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Abstract
Classical swine fever (CSF) is one of the most devastating epizootic diseases of pigs, causing

high morbidity and mortality worldwide. The diversity of clinical signs and similarity in disease

manifestations to other diseases make CSF difficult to diagnose with certainty. The disease is

further complicated by the presence of a number of different strains belonging to three

phylogenetic groups. Advanced diagnostic techniques allow detection of antigens or

antibodies in clinical samples, leading to implementation of proper and effective control

programs. Polymerase chain reaction (PCR)-based methods, including portable real-time PCR,

provide diagnosis in a few hours with precision and accuracy, even at the point of care. The

disease is controlled by following a stamping out policy in countries where vaccination is

not practiced, whereas immunization with live attenuated vaccines containing the ‘C’ strain

is effectively used to control the disease in endemic countries. To overcome the problem of

differentiation of infected from vaccinated animals, different types of marker vaccines, with

variable degrees of efficacy, along with companion diagnostic assays have been developed and

may be useful in controlling and even eradicating the disease in the foreseeable future. The

present review aims to provide an overview and status of CSF as a whole with special reference

to swine husbandry in India.
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Introduction

Classical swine fever (CSF) or hog cholera is an important

infectious disease of pigs, with considerable economical

implications in the swine industry worldwide. It affects

domestic pigs, wild boars and feral pigs. The first

outbreak of the disease, observed in France in 1822

(Cole et al., 1962), was thought to be caused by a

bacterium termed the ‘hog cholera bacillus’. It is now

known that the CSF virus (CSFV) is closely related to the

bovine viral diarrhea virus (BVDV) and ovine border

disease virus (BDV). Infection with CSFV is listed as

reportable to the World Organisation for Animal Health

(OIE), so every suspected case should be investigated

and the OIE should be notified of positive cases

(OIE, 2014).

Acute cases of CSF caused by virulent virus can be

diagnosed relatively easily, but not the infections caused

by less virulent viruses. In some cases, dullness and poor

reproductive performance are noticed. Due to a wide

range of clinical signs and similarity to other diseases,

it has become a challenging task to diagnose the CSF

accurately. In spite of a number of efficacious and safe

vaccines available to control CSF, the disease is prevalent

in Europe, Asia and South America. However, the African

continent considered CSF-free except for Madagascar. The

disease is endemic to India, where it is prevalent in most

of the states. This review is aimed to provide the latest

information of all the aspects of CSF including the status of*Corresponding author. E-mail: drvishal1@gmail.com
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the disease in India, latest diagnostic tools, immunopro-

phylactic measures and control strategies for the benefit of

the swine industry.

Etiological agent

CSFV is classified under the genus Pestivirus within

the family Flaviviridae (ICTV, 2012). The capsid of this

enveloped virus is hexagonally shaped, 45 nm in

diameter and encloses the single-stranded positive sense

RNA genome of 12.3 kb. The CSFV genome contains one

open reading frame (ORF), which encodes one large

polyprotein that is cleaved by proteases to yield mature

viral proteins (Moormann et al., 1990). The ORF is flanked

by a 5
0
untranslated region (UTR) of almost 400 nt and

a 3
0
-UTR of about 200 nt. The 5

0
-UTR functions as an

internal ribosome entry site (IRES) for translation of the

polyprotein of about 3900 amino acids. The order of the

gene products is N–C–Erns–E1–E2–P7–NS2.3–NS4a–NS4b–

NS5A–NS5B–COOH, with coding regions for the capsid

protein and envelopes the glycoprotein Erns–E1–E2 at the

N terminus and non-structural proteins at the C terminus.

The 5
0
and 3

0
NTRs of the CSFV are thought to act together

in cis to induce apoptosis, and this NTR-mediated

apoptosis requires double-stranded RNA and translation

shutoff through activation of protein kinase R (Hsu

et al., 2014). The Erns protein shows RNase activity and

is immunosuppressive in nature in vitro. The E2 is the

most immunodominant protein and is composed of two

independently formed antigenic domains. The NS2.3 is

the most conserved among the pestiviruses. Other

members under the genus Pestivirus include BVD-1,

BVD-2, BDV and a pestivirus isolated from a giraffe. CSFV

differs from BVDV and BDV in sequences at the 5
0
-UTR

and the E2 gene (Katz et al., 1993; Vilcek et al., 1994; Van

Rijn et al., 1997). CSFV is genetically more stable than

BVDV and different strains can be grouped on the basis of

differences in the nucleotide sequences of the 5
0
NTR, the

N terminal of E2 and a region of NS5B. The amino acid

similarity between CSFV and BVDV is about 70% with the

highest homology between NS3 of the NS2.3 protein and

the lowest in the E2 protein (Paton, 1995).

There is only one CSFV serotype, but a number of

strains of variable virulence and antigenicity can be

distinguished with monoclonal antibodies (Wensvoort

et al., 1989; Edwards and Sands, 1990; Edwards et al.,

1991). Classification of CSFV strains and isolates currently

is mainly based on 190 nt of the E2 envelope glycoprotein

gene, but also with 150 nt of the 5
0
-UTR and 409 nt of the

NS5B polymerase gene. On the basis of phylogenetic

analysis, CSFV can be divided into three groups with three

or four subgroups: 1.1, 1.2, 1.3; 2.1, 2.2 and 2.3; 3.1, 3.2,

3.3 and 3.4. These groups and subgroups show distinct

geographical distribution patterns. All of the groups have

been found in Asia, but group 3 mainly occurs in Asia,

group 2 in the European Union and group 1 in

South America, Central America and the Caribbean (Paton

et al., 2000a). CSFV genomes can also be clustered on the

basis of their codon pair bias, which correlates with the

genotype rather than with the virulence of the isolates

(Leifer et al., 2011). Most of the highly virulent CSFV

strains and the vaccine strains belong to genotype 1.

Genotypes 2 and 3 are the moderately virulent strains,

and the genetic variability within this strains is compara-

tively higher than genotype 1 (Uttenthal et al., 2003;

Rasmussen et al., 2010). Both 1.1 and 2.2 subgroups have

been reported in India, with the predominance of 1.1 and

involvement of both subgroups in outbreaks (Patil et al.,

2010).

Pathology and pathogenesis

Under natural conditions, CSFV enters the host through

oral, nasal, conjunctival and genital mucous membranes.

The spread of highly virulent CSFV strains in pigs is

characterized by lymphatic, viremic and visceral phases.

The virus initially infects epithelial cells of the tonsillar

crypts, followed by the regional lymph node and the

efferent blood capillaries, leading to viremia. Virus

proliferation occurs in the spleen, visceral lymph node,

lymphoid tissues and bone marrow in acute CSF and

persists until the death of the animal. The virus has

distinct affinity for vascular endothelium and cells of the

immune system. The widespread hemorrhages in acute

CSF are due to degeneration and necrosis of endothelial

cells, thrombocytopenia and disturbances in fibrinogen

synthesis (Pauly et al., 1998; Gómez-Villamandos et al.,

2001).

Moderate or low-virulence CSFV strains can induce

persistent infections designated as chronic or late onset

swine fever. Initially, the virus disseminates throughout

the body at a slower rate with low concentrations of virus

in serum and organs. Secondly, the virus is limited to

epithelial cells of the tonsils, ileum, salivary glands and

kidney. The antigen–antibody complex is deposited in

the kidney leading to glomerulonephritis. Finally, the

virus disseminates throughout the body with secondary

bacterial infections (Cheville et al., 1970).

Late onset CSF occurs when low virulent CSFV infects a

fetus during the first 40 days of gestation. Such pigs have

a lifelong viremia with spread of the virus in epithelium,

lymphoid and reticuloendothelial tissues (van Oirschot,

1979). The pathogenesis of CSFV is depicted in Fig. 1.

The multiplication of low-virulence CSFV following

postnatal infection is mainly restricted to tonsils and

lymph nodes. In pregnant sows, the outcome of the fetal

infection depends on the age of the fetus and the

virulence of the virus (Radostitis et al., 2007). Transpla-

cental infection with both field and vaccine strains of

the virus may induce abnormalities such as hypoplasia

of lungs, malformation of the pulmonary artery,
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micrognathia, arthrogryposis, fissures in the renal cortex,

multiple septa in the gall bladder and malformations in

the brain. Earlier infection leads to more severe abnorm-

alities and may result in abortions, stillbirths, mummifica-

tion and malformations, whereas infections at 50–70 days

leads to birth of persistently viremic piglets that are

clinically normal at birth but die after several months.

These animals have retarded growth (runts) and shed a

large number of virus particles. Infection occurring at a

later stage of gestation may lead to development of

immunotolerance (van Oirschot, 1979; Meyer et al., 1981).

Immunity develops rapidly in immunocompetent swine

that survive acute infections (Susa et al., 1992; Summer-

field, 1998a, b; van Oirschot, 2004; van Oirschot et al.,

2004; Radostitis et al., 2007).

In peracute cases, no gross changes are found.

Hemorrhages occur in various organs throughout the

body in case of acute and subacute infection due to

capillary endothelium degeneration and thrombocytope-

nia. Lymph nodes are swollen, edematous and appear as

red or black due to diffuse hemorrhages. The heart,

larynx, urinary bladder, intestinal mucosa, serosa and skin

show petechial to echhymotic hemorrhages. It has also

been observed that disseminated intravascular coagula-

tion (DIC) caused by the CSFV may not have an effective

role in the pathogenesis of the disease (Blome et al.,

2013). Kidneys on removal of the capsule show petechiae

in the cortex and have an appearance known as ‘turkey

egg’. The skin may be cyanotic. The presence of splenic

infarcts up to 10 mm in size is considered to be

pathognomonic for acute swine fever. Intestines appear

hyperemic with diphtheroid inflammation, and large

intestines show characteristic ‘button ulcers’ in subacute

and chronic CSFV infection. Lesions occur in the brain

Fig. 1. Pathogenesis of classical swine fever virus.
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and spinal cord, and congestion occurs in the liver, bone

marrow and lungs. Hemorrhages and infarctions are less

pronounced or absent in persistent infection. Thymic

atrophy and depletion of lymphocytes in lymph nodes,

tonsils and spleen are also observed (Van Oirschot, 2000,

2004).

In a proteomic analysis study of serum from pigs with

CSF, lower levels of apolipoprotein A-I (apo A-I), vitamin

D-binding protein (VDBP) and haptoglobin (Hp) were

observed, and proteins observed at higher levels included

retinol-binding protein 4 (RBP4) and serotransferrin.

Up and downregulation of these proteins has different

implications on the pathogenesis of the disease due to

various functions of these proteins, as Apo A-I may affect

vascular endothelium repair. Hp, which is a positive acute

phase protein, affects angiogenesis and vascular repair.

RBP4 in CSFV-infected pigs may be involved in kidney

injury caused by CSFV infection. Serotransferrin in CSFV-

infected serum suggests that iron is needed for efficient

CSFV replication (Sun Jin-fu et al., 2011).

Epidemiology

Both domestic pigs (Sus scrofa domesticus) and wild

boar (Sus scrofa scrofa) are equally susceptible to CSFV

infection. All the secretions and excretions, notably saliva,

nasal and ocular discharges, urine, semen and feces, are

rich sources of the virus, and pigs are susceptible to

infection through ingestion and inhalation of contami-

nated products. Movement of the pigs which are

incubating the disease or persistently infected is the most

common cause of spreading the infection (de Smit et al.,

1999). The virus can survive for long periods as it is quite

resistant to many chemical and physical conditions. Pigs

infected with the virulent virus may shed the virus before

the onset of clinical signs causing high morbidity and

mortality in a herd until they die or recover. Pigs are also

infected during transport in contaminated trucks, through

inanimate objects and mechanical vectors like flies and

mosquitoes (de Smit et al., 1999). Experimental transmis-

sion of CSFV to goats, sheep, cattle, peccaries (Tayassu

tajacu) and rabbits was successful whereas other

vertebrates such as racoons, mice and pigeons did not

support the propagation of the virus. Pork and pork

products may also harbor the virus for several months

under frozen conditions (Dunne, 1975).

Immune mechanisms

CSF affects the immune system, mainly by causing

generalized leukopenia. Neutralizing antibodies are

observable after 9 days in recovering animals and after

15 days in fatally infected animals. Neutralizing antibodies

are important in terms of protection and are detectable

during the partial recovery phase, 3–6 weeks after

infection in chronic cases. Maximum antibody titers occur

3–4 weeks after infection and may persist for 6 months.

Lymphoid organs are also affected by CSFV infections,

leading to a deficiency of B lymphocytes. The cell-

mediated immune response plays a key role in CSF

pathobiology and prevention through quantitative

changes in the T-lymphocyte population and qualitative

changes in cytokine expression by these cells in the

serum, thymus and spleen (Gómez-Villamandos et al.,

2001; Sánchez-Cordon et al., 2002, 2003). The lymphoid

depletion is caused by lymphocyte apoptosis induced

by chemical mediators from monocyte–macrophage cells

(Sánchez-Cordón et al., 2002). In CSF, differentiation and

maturation of T lymphocytes in the thymic cortex are

potentiated, although T-lymphocyte apoptosis impairs

the effectiveness of the non-specific immune response

(Sánchez-Cordón et al., 2005). The non-arrival of

T lymphocytes from the thymic cortex might prevent any

recovery of T-lymphocyte populations in the spleen.

From the onset of the disease, an increase is noted in the

number of CD4+ and CD8+ lymphocytes (Narita et al.,

1996, 2000), and the CD8+ population was found to be

relatively high compared to CD4+ T cells at advanced

stages (Narita et al., 1996, 2000; Pauly et al., 1998; Lee

et al., 1999; Sánchez-Cordón et al., 2005). This increase,

despite intense lymphoid depletion, may be due to

activation and differentiation of lymphocytes still remain-

ing in the organs examined, which may have played a

role in inducing a cell-mediated response to the virus

(Hernández et al., 2001). The increase in the number of

CD8+ T cells is more closely linked to expression of IL-6

(Van Snick, 1990; Sánchez-Cordón et al., 2002) and may

also be related to the clonal expansion (Tizard, 1998).

CD8+ T cells are cytotoxic for CSFV-infected cells, and

their increase during the disease may therefore be a part

of the defense mechanism (Doherty et al., 1992; Pauly

et al., 1995; Summerfield et al., 1996). This has been

demonstrated when vaccinated swine remained protected

from the virus despite the absence of neutralizing

antibodies (Rümenapf et al., 1991; Suradhat et al.,

2001). IL-2 synthesis may be enhanced by secretion of

IL-1 and IL-6 from macrophages, with IFN-g inducing an

autocrine effect on the production of this cytokine (Biron

and Sen, 2001). Early apoptosis of infected monocyte–

macrophage cells and phagocytosis of apoptotic bodies

by other monocyte–macrophage cells may play a decisive

role in the spread of the virus and in its initial evasion

of the immune response (Gómez-Villamandos et al., 2001;

Sánchez-Cordón et al., 2003). A general dysfunction of

the T-lymphocyte activity has also been observed.

Follicular depletion of lymphocytes and/or necrosis in

pigs infected with a virulent CSFV strain are observed in

histopathological examinations.

Antibodies are produced against NS3, E2 and Erns viral

proteins. Antibodies against E2 and Erns are protective.

Although CSFV has little tendency to accumulate muta-

tions in contrast to other RNA viruses, antigenic variation
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is observed among CSFV isolates due to the highly

variable antigenic region of the E2 gene but not to the

extent observed with ruminant pestiviruses. Convalescent

animals therefore have a stable and long-lasting immunity

against all variants of CSFV (Moennig and Greiser-Wilke,

2008).

The number of CD4+ and CD8+ T lymphocytes is

significantly higher in pigs infected with virulent strains

of CSFV. Mature granulocytes (SWC3+; SWC8+) are not

susceptible to CSFV infection, whereas the less differ-

entiated myeloid progenitor cells (SWC3low; SWC8�) are

infected, thus explaining the presence of CSFV in

peripheral blood mature SWC8+ cells (Summerfield

et al., 1998a, b, 2001). As much as 90% of total T cells

are depleted in the final stages of the disease, depending

on the virulence of the viral strain (Pauly et al., 1998).

Increased numbers of necrotic and apoptotic uninfected

cells have been identified in the bone marrow of CSFV-

infected pigs (Summerfield et al., 2000). Immunosuppres-

sion can be detected much earlier than seroconversion

and clinical signs of the disease, which is relevant both for

early diagnosis and for the study of viral pathogenesis

(Pauly et al., 1998; Summerfield et al., 1998a, 2001;

Ganges et al., 2005). In one study, it was observed that

during CSFV infection there may be inhibition of

expression of MHC class II molecule SLA-DR, which is

primarily involved in antigen presentation (Feng et al.,

2012).

When the immune responses are insufficient to clear

the virus from the body, persistence of CSFV in the host

may occur. Persistent infections can be established even

in the presence of neutralizing antibodies. Congenital

infection with CSFV can lead to persistently infected

animals that do not develop specific antibodies against

the virus (van Oirschot, 1979; de Smit et al., 2000),

probably due to the immunotolerance developed during

fetal lymphocyte differentiation. Specific immune unre-

sponsiveness may occur during intrauterine infection of

the piglets which are persistently viremic and may live for

several weeks, but usually die at 3 weeks of age

(Radostitis et al., 2007). The animals with persistent

infection continuously shed the virus and are a potential

source of new CSF outbreaks (Vannier et al., 1981;

Carbrey, 1989), as well as creating problems in diagnosis.

Viral destruction of the germinal centers in lymphoid

tissues leads to the B-lymphocyte deficiency and is the

most significant immunopathologic consequence of acute

infection with the virulent strain of CSFV. Thus, CSFV

appears to alter the immunity of the pigs by causing the B-

cell reaction and increased T lymphocytes in chronic

stages (Narita et al., 2000).

Diagnosis

Recognition of clinical signs by veterinary practitioners

in the field, and of gross pathological lesions after

post mortem examination, is important in diagnosis of

CSF. A laboratory-based diagnostic test validates the

presence of the CSFV and helps to differentiate the

disease in the presence of similar signs attributable to

others diseases.

Clinical diagnosis

The diversity of clinical signs in CSF under field and

experimental conditions makes it difficult to diagnose the

disease. Furthermore, BVDV and BDV infections can

seriously interfere with the clinical and laboratory

diagnosis of the disease.

Laboratory diagnosis

Antigen detection

CSFV antigens can be detected by the direct fluorescent

antibody test (DFAT) or immunohistochemistry by

demonstration of the virus in the tonsillar crypt and

germinal center besides the spleen, lymph node, kidney,

thymus, tonsil, brain and lower ileum. To rule out BVDV

and BDV, a panel of monoclonal antibodies (MAbs) is

required. Antigen can also be tested with the agar gel

precipitation test (AGPT) (Nandi et al., 2011b), MAbs

detected with an avidin–biotin complex (ABC) immuno-

peroxidase test (Porntrakulpipat et al., 1998) and sand-

wich enzyme-linked immunosorbent assays (ELISAs) with

polyclonal or monoclonal antibody to capture and detect

CSFV antigen in serum, blood or WBCs for rapid herd

screening (Leforban et al., 1990; Moser et al., 1996; Clavijo

et al., 1998). The sensitivity of ELISA is comparatively

higher and less cumbersome than that of virus isolation

(Clavijo et al., 1998).

Detection of infectious virus

Virus can be isolated from tissue or blood and is

a sensitive in vitro method for detection of CSFV in the

early phase of infection. The porcine kidney cell lines

(PK-15, SK-6) or swine testicular cells are commonly

used for isolation of virus. CSFV is almost always

non-cytopathic, so fluorescent antibody tests (FAT) or

immunoperoxidase staining after incubation for 1–3 days

is required to detect the CSFV antigen (OIE, 2008). The

virus isolation is more sensitive than DFAT on frozen

tissue sections (de Smit, 2000).

Detection of antibodies

CSFV infection mainly induces antibodies against viral

proteins E2, Erns and NS3. Detectable levels of antibodies
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appear 2–3 weeks post-infection and persist lifelong.

Paired sera samples are to be collected from convalescent

pigs for testing. Among diagnostic techniques, the virus

neutralization test (VNT), namely the neutralization

peroxidase linked assay (NPLA), is most commonly used

in Western Europe. In Japan, the END method (exaltation

of the Newcastle disease virus) to assay most field viruses

has been used, including the END neutralization test

(Shimizu et al., 1964). The immunoperoxidase monolayer

assay (IPMA) is often used in North America and Latin

America (Afshar et al., 1989). To avoid false-positive

results, parallel assays with BVDV/BDV and analysis by

differences in the antibody titer are usually taken into

consideration. OIE–recommended tests for international

trade use blocking or indirect ELISAs to detect antibodies

to E2, Erns or NS3 protein (Muller et al., 1996; Langedijk

et al., 2001). The sensitivity and specificity of E2-based

ELISA are 90–99 and 99%, respectively, compared to VNT.

In general, ELISAs are cross-reactive leading to false

positive results but are well suited for mass screening of

animals, and testing of individual animals should be

avoided. Tissue, blood and serum samples can be

diagnosed by an antigen capture ELISA based on the

CSFV Erns glycoprotein.

Reverse transcription polymerase chain reaction
(RT-PCR)

RT-PCR is a more rapid, sensitive and specific test than

FAT, ELISA or virus isolation and is useful in preclinical

and clinical diagnosis of CSF (McGoldrick et al., 1998;

Paton et al., 2000b; Risatti et al., 2003, 2005; Hoffmann

et al., 2005). Care should be taken to avoid false-positive

results due to contamination during processing and false-

negative results due to nucleic acid degradation and

inhibitors in the sample (OIE, 2008). RT-PCR followed by

nucleotide sequencing is helpful in differentiating other

pestivirus infections beside grouping and tracing the

outbreak strain during epidemics for molecular epide-

miology (Lowings et al., 1996; Vilcek et al., 1996; Greiser-

Wilke et al., 2006; Sarma et al., 2011; Patil et al., 2012).

Nested RT-PCR is generally considered the most sensitive

method for the detection of CSFV. A multiplex RT-PCR

assay is useful for rapid and differential diagnosis of

CSFV among other Pestivirus infections based on the

NS5B gene and 5
0
-UTR (de Arce et al., 2009). A pan-

Pestivirus-specific single-tube nested PCR and a CSFV-

specific fluorescent probe allow detection of pestiviruses

as well as CSFV in clinical samples (McGoldrick et al.,

1998). A real-time RT-PCR has also been developed

for detection and genotyping of CSFV without inter-

genotypic cross-reactivity among different CSFV strains

or with other swine pathogens (Huang et al., 2009).

TaqMan-based real-time PCR using lyophylized RT-PCR

reagents and portable instruments has been developed

as a pen-side assay for rapid on-site detection of CSFV

(Risatti et al., 2003). RT-PCR is less vulnerable to sample

degradation with on-site detection, because the average

half-life of viral RNA is 1–3 days. The tonsil and spleen

are appropriate samples for the detection of infectious

virus and viral RNA both in fresh and degraded samples

(Weesendorp et al., 2010), but blood may be considered

as the most appropriate sample for early detection of

CSFV by RT-PCR (Shivaraj et al., 2013). Whole blood and

tonsil scrapings may be considered as the samples of

choice for quick and early CSFV detection in live pigs

irrespective of the virulence of the CSFV strain (Donahue

et al., 2012).

A reverse-transcription loop-mediated isothermal

amplification (RT-LAMP) assay targeting the CSFV 5
0
-UTR

was more recently developed (Wongsawat et al., 2011).

The benefits of LAMP compared with other nucleic acid

amplification techniques are ease of operation, no need

for specialized equipment like a thermocycler or electro-

phoresis apparatus, superior sensitivity, lower risk of

contamination, suitability for high-throughput DNA detec-

tion and visualization of results by naked eye (Mori

et al., 2001).

The OIE-prescribed tests for serological diagnosis or

surveillance and international trade include NPLA, fluor-

escent antibody virus neutralization (FAVN) and ELISA.

The virus neutralization test (VNT), although slow and

laborious, is considered to be the best method for

antibody detection in terms of sensitivity and the ability

to distinguish antibodies directed against CSFV from

antibodies against other pestiviruses. VNT does not

discriminate infected from vaccinated animals, although

it may be used as a confirmatory test in ELISA-positive

cases from areas free of CSF. Thus, to screen large

amounts of sera for antibody, ELISA is the best method

and the doubtful cases may be confirmed by VNT (Blome

et al., 2006).

Differential diagnosis

CSF needs to be differentiated from several viral and

bacterial diseases that affect swine. Splenomegaly, edema

of the gall bladder and bile ducts, subpleural and

interlobular lung edema and hematoma-like lymph nodes

are indicative of African swine fever (ASF), a disease

that is similar to CSF. Other diseases affecting swine such

as pasteurellosis, erysipelas, streptococcosis, porcine

reproductive and respiratory syndrome (PRRS), cumarin

poisoning, porcine dermatitis and nephropathy syndrome

(PDNS), salmonellosis and Glasser’s disease (due to

Haemophilus parasuis infection) have CSF-like signs. In

the case of runt pigs, diarrhea, occurring usually in the

chronic phase of CSF, must be differentiated from other

etiologies such as Escherichia coli and Salmonella

infections. CSF intestinal inflammatory lesions must be

differentiated from those due to campylobacteriosis,

clostridial infections and swine dysentery. Reproductive
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inefficiencies such as abortions, mummified fetuses and

stillbirths can also be found in the cases of pseudorabies

infection, parvovirus and PRRS. CSF and pasteurellosis

often are concurrently associated with swine mortality

(Kumar et al., 2007). Based on the epidemiology of CSF in

a particular area, differentiating tests can be used reliably

to effectively diagnose the disease in the presence of

other diseases.

Vaccines and vaccination

In endemic countries, the introduction of CSFV can be

prevented by purchasing pigs from CSF-free herds and

implementing a quarantine period of 4 weeks followed by

testing for CSFV. Strict hygiene and thorough cleaning

and disinfection of pens also help in preventing virus

entry into a herd. Furthermore, live attenuated vaccines

(LAV), namely the lapinized Chinese (LC) strain, Japanese

GPE-strain, French PK-15 cell-adapted Thiverval strain or

PAV-250 strain, are used to control classical swine fever.

The LC strain has an insertion of 13 nucleotides in the

3
0
-UTR compared to virulent virus whereas the GPE strain

differs in 225 nucleotides from its parental strain. The LC

strain, attenuated by 100 passages in rabbits, is very

efficacious and widely used as it provides solid immunity

against clinical signs, virus replication and excretion

within a week of vaccination (Biront et al., 1987); this is

a vaccine of choice for an emergency vaccination (Van

Oirschot, 2000, 2004). This vaccine can block transmis-

sion of virulent CSFV to in-contact pigs 7 days after

vaccination, it does not persist in pigs beyond 2–3 weeks

(Lorena et al., 2001) and it confers protection for 3 years

to life time (van Oirschot, 2004; van Oirschot et al., 2004).

The vaccine types available in India, and that are mostly

used, include the tissue culture LC strain vaccine,

although it is still in the developmental phase (Bett

et al., 2012). Piglets vaccinated in the presence of

maternal antibodies need to be revaccinated at 8 weeks

of age. Multiplication of the vaccine strains is mainly

restricted to lymphoid organs, notably tonsils, and can

cross the placenta without any abnormalities in fetuses

(van Oirschot, 2004; van Oirschot et al., 2004). Vaccina-

tion does not always prevent replication of virulent CSFV

upon challenge.

In countries free of CSF, preventive vaccination is

very rarely practiced. However, if an outbreak occurs,

regional vaccination may be necessary for effective

control of CSF. Oral CSF-MLV vaccination was introduced

by the European countries for the purpose of controlling

CSF in wild boars (Van Oirschot, 2003). To obtain

complete protection, a higher dose of the oral CSF

vaccine along with a stabilizer is necessary (Kaden et al.,

2000). Subunit vaccines based on the E2 protein in

a double water–oil emulsion also reduced clinical signs

and mortality in pigs challenged with virulent CSFV.

A recombinant truncated E2 protein conferred protection

with reduced clinical signs and mortality, but was unable

to prevent transplacental transmission (Reimann et al.,

2004).

Marker vaccines

The concept of marker vaccines has come into existence

to differentiate infected from vaccinated animals with

the help of companion serological tests. One such vaccine

is based on CSFV E2, which elicits a neutralizing antibody

response in pigs. The N-terminal half of E2 forms two

structural subunits, one consisting of domains B and C

and the other consisting of domains A and D (van Rijn

et al., 1994). Antigenic domains B and C are non-

conserved while antigenic domain A is highly conserved

(van Rijn et al., 1996). Neutralizing MAbs have shown that

synergistic neutralization effects have been observed in

domains B and A, and in domains C and A, but not in

domains B and C. The baculovirus-expressed recombi-

nant E2 protein, in which the antigenic unit B/C or A has

been deleted, is capable of protecting pigs from lethal

CSFV challenge (van Rijn et al., 1996). Bouma et al.,

(1999) reported that 3 weeks after a single vaccination

with 32 mg of baculovirus-expressed E2 in a water–oil–

water emulsion, clinical signs and mortality can be

prevented after challenge with virulent CSFV. This E2

subunit marker vaccine could significantly reduce trans-

placental transmission of a moderately virulent CSFV

challenge for up to 13 months (Ahrens et al., 2000; de

Smit et al., 2000, 2001). Two commercially produced

ELISAs which detect antibodies to Erns could also be

successfully used as a companion test (Floegel-Niesmann,

2001).

The next generation of marker vaccine candidates for

the control of CSF includes recombinant porcine adeno-

virus expressing the CSFV E2 gene (Hammond et al.,

2000, 2001a, b), live attenuated chimeric C strain viruses

containing marker antigens and replicon vaccines that are

non-replicating virus particles produced by infecting the

appropriate trans-complementing cell lines with CSFV-E2

and CSFV-Erns deletion mutants (van Gennip et al., 2002;

Frey et al., 2006). Experimental DNA vaccines encoding

the full-length CSFV E2 glycoprotein have also been used

(Andrew et al., 2000; Yu et al., 2001; Ganges et al., 2005;

Wienhold et al., 2005; Andrew et al., 2006). To enhance

the immunogenicity, co-administration of cytokine genes

(IL-3, IL-12 and IL-18) or regulatory cell surface molecule

genes (CD154 or CD40) was performed (Wienhold et al.,

2005; Andrew et al., 2006). However, to protect pigs

against lethal CSFV challenge infection, high dosages and

several applications were needed (Wienhold et al., 2005).

Commercially available Erns or NS3-based antibody

ELISAs are also being used as a DIVA (Differentiating

Infected from Vaccinated Animals) strategy (Beer et al.,

2007). Enhanced IFN-g and persistent, high IgG2 levels

are induced using the CP7_E2alf marker vaccine which
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was based on the cytopathogenic BVDV strain, ‘CP7’, that

carries the structural protein E2 of the CSFV strain, ‘Alfort/

187’ (Reimann et al., 2004), suggesting an important role

of cell-mediated immunity in long-term protection against

CSFV (Renson et al., 2014). Also, in another study, this

DIVA vaccine was proposed as an alternative to C-strain-

based bait vaccines, after its successful assessment

(Feliziani et al., 2014). CP7_E2gif is another efficient

DIVA vaccine which can be used in combination with

detection of anti-CSFV E2-specific antibodies (Rosen

et al., 2014).

Viral vectors based on the pseudorabies virus (PRV)

(van Zijl et al., 1991; Mulder et al., 1994; van Iddekinge

et al., 1996; Peeters et al., 1997), porcine adenovirus

(PAV) (Hammond et al., 2000, 2001a, b, 2003, 2005),

swinepox virus (Hahn et al., 2001), vaccinia virus (Konig

et al., 1995), parapoxvirus (Voigt, 2005) and alphavirus

(Zhao et al., 2009; Sun et al., 2010, 2011), expressing the

E2 and/or Erns glycoproteins (rPRV-E2, rPAV-E2 or rPPV-

E2) have been tested. Chimeric pestiviruses based on the

infectious DNA copy of the CSFV vaccine strain C or the

BVDV strain CP7 were constructed and characterized

in vitro and in vivo (van Gennip et al., 2000; Reimann

et al., 2004). Pigs immunized with these chimeras were

completely protected against lethal CSFV infection, with

no virus transmission to contact animals (van Gennip

et al., 2000; de Smit et al., 2001).

Epitope-based vaccines are one of the current focuses

in the development of new vaccines against CSF.

Recombinant rE2-ba-based E2 glycoprotein immunized

pigs have shown a good response against CSF (Zhou

et al., 2011). A yeast-expressed CSFV glycoprotein E2 has

been shown to induce a protective immune response

against the virus (Cheng et al., 2014). The heterologous

DNA prime and recombinant adenovirus pSFV1CS-E2/

rAdV-E2 boost strategy can induce solid protective

immunity with high titers of CSFV-specific neutralizing

antibodies and comparable increases in numbers of CD4+

and CD8+ T cells, compared to the pigs receiving

immunizations with rAdV-E2 twice (Sun et al., 2010). A

double antigenic marker, live attenuated CSFV strain

FlagT4v obtained by combining two genetic determinants

of attenuation FlagT4v (a synthetic Flag1 epitope

positive antigenic marker introduced through a 19mer

insertion in the E1 glycoprotein) and a negative marker

resulting from mutations of the binding site of the MAb

WH303 (mAbWH303) epitope in the E2 glycoprotein

have been utilized. Intranasal or intramuscular adminis-

tration of FlagT4v protected swine against the virulent

CSFV Brescia strain at early exposure (2 or 3 days)

(Holinka et al., 2009).

Recombinant proteins can be used as vaccines. Highly

immunogenic mixtures were found to induce protective

immunity against CSFV challenge infection. However,

in most cases the peptide vaccines failed to provide

complete protection from clinical signs, viremia and virus

shedding (Dong et al., 2006; Dong and Chen, 2006).

Mutations were introduced to dampen the immuno-

genicity of the A-domain to render the C-strain suitable as

a DIVA vaccine. Antibody response analysis in rabbits

elicited shielding of the A-domain by an N-linked glycan

had a minor effect on the immune response against the

A-domain, whereas a single amino acid targeted deletion

severely dampened this response. LC-strain mutants with

larger deletions were highly debilitated and incapable of

sustained growth in vitro. Genetically stable and replicat-

ing LC-strain mutant was produced by virtue of the

compensatory evolution that can be serologically differ-

entiated from wild-type CSFV (Kortekaas et al., 2010).

By integration of B and T antigenic sites of CSFV and

displaying the B epitopes, three peptide-based systems

were designed and produced, and shown to bring about

significant enhancements in immunogenicity over the

peptides in monomeric form (Zhao et al., 2009; Monso

et al., 2010).

Conventional LAV are still used successfully to control

CSF, and are regarded as a ‘gold standard’ because they

have proven to be very efficacious and safe for inducing

a high level of protection a few days after application.

However, LAV does not comply with the DIVA principle,

and there is a need to develop vaccines that comply with

the DIVA strategy. As the first step, subunit marker

vaccines based on the baculovirus-expressed E2 glyco-

protein of CSFV have been developed and are available

on the market. However, the immune response is delayed

and less protective compared with conventional LAV. The

same disadvantages can also be seen with the immuno-

genic peptides, DNA vaccines and trans-complemented

replicons. The most promising candidates at the moment

are vaccines based on viral vectors or chimeric pesti-

viruses. They have the potential of inducing a similarly

strong immunity as conventional LAV with the DIVA

strategy. Nevertheless, all of these new vaccines are

genetically modified prototypes and there are many

problems with regard to their acceptance and registration,

which means the focus of disease control will have to be

shifted during an outbreak situation from an indirect

(serological testing) to a direct approach (antigen detec-

tion) (Beer et al., 2007). Under such conditions, conven-

tional modified live and novel marker vaccines might

regain importance.

Prevention and control

There is no specific treatment for CSF. With consistent

implementation of zoosanitary control measures, many

countries such as United States, Canada, Australia, New

Zealand and several European countries have eradicated

this disease by adopting a test-and-slaughter policy. This

also includes banning the importation of live pigs and pig

products from CSF-endemic countries. Furthermore,

kitchen leftovers and swill must be treated to destroy

CSFV before feeding to pigs. When CSF is diagnosed in a
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country previously free of it, stamping out policy along

with cleaning and disinfection of the premises and bans

on movement of pigs are generally followed. Both Japan

and Brazil are in the final stages of eradication after

carrying out similar control programs in the past

decade. In CSF-endemic countries, it is common practice

to vaccinate pigs. As per EU guidelines, pig and pig

products can only be imported from countries where

no CSF has occurred and vaccination is carried out for

12 months. Despite continued efforts to control CSF,

outbreaks have occurred intermittently in several

European countries and large numbers of pigs were

culled. Notably, emergency vaccination has not been

used in Western Europe. Oral MLV-based vaccination of

wild hogs can prevent the spread of disease to domestic

animals under experimental conditions (Gers et al., 2011;

Everett et al., 2011).

Status in India

CSF is enzootic to most of the pig producing states

particularly in the North Eastern (NE) region of India. Pigs

are reared in the majority of households in NE India

(80%), where pork is a key part of their diet. In an

epidemiological study conducted in Assam, Mizoram and

Nagaland by the International Livestock Research Institute

(ILRI), it was shown that Indian pig farmers incur huge

economic losses from mortality, treatment, replacement

costs, etc., amounting to more than 2 billion Indian

rupees (INR) each year (Bett et al., 2012).

In India, the first suspected case of CSF occurred in

Aligarh in 1944 (Krishnamurty, 1964). The first documen-

ted report on CSF in India dates back to 1962, where an

outbreak in a piggery unit in Morol, a suburb of Mumbai,

led to widespread outbreaks in other parts of the city

(Sapre et al., 1962). The disease has been reported

thereafter in a number of states of India (Sarma et al.,

2008). The CSFV diagnosis has been confirmed by RT-

PCR and nucleotide sequence data showed the presence

of 1.1 and 2.2 subgroups (Chakraborty et al., 2011).

According to the OIE website data compilation, it could

be concluded that there were 1308 outbreaks of CSF in

India from 1996 to 2008, which is indicative of the disease

burden in this country (Patil et al., 2010). Because of the

sporadic nature of the disease and the lower preference

for the pig husbandry (barring NE states) in India, CSF has

not been studied systematically and the epidemiology of

the disease is largely unknown. In one study, phyloge-

netic analysis revealed the presence of subgroup 1.1

(Patil et al., 2010). This was different from the situation

prevailing in other Asian countries and E2 and NS5B

region analysis placed the Indian isolates in a clearly

separated clade within subgroup 1.1 (Sarma et al., 2011).

In another study, a total of 594 sera samples from 12 states

and 287 tissue samples from 13 states of India were tested

using commercial ELISA kits. The mean prevalence of

antibodies against CSFV in suspected sera was found to

be 63.3% (376/594) and 76.7% (220/287) for the antigen

in the CSFV-suspect samples. This suggests that CSF is

endemic to India (Nandi et al., 2011a).

CSFV strains have also been isolated from pigs in

India. Nine CSFV field isolates were collected from the

union territory of Andaman and Nicobar Islands and from

the states of Assam, West Bengal and Uttarakhand; and

phylogenetic analysis indicated that three isolates

belonged to genotype 2.1 and were in close relation to

European CSFV strains, and six isolates belonged to

genotype 1 based on 5
0
-UTR sequence analysis and

subsequent genetic classification. Based on this study,

circulation of both genotypes 1 and 2.1 in NE India was

observed (Desai et al., 2010). An isolate was obtained

from an outbreak in Mizoram, a NE state of India; the

analysis of the isolate was determined to be Chinese strain

Shimen–HVRI, which may be due to the proximity of this

state to China and Myanmar (Barman et al., 2010). CSF is

also known to cause disease in the pygmy hog which is a

rare, small and highly endangered mammal belonging to

the Suidae family, found only in the Assam state of India.

During investigation of death of pygmy hogs, it was

confirmed that they were susceptible to and died as a

result of contracting CSF. The phylogenetic analysis

revealed that CSFV 5
0
-UTR sequences were grouped in

the Indian CSFV genotype 1.1 cluster, and thus the strains

causing infection were closely related to CSFV isolates

circulating in domestic pigs, which shows the threat of

‘spillover transmission’ of infectious agents from reservoir

domestic populations to sympatric wildlife and vice versa

(Barman et al., 2012). In a study on 16 CSFV isolates from

Assam, India, the genetic typing based on 5
0
-UTR, E2 and

NS5B gene sequences showed that all isolates only

belonged to subgroup 1.1, indicating their common

origin which could have occurred due to slaughter of

CSFV infected pigs sold at local markets. These outbreaks

occurred in small sized backyard pig farms in Assam,

where garbage containing infected pork scraps, feeding

swill, is common and vaccination is not practiced (Sarma

et al., 2011). Likewise various CSFV isolates recovered

from field outbreaks in various parts of India were used

for genetic analysis in the NS5B gene region (409 nt),

which indicated the continued dominance of subgroup

1.1 strains, and subgroup 2.2 virus detailed analysis

indicated the probable Chinese origin of this subgroup.

This also provides indirect evidence of routes of CSFV

movement within the South East Asia region (Patil et al.,

2012). Recently, in an outbreak among zovawk pigs

indigenous to Mizoram, CSFV was confirmed by RT-PCR

on representative tissue samples targeting the genomic

region of CSFV that encodes the 5
0
-UTR, NS5B, Erns and

E2 genes (Rajkhowa et al., 2013). Out of 12 outbreaks

attended in nine different districts of Karnataka suspected

for CSF, 9 were confirmed CSF, by antigen-capture ELISA

and RT-PCR CSFV NS5B gene-specific primers (Shivaraj
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et al., 2013). CSFV-affected states and union territories of

India, based on reported disease outbreaks and serolo-

gical evidence up to 2013, are illustrated in Fig. 2.

A LC strain vaccine is currently being used in India, but

the quantity is not sufficient to immunize even 1% of the

total pig population (Sarma et al., 2008). The northeast

part of India requires 7.64 million doses of the CSF

vaccine, while the total requirement per year in India

amounts to 22.26 million doses, and only 1.2 million

doses (<1%) are currently available (Bett et al., 2012). CSF

outbreaks due to inadequate attenuation of the virus have

also been reported in various NE states (Sarma et al.,

2008). The presence of CSFV in the tissues of pigs

slaughtered for human consumption has also been

reported.

Conclusion

Worldwide, CSF is a highly contagious viral disease of

swine with high morbidity and mortality, particularly in

young animals. The diversity of clinical symptoms, under

both natural and experimental conditions, and similarities

to other hemorrhagic diseases make it difficult to

diagnose CSF. Secondary infections are common, and

may overshadow the presence of CSFV. Furthermore,

other pestiviruses are antigenically closely related, and

their serology with polyclonal antibody-based diagnostic

tests can be confusing. MAb-based serological tests and

molecular techniques are useful in diagnosing and

differentiating exposure to CSFV from other pestiviruses

and pathogens. It is important to check the disease at

Fig. 2. Map of India showing classical swine fever virus-affected states and union territories based on reported disease
outbreaks and serological evidence.
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small scale or village level, especially in parts of India

where backyard pig farming is common. Furthermore,

surveillance programs should be adopted for laboratory

testing of ailing pigs and materials from abattoirs. The

application of excellent biosecurity measures in pig farms

needs to be emphasized. In all the pig-farming sectors, a

proper level of data collection, processing and recording

along with the combined effort of the owner, private

practitioners, veterinary authorities and welfare organiz-

ations should be adopted. In CSF-free counties with

intensive pig industries, the control of CSF outbreaks is

expected to change from mass culling of pigs to control

based on real-time RT-PCR-based diagnosis followed by

vaccination with marker vaccines. In endemic areas, mass

vaccination with modified live virus vaccines, control of

pig movement and epidemiological surveillance might

help to control the disease to a great extent. Endemicity of

CSFV infections of wild boar populations may also be an

important threat to domestic pigs and can pose a threat

in reintroducing the disease. Due to the inadequate

availability of vaccine doses, other factors that increase

the incidence of CSF in India include the lack of timely

diagnosis, unrestricted movement of pigs within the

country and across the border surrounding the NE states,

and poor public awareness. Thus, detailed epidemiologi-

cal investigations with proper preventive and control

measures are needed to fully contain the disease

throughout the country. Finally, increased understanding

and awareness of CSF among concerned parties would

help to control this disease in the near future, which in

turn will help to avoid enormous economic losses.
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