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Objective: Genetic factors are largely implicated in predisposing to
schizophrenia. Environmental factors contribute to the onset of the
disorder in individuals at increased genetic risk. Cognitive deficits have
emerged as endophenotypes and potential therapeutic targets for
schizophrenia because of their association with functional outcome. The
aims of this review were to analyse the joint effect of genetic and
environmental (G3E) factors on liability to schizophrenia and to
investigate relationships between genes and cognitive endophenotypes
focusing on practical applications for prevention and rehabilitation.
Methods: Medline search of relevant studies published between 1990 and
2008.
Results: In schizophrenia, examples of G3E interaction include the
catechol-O-methyl transferase (COMT) (Val158Met) polymorphism,
which was found to moderate the onset of psychotic manifestations in
response to stress and to increase the risk for psychosis related to
cannabis use, and neurodevelopmental genes such as AKT1 (serine-
threonine kinase), brain-derived neurotrophic factor (BDNF), DTNBP1
(dysbindin) and GRM3 (metabotropic glutamate receptor 3), which were
associated with development of schizophrenia in adulthood after
exposure to perinatal obstetric complications. Neurocognitive deficits are
recognised as core features of schizophrenia that facilitate the onset of
the disorder and have a great impact on functional outcome.
Neurocognitive deficits are also endophenotypes that have been linked to
a variety of genes [COMT, neuregulin (NRG1), BDNF, Disrupted-In-
Schizophrenia 1 (DISC1) and dysbindin] conferring susceptibility to
schizophrenia. Recently, it has emerged that cognitive improvement
during rehabilitation therapy was under control of COMT (Val158Met)
polymorphism.
Conclusion: This review could indicate a pivotal role of psychiatric
genetics in prevention and rehabilitation of schizophrenic psychoses.
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Introduction

Schizophrenia is a severe and disabling mental
disorder that compromises psychic activity, emo-
tions, self-perception and social interactions.
A genetic component plays a substantial role in

the aetiology of schizophrenia. Relatives of
patients with schizophrenia have a 5–10 times
increased risk for developing schizophrenia com-
pared with the general population, which pro-
gressively decreases in more distant relatives (1).

Concordance rates for schizophrenia in mono-
zygotic twin pairs (50–60%) are four-folds higher
than those in dizygotic twin pairs (10–15%), which
reflects the proportion of shared genes in the two
twin groups (2,3). Heritability for schizophrenia has
been estimated at 80% (4). Linkage studies found
some loci probably associated with schizophrenia
on chromosomes 1, 2, 3, 5, 6, 8, 10, 11, 13, 14, 20
and 22 (5–9). To explore the genetic component of
schizophrenia, association studies have been ad-
dressed mostly to the main transmission systems of
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nervous impulses, evidencing possible associations,
not always confirmed, between genes for some
receptors, biosynthetic enzymes and neurotransmit-
ter transporters (10). Recently, other candidate
genes involved in synaptic plasticity and neuro-
trophic functions have shown a significant associ-
ation level with schizophrenia (9), as well as genes
related to the oligodendrocyte-myelin system (11).
Reworking data from linkage and association
studies have excluded that schizophrenia is caused
by a single gene; disease transmission is more likely
polygenic (1,12). Each gene has a small effect and
different and, sometimes, contrasting association
results; this may imply a diversity of genetic causes
in different individuals with schizophrenia (9). A
number of overlapping chromosome regions (1q,
2p, 10p, 13q, 18p and 22q) in linkage genome scans
for schizophrenia and bipolar illness have led some
to speculate on a common genetic diathesis for all
psychoses (13). Altogether, these findings, in par-
ticular the lack of specificity of susceptibility genes,
would lead to reconsider the role of genetics in
schizophrenia. In fact, traditional view, genes code
for the disorder in a simple, direct way, may be
inappropriate as for other mental disorders (14). In
recent years, endophenotypes have emerged as
promising targets of psychiatry genetics. Adapted
from the original meaning of internal, microscopic
phenotype, which was introduced in a paper on
insect biology, endophenotype is currently used in
psychiatry research to define a measurable biolog-
ical or psychological trait that is common to both
individuals with a disease and their non-affected
relatives and that may predispose to illness onset
(15). Endophenotypes are thought to be closer to
genetic underpinning than psychiatric syndromes
that are pathophysiologically heterogeneous. As
endophenotypes influence the course and outcome
of psychiatric disorders (16), they could represent
preferential targets for psychopharmacological ther-
apies and psychiatric rehabilitation (17).
Although schizophrenia is often described as

a genetic disorder, research has identified a variety
of environmental factors that could affect its onset
and course: obstetric complications (18), viral
infections (19), stressful life events (20) and sub-
stance abuse (21). Gene-environment interplay is
fundamental for the development of psychosis (22).
The Finnish Adoptive Family Study of Schizo-
phrenia found a higher prevalence of psychotic
disorders in adopted offspring of schizophrenic
patients compared with control adoptees with non-
schizophrenic biological parents, but only in the
presence of a disturbed environment in adoptive
families (23). The study also found that persons
with a genetic risk of schizophrenia are especially

sensitive to the emotional climate of their family
environment. A child-rearing environment with
infrequent criticism and clear, straightforward com-
munication appears to be protective against the
symptomatic expression of genetic risk (24). The
contribution of environmental and genetic factors
to the onset of psychosis opens new scenarios for
prevention, and the availability of models that
explains gene-environment interplay is an emerging
need in this field.

The aim of this paper was to review available
literature on the genetics of schizophrenia focusing
on environmental factors that increase the risk of
developing psychosis and neurocognitive and
psychophysiological endophenotypes that affect
the onset and course of schizophrenic disorders.
The article addresses the following topics: (a)
relationship between genetic factors and schizo-
phrenia endophenotypes and (b) interaction
between genetic and environmental (G3E) factors
in the development of schizophrenia. These find-
ings are discussed in view of their implications for
prevention and rehabilitation.

Methods

We performed a Medline search including all papers
published between January 1990 and April 2008. To
retrieve relevant papers, we used keywords such as
�gene’, �schizophrenia’, �endophenotype’, �cognitive
deficit’, �executive function’, �working memory’,
�P50’, �P300’ and �sensory gating’ to investigate
gene-endophenotype association; �gene’, �schizo-
phrenia’, �environment’, �obstetric complications’,
�substance abuse’, �cannabis’, �viral infection’, �life-
events’ and �stress’ were applied as keywords to
identify G3E interaction models.

Eligible studies were �in vitro’ and �in vivo’ animal
and human studies. Review articles were consid-
ered for additional studies not retrieved by Medline
search.

Results

Relationship between genes and endophenotypes

Following Gottesman and Gould’s definition (15),
the reasonable criteria for a viable schizophrenia
endophenotype are as follows: (a) the endopheno-
type is a neuropsychological or neurophysiological
character associated with schizophrenia; (b) the
endophenotype is heritable; (c) the endophenotype
is stable and trait related: its appearance is
independent of state-related fluctuations in the
individuals’ conditions, although factors such as
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age may affect the endophenotype; (d) the endo-
phenotype and schizophrenia show cosegregation
and (e) the proband’s specific endophenotype
character is found at higher rates in the proband’s
relatives than in the general population.
Schizophrenia-related endophenotypes are cog-

nitive functions such as attention, working mem-
ory, executive functions and visuospatial memory
that are impaired in schizophrenic patients and in
their non-schizophrenic relatives (25,26). Cognitive
functions are associated with event-related poten-
tials (ERPs): attention is associated with the
P50 component of ERPs (27), which is related to
sensory gating, whereas working memory and
verbal fluency are associated with ERP component
P300 (28,29). Both P50 and P300 ERPs are altered
in schizophrenic patients and in their healthy
relatives (30,31) and can be modified by antipsy-
chotic treatments (32,33). These neuropsycho-
logical and electrophysiological endophenotypes
have been related to susceptibility genes for
schizophrenia.

Catechol-O-methyl transferase. Catechol-O-methyl
transferase (COMT) enzyme terminates catechol-
amine activity in the brain by degrading these
neurotransmitters. The gene encoding COMT –
chromosome 22 (34) – has a functional polymor-
phism (Val108/158Met) that moderates dopamine
availability in the prefrontal cortex (PFC) in an
allele-dependent manner: the Met allele, which has
a 3–4 times lower enzymatic activity, has been
associated to higher dopamine levels in the PFC
(35). Several studies have investigated COMT
(Val108/158Met) polymorphism as a risk factor
for schizophrenia: the Val-allele, which has a higher
enzymatic activity resulting in lower PFC dopa-
mine levels, has been found to confer susceptibility
to schizophrenia in Caucasian populations, while
its role in other ethnic groups (e.g. Asians) is more
controversial (36). A large number of studies have
proven the association of COMT (Val108/158Met)
variants with cognitive functions in schizophrenic
patients and non-affected relatives (37–47). The
Val-allele has also been related to P50 sensory
gating (48) and schizotypal personality traits
(49,50).

Neuregulin 1. The neuregulins (NRGs) are cell-cell
signalling proteins that are ligands for receptor
tyrosine kinases of the ErbB family (51). TheNRG1
proteins have been demonstrated to play important
roles during the development of the nervous system
(52) and moderate N-methyl-D-aspartate (NMDA)
receptor function (53), and these findings support
NRG1 involvement in the pathogenesis of schizo-

phrenia (54). Mice with heterozygous deletion of
NRG1 transmembrane domain have been charac-
terisedbybehavioural phenotypes,which are related
to human schizophrenia (55,56). NRG1 is a posi-
tional candidate gene on chromosome8p22-p11 that
several genome-wide linkage scans have identified as
a susceptibility locus for schizophrenia (57). NRG1
has proven its association with schizophrenia in
a variety of studies, althoughwith conflicting results
in Caucasian and Asian samples (58). The interme-
diate phenotypes of the NRG1 gene have been
poorly investigated. Recently, Stefanis et al. re-
ported a moderate impact of this gene on sustained
attention and working memory in the general
population (59).

Brain-derived neurotrophic factor. Neurotrophins
restore the functions of the damaged neurons and
prevent apoptosis in adults, thus they are likely to
be implicated in the pathophysiology of several
mental disorders including schizophrenia (60).
Indeed, abnormal activity of the neurotrophin
system has been reported in schizophrenics’ brains,
in particular increased brain-derived neurotrophic
factor (BDNF) levels have been found in the
hippocampus and anterior cingulate cortex (61)
and decreased BDNF in the PFC (62) of schizo-
phrenic patients compared with healthy controls.
The pathophysiological meaning of these findings
is not yet fully understood. However, it has been
demonstrated that BDNF can regulate the expres-
sion of Reelin (63,64), a protein that is involved in
migration and positioning of cortical and hippo-
campal neurons during embryonic development of
the brain (65). Both typical and atypical antipsy-
chotics have been shown to reduce BDNF expres-
sion in various brain regions of the rat (66,67) and
BDNF-like immunoreactivity in the serum of
schizophrenics (68,69). The gene encoding BDNF
is a putative susceptibility factor for psychosis (70).
Two polymorphisms in the BDNF gene – Val66-
Met and C270T – have been associated with
schizophrenia, although their effects seem to be
weak (71,72). The Val66Met polymorphism has
also been connected with early phases of informa-
tion processing in schizophrenic samples (73) and
with verbal memory in schizophrenics and healthy
controls (74).

Disrupted-In-Schizophrenia 1. Disrupted-In-Schizo-
phrenia 1 (DISC1) is a gene disrupted by a balanced
(1;11) (q42;q14.3) translocation that has been shown
to cosegregate with major psychiatric disorders in
a large Scottish family (75) DISC1 protein occurs in
various subcellular compartments, which include
the centrosome, microtubule fractions, postsynaptic
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densities, actin cytoskeletal fractions, the mito-
chondria and the nucleus (76). Recent studies
have clarified that DISC1 is a component of
a neurodevelopmentally regulated protein com-
plex that has different functions in the developing
and adult brain. In the developing brain, DISC1
has been implicated in neuronal migration (77)
and in neurite outgrowth and extension (78). In
the adult, DISC1 has been identified in multiple
populations of neurons and in structures associ-
ated with synaptic function, suggesting that one of
its adult functions may be synaptic plasticity (79).
DISC1 is present in many of the brain regions
known to be abnormal in schizophrenia, such as
the PFC, hippocampus and thalamus (80).
Mutant truncated DISC1 may contribute to
schizophrenia susceptibility by altering neuronal
architecture and migration (81). More recently, it
has been suggested that DISC1 may interact with
phosphodiesterase 4B (PDE4B) and biochemical
cycle of 3#,5#-cyclic adenosine monophosphate
(cAMP), which appears to be implicated in
learning, memory and mood. According to pro-
posed model, DISC1 sequesters PDE4B in resting
cells and releases it in an activated state in
response to elevated cAMP (82). The association
of the DISC1 gene (chromosome 1p42) with
schizophrenia, which was originally reported in
a Scottish population, has been replicated in other
ethnic groups (80). DISC1 single nucleotide poly-
morphisms have shown to be connected with
sustained attention and working memory deficits
in schizophrenic families (83,84).

DTNBP1. Dysbindin is an evolutionary conserved
40-kDa coiled-coil-containing protein that binds to
alpha- andbeta-dystrobrevin inmuscle andbrain. In
the brain, dysbindin immunoreactivity is associated
with glutamatergic mossy fibre terminals in the
cerebellum and hippocampus (85). Although most
aspects of its function are still waiting to be
elucidated, dysbindin seems to promote neuronal
viability and protect cortical neurons against death
through phosphoinositide-3 (PI3)-kinase-Akt sig-
nalling. (86). Significant dysbindin reductions have
been found at presynaptic levels in glutamatergic
afferents of the subiculum, hippocampus and
dentate gyrus in the brain of schizophrenic patients
(87). DNTBP1 is the gene encoding dysbindin on
chromosome 6p22.3. Sequence variations in
DNTBP1 determine reductions in dysbindin mes-
senger RNA levels in the PFC of schizophrenics (88)
and mediate the risk for schizophrenia by lowering
dysbindin expression (89). A variety of linkage and
association studies have supported DTNBP1 as
a susceptibility gene for schizophrenia, although

with different haplotypes (90). In samples of
schizophrenics, carriers of the DNTBP1 risk haplo-
type have been associated to early visual processing
deficits and a significantly lower spatial working
memory performance (91,92). In addition, genetic
variation in DNTBP1 has been shown to influence
general cognitive ability (93).

GRM3. A large body of evidence supports the
involvementof theglutamate system in schizophrenia.
Glutamatergic NMDA receptor antagonist phency-
clidine can cause psychotic symptoms in healthy
individuals and exacerbate psychosis in schizo-
phrenics (94). Phencyclidine-evoked motor behav-
iours in rats are suppressed by glutamate receptor
agonists (95), which are currently studied as new
agents to treat schizophrenia in phase-2 trials (96).
GRM3, a metabotropic glutamate receptor modulat-
ing synaptic glutamate, has emerged as a promising
candidate gene for schizophrenia (97). Variation in
GRM3 mediates glutamate release in the PFC and
cognitive functioning in psychotic patients (98).

CHRNA7. Sensory gating is impaired in schizo-
phrenia most likely because of dysregulation of
nicotinic cholinergic neurotransmission. Indeed,
cigarette smoking and nicotine administration have
been shown to reverse sensory gating deficit in
individuals with schizophrenia (99) and in relatives
of schizophrenics (99) in a transient manner.
Nicotine can also reverse diminished inhibitory
sensory gating in cocaine addicts (100). One
measure of sensory gating abnormalities, dimin-
ished inhibition of the P50 evoked response to
repeated auditory stimuli, has been linked to the
chromosome 15q14 locus of the alpha-7-nicotinic
receptor gene (CHRNA7) (101). This site has shown
linkage to schizophrenia across several studies.
Polymorphisms in the core promoter of the gene
are associated with schizophrenia and also with
diminished inhibition of the P50 response (102,103).

Interaction between G3E factors

In twin studies on schizophrenia, identical twins
show average concordance rates of only 50%,
although they share 100% of their genes (1). This
finding does not necessarily exclude a pure genetic
aetiology: it is also possible that non-genetic
factors consist entirely of stochastic events affect-
ing gene expression or structure (104). However,
there is a general agreement on the contribution of
environmental factors to schizophrenia pathophys-
iology (2). Identification of these factors is
hampered by the lack of reliable objective measures
for subjective psychological variables, thus
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research has focused on the few measurable
environmental variables (22).

Obstetric complications. It is well established that
exposure to obstetric complications in the prenatal
or perinatal periods increases the risk for schizo-
phrenia with a small but significant effect (18).
Complications of pregnancy, abnormal foetal
growth and complications of delivery are more
often reported in individuals who later develop
schizophrenia than in non-schizophrenic controls
(105). The pathogenic effect of these events
generally lies in a hypoxic damage of foetal and
neonatal brains (106–108). Foetal hypoxia is
associated with structural brain abnormalities
[reduced grey matter and increased cerebrospinal
fluid (CSF)] among schizophrenic patients and their
non-schizophrenic siblings but not among controls
at low genetic risk (109). This is clearly a proof that
hypoxic brain damage leading to schizophrenia is
mediated by genetic factors. Indeed, brain hypoxia
was shown to alter the expression of 20 susceptibil-
ity genes for schizophrenia (110). In particular, the
most consistent finding was about the NRG1 gene,
which was found to be expressed at higher levels in
rats exposed to brain hypoxia within the first
postpartum week (111). These models of gene-
environment interaction are also confirmed by
recent human studies. Thus, Nicodemus et al.
reported that a few polymorphisms in the DTNBP1,
AKT1, BDNF and GRM3 genes increased risk for
developing schizophrenia in individuals who were
exposed to obstetric complications causing foetal
hypoxia (112).

Viral infections. Population studies indicate that
exposure to influenza epidemics between the third
and seventh month of gestation is associated with
schizophrenia in adult life, suggesting that mater-
nal-foetal transmission of influenza virus may be
a risk factor for schizophrenia (113). To corrobo-
rate this hypothesis, a French study demonstrated
that prenatal exposure to influenza virus occurred
more frequently in schizophrenic patients than in
non-schizophrenic siblings and a control sample
(114). The pathogenic effect of influenza viral
infection has been studied in rodents. Mice exposed
to prenatal human influenza viral infection showed
altered levels of neuronal nitric oxide synthase
(115), which has been implicated in synaptogenesis
and excitotoxicity, abnormal pyramidal cell density
and atrophy (116) and increased expression of
markers of gliosis (117).
Studies have suggested that also cytomegalovi-

rus (CMV) may play an aetiological role in
schizophrenia. Indeed, it has been reported that

some patients experiencing initial episodes of
schizophrenia had increased levels of immunoglob-
ulin G antibodies against CMV in their sera and
CSF (118). Treatment with antipsychotic medica-
tions may result in a decrease in CMV antibodies
(119), while treatment with antiherpes virus and
anti-inflammatory medications may reduce symp-
toms in some individuals with schizophrenia (120).
The onset of schizophrenia following prenatal
exposure to viral infections is most likely mediated
by genetic factors. In rats, olfactory bulb injection
of a neuroadapted influenza A virus strain led to
persistent changes in spatial learning and elevated
transcriptional activity of the gene encoding
synaptic regulatory protein RGS4 (121), which
has been pointed to as a schizophrenia liability
gene. Some polymorphisms within the chromo-
somal region 6p-21-p23 have been noted to confer
risk for schizophrenia in conjunction with CMV
exposure (122).

Substance abuse. Epidemiological data indicate
that 30–60% of schizophrenics meet lifetime
criteria for substance abuse or dependence (123–
126). The 6-month prevalence of substance misuse
in schizophrenia is 10–30% (123,126), with alcohol
and cannabis having the greatest diffusion (123). In
adolescents, regular use of cannabis almost doubles
the risk of psychotic outcomes (21). This effect is
dose dependent and much stronger in individuals
with predisposition for psychosis (127). Family
histories of schizophrenia have been more often
reported in psychotic patients who were cannabis
positive on urinary screening than in controls with
psychosis who screened negatively for all substan-
ces of abuse (128). Thus, it is necessary to postulate
a gene-environment interaction to explain the onset
of psychotic symptoms in response to cannabis use.
Caspi et al. identified the role of the COMT
(Val108/158Met) polymorphism in developing
psychosis in adulthood after exposure to cannabis
during adolescence: individuals who carried the
Val-allele were more likely to experience psychotic
symptoms or any schizophrenia-like disorder (129).
More recently, the Val-allele has been associated
not only with psychosis after exposure to delta-9-
tetrahydrocannabinol (THC) but also with atten-
tion and working memory deficits (130). On the
contrary, Zammit et al. reported no effect of the
COMT gene on association between cannabis and
psychosis (131). Another valuable candidate gene
is the one encoding NRG1. NRG1-deficient knock-
out mice showed positive correlations with animal
models of schizophrenia after administration of
THC and increased c-Fos expression in the
amygdala, nucleus accumbens and lateral septum
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but only in the subsample exposed to behavioural
stimulation (132). These findings might imply
a complex interaction between stress, genetic
factors and cannabis in substance-induced psycho-
sis but need to be replicated in humans.
Furthermore, amphetamine-induced psychosis

has been related to the dysbindin DTNBP1 gene
(133).

Life stress. Exposure to stressful life events facili-
tates the onset of the first episode of psychosis (20)
and triggers depressive exacerbation in the early
course of schizophrenia (134). Schizophrenic pa-
tients are more vulnerable to the effect of daily life
stress (135). This characteristic, which is indepen-
dent of cognitive deficits, may support an affective
pathogenesis of schizophrenia (136).
The COMT (Val108/158Met) polymorphism has

been demonstrated to modulate the impact of stress
on psychotic symptoms. Stefanis et al. used a semi-
experimental paradigm to evaluate the effect of stress
on psychosis manifestations in a sample of young
men at recruitment in the Greek army and noted that
carriers of the COMT (Val108/158Met) Val-allele
experiencedhigher levels ofpsychotic symptomsafter
stress exposure (137). On the contrary, van Winkel
et al. reported that psychosis sensitivity to stress was
higher in Met/Met homozygotes (138).

Discussion

Gene, environment and prevention

A variety of environmental factors contribute to
the onset of schizophrenia. The task of primary
prevention is to identify and remove those risks.
The benefit of primary prevention for the pop-
ulation’s health may be considerable. A recent
meta-analysis reported a 40% increased risk for
any psychotic outcome in individuals who had ever
used cannabis (21): based on this finding, it has
been estimated that in UK at least 800 new cases of
schizophrenia yearly could be avoided if cannabis
was no longer used by individuals at risk for
psychosis.
Genetics may have a key role in primary

prevention of schizophrenia. Accordingly, the
main finding of this review, in line with more
authoritative opinions of leading researchers in
psychogenetics (139), is that sensitivity to environ-
mental risk factors is under genetic control. Thus,
the COMT (Val108/158Met) polymorphism has
been found to modulate the risk of developing
psychosis in individuals who are cannabis users
(129) or exposed to stress conditions (137,138).
Various genes whose expression is regulated by

hypoxia (AKT1, DTNBP1, BDNF and GRM3)
have been shown to interact with obstetric
complications to influence risk for schizophrenia
(112). Although gene-environment models have
surfaced to schizophrenia research, their applica-
tion to prevention activity is still premature. In
fact, many gene-environment associations were
only reported in animal studies. Other genes were
associated with environmental factors in humans,
but replication studies are needed. Future research is
expected to identify newmodels ofG3E interaction.
Morphometry has shown a larger proportion of
myelinated fibres with atrophy of axon and swelling
of periaxonal oligodendrocyte processes, a lower
number of oligodendroglial satellites of pyramidal
neurons and a loss of pericapillary oligodendrocytes
in the PFC of schizophrenic patients compared with
non-schizophrenic controls (140). These white
matter abnormalities have been associated with
cognitive deficits (141). Preliminary evidence sug-
gests that substance abuse, particularly cannabis,
might interfere with the development of frontal
whitematter in someadolescents, thus leading to less
white matter (142). Therefore, it is arguable that
oligodendrocyte-myelin-related genes (e.g. MAG;
2,3-cyclic nucleotide 3#-PDE; QKI and SOX10),
which have been associated with schizophrenia (11),
may affect risk for psychosis in substance abusers
(143). Communication deviance has been found to
be higher in families with schizophrenic offspring
(144–146) and has emerged as a risk factor for
schizophrenia by interacting with genetic liability
(147,148). Recent studies suggest that communica-
tion deviance might be under genetic control (149),
although there is no information on implicated
genes.

Secondary prevention involves individuals at
increased risk for schizophrenia to prevent the
onset of the first psychotic episode. Ultra-high-risk
individuals with family histories of psychosis and
a recent decline in social functioning or sub-
threshold psychotic manifestations (150,151)
develop schizophrenia in 30–40% of cases within
1—2 years of follow-up (152–154). As transition to
psychosis does not occur in about two thirds of
these subjects, ultra-high-risk criteria may not be
specific enough to warrant secondary prevention
interventions. Genetics may improve identification
of at risk subjects for developing schizophrenia to
an acceptable level for secondary prevention
activity; this hypothesis needs to be confirmed by
future research. The knowledge of gene-endophe-
notype interaction may increase the feasibility of
prophylactic interventions. Thus, cannabis is
known to alter sensory gating, thereby causing
substance-induced psychosis (155–157). The COMT
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gene has been associated to both gating deficits in
schizophrenia (48) and onset of psychosis in
cannabis users (129). Taken together, these find-
ings would indicate that reducing sensory gating
deficits among cannabis users carrying at risk
variant (Val-allele) of the COMT gene, e.g. by
administration of atypical antipsychotics (158) or
nicotinic cholinergic agonists (100), might aid in
preventing psychotic complications.

Genetics and rehabilitation

In schizophrenic patients, cognitive deficits are not
only related to psychopathological dimensions –
significant associations have been reported be-
tween executive function deficits and negative
symptoms (159,160) and between working memory
deficits and disorganisation (160,161) – but also
affect psychosocial functioning and long-term
outcome (162–166). Therefore, reducing cognitive
impairment is considered to be one of the main
objectives in the treatment of schizophrenia (167).
Cognitive dysfunction can be treated by atypical

antipsychotics (168–170). A recent meta-analysis
demonstrates that atypicals produce a mild reme-
diation of cognitive deficits in schizophrenia, each
atypical having a greater effect on specific cogni-
tive domains (171). Given the moderate efficacy of
antipsychotics on cognitive deficits, a relatively
large number of schizophrenics could have partial
or no improvement in cognitive functions during
antipsychotic treatment. Besides antipsychotics,
cognitive deficits can also be targeted by training
exercises of impaired cognitive functions (172).
These cognitive remediation interventions produce
moderate improvements in cognitive performance
and psychosocial outcomes, with only small effects
on the symptoms of schizophrenia (173). The
efficacy of cognitive remediation programmes is
variable and seems to be dependent on the use of
specific components of training (174).
This paper summarised the contribution of genetic

factors to cognitive dysfunction in schizophrenic
subjects and their relatives. We argue that the same
genes that have been related to cognitive deficits may
influence cognitive function response to antipsy-
chotic treatment and cognitive remediation therapy.
This hypothesis is now supported by some experi-
mental data. Indeed, in a recent study of schizo-
phrenics treated with clozapine, cognitive
improvement during antipsychotic therapy was
found to be influenced by COMT (Val108/158Met)
genotype (40). The COMT gene is also involved in
response to cognitive remediation interventions.
Fifty out-patients with chronic schizophrenia were
evaluated over a 3-month follow-up on active

rehabilitation treatment including cognitive remedi-
ation exercises or control treatment with standard
rehabilitation alone and genotyped for COMT
(Val108/158Met) variants: carriers of the Met allele
showedagreater improvement in cognitive flexibility
and quality of life on active treatment comparedwith
Val/Val homozygotes on control treatment (175).
Further studies are warranted to confirm the

impact of the COMT gene on cognitive response
and to elucidate the role of other �cognitive’ genes.

Conclusions

Schizophrenia has a complex pathophysiology that
involves both genetic and environmental factors as
well as their interaction. To understand the link
between these two categories of susceptibility,
adoption studies have clarified that adoptees
without a pre-existing genetic liability were not
vulnerable to the effects of a disturbed family
environment, whereas individuals with a pre-exist-
ing genetic liability could only express this liability
in the presence of additional adverse environmen-
tal factors (23,147,148). In contrast to traditional
view, which postulates that genes and environment
have independent effects, these findings point to
gene-environment interaction accounting for
schizophrenia liability. This establishes the role of
genetics in prevention of schizophrenia. Available
literature suggests that genes do not directly target
schizophrenic disorders; instead, they have been
linked to cognitive endophenotypes that affect
psychosocial functioning and long-term outcome
of psychosis. This opens new perspectives for
genetics in schizophrenia rehabilitation.
In conclusion, although psychogenetics was born

as a branch of biological psychiatry, genetic
research on schizophrenia has gone beyond neu-
robiology to encompass biopsychosocial model.
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