2L2 + CK2‖ut‖2L2,γ>0.

Finally, we manipulate T3.

T3 =

∫
M

2k∑
j=0

j∑
i=0

〈∇(i)
t (F∇t ∗ ∇

(2k+l−i)
t ut), γs∇(l)

t ut〉

=

∫
M

2k∑
j=0

j∑
i=0

〈F∇t ∗ ∇
(2k+l−i)
t ut, P(i)

1 [γs∇(l)
t ut]〉

=

∫
M

2k∑
j=0

j∑
i=0

〈
F∇t ∗ ∇

(2k+l−i)
t ut,

i∑
v=0

∇(v)γs ∗ ∇(l+i−v)
t ut

〉

≤ CQ
∫

M

2k∑
v=0

γs−vP(2k+2l−v)
2 [ut],

where we use (4-8). We divide up the summation into cases when v is either odd or
even. Similar to T2,

T3 ≤ ε‖γs/2∇(k+l+1)
t ut‖2L2 + CQK2‖ut‖2L2,γ>0.

Combining T1, T2 and T3, we complete the proof. The constraints on s can be easily
checked and we omit this here. �

Similar to the proof of Lemma 4.5, we can derive the estimates for the rest of the
terms of (4-6). Despite the term involving P(2k+j−1)

2 [F∇t ], the rest of the terms of (4-6)
are very similar to the ones appearing in Saratchandran’s paper [36, Proposition 6.7].
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As for P(2k+j−1)
2 [F∇t ], we can write it as

P(2k+j−1)
2 [F∇t ] =

2k+j−1∑
μ=0

P(μ)
1 [F∇t ] ∗ P(2k+j−1−μ)

1 [F∇t ]

=

2k+j−1∑
μ=0

μ∑
ν=0

∇(ν)
t (F∇t ∗ ∇

(2k+j−1−ν)
t [F∇t ]).

Then, integrating by parts, there are no derivatives of F∇t appearing in the equation.
Noting that F∇t is bounded, it remains to control ∇(2k+j−1−ν)

t [F∇t ]. After integrating by
parts again, we have the following local L2-derivative estimate for the Higgs fields.

PROPOSITION 4.6. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs
k-flow (1-3) defined on M × [0, T). Assume that Q = max{1, supt∈[0,T) |F∇t |}, K =
max{1, supt∈[0,T) |ut |} and γ is a bump function. Then, for s ≥ 2(k + l + 1), there exist
λ ∈ [1, 2) and C := C(dim(M), rk(E), s, k, l, g, h, γ) such that

∂

∂t
‖γs/2∇(l)

t ut‖2L2 ≤ −λ‖γs/2∇(k+l+1)
t ut‖2L2 + CQ2K4‖ut‖2L2,γ>0.

4.3. Estimates for derivatives of the curvature. Similar to the former subsection,
we present local L2-derivative estimates for the curvature F∇t .

From the evolution equation (4-2), we have the following result.

PROPOSITION 4.7. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T). Then

∂

∂t
‖γs/2∇(l)

t F∇t‖2L2

= 2(−1)k
∫

M
〈Δ(k+1)
∇t
∇(l)

t F∇t , γ
s∇(l)

t F∇t〉

+

∫
M

〈 2k+l∑
v=0

(P(v)
1 [F∇t ] + P(v)

2 [F∇t ]) + P(2k+l−2)
3 [F∇t ], γ

s∇(l)
t F∇t

〉

+

∫
M

〈 k∑
i=0

∇(l)
t D∇t∇

∗(i)
t (∇(k+1)

t ut ∗ ∇(k−i)
t ut), γs∇(l)

t F∇t

〉

+

∫
M

〈 l−1∑
j=0

k∑
i=0

[∇(j)
t (∇∗(i)t (∇(k+1)

t ut ∗ ∇(k−i)
t ut))] ∗ ∇(l−j−1)

t F∇t , γ
s∇(l)

t F∇t

〉
.

Similar to the proof of Lemma 4.5, we have the following local L2-derivative
estimate for the curvature.
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PROPOSITION 4.8. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs
k-flow (1-3) defined on M × [0, T). Assume that Q = max{1, supt∈[0,T) |F∇t |}, K =
max{1, supt∈[0,T) |ut |} and γ is a bump function. Then, for s ≥ 2(k + l + 1), there exist
λ ∈ [1, 2) and C := C(dim(M), rk(E), s, k, l, g, h, γ) such that

∂

∂t
‖γs/2∇(l)

t F∇t‖2L2 ≤ −λ‖γs/2∇(k+l+1)
t F∇t‖2L2 + CQ4K2‖F∇t‖2L2,γ>0.

4.4. Coupled estimates for the curvature and the Higgs field. Since the
Yang–Mills–Higgs k-flow is a coupled system, we cannot obtain a local estimate
for the curvature or the Higgs field alone. From Propositions 4.6 and 4.8, we have the
following proposition.

PROPOSITION 4.9. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs
k-flow (1-3) defined on M × [0, T). Assume that Q = max{1, supt∈[0,T) |F∇t |}, K =
max{1, supt∈[0,T) |ut |} and γ is a bump function. Then, for s ≥ 2(k + l + 1), there exist
λ ∈ [1, 2) and C := C(dim(M), rk(E), s, k, l, g, h, γ) such that

∂

∂t
(‖γs/2∇(l)

t F∇t‖2L2 + ‖γs/2∇(l)
t ut‖2L2 )

≤ −λ(‖γs/2∇(k+l+1)
t F∇t‖2L2 + ‖γs/2∇(k+l+1)

t ut‖2L2 )

+ CQ4K4(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0).

Using the above proposition and following [21, 36], we can derive estimates of
Bernstein–Bando–Shi type.

PROPOSITION 4.10. Let q ∈ N and γ be a bump function. Suppose that (∇t, ut)
is a solution to the Yang–Mills–Higgs k-flow (1-3) defined on M × I. Assume
that Q = max{1, supt∈I |F∇t |}, K = max{1, supt∈I |ut |} and choose s ≥ (k + 1)(q + 1).
Then, for t ∈ [0, T) ⊂ I with T < 1/((QK)4), there exists a positive constant Cq :=
Cq(dim(M), rk(E), q, k, s, g, h, γ) ∈ R>0 such that

‖γs∇(q)
t F∇t‖2L2 + ‖γs∇(q)

t ut‖2L2 ≤ Cqt−q/(k+1) sup
t∈[0,T)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0). (4-9)

PROOF. Set aq := 1 and let {al}q−1
l=0 ⊂ R be coefficients to be determined. Define

Φ(t) :=
q∑

l=0

altl(‖γs∇((k+1)l)
t F∇t‖2L2 + ‖γs∇((k+1)l)

t ut‖2L2 ).
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Differentiating Φ and applying Proposition 4.9,

∂

∂t
Φ(t) =

q∑
l=1

laltl−1(‖γs∇((k+1)l)
t F∇t‖2L2 + ‖γs∇((k+1)l)

t ut‖2L2 )

+

q∑
l=0

altl ∂

∂t
(‖γs∇((k+1)l)

t F∇t‖2L2 + ‖γs∇((k+1)l)
t ut‖2L2 )

≤
q−1∑
l=0

(l + 1)al+1tl(‖γs∇((k+1)(l+1))
t F∇t‖2L2 + ‖γs∇((k+1)(l+1))

t ut‖2L2 )

+

q∑
l=0

altl[−(‖γs∇((k+1)(l+1))
t F∇t‖2L2 + ‖γs∇((k+1)(l+1))

t ut‖2L2 )

+ CQ4K4(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0)]

= −tq(‖γs∇((k+1)(q+1))
t F∇t‖2L2 + ‖γs∇((k+1)(q+1))

t ut‖2L2 )

+

q−1∑
l=0

[al+1(l + 1) − al]tl(‖γs∇((k+1)(l+1))
t F∇t‖2L2 + ‖γs∇((k+1)(l+1))

t ut‖2L2 )

+ CQ4K4
q∑

l=0

altl(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0).

Using the initial condition αq = 1, we choose constants satisfying the recursion
relation

al+1(l + 1) − al ≤ 0,

and also satisfying al ≥ q!
l! .

Noting that T < 1/((QK)4) and choosing C(k+1)q ≥ C(
∑q

l=0 al),

∂

∂t
Φ(t) ≤ C(k+1)qQ4K4(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0),

which means that

Φ(t) − Φ(0) ≤ C(k+1)qQ4K4
∫ t

0
(‖F∇τ‖2L2,γ>0 + ‖uτ‖

2
L2,γ>0) dτ.

Therefore,

tq(‖γs∇((k+1)q)
t F∇t‖2L2 + ‖γs∇((k+1)q)

t ut‖2L2 )

≤ C(k+1)qTQ4K4 sup
t∈[0,T)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0) + Φ(0)

≤ C(k+1)q sup
t∈[0,T)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0) + q! (‖F∇0‖2L2,γ>0 + ‖u0‖2L2,γ>0),
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which means that

‖γs∇((k+1)q)
t F∇t‖2L2 + ‖γs∇((k+1)q)

t ut‖2L2

≤ C(k+1)qt−q sup
t∈[0,T)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0).

To complete the proof, it remains to consider ‖γs∇((k+1)l+w)
t F∇t‖2L2 +‖γs∇((k+1)l+w)

t ut‖2L2 ,
where l ∈ N ∪ {0} and w ∈ [1, k] ∩ N. From Lemma 2.6, combined with T < 1/(Q4K4),

‖∇((k+1)l+w)
t F∇t‖2L2 + ‖∇((k+1)l+w)

t ut‖2L2

≤ ε(‖∇((k+1)(l+1))
t F∇t‖2L2 + ‖∇((k+1)(l+1))

t ut‖2L2 )

+ Cε(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0)

≤ C(k+1)(l+1)t−l−1 sup
t∈[0,T)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0)

+ Cεt−l−1(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0)

≤ Ct−((k+1)(l+1)+w)/(k+1) sup
t∈[0,T)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0).

Therefore, we have established (4-9) for all q. �

The following corollary is a direct consequence of the above inequality that is used
in the blow-up analysis. The proof relies on embedding W p,2 ⊂ C0 provided p > n/2
and then uses Kato’s inequality |d|ut || ≤ |∇tut |. More details can be found in Kelleher’s
paper [21, Corollary 3.14].

COROLLARY 4.11. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, τ]. Set τ̄ := min{τ, 1}. Assume that Q = max{1, supt∈[0,τ̄] |F∇t |}
and K = max{1, supt∈[0,τ̄] |ut |}. Suppose that γ is a bump function. For s, l ∈ N with
s ≥ (k + 1)(l + 1), there exists Cl > 0 depending on dim(M), rk(E), K, Q, s, k, l, τ, g, h, γ
such that

sup
M

(|γs∇(l)
τ̄ F∇τ̄ |2 + |γs∇(l)

τ̄ uτ̄|2) ≤ Cl sup
M×[0,τ̄)

(‖F∇t‖2L2,γ>0 + ‖ut‖2L2,γ>0).

REMARK 4.12. Corollary 4.11 has no dependence on the initial data (∇0, u0).

Using Corollary 4.11, we have the following corollary that can be used for finding
obstructions to long-time existence.

COROLLARY 4.13. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T) for T ∈ [0,+∞). Assume that

Q = max{1, sup
t∈[0,T)

|F∇t |, sup
t∈[0,T)

‖F∇t‖L2}

and

K = max{1, sup
t∈[0,T)

|ut |, sup
t∈[0,T)

‖ut‖L2}
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are finite. Suppose that γ is a bump function. Then, for t ∈ [0, T), s, l ∈ N with
s ≥ (k + 1)(l + 1), there exists a constant Cl > 0 depending on ∇0, u0, dim(M), rk(E),
K, Q, s, k, l, g, h, γ such that

sup
M×[0,T)

(|γs∇(l)
t F∇t |2 + |γs∇(l)

t ut |2) ≤ Cl.

4.5. Long-time existence obstruction. In this section, we use Corollary 4.13 to
show that the only obstruction to long-time existence of the Yang–Mills–Higgs k-flow
(1-3) is a lack of a supremal bound on |F∇t | + |ut |.

We first recall Kelleher’s lemma.

LEMMA 4.14 [21, Lemma 3.17]. Let ∇, ∇̃ ∈ AE and set Υ := ∇̃ − ∇. Then, for all ξ in
some tensor product of TM, E and their corresponding duals,

∇̃(l)ξ = ∇(l)ξ +

l−1∑
j=0

j∑
i=0

(P̃(i)
l−1−i[Υ] ∗ P̃(j−i)

1 [ξ]).

For later use, given a one-parameter family (∇t, ut) over M × [0, T) with T < +∞,
set

Υs :=
∫ s

0

∂∇t

∂t
dt, Ψs :=

∫ s

0

∂ut

∂t
dt.

PROPOSITION 4.15. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T) for T ∈ [0,+∞). Suppose that for all l ∈ N ∪ {0} there exists
Cl ∈ R>0 such that

max
{

sup
M×[0,T)

∣∣∣∣∣∇(l)
t

[
∂∇t

∂t

]∣∣∣∣∣, sup
M×[0,T)

∣∣∣∣∣∇(l)
t

[
∂ut

∂t

]∣∣∣∣∣
}
≤ Cl.

Then limt→T (∇t, ut) = (∇T , uT ) exists and is smooth.

PROOF. For all s ≤ T ,

|Υs| =
∣∣∣∣∣
∫ s

0

∂∇t

∂t
dt
∣∣∣∣∣ ≤ TC0, |Ψs| =

∣∣∣∣∣
∫ s

0

∂ut

∂t
dt
∣∣∣∣∣ ≤ TC0,

which means that (∇T , uT ) is continuous.
Next, we demonstrate that (∇T , uT ) is smooth. The proof proceeds by induction on

l satisfying |∇(l)
0 [ΨT ]| + |∇(l)

0 [ΥT ]| < +∞. For the base case,

|∇0[Ψs]| =
∣∣∣∣∣
∫ s

0
∇0

[
∂ut

∂t

]
dt
∣∣∣∣∣ ≤
∫ s

0

(∣∣∣∣∣∇t

[
∂ut

∂t

]∣∣∣∣∣ + C
∣∣∣∣∣Υt

∣∣∣∣∣
∣∣∣∣∣∂ut

∂t

∣∣∣∣∣
)
dt

≤ TC1 + CT2C2
0 < +∞.

We also have

|∇0[Υs]| < +∞.
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Now suppose that the induction hypothesis is satisfied for {1, . . . , l − 1}. Expanding
∇(l)

0 [Ψs], applying Lemma 4.14 and then by assumption,

|∇(l)
0 [Ψs]| =

∫ s

0

(∣∣∣∣∣∇(l)
t

[
∂ut

∂t

]∣∣∣∣∣ +
l−1∑
j=0

j∑
i=0

(
P(i)

l−i−1[Υt] ∗ P(j−i)
1

[
∂ut

∂t

]))
dt < +∞,

where the notation P is taken with respect to ∇t. Similarly,

|∇(l)
0 [Υs]| < +∞.

Since the bounds are uniform for all t ∈ [0, T) and Υs,Φs are continuous,

|∇(l)
0 [ΨT ]| + |∇(l)

0 [ΥT ]| < +∞.

Thus, ΥT ,ΦT are smooth. This completes the proof. �

Using Proposition 4.15, we are ready to prove the main result in this subsection.

THEOREM 4.16. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) for some maximal T < +∞. Then

sup
M×[0,T)

(|F∇t | + |ut |) = +∞.

PROOF. Suppose to the contrary that

sup
M×[0,T)

(|F∇t | + |ut |) < +∞.

By Corollary 4.13, for all t ∈ [0, T) and l ∈ N ∪ {0}, we have that supM(|∇(l)
t F∇t |2 +

|∇(l)
t ut |2) is uniformly bounded and so, by Proposition 4.15, limt→T (∇t, ut) = (∇T , uT )

exists and is smooth. However, by local existence (Theorem 3.2), there exists ε > 0
such that (∇t, ut) exists over the extended domain [0, T + ε), which contradicts the
assumption that T was maximal. �

5. Blow-up analysis

In this section, we address the possibility of Yang–Mills–Higgs k-flow singularities
given no bound on |F∇t | + |ut |. To begin with, we establish some preliminary scaling
laws for the Yang–Mills–Higgs k-flow.

PROPOSITION 5.1. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T). We define the one-parameter family ∇ρt with local
coefficient matrices given by

Γ
ρ
t (x) := ρΓρ2(k+1)t(ρx),

where Γt(x) are local coefficient matrices of ∇t. We define the ρ-scaled Higgs field uρt
by

uρt (x) := ρuρ2(k+1)t(ρx).
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Then (∇ρt , uρt ) is also a solution to the Yang–Mills–Higgs k-flow (1-3) defined on
[0, 1/(ρ2(k+1))T).

PROOF. We start by computing time derivatives of the scaled connection and Higgs
field:

∂∇ρ
∂t

(x, t) = ρ2k+3 ∂∇
∂t

(ρx, ρ2(k+1)t),

∂uρ

∂t
(x, t) = ρ2k+3 ∂u

∂t
(ρx, ρ2(k+1)t).

Thus, the desired scaling law holds through the Yang–Mills–Higgs k-flow. �

Next, we show that in the case that the curvature coupled with the Higgs field is
blowing up, as one approaches the maximal time, one can extract a blow-up limit. The
proof closely follows the arguments in [21, Proposition 3.25].

THEOREM 5.2. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on some maximal time interval [0, T) with T < +∞. Then there exists
a blow-up sequence (∇i

t, ui
t) and it converges pointwise to a smooth solution (∇∞t , u∞t )

to the Yang–Mills–Higgs k-flow (1-3) defined on the domain Rn × R<0.

PROOF. From Theorem 4.16,

lim
t→T

sup
M

(|F∇t | + 〈ut, ut〉) = +∞.

Therefore, we can choose a sequence of times ti ↗ T within [0, T), and a sequence of
points xi, such that

|F∇ti
(xi)| + 〈uti (xi), uti (xi)〉 = sup

M×[0,ti]
(|F∇t | + 〈ut, ut〉).

Let {ρi} ⊂ R>0 be constants to be determined. Define ∇i
t(x) by

Γi
t(x) = ρ1/(2(k+1))

i Γρit+ti (ρ
1/(2(k+1))
i x + xi)

and

ui
t(x) = ρ1/(2(k+1))

i uρit+ti (ρ
1/(2(k+1))
i x + xi).

By Proposition 5.1, (∇i
t, ui

t) are also solutions to the Yang–Mills–Higgs k-flow (1-3)
and the domain for each (∇i

t, ui
t) is B0(ρ−1/(2(k+1))

i ) × [−(ti/ρi), (T − ti/ρi)). We observe
that

Fi
t(x) := F∇i

t
(x) = ρ1/(k+1)

i F∇ρi t+ti
(ρ1/(2(k+1))

i x + xi),
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which means that

sup
t∈[−ti/ρi, (T−ti)/ρi)

(|Fi
t(x)| + |ui

t(x)|2)

= ρ1/(k+1)
i sup

t∈[−ti/ρi, (T−ti)/ρi)
(|F∇ρi t+ti

(ρ1/(2(k+1))
i x + xi)| + |uρit+ti (ρ

1/(2(k+1))
i x + xi)|2)

= ρ1/(k+1)
i sup

t∈[0,ti]
(|F∇t (x)| + |ut(x)|2)

= ρ1/(k+1)
i (|F∇ti

(xi)| + |uti (xi)|2).

Therefore, setting

ρi = (|F∇ti
(xi)| + |uti (xi)|2)−(k+1)

gives

1 = |Fi
0(0)| + |ui

0(0)|2 = sup
t∈[−ti/ρi,0]

(|Fi
t(x)| + |ui

t(x)|2). (5-1)

Now we are ready to construct smoothing estimates for the sequence (∇i
t, ui

t). Let
y ∈ Rn and τ ∈ R≤0. For any s ∈ N,

sup
t∈[τ−1,τ]

(|γs
yFi

t(x)| + |γs
yui

t(x)|2) ≤ 1.

By Corollary 4.11, for all q ∈ N, one may choose s ≥ (k + 1)(q + 1) so that there exists
a positive constant Cq such that

sup
x∈By

( 1
2
)(|(∇i

τ)
(q)Fi

τ(x)| + |(∇i
τ)

(q)ui
τ(x)|)

≤ sup
x∈By(1)

(|γs
y(∇i
τ)

(q)Fi
τ(x)| + |γs

y(∇i
τ)

(q)ui
τ(x)|)

≤ Cq.

Then, by the Coulomb gauge theorem of Uhlenbeck [47, Theorem 1.3] (also see
[17]) and the gauge patching theorem [11, Corollary 4.4.8], passing to a subse-
quence (without changing notation) and in an appropriate gauge, (∇i

t, ui
t)→ (∇∞t , u∞t )

in C∞. �

6. Energy estimates

In this section, we prove that both the Yang–Mills–Higgs k-energy and the
Yang–Mills–Higgs energy are bounded along the Yang–Mills–Higgs k-flow.

We first show that the Yang–Mills–Higgs k-energy is bounded.

PROPOSITION 6.1. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M × [0, T). The Yang–Mills–Higgs k-energy (1-1) is decreasing along
the flow (1-3).
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PROOF. Direct calculation yields

∂

∂t
YMHk(∇t, ut) = −

(∥∥∥∥∥∂∇t

∂t

∥∥∥∥∥2
L2
+

∥∥∥∥∥∂ut

∂t

∥∥∥∥∥2
L2

)
≤ 0. �

For later use, we first prove an L2-bound for the Higgs field ut.

LEMMA 6.2. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1-3)
defined on M × [0, T). We have

sup
t∈[0,T)

‖ut‖L2 < +∞.

PROOF. Direct calculation yields

∂

∂t

∫
M
〈ut, ut〉 = 2

∫
M
〈ut,−∇∗(k+1)

t ∇(k+1)
t ut〉

= −2
∫

M
|∇(k+1)

t ut |2 ≤ 0. �

Using the above lemma, we can show that the Yang–Mills–Higgs energy is bounded
along the Yang–Mills–Higgs k-flow.

PROPOSITION 6.3. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on M4 × [0, T) with T < +∞. Then the Yang–Mills–Higgs energy

YMH(∇t, ut) =
1
2

∫
M

[|F∇t |2 + |∇tut |2] dvolg

is bounded along the flow (1-3).

PROOF. Direct calculation yields

∂

∂t
YMH(∇t, ut)

=

∫
M

〈
D∗∇t

F∇t + ∇tut ⊗ u∗t ,
∂∇t

∂t

〉
+

∫
M

〈
∂ut

∂t
,∇∗t∇tut

〉

≤
∫

M

[∣∣∣∣∣∂∇t

∂t

∣∣∣∣∣2 +
∣∣∣∣∣∂ut

∂t

∣∣∣∣∣2 + C(|∇tF∇t |2 + |∇
(2)
t ut |2 + |∇tut |2|ut |2)

]

≤ − ∂
∂t
YMHk(∇t, ut) + C(‖∇(k)

t F∇t‖2L2 + ‖∇(k+1)
t ut‖2L2 )

+ ε(‖F∇t‖2L2 + ‖∇tut‖2L2 ) + C(‖∇(k+1)
t ut‖4L2 + ‖ut‖4L2 ),

where we use Lemma 2.6, the Hölder inequality and the following Sobolev inequali-
ties:

‖ut‖2L4 ≤ C(‖∇tut‖2L2 + ‖ut‖2L2 ),

‖∇tut‖2L4 ≤ C(‖∇(2)
t ut‖2L2 + ‖∇tut‖2L2 );
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here C is a constant independent of t ∈ [0, T). Therefore,

YMH(∇t, ut) − YMH(∇0, u0)

≤ CT(YMHk(∇0, u0) +YMH2
k(∇0, u0) + ‖ut‖4L2 )

+ εT sup
t∈[0,T)

YMH(∇t, ut). (6-1)

Next, we borrow an argument in Saratchandran’s paper [36, Theorem 5.3]. Suppose
that there exists tm → T such that

lim
m→+∞

YMH(∇tm , utm )→ +∞.

By discarding some of the tm, we can assume that

YMH(∇tm , utm ) > YMH(∇tm′ , utm′ )

for m ≥ m′ and that tm ≥ tm′ when m ≥ m′. Partition [0, T) = [t0, t1] ∪ [t1, t2] ∪ · · · ∪
[tk, tk+1] ∪ · · · with t0 = 0. Define si ∈ [ti, ti+1] by

sup
t∈[ti,ti+1]

YMH(∇t, ut) = YMH(∇si , usi ).

It is easy to see that si → T and YMH(∇si , usi )→ +∞ as i→ +∞. Furthermore,
YMH(∇sj , usj ) ≤ YMH(∇si , usi ) when j ≤ i. Then, substituting si for t in (6-1),

YMH(∇si , usi ) − YMH(∇0, u0) − εTYMH(∇si , usi )

≤ CT(YMHk(∇0, u0) +YMH2
k(∇0, u0) + ‖ut‖4L2 ),

which means that

YMH(∇si , usi ) ≤
1

1 − εT CT(YMHk(∇0, u0) +YMH2
k(∇0, u0)

+ ‖ut‖4L2 +YMH(∇0, u0)).

The right-hand side of the above inequality is finite and it is independent of i. After
taking i→ +∞ on the left, we reach a contradiction. Thus, no such {tm} exists and the
result follows. �

7. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. To accomplish this, we first
show that the Lp-norm controls the L∞-norm by blow-up analysis.

PROPOSITION 7.1. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow
(1-3) defined on Mn × [0, T) and

sup
t∈[0,T)

(‖F∇t‖Lp + ‖〈ut, ut〉‖Lp ) < +∞.
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If dim(M) < 2p, then

sup
t∈[0,T)

(‖F∇t‖L∞ + ‖〈ut, ut〉‖L∞) < +∞.

PROOF. In order to obtain a contradiction, assume that

sup
t∈[0,T)

(‖F∇t‖L∞ + ‖〈ut, ut〉‖L∞) = +∞.

As we did in Theorem 5.2, we can construct a blow-up sequence (∇i
t, ui

t) with blow-up
limit (∇∞t , u∞t ). Noting that (5-1), by Fatou’s lemma and the natural scaling law,

‖F∇∞t ‖
p
Lp + ‖〈u∞t , u∞t 〉‖

p
Lp ≤ lim

i→+∞
inf(‖F∇i

t
‖pLp + ‖〈ui

t, ui
t〉‖

p
Lp )

≤ lim
i→+∞

ρ
(2p−n)/(2k+2)
i (‖F∇t‖

p
Lp + ‖〈ut, ut〉‖pLp ).

Since limi→+∞ ρ
(2p−n/2k+2)
i = 0 when 2p > n, the right-hand side of the above inequality

tends to zero, which is a contradiction since the blow-up limit has nonvanishing
curvature. �

Now we are ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Since dim(M) = 4, in order to use Proposition 7.1, we need

p > 2. By the Sobolev embedding theorem, we solve for p such that Wk,2 ⊂ L2p and
then k > 1. In this case, using Lemma 2.6,

‖F∇t‖Lp + ‖〈ut, ut〉‖L2p

≤ CSk,p

k∑
j=0

(‖∇(j)
t F∇t‖2L2 + ‖∇(j)

t ut‖2L2 + 1)

≤ CSk,p(‖∇(k)
t F∇t‖2L2 + ‖F∇t‖2L2 + ‖∇(k+1)

t ut‖2L2 + ‖ut‖2L2 + 1)

≤ CSk,p(YMHk(∇t, ut) +YMH(∇t, ut) + ‖ut‖2L2 + 1).

Noting that both YMHk(∇t, ut) and YMH(∇t, ut) are bounded along the
Yang–Mills–Higgs k-flow (1-3) (see Propositions 6.1 and 6.3), we conclude that
the flow exists smoothly for a long time.

REMARK 7.2. Since the blow-up analysis is not valid at t = +∞, we cannot obtain a
definite property at infinity in the present paper.

REMARK 7.3. Since Wk+1,2 ⊂ C0 when k > 1, the C0-bound of ut can be controlled by
YMHk(∇t, ut) and ‖ut‖2L2 via Lemma 2.6. Then the energy estimate and the blow-up
become much more easy. We also address this issue in Section 9.
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8. Concentration phenomenon for Yang–Mills–Higgs 1-flow

In this section, we show that the long-time existence of Yang–Mills–Higgs 1-flow
in dimension four is obstructed by the possibility of concentration of the curvature in
smaller and smaller balls.

PROPOSITION 8.1. Suppose that (∇t, ut) is a solution to the Yang–Mills–Higgs 1-flow
(1-3) defined on M4 × [0, T) with T maximal. Then there exists some ε > 0 such that if
{(xi, ti)} ⊂ M × [0, T) with (xi, ti)→ (X, T) has the property that

lim
i→+∞

(|F∇ti
(xi)| + |uti (xi)|) = +∞,

then, for all r > 0,

lim
i→+∞

sup(‖F∇ti
‖2L2(BX(r)) + ‖〈uti , uti〉‖2L2(BX(r))) ≥ ε,

where BX(r) denotes the geodesic ball of radius r centered at X.

PROOF. Choose a corresponding blow-up sequence (∇i
t, ui

t) as described in Proposition
5.2 with limit (∇∞t , u∞t ). Then, by (5-1),

|F∞0 (0)| + |u∞0 (0)|2 = 1.

By the smoothness of (∇∞t , u∞t ), for (y, t) ∈ B0(δ) × (−δ, 0],

|F∞t (y)| + |u∞t (y)|2 ≥ 1
2 .

Therefore,

lim
t↗0

sup(‖F∞t ‖2L2(B0(δ)) + ‖〈u
∞
t , u∞t 〉‖2L2(B0(δ))) ≥

1
8 Vol[B0(δ)].

Conversely, using the computations in Theorem 7.1,

‖F∞t ‖2L2(B0(δ)) + ‖〈u
∞
t , u∞t 〉‖2L2(B0(δ))

=

∫
B0(δ)

lim
i→+∞

(|F∇i
t
|2 + |〈ui

t, ui
t〉|2) dvolg

= lim
i→+∞

ρ(2×2−4)/(2×1+2)
i (‖F∇t‖2L2(Bxi (δρ

1/4
i ))
+ ‖〈ut, ut〉‖2L2(Bxi (δρ

1/4
i ))

)

= lim
i→+∞

(‖F∇t‖2L2(Bxi (δρ
1/4
i ))
+ ‖〈ut, ut〉‖2L2(Bxi (δρ

1/4
i ))

).

Since limi→+∞ ρ
(1/4)
i = 0, then, for any r > 0 and i large enough so that max{|T − ti|} < δ,

1
8 Vol[B0(δ)] ≤ lim

i→+∞
sup(‖F∇ti

‖2L2(BX(r)) + ‖〈uti , uti〉‖2L2(BX(r))).

Taking ε = 1
8 Vol[B0(δ)] yields the result. �

Note that the lower bound given by ε is independent of the point about which the
blow-up procedure occurred. From Proposition 8.1, we have the following theorem.
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THEOREM 8.2. Let E be a vector bundle over a closed Riemannian 4-manifold
(M, g). For every smooth initial value (∇0, u0), there exists a unique smooth solution
(∇t, ut) to the Yang–Mills–Higgs 1-flow (1-3) existing on [0, T) for some maximal
T ∈ R>0 ∪ {+∞}. If T < +∞, then there exists a sequence {(xi, ti)} ⊂ M × [0, T) with
(xi, ti)→ (X, T) and, for all r > 0,

lim
i→+∞

sup(‖F∇ti
‖2L2(BX(r)) + ‖〈uti , uti〉‖2L2(BX(r))) ≥ ε.

9. Higher order Yang–Mills–Higgs functional with Higgs self-interaction

In [19], Jaffe and Taubes studied the following Yang–Mills–Higgs functional:

YMH(∇, u) =
1
2

∫
M

[|F∇|2 + |∇u|2 + λ
4

(|u|2 − 1)2] dvolg, (9-1)

where the constant λ ≥ 0. The term (λ/8)(|u|2 − 1)2 is the Higgs self-interaction.
Following the former sections, we consider the following Yang–Mills–Higgs

k-functional with Higgs self-interaction:

YMHk(∇, u) =
1
2

∫
M

[|∇(k)F∇|2 + |∇(k+1)u|2 + λ
4

(|u|2 − 1)2] dvolg. (9-2)

The associated negative gradient flow of (9-2) is the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∇t

∂t
= (−1)(k+1)D∗∇t

Δ
(k)
∇t

F∇t +

2k−1∑
v=0

P(v)
1 [F∇t ]

+P(2k−1)
2 [F∇t ] +

k∑
i=0

∇∗(i)t (∇(k+1)
t ut ∗ ∇(k−i)

t ut),

∂ut

∂t
= −∇∗(k+1)

t ∇(k+1)
t ut +

λ

2
(1 − |ut |2)ut.

(9-3)

Now we can follow the line of the study of the flow (1-3).

(1) First of all, the local existence and smoothing estimates can be achieved in a
similar way and we have the same obstruction (Theorem 4.16) for the long-time
existence.

(2) It is easy to check that (9-2) is decreasing along the flow (9-3).
(3) One can check that ‖ut‖L2 is bounded along the flow (9-3).
(4) After setting dim(M) < 2(k + 1), we have the Sobolev embedding Wk+1,2 ⊂ C0.

Note that we have ‖∇(k+1)u‖2L2 in (9-2). So, the C0-bound of ut can be controlled
by (9-2) by using Lemma 2.6.

(5) Once we have the C0-bound of ut, it is easy to prove that (9-1) is bounded along
the flow (9-3).

(6) Since ut is bounded along the flow (9-3) when dim(M) < 2(k + 1), the obstruction
to the long-time existence only depends on F∇t . Choose a corresponding blow-up
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sequence (∇i
t, ui

t) as described in Theorem 5.2. Thus, (∇i
t, ui

t) converges to (∇∞t , 0)
smoothly. Also, u∞t = 0 since ut is bounded.

(7) Using the blow-up analysis, we can control the C0-bound of F∇t by its Lp-bound
with dim(M) < 2p.

(8) Finally, when dim(M) < 2(k + 2), the C0-bound of F∇t can be derived by Lemma
2.6, the blow-up analysis and the Sobolev embedding Wk,2 ⊂ Lp with dim(M) <
2p. Therefore, we obtain the following theorem.

THEOREM 9.1. Let E be a vector bundle over a closed Riemannian manifold (M, g).
Assume that an integer k satisfies dim(M) < 2(k + 1). Then, for every smooth initial
value (∇0, u0), there exists a unique smooth solution (∇t, ut) to the Yang–Mills–Higgs
k-flow (9-3) in M × [0,+∞).

REMARK 9.2. The critical dimension 2(k + 1) may not be optimal when the Higgs
self-interaction is not vanishing. In this case, we have ‖ut‖4L4 inYMHk(∇t, ut), which is
better than ‖ut‖2L2 . Maybe one can lower the order of derivative of ut in YMHk(∇t, ut)
to obtain a C0-bound for ut.

REMARK 9.3. If dim(M) < 2(k + 1), the long-time existence of the higher order
Seiberg–Witten flow studied in [36] can be proved as in Theorem 9.1.
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