
Robotica (2018) volume 36, pp. 141–166. © Cambridge University Press 2017
doi:10.1017/S0263574717000212

Selection of trajectory parameters for dynamic
pouring tasks based on exploitation-driven updates
of local metamodels
Joshua D. Langsfeld†, Krishnanand N. Kaipa‡
and Satyandra K. Gupta∗§
†Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park,
MD, USA. E-mail: jdlangs@umd.edu
‡Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA,
USA. E-mail: kkaipa@odu.edu
§Center for Advanced Manufacturing, Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA, USA

(Accepted April 1, 2017. First published online: May 8, 2017)

SUMMARY
We present an approach that allows a robot to generate trajectories to perform a set of instances
of a task using few physical trials. Specifically, we address manipulation tasks which are highly
challenging to simulate due to complex dynamics. Our approach allows a robot to create a model
from initial exploratory experiments and subsequently improve it to find trajectory parameters to
successfully perform a given task instance. First, in a model generation phase, local models are
constructed in the vicinity of previously conducted experiments that explain both task function
behavior and estimated divergence of the generated model from the true model when moving within
the neighborhood of each experiment. Second, in an exploitation-driven updating phase, these
generated models are used to guide parameter selection given a desired task outcome and the models
are updated based on the actual outcome of the task execution. The local models are built within
adaptively chosen neighborhoods, thereby allowing the algorithm to capture arbitrarily complex
function landscapes. We first validate our approach by testing it on a synthetic non-linear function
approximation problem, where we also analyze the benefit of the core approach features. We then
show results with a physical robot performing a dynamic fluid pouring task. Real robot results reveal
that the correct pouring parameters for a new pour volume can be learned quite rapidly, with a limited
number of exploratory experiments.

KEYWORDS: Trajectory generation; Locally weighted learning; Adaptive function approximation;
Robot dynamics; Robot pouring.

1. Introduction
Programming robots to perform real-world manipulation tasks is challenging and time consuming.
For a large class of tasks, the robot arm must be provided with a precise trajectory to follow,
prior to execution. For most currently deployed robots, these trajectories are defined manually by a
skilled human operator. However, in the case of tasks with complex dynamics (e.g., manipulation of
deformable materials and/or fluids), manual construction of analytical models that accurately capture
the task dynamics is often not feasible, requiring a different method to generate the robots trajectory
without resorting to trial and error on the part of the operator.

Such tasks often consist of a set of instances, with each instance defining a slightly different
goal state and, therefore, the trajectory that the robot must follow. These different trajectories can

* Corresponding author. E-mail: guptask@usc.edu

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

142 Selection of trajectory parameters using local metamodels

be generated automatically, either through direct synthesis or by selecting the parameter values
for a manually parameterized trajectory. In this paper, we focus on the latter method of trajectory
generation. Many tasks have a natural parameterization that a human can specify which can cover
the full range of the robots ability. For example, a ball throwing task can be specified by having the
arm move in a circular arc with a small set of parameters such as the radius, speed, and release point
fully controlling the throwing distance. We are interested in the problem of how the parameter values
can be determined for each task instance automatically in order to generate the final trajectory to be
executed by the robot.

A common approach taken to find the parameter values for a particular task instance is to use a
model of the task and search for valid parameter values using the predictive ability of the model.
To obtain the highest prediction accuracy, it is typically ideal to use a physics-based simulator that
can capture the details of most, if not all, of the task dynamics. However, for complex tasks, such
simulators are either unavailable or generally far too computationally expensive to be able to use
for parameter selection in reasonably short time periods. This is especially true for tasks involving
deformable materials and fluids, which would require full finite-element simulations. Instead of
simulators, such tasks can be modeled with surrogate models created from the data that the robot
collects as it gains experience while attempting the task. This framework requires the robot to go
through a learning period where it may perform task instances incorrectly until it collects enough
data to find valid parameter values for all the desired instances.

An important aspect of the types of tasks we address, which is reflected in our approach, is that
many satisficing parameter values are available for a given task instance. We do not address the
problem of finding the single optimum set of parameters or searching for valid parameters when
they are clustered together in small regions of the space. Instead, our approach is designed for tasks
where valid parameter sets are found throughout the space and it is sufficient to find a single one. The
focus is to exploit the available knowledge to find satisficing parameters with as few task attempts as
possible.

Our proposed approach has the goal of rapidly finding valid solutions in the parameter space
corresponding to new task variations with sparse initial data. We model the task abstractly as a set of
parameters existing in a finite-dimensional space where each point in the space defines a trajectory
to perform a single task variation. First, in a model generation phase, local models are constructed
in the vicinity of the previously conducted experiments that explain both the task function behavior
and the estimated divergence of the generated model from the true model when moving within the
neighborhood of each experiment. Second, in an exploitation-driven updating phase, these models
are used to guide parameter selection given a desired task outcome and the models are updated based
on the actual outcome of the task execution. Our approach exploits local information available in
adaptively chosen neighborhoods effectively to incrementally build and update multiple local models,
thereby allowing the algorithm to capture arbitrarily complex function landscapes.

We validate our approach by testing it both on synthetic non-linear functions and on a physical
robot. For physical experiments, we consider a dynamic pouring task, in which the robot is tasked
to pour a certain volume of liquid from a bottle it is holding into a container placed on a rotating
turntable. Moving the bottle to track the moving container while simultaneously tilting it to pour
creates complex fluid dynamics. This makes the mapping from pouring-trajectory parameters to
poured volume highly non-linear and infeasible to model analytically. Our results reveal that the
correct pouring parameters for a new pour volume can be learned quite rapidly, with a small number
of exploratory experiments.

2. Related Work

2.1. Trajectory generation for robot manipulation
There are a diversity of different approaches to specifying robot trajectories with complex model
dynamics in the literature. We focus on illustrating past work involving robot manipulation tasks
using model and trajectory parameterizations and approaches to generate trajectories that correctly
perform specific tasks.

Many researchers have used trajectory optimization to find solutions for robot manipulation tasks,
typically optimizing a given geometric path with or without a model of the task dynamics.30, 42

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 143

Fig. 1. Experimental setup used for the pouring task. The right hand holds the bottle and performs the pouring
while the camera in the left hand monitors the visual markers on the table to measure its current position and
speed.

Mordatch and Todorov demonstrated the use of trajectory optimization to help train a neural network-
based manipulation control policy27 for 3d reaching movements. However, in general, using a
standard trajectory optimizer is quite expensive if the task dynamics are complex. This remains
true with parallelizable optimization methods such as genetic algorithms.2 Kim et al. [20] developed
a trajectory generation method which is able to learn a model of the task dynamics and compensate for
unobservable elements in simple object manipulation tasks. Their approach formulates the trajectory
creation as a policy in the state space which is approximated by multiple local trajectory generators.
A similar approach involves sequencing the solutions of low-dimensional optimization sub-
problems.31

Posa and Tedrake address the problem of optimizing the planner parameters of a geometric path
for robustness in manipulation tasks involving frictional contact35 where the trajectory parameters are
the contact reaction forces. Luo and Hauser provide an extension to transform the parameters of the
trajectory into a fast linear programming optimization problem.24 This allows the robot to perform
tasks such as sliding a stack of blocks across a rough surface without any falling down.

Zhang et al. [43] used a sampling-based motion planner to find trajectories for a ball throwing
task1 by searching for valid intermediate dynamic states. They were able to iteratively adapted the
planned trajectory to match expected behavior with relatively few attempts. Learning is also possible
by storing full paths in a trajectory library11 and adjusting the most appropriate path to work when
given a new task instance,7 or by having a planner compensate for different instances having learned
the relevant invariant constraints.9

2.2. Learning pouring tasks
An initial result in pouring is from Akgun et al. [3] where a robot learns to scoop and pour quantities
of coffee beans directly from human demonstrations. The robot can learn the task elements from
a small number of demonstrations but does not generalize the task to changes in the environment.
Pastor et al. [32], showed an initial result of learning a pouring task using Dynamic Motion Primitives
(DMPs). Their system shows generalization in the pouring target location where the robot proceeds
to empty its held container into the target container without spilling.

Later results used reinforcement learning techniques to pour either an entire bottle of fluid41 or
a target volume28 while simultaneously learning to avoid spilling. Again, DMPs are used to encode
the robot motions and the learning is done on the DMP parameters. The core contribution is using a

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

144 Selection of trajectory parameters using local metamodels

statistical analysis to reduce the dimensionality of the learning space, thereby greatly speeding up the
learning rate. In simulation of a stationary pouring task, Nemec et al. [28] achieve no spillage after
an average of 7–8 attempts, with a pouring error around 10 mL. The learned policy, however, cannot
be used for different poured volumes.

Rozo et al. [38] demonstrate a force-based approach that enables the robot to pour volumes of
fluid with different initial volumes inside the bottle being held. The pouring behavior is encoded with
a parametric hidden Markov model. They successfully showed the robot could learn to pour a desired
volume of liquid into multiple target containers starting from a new initial volume with just a single
prior demonstration.

The work of Brandi, et al. [10] shows the generalization of a pouring task to new objects (fluid
source and target) not seen in the initial training phase given by kinesthetic demonstrations. The
robot can determine a correspondence between the new object and the training object by finding the
warping between the object geometries. This warping can then be applied to the manipulator motion
to successfully pour out a full quantity of fluid into a new object, but not specific volumes.

In summary, researchers have successfully been able to implement learning algorithms for specific
pouring tasks but there are still open questions in terms of the algorithm abilities to generalize to new
task instances. There does not appear to be existing work that addresses the problem of specifying
a procedure for generating trajectories for multiple task instances, allowing for precisely pouring
different volumes of fluid.

2.3. General learning methods
The core of our approach makes use of a set of models that approximate the task dynamics. In the
robotics community, two commonly used function approximation algorithms are Gaussian Process
Regression (GPR) and Locally-Weighted Projection Regression (LWPR), an extension of locally
weighted learning6 for higher dimensions. A thorough overview of modeling algorithms for robotics
can be found in ref. [29]. GPR is a standard approach for estimating a non-linear function from
sparse samples and has been used successfully in many motion learning tasks. Whereas this approach
requires the function to be learned globally in a batch process, we focus on developing an approach
based on local models. More recent adaptations which are efficient enough for incremental learning17

also have a global fitting behavior.
In contrast, LWPR provides a method of incrementally learning non-linear functions through the

use of linear models that have local influence only. LWPR is non-parametric and generates new
local models as needed, but works best with high volumes of data. Other approaches that focus on
performing local learning include ref. [5], and more recently, refs. [18, 22, 34].

Reinforcement learning is often used to generate trajectories for robots as the system learns
models, typically representing control policies21 or a set of controllers.4, 16 Generally, the problem
formulation is distinct in that data arrives in continuous state-action trajectories rather than discrete
samples, but some of the modeling approaches are similar enough to take inspiration from. Common
approaches involve learning by using policy gradients,15, 33 where the parameters of the policy model
are adjusted locally. We implement similar local moves in our adjustments but test adjustments from
all regions of the parameter space. In ref. [19], an approach similar to ours is used where the behavior
of a continuous state-action pair space is assumed to be approximated by local models surrounding
a finite set of samples. They prove bounds on the optimality of such a model but the problem of
defining the ideal finite covering set remains specific to the application.

In ref. [25], a hybrid approach is used where an agent undergoing reinforcement learning can
request relocation to a different region of the state space and can actively select the most promising
state to reduce its task cost. In a sense, our approach includes this feature, but we expand it by
continually evaluating the benefit of relocation to any previous point for each task trial.

When faced with the constraint of real-time task learning, a learning algorithm generally must
make some tradeoff between model exploration and exploitation.23 Several learning approaches rely
on exploratory movements to find the model structure prior to direct learning, even using a different
experimental platform than the final learning one.8 Examples where exploration is used heavily during
the learning process include finding a helicopter control policy,26 during reinforcement learning of
movement primitives,13 and in developing an initial sensor model.12 In contrast, ref. [37] shows
a maximum exploitation strategy to learn additional material properties from what information is
already available, which is similar to the approach we present.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 145

3. Problem Formulation

3.1. Problem statement
In this paper, we utilize a framework where a robot performs a task by executing a finite-length
trajectory τ . The task is characterized by an unknown dynamics function that produces a real-valued
output, or score, for a particular trajectory:

y = f (τ), y ∈ R. (1)

Note that this task function is different from typical robot dynamics functions that only map the
current state to either a future state, or the derivative of the state. Here, the task output is a function
of the entire trajectory.

Rather than learn the trajectory directly, we assume the trajectory to be the output of a task-specific
planner π with an input of a parameter vector x of length p. We assume that the structure of the
planner can be defined manually, leaving the detail of producing the correct task output to the learning
algorithm, which will find the corresponding parameter values. For example, in a task such as throwing
a ball at a certain distance, a planner might be specified to move the robot end-effector in a circular
arc. This trajectory may comprise parameters like radius, speed, and release point, the values of which
determine the final throwing distance. This method can enable faster task learning by combining an
intelligent human task parameterization with an automated learning algorithm. The algorithm then
operates on the direct mapping from task parameters to outputs, which is the composition of the
planner with the task dynamics function:

τ = π(x), x ∈ Rp

y = h(x) = (f ◦ π)(x) = f (τ)

The overall task itself is represented by a set of task instances, each describing a specific desired
task output value Ti . Each task instance has a corresponding non-negative cost function Ci and
tolerance amount δi such that, if yi is a successful output of the ith instance, then Ci(yi) < δi . For
the remainder of the paper, we consider the simple cost function Ci(y) = |y − Ti |. When the robot is
assigned a specific task instance, it conducts attempts to solve the instance. Each attempt consists of
selecting the parameters, executing the resulting trajectory, and measuring the resulting cost function.

The problem addressed here can be formulated as follows: Specify a computational procedure
� that the robot will execute to solve a task instance, given the knowledge acquired from previous
instances and attempts. The procedure consists of an evaluation loop where a candidate parameter
vector is determined from m previous attempts and the corresponding trajectory is executed. The
previous attempts (Xm = {x(1), . . . , x(m)}, Ym = {y(1), . . . , y(m)}) may come from previous instances,
previous attempts of the current instance, or prior knowledge obtained elsewhere such as random
samples. If the corresponding task output for the candidate is successful, the procedure terminates.
Otherwise, the procedure will iterate with a new candidate selected after adding the previous attempt
to Xm and Ym.

xm+1 ← �(Ti,Xm,Ym) (2)

In general, the user will assign not just a single task instance during the robot training, but will
be interested to have the robot learn a set of many different instances. We assume that such a set is
not known beforehand and may possibly not even have a known final size when the robot begins to
learn the first instances. Without knowledge of future instances to learn, the system focuses on each
instance separately, with each one being solved before addressing the next.

In this framework, we desire to find a procedure that can solve each instance with a minimal
number of attempts. Therefore, we use the total number of attempts made to solve Nt task instances
as the overall cost metric C:

C(T) =
Nt∑
i=1

ηi, (3)

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

146 Selection of trajectory parameters using local metamodels

where T = {T1, . . . , TNt
}, and ηi is the number of attempts taken to solve the ith instance. Since the

task instances are solved independently, the ideal procedure can directly minimize each ηi without
regard for the other instances.

While the optimal procedure that produces ηi = 1 for all instances is impossible to achieve, we
do aim to specify a procedure that can asymptotically reduce ηi to 1, while simultaneously trying
to minimize the number of attempts for the earlier instances. In practical robotics scenarios, it is
important to explicitly address the cost of learning all task instances as Nt must be small enough so
that the complete learning is feasible and the costs for the early instances cannot be discounted.

3.2. Evaluation of existing approaches for application to trajectory parameter selection problem
Before explaining our approach in detail, it is useful to briefly discuss how existing techniques can
be applied to this particular problem and what are some of the problems they experience. We discuss
two major alternatives for addressing our problem and provide illustrative comparative results for
two representational algorithms.

3.2.1. Reinforcement learning based policy search. Our problem can be posed to work under the
standard reinforcement learning framework used in robotics. The framework is composed of unknown
system dynamics, which are influenced by a controller, whose output is determined by a parameterized
control policy.

st+1 = f (st , ut)

ut = πx(st) (4)

A task cost function J (x) is defined for the policy parameters, which is evaluated over one or more
trajectories (i.e., τ = {s1, . . . , stf }) followed by the system with a controller executing the policy. The
goal of any learning algorithm is to find the set of policy parameters x∗ that minimize

J (x) =
tf∑

i=1

c(si), (5)

where c is a user-specified cost function that penalizes the current state of the system. Typical
reinforcement learning problems involve specifying non-zero costs or rewards in only a subset of the
state space rather than uniformly, and the goal of the learning algorithm is to find policy parameters
that minimize the expected total costs of the states the system will be in.

While superficially different, the formulation of our problem in the previous section can be
considered a special case of the general RL framework. The state space is taken as simply the task
score itself, y ∈ R. Instead of a multi-step trajectory determined by the system dynamics, we can
consider just a single step from an initial state to the final output. The control policy is taken to output
the task parameters themselves. Dropping the initial state from the model, as it is always the same,
these simplifications reduce the general system dynamics in Eq. (4) to match Eq. (1) in section 3.1.

3.2.2. Adapting the Probabilistic Inference for Learning Control (PILCO) Algorithm. The PILCO
algorithm14 provides an approach to simultaneously learn the system dynamics and find preferred
policy parameters for the general reinforcement learning framework. The core of the algorithm is to
approximate f (x, u) with a Gaussian process regression model, where the current state and control
input are used as model inputs and the future state (or change in state) is output as a prediction. The GP
outputs a probability distribution for its output, which can be propagated through the system dynamics
in Eq. (4). This allows the algorithm to compute an expression for the expected cost of following
a particular policy, with the current knowledge of the system dynamics. To improve the policy, the
derivative of the cost function with respect to the policy parameters can be directly computed, with
slight assumptions on the structure of the policy and cost function. The derivative allows standard
local optimization algorithms, such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, to
converge to a local optimum for the policy parameters.

When adapted to our problem, the complex computations used in PILCO for the general case are
dramatically simplified. With only a single state update, the cost function only depends on a single

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 147

Table I. Comparison results with the adapted PILCO algorithm.

Algorithm Mean # iters % within 10 iters

Adapted PILCO 12.7 48%
Local linear models 5.6 90%

output for the GP, which is a normal distribution. The expected value of this output is therefore just
the mean of the prediction and using a simple squared-error state cost function c(y) = (y − y∗)2, the
policy cost reduces to

J (x) = (μ(x) − y∗)2. (6)

Here, μ(x) is the mean of the Gaussian process prediction of the task score y. Computing the
derivative of J (x) is then straightforward, given a smooth choice of covariance function for the GP.

This adapted formulation of the PILCO approach was compared against our current method of
searching for task parameters, using a set of local linear models, on a synthetic five-dimension non-
linear test function (see Section 5 for a full description). For both experiments, the same initial set
of 50 random task parameter samples and their corresponding outputs were given to the learning
algorithms. One hundred target outputs, uniformly distributed over the range of the test function,
were given individually to the algorithms, with the known data set reset to the initial 50 samples after
each target was found. For the PILCO policy search, the initial parameters were set to the mean of
the initial data set. Searching with linear models does not require any initialization.

Primarily due to local updating, the adapted PILCO policy search has noticeably worse performance
than our approach using linear models search as seen in Table I, which shows the results of 100 different
target searches. For PILCO, out of 100 targets attempted, 40 could still not be found after 20 samples
of the test function, most likely indicating that the policy parameters became stuck in local minima,
which is something our approach is not vulnerable to. To conclude the comparison, when the learning
problem is formulated in the framework we have developed our approach for, existing reinforcement
learning techniques, represented by PILCO, address the problem in a simplified manner. Reducing the
problem to performing only local updates of the policy parameters leads to much worse performance
than can be achieved by our proposed approach.

3.2.3. Bayesian Optimization Framework. An alternate approach to solving the problem is with an
optimization framework. For a desired task score y∗, the same cost function for an attempt in the
reinforcement learning can be used:

c(x) = (y − y∗)2 = (h(x) − y∗)2. (7)

A search algorithm can then attempt to minimize this cost function to find a set of task parameters
that provide the desired task score. The algorithm terminates when a minimum value within the task
tolerance of zero is found.

A Bayesian optimization framework allows an algorithm to select the next best point to test in the
space based on a current probability model which consists of a prior that is conditioned on information
acquired during the search. A Gaussian process is a straightforward model that can be used in this
Bayesian manner.

3.2.4. GP-UCB Algorithm. Given a probability model conditioned on known information about the
task, the question arises of how to select the next point to test, which requires some tradeoff of
exploration and exploitation. A simple algorithm that balances these factors is the Gaussian Process
Upper Confidence Bound algorithm.40 Essentially, given a set of candidate points D where the next
test point can be taken, the candidate selected is

xm+1 = argmax
x∈D

μm(x) + β1/2
m σm(x), (8)

where μm(x) and σm(x) are the mean and the standard deviation of the Gaussian process at x when
conditioned on m previous samples. The weighting parameter βm is set to 2 log(|D|m2π2/6δ) for a

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

148 Selection of trajectory parameters using local metamodels

Table II. Comparison results with the GP-UCB algorithm.

Algorithm Mean # iters % within 10 iters

GP-UCB 22.1 30%
Local linear models 2.0 95%

user chosen value of δ, which allows for provable bounds on the regret incurred during the optimization
process. In practice, however, βm can be tuned for faster convergence, which is detailed in the previous
citation.

This algorithm was adopted for our problem and cost function, flipping the signs in Eq. (8) for
minimization. We also did not use a fixed candidate set D, but rather used Eq. (8) with an off-the-shelf
optimization library which searched for the minimizing value within the valid parameter bounds. We
discovered that our adaptation of GP-UCB was effective in quickly searching the parameter space
but had substantial problems finding solutions with very high precision. This would happen because
while the algorithm quickly found regions with zero-error parameters nearby, it had little incentive
to search closeby to the newly tested points to lower the error further. This is due to the Gaussian
process uncertainty decreasing dramatically in the region of the new test point, while other regions
have much higher uncertainty, and are therefore weighted higher by the GP-UCB heuristic. To get
decent performance with the search, we had to loosen the task tolerance considerably but this only
improved the performance of our own approach as well, which was far better. This distinction is
shown in Table II, which contains the results from 20 target searches while using a very high task
tolerance value. Given this behavior, we concluded that using a standard optimization method was
not ideal for this problem as (1) we were trying to find parameters where the objective function was
exactly zero and not just minimal, and (2) information about where zeros may lie was being discarded
by using a squared error term instead of retaining the sign.

3.2.5. Observation. To conclude this section, we observed that our particular problem has
characteristics that make it challenging for existing methods that are broadly applicable. Since
our task involves only a one-step update directly to the final score, the full power of reinforcement
learning algorithms cannot be made use of, and they are reduced to simple local updates of the policy
parameters. And because we are searching for parameters that are exactly zeros of a non-negative
cost function, a Bayesian optimization algorithm is not ideal, as it moves to other more uncertain
regions of the parameter spaces once it learns that a particular area is not going to go any lower than
zero. These difficulties will be explicitly addressed by the features in our approach to greatly improve
the learning performance for this particular type of problem.

3.3. Overview of approach
This paper presents an approach and procedure to find solutions to new task instances by iteratively
improving a model of the task dynamics function h(x). Since the individual task instances are
presented to the robot sequentially, and it is not known a priori what the total number will be, we
adopt the overall minimization strategy of solving each instance with as few attempts as possible.
However, to reduce the number of attempts for possible later task instances, the learning algorithm
continually gains experience of the task dynamics in order to exploit available knowledge and find
faster solutions.

An important property of tasks that can learned efficiently with this strategy is that many solutions
exist in the parameter space for each task instance, and hence can be found easily. The fact that
large solution sets exist throughout the space allows a strategy of selecting test points by adjusting
a single parameter value. This helps to maximize the information gained through multiple attempts
and find solutions rapidly. If the solution set is instead sparse and clustered into small regions, using
single parameter adjustments is likely to perform worse, as it becomes less likely that a solution
exists somewhere on the line obtained by allowing a single parameter to be free. Many robot tasks
have natural parameterizations, however, that show this behavior of being able to find solutions by
adjusting a single parameter only.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 149

The general outline of the approach involves the following components. First, at each known
sample point, a neighborhood is defined and used to compute a local linear model to approximate
the function behavior. Second, an error model at each point is computed to approximate the region
where the linear model is considered accurate. Candidate parameter adjustments which are expected
to solve the task instance in one step are generated from all current sample points, and are compared
to select the one with the highest confidence. The new point in the parameter space is sent to the robot
for execution and if the resulting task output is not a success, the system repeats the full strategy with
the new information.

4. Local Linear Metamodel-Based Approach
The primary guiding principle of the proposed approach is to iteratively search the task parameter
space by creating local models of parametric neighborhood and finding a movement within a carefully
chosen neighborhood that has the minimum uncertainty. First, in an initialization phase, a set of
training samples is obtained from either human demonstrations or robot executions of randomly
selected points in the parameter space. Each sample is a tuple comprising a parameter vector and
its mapping to a task score. Second, in a model generation phase, the algorithm builds local models
based on the current training set. Third, in an exploitation-driven model updating phase, the algorithm
finds a new point by using the current set of local models, evaluates its task score (for example, in
the context of the robot pouring task, this corresponds to the robot using the found tilt parameters to
execute the task and measuring the poured amount), adds the newly found point to the training set,
and updates the set of local models. The cycle of model generation and model exploitation repeats
until a point is found whose task score is within the success tolerance of that of the desired task.

4.1. Initialization
Let S = {(x(i), y(i)) : x(i) ∈ X , y(i) ∈ Y, i = 1, 2, . . . , m} be the initial set of training samples, where
X is the set of sample points in the parameter space, x(i) ∈ Rn is the ith point in X , Y is the set
of corresponding task scores, y(i) ∈ R is the ith task score in Y , and m is the number of training
samples. Let x

(i)
j ∈ R represent the j th element of x(i). Further, let x ∈ Rn represent a general point

in the parameter space.

4.2. Model generation
This phase is achieved in three steps: (1) adaptive neighborhood selection, (2) planar model
approximation, and (3) error-divergence model approximation.

4.2.1. Adaptive neighborhood selection. For each point x(i) ∈ X , the algorithm builds a local linear
model by selecting the points from X residing within an adaptive box-neighborhood N (i) ⊂ X :

N (i)(k) = {x(j) ∈ X : ||x(i) − x(j)||∞ ≤ δ
(i)
k } (9)

where k is the number of neighbors in the neighborhood and δ
(i)
k is the neighborhood size, which is

given by

δ
(i)
k = max

x(j)∈N (i)(k)
||x(i) − x(j)||∞ s.t. |N (i)(k)| = k (10)

According to Eqs. (9) and (10), note that δ
(i)
k is assigned to the minimum possible size that results

in k-nearest neighbors. Since the density of points in the data set can be highly variable, it is important
to find a δ

(i)
k that results in a neighborhood with sufficient points to generate a relatively accurate local

approximation, but not so many that the non-linear behavior of the underlying function deteriorates
the approximation. This is done by using a leave-one-out cross-validation technique to estimate the
optimal neighborhood size δ

(i)
k∗ . In particular, for each x(j) ∈ N (i)(k), a plane is fit using least-squares

on the set N (i)(k)/x(j) and the linear-fit error at x(j) is computed. Now, the mean of linear-fit errors
ηk over all x(j) ∈ N (i)(k) is used as a fitness to evaluate the neighborhood size.

We consider k = n + 1 as the least number of desired points inN (i)(k) since n points are needed for
a unique plane fit, plus an additional point for cross-validation error measurement. Accordingly, the

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

150 Selection of trajectory parameters using local metamodels

Fig. 2. An example of neighborhood cross-validation error fits as the neighborhood size increases. This particular
example behaves nicely and the algorithm will select the optimal size at N=9.

neighborhood size is initialized to δ
(i)
n+2 and the corresponding ηk is computed. Next, k is incremented

by one and ηk+1 is computed. If ηk < ηk+1, then δ
(i)
k is reported as optimal. Otherwise, the search

continues to find a better neighborhood size.
In general, if sample density around x(i) is moderate, the successive error values will decrease as

the plane fits are less sensitive to noise induced from few samples, but then increase again as the
neighborhood begins to include the non-linearity of the sampled function. Finding the neighborhood-
size when the error first increases is used as a rough heuristic to find the balance between these two
factors while also not evaluating more neighborhood sizes than necessary. Figure 2 shows an actual
computed example where this heuristic happens to give the optimal neighborhood size.

Algorithm 1 Adaptive neighborhood selection
1: Input: Sample set S, index of base point i
2: k ← n + 2
3: N (i)(k) ← GenerateNeighborhoodSet(k) using(9) & (10)
4: η ← 0
5: for j = 1 : k do
6: A ← FitHyperplane(N (i)(k)/x(j))
7: η ← 1

k

(
η + FindLinearFitError(A, x(j))

)
8: end for
9: k∗ ← k

10: ηprev ← η
11: while (true) do
12: k ← k + 1
13: N (i)(k) ← GenerateNeighborhoodSet(k) using(9) & (10)
14: η ← 0
15: for j = 1 : k do
16: A ← FitHyperplane(N (i)(k)/x(j))
17: η ← 1

k

(
η + FindLinearFitError(A, x(j))

)
18: end for
19: if ηprev < η then
20: k∗ ← k − 1 break
21: end if
22: ηprev ← η
23: end while
24: return

[
N (i)(k∗), k∗]

Figure 3 shows the resulting behavior of this algorithm, which is to shrink neighborhood sizes
in regions of high sample density so as to maintain model accuracy. This algorithm does generate

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 151

Fig. 3. Example neighborhood sizes computed using the adaptive heuristic for normally distributed 2D data.

similar neighborhood sizes as the simpler heuristic of just using the nearest N neighbors, but, as will
be shown later, accounting for the accuracy of the plane fit leads to better target search results.

4.2.2. Planar model approximation. An affine hyperplane F (i)(x) is fit to points in the neighborhood
N (i)(k∗), obtained from the previous phase, by using a least-squares method:

F (i)(x) = A(i)(x − x(i)) + y(i) (11)

where A(i) =
[
a

(i)
1 a

(i)
2 · · · a(i)

n

]
is a row vector of planar model coefficients. If the plane is not

uniquely determined (e.g., all the points are collinear), then the neighborhood size is incrementally
expanded until a set of points is found that uniquely determines the plane.

4.2.3. Divergence-model approximation. The plane obtained using Eq. (11) is assumed to be an
approximation of the tangent plane of the true task function in the vicinity of the point in question.
This approximation is expected to diverge substantially as we move away from the fitted neighborhood.
Therefore, we then estimate how quickly this divergence occurs by computing the absolute error e(j)

between the predicted task score (using the plane approximation at x(i)) and the actual measured score
for every point x(j) in an annular-box-neighborhood M(i):

M(i)(β) = {x(j) : x(j) ∈ X / N (i) ∧ ||x(i) − x(j)||∞ ≤ β} (12)

where β > δ is the size of the neighborhood.

e(j) = |y(j) − F (i)(x(j))| ∀ x(j) ∈ M(i) (13)

where F (i) is the affine hyperplane corresponding to x(i).
For each x(i), we then construct an error estimate function E (i)(x) that estimates the upper bound

on these absolute error values. Our formulation uses a quadratic function with different weights ω
(i)
j

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

152 Selection of trajectory parameters using local metamodels

for each parameter axis and whose minimum lies at x(i) where the plane is fit:

E (i)(x) =
n∑

j=1

ω
(i)
j 	x2

j (14)

where 	x = x − x(i). The weights ω
(i)
j are found by solving the following optimization problem:

Minimize
n∑

j=1

(
ω

(i)
j

)2
(15)

subject to E (i)(x(j)) ≥ ej ∀ x(j) ∈ M(i) (16)

A quadratic programming solver was used for this purpose.
At the end of the model generation phase, we have N = {N (i) : i = 1, 2, . . . , m}, F = {F (i) : i =

1, 2, . . . , m}, and E = {E (i) : i = 1, 2, . . . , m} representing the sets of m adaptive neighborhoods, m

hyperplanes, and m error estimate functions, respectively, corresponding to each sample point in S.

4.3. Exploitation-driven model updating
Given a desired task score yd , the sets S, F , and E are used to find a new point in the parameter space.
As we want to search the parameter space quite conservatively, we would like to query a new point
that will provide the smallest uncertainty in task score with respect to a local error estimate function.
This is performed by selecting an existing sample point in S as a base point and by selecting only a
single parameter for modification at that base point, which precludes the need to measure distances
involving changes in multiple parameters and minimizes the possibility of error arising from unknown
cross-effects between the parameters.

These two selections are made by conducting a search at each base point x(i) in the following way.
For each parameter x

(i)
j , the desired corrective movement 	x

(i)
j is calculated by finding a point in the

direction parallel to that parameter axis whose task score based on the plane approximation is equal to
the desired amount yd . The parameter change is saturated if the corresponding error estimate function
rises above a given threshold emax before reaching the new point. Accordingly, the parameter change
is given by

	x
(i)
j = sgn

(
yd − y(i)

a
(i)
j

)
min

⎛
⎝

∣∣∣∣∣yd − y(i)

a
(i)
j

∣∣∣∣∣ ,
√

emax

ω
(i)
j

⎞
⎠ (17)

∀ j = 1, 2, . . . , n.
The saturation limit on parameter change used in Eq. (17) prevents the system from testing points

that have the potential for large error, possibly resulting in trials outside the proper operating range
which would give no new information.

Note that the search in the parameter space is deliberately restricted to individual parameter
directions. This results in generation of new sets of points called line-sets, where all points in a
line-set L(i)

j lie on a line parallel to single parameter axis j , j = 1, 2, . . . , n:

L(i)
j = {x(k) ∈ X : |x(i)

� − x
(k)
� | �= 0 only for � = j} (18)

Therefore, whenever such a line set is available for a base point x(i), the algorithm makes use
of a line approximation over the points in the line set, instead of using the planar approximation in
Eq. (11), to compute the parameter change at that point. That is, for each parameter j where |L(i)

j | �= 0,

the algorithm computes b
(i)
j as the slope of the best fit line through the points in {x(i),L(i)

j } using

a one-dimensional least squares computation. Accordingly, b
(i)
j replaces a

(i)
j in Eq. (17) during the

computation of 	x
(i)
j .

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 153

Algorithm 2 Model generation and movement selection
1: Input: S = {(x(i), y(i)) : x(i) ∈ X , y(i) ∈ Y, i = 1, 2, . . . , m},
2: target score yd , success tolerance ε, time out tmax ,
3: number of new sample points after each time out nc

4: while (� y(i) ∈ Y s.t. |yd − y(i)| < ε) do
5: t ← 0
6: while (t ≤ tmax) do
7: for i = 1 : m do
8:

[
N (i), k

] ← AdaptiveNeighborhoodSelection(i,S)
9: A(i) ← FitHyperplane

({(x(j), y(j)) : x(j) ∈ N (i)(k)}) (using (11))
10: M(i)(β) ← {x(j) : x(j) ∈ X / N (i) ∧ ||x(i) − x(j)||∞ ≤ β}
11: for j = 1 : |M(i)| do
12: e(j) ← |y(j) − F (i)(x(j))|
13: end for
14: ω(i) ← FindWeights

(
E (i)(x), f (ω(i)), {e(j) ∈ M(i)}) (using (14)−(16))

15: end for
16: for i = 1 : m do
17: for j = 1 : n do
18: L(i)

j ← {x(k) ∈ X : |x(i)
� − x

(k)
� | �= 0 only for � = j}

19: c ← a
(i)
j

20: if |L(i)
j | �= 0 then

21: c ← FitLine
(
{x(i),L(i)

j }
)

22: end if

23: 	x
(i)
j ← sgn

(
yd−y(i)

c

)
min

(∣∣∣ yd−y(i)

c

∣∣∣ ,√ emax

ω
(i)
j

)
24: end for
25: end for

26: 	x
(i∗)
j∗ ← min

i

(
arg min

j
E (i)(x

(i)
j)

)
27: [i∗, j ∗] ← arg 	x

(i∗)
j∗

28: x̂j ←
{

x
(i∗)
j + 	x

(i∗)
j if j = j ∗

x
(i∗)
j , otherwise

29: ŷ ← Evaluate(x̂)
30: S ← Append(x̂, ŷ)
31: t ← t + 1
32: end while
33: end while

Now, the error estimate function is computed for 	x
(i)
j for all i = 1, 2, . . . , m and j = 1, 2, . . . , n

and the parameter change with the least error estimate is found as below:

	x
(i∗)
j∗ = min

i

(
arg min

j
E (i)(x

(i)
j)

)
(19)

Therefore, this optimal amount of change will depend both on its magnitude, which is a function
of the model coefficients a

(i)
j or b

(i)
j , and how quickly the error function rises, which is a function of

the quadratic surface weight ω
(i)
j .

Now, the new test point x̂ is determined as follows:

[i∗, j ∗] = arg 	x(i∗)
j∗ (20)

x̂j =
{

x
(i∗)
j + 	x

(i∗)
j if j = j ∗

x
(i∗)
j , otherwise

}
(21)

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

154 Selection of trajectory parameters using local metamodels

Fig. 4. A cross-section of the Schwefel test function (c=200). Two parameters were varied from −1 to 1 and
three were fixed at zero.

The new point x̂ is then sent to the trajectory generation module, which then provides the robot
with a new trial. The robot performs the trial and the new task score ŷ is recorded. Assuming the trial
execution still results in failure, the new sample (x̂, ŷ) is appended to S and the process is repeated.

5. Results

5.1. Synthetic non-linear task function
Our primary results are shown using a synthetic task of learning the behavior of a directly specified
non-linear function through sampling of the parameter space. An N-dimensional variation of the
Schwefel function, whose landscape presents complexities including high non-linearity and multiple
local extrema was chosen for the purpose.

Schwefel : zs(x) = 1

2

N∑
i

xi sin
√

|cxi | (22)

Figure 4 shows the landscape of a two-dimensional cross-section of the Schwefel test function,
which indicates the complexity of the function and the challenge in learning its behavior. Our results
were obtained with the five-dimensional version of the function, with each parameter in the range −1
to 1. For further comparison, we additionally obtained results on a five-dimensional parabola with
the same parameter domain.

5.1.1. Linear models exploitation performance. We computed results for the approach over multiple
trials, varying both the number of initial randomly generated sample points and the task tolerance.
Each trial consists a large set of target values to find, but trials used to find earlier targets are not
retained, so that each target is found from the same initial data set. The results are presented per trial,
with basic information about the distribution of the number of trials needed for each target: the mean
over the whole target set, the range of the median 90% of the numbers of iterations, and the full range
from the minimum to the maximum number of iterations needed.

Figure 5 shows the performance as a function of the initial random data set size. As we expect
to see, there is an indication of asymptotic behavior where the algorithm is able to find solutions to
the large majority of targets in a single iteration with sufficiently dense sampling of the parameter
space. However, it is notable that the majority of the decrease in estimated number of iterations
occurs at small data sizes (around 100), indicating good performance is attainable with only minor
cost-intensive initial sampling. The number of iterations needed for the worst performing target in
each trial does show some decrease with larger initial data sets, but it is clear that some outliers

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 155

Fig. 5. A comparison of the algorithm performance on both the (a) parabola and (b) Schwefel test functions,
with varying sizes of the initial randomly sampled data set. All trials were performed with a tolerance of 0.005.
Notice that, by design, the algorithm will always perform at least one iteration to minimize the error.

remain that need several more iterations than typical, revealing the complexity of the test function.
However, all targets are found without a substantially large deviation from the mean.

Figure 6 shows the performance of our algorithm when tested with different values of task success
tolerance. The algorithm is able to rapidly find solutions on both functions. The Schwefel function
shows greater variability in the range of iterations needed, as would be expected given the much
greater degree of non-linearity exhibited. However, the maximum number of iterations needed is not
significantly greater than the parabola result.

Finally, Fig. 7 shows the performance of the algorithm for a long-term learning scenario where all
previous points are not discarded when starting the search for a new target, but are instead retained in
the library. A set of 4500 targets was given to the algorithm with a sufficiently high tolerance that no
existing points in the data set were already solutions, and were sequentially provided to the algorithm
in a random order. As we would expect, the performance of the learning algorithm approaches a
single iteration when searching for a new target. While there are still a few outliers that take 3–6
iterations to find solutions, we would expect that number to reduce as even more samples were taken
and more details about the function landscape were obtained.

5.1.2. Exploitation updates with a GPR model. As previously mentioned, it is possible to use many
features of our exploitation updates approach in a regression-model-agnostic way. We therefore show
the performance of our iterative strategy with an equivalent implementation on a Gaussian process
regression model. A Gaussian process is trained on the same initial data set and can therefore make
predictions both of the function value and the estimated error for new points. To implement the
same exploitation-driven update strategy as described in Section 4.3, we generate a set of parameter
movements that are expected to achieve the desired target value and are based at the previously

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

156 Selection of trajectory parameters using local metamodels

Fig. 6. A similar comparison of the two test functions, but using different task tolerance values. All trials were
performed with an initial data set of 50 sampled points.

Fig. 7. The algorithm performance for a set of 4500 randomly ordered targets where every trial is saved for
future learning. The distribution of the number of iterations is shown for each bin of 100 consecutive targets to
show the trend in performance.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 157

Fig. 8. Comparison of the exploitation-update strategy using local linear models and a global GPR model in
terms of the numbers of targets found by each iteration. The task tolerance was 10−3.

sampled data points. The only difference is that to find the move distances, an iterative search is
required, as no invertible analytical model is available of the function behavior in the vicinity of the
base point. All of the moves from the base points in all parameter directions are compared and the
move with the smallest expected error is selected for execution. As before, if the target is not achieved
within the specified tolerance, the true point is added to the library and the process is restarted.

To compare the two modeling algorithms, we gave each the same set of 50 data points and 100
targets to achieve. Unsuccessful trials were added to the set of points, but the data set was reset
after each target was found. Figure 8 shows the number of these 100 targets achieved depending
on how many iterations were run. Our approach with linear models has more targets found faster
at 1–2 iterations but falls slightly behind for slightly longer runs of 3–6 iterations. Note that both
approaches fail to achieve a few targets within 20 iterations (3 for our approach and 13 using GPR).
For our approach, this occurs because of a time-out in the updating algorithm, but we would expect
the algorithm to eventually find solution points as more data samples were acquired. In the case of the
GPR model, however, the missing targets are due to the search algorithm not finding any points with
the expected target value, even when searching in all parameter directions from all known base points.
In such cases, the updating strategy has no option but to exit and report that the target cannot be found.
Finally, the computational cost of our model was significantly lower as there is no need to search
systematically for the estimate target. Due to this faster performance, initial performance benefit at
low iterations, and the additional robustness for finding targets, we report the remaining results in this
paper for our model only. However, we still emphasize that the update strategy performed effectively
with the GPR model and it may be more appropriate in other circumstances.

5.2. Algorithm features characterization
Here, we present results demonstrating the value of the key algorithm features detailed in the previous
section in terms of the overall performance. The three main features in our approach are (1) using
single parameter adjustments, (2) using an upper-bounding quadratic error model, and (3) adaptively
selecting the neighborhood size of each local model.

5.2.1. Single parameter adjustments. One of the more novel features in our approach is that new
test points are generating by only adjusting a single parameter from a previously tested point. While
initially seeming overly restrictive, this has the benefit of generating multiple data points along a
single line. We can then exploit this to do model fitting of that line directly, rather than only trying fit
an N-dimensional plane to a neighborhood. This direct fit allows movements along the line to have
much higher accuracy than along the plane in an arbitrary direction. Corresponding, the performance
of the algorithm in terms of iterations needed to find desired task outputs is greatly improved.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

158 Selection of trajectory parameters using local metamodels

Fig. 9. Performance of the learning algorithm using different parameter adjustment methods as a comparative
histogram. The algorithm started with an initial data set of 50 random points and searched for 100 different
targets.

Fig. 10. Learning algorithm performance with different parameter adjustment methods as in the previous figure.
Here, the same target was found 100 times, but with a different random initial data set each time.

We compare our approach with a simpler method where the movement from each known data
point is parallel to the gradient of the plane fitted to the selected neighborhood. The adjustments are
ranked by the expected error using the same error model and the movement distance is saturated if the
expected error rises above a given threshold. So the only difference in the comparison is the direction
of the adjustment and the possible use of the line model in the case of single parameter adjustments.
Figures 9 and 10 show the results from the comparison. The single parameter adjustment strategy
comes out substantially better, reducing the average number of iterations by over 50%.

5.2.2. Quadratic error model. For comparison with the quadratic error model, we used an algorithm
that specifies a region around each local model as error free and any prediction outside of the region
to have potentially infinite error, inspired by a trust-region approach.39 The size of the region was
determined by the distance to the furthest sample point whose measured error with respect to the
plane fit to the local neighborhood remained below a threshold. If no neighboring point had an error

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 159

Fig. 11. Performance of the learning algorithm using different error model algorithms as a comparative histogram.
The algorithm started with an initial data set of 50 random points and searched for 100 different targets.

Fig. 12. Learning algorithm performance with different error model algorithms as in the previous figure. Here,
the same target was found 100 times, but with a different random initial data set each time.

below this threshold, the region radius was set to zero. The threshold can be set fairly arbitrary and we
found that the model had good performance when it was set to the same value as emax , described in
Section 4.3. When selecting the parameter adjustments from the different local models, the shortest
move that remained within the error-free region was selected. The comparison results with the
quadratic bounding error model are shown in Figs. 11 and 12, which shows better performance for
the quadratic model on average. Interestingly, the error-free region model has better performance
in the number of task instances solved after just two iterations, but then immediately drops off in
performance while the quadratic model finds many other solutions in three and four iterations.

5.2.3. Adaptive neighborhood heuristic. The comparison for the adaptive neighborhood heuristic
was done with two other much simpler heuristics. The N-closest heuristic uses the minimal number
of neighboring points to fit the local plane, which is N for an N-dimensional task parameter space. If,
as happens in the case of single parameter adjustments, the N closest points form a linearly dependent
vector space, the neighborhood was expanded incrementally until a unique plane could be fit to the

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

160 Selection of trajectory parameters using local metamodels

Fig. 13. Performance of the learning algorithm using three different neighborhood heuristics as a comparative
histogram. The algorithm started with an initial data set of 50 random points and searched for 100 different
targets.

Fig. 14. Learning algorithm performance with three neighborhood heuristics as in the previous figure. Here, the
same target was found 100 times, but with a different random initial data set each time.

points. For the fixed distance heuristic, all points within a specified distance were selected for the
neighborhood. If there were insufficient points within the given distance, the results from the N-closest
heuristic were used instead. Figures 13 and 14 show the results when compared with the adaptive
neighborhood heuristic. On average, the adaptive heuristic has better performance, especially with
the number of solutions found within three iterations.

5.3. Robot dynamic pouring experiments
To validate our approach on a physical robot, we used a dynamic pouring task, where a Baxter robot
is tasked to pour a specific amount of liquid into a container which is placed on a rotating table. This
task is intended to be representative of a manufacturing scenario where the robot may be asked to
perform new tasks or task variations with limited time available for learning. Additionally, the task of
pouring liquid into a moving container is highly amenable to autonomous learning as it is extremely
difficult to model accurately without an existing data set.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 161

Fig. 15. An example of a generated tilt trajectory which is controlled by five parameters: (a) the tilt-forward
time, (b) the intermediate time between the two tilts, (c) the tilt-backward time, (d) the tilt-forward rate, and (e)
the tilt-backward rate. To reduce the amount of overall rotation needed, the base tilt angle is not zero but 45◦.

Fig. 16. An example execution of the pouring task for illustration. The four images show (a) the robot holding
the bottle and waiting for the trigger to begin pouring, (b) the initial tilting phase where the liquid starts to begins
to rush out, (c) the middle pouring phase where the flow is more laminar, and (d) the untilting phase where the
flow is cut off by the rising bottle edge.

We selected the tilt trajectory of the bottle held by the robot as the learning target with the
complementary motions of the robot’s joints found using standard planning algorithms. In particular,
the tilt profile robot’s end-effector action consists of tilting the bottle in one direction (forward tilt) for
some duration, keeping the tilt steady for some time, and untilting the bottle (reverse tilt). Accordingly,
the tilt profile was parameterized by five real-valued parameters, which were manually defined as
relevant physical features of the pouring action: (1) forward tilt time tf , (2) forward tilt rate θ̇f ,
(3) intermediate pouring time ts , (4) reverse tilt time tr , and (5) reverse tilt rate θ̇r . A value for each
of these parameters defines a point in the five-dimensional parameter space in which the learning
algorithm operates. An example plot of what the generated tilt trajectory looks like can be seen in
Fig. 15. The parameters are all normalized in order to handle different units and prevent changes
in one parameter for dominating all others. This normalization can be done after an initial data set
is obtained from random trials, or by knowing reasonable physical limits in the case of a manually
defined parameter space.

The experimental setup used is shown in Fig. 1. The rotating table has several visual markers used
in augmented reality applications that provide the robot knowledge about the current table angle.
After measuring the table rotation speed, a manually defined planning algorithm takes the tilt profile
to execute and generates a path for the arm which ensures the tip of the held bottle will remain
above the target container and in a proper pouring location during the pouring motion. This involves
simply computing the desired pose of the robot end-effector and using the inbuilt inverse kinematics
to compute corresponding joint angles at several points along the arc followed by the target container.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

162 Selection of trajectory parameters using local metamodels

Fig. 17. Baxter learning performance for a uniformly distributed set of targets. Each group of three bars is the
number of iterations needed for a single target, with the gray, blue, and green bars corresponding to tolerances
of 10, 20, and 30 g, respectively. All trials were done with the initial set of 37 random points.

Fig. 18. Baxter learning performance depending on initial size of the data set when starting each new target.
For this data, the robot was given the same initial set of 37 samples, but as it progressed through the 12 targets,
all trials were saved in the data set so later targets had more samples to learn from. The full experiment was
then repeated starting from the initial set once again to obtain 24 total target samples. As there was substantial
variation in the samples, the results were divided into three bins so that a rough mean could be estimated. The
success tolerance was 20 g for all targets.

An example execution of the task is shown in Fig. 16 (using the tilt-trajectory in Fig. 15), which shows
the breakdown of the pouring motion into the three phases controlled by the learned parameters.

After each pour, the amount of fluid poured was measured manually using a scale with a precision
of 2 g. Initial exploratory tests showed that due to the various system errors, including measuring
the table position and robot trajectory tracking, the amount poured for a single set of parameters has
a variation of up to ±5 g from a mean poured volume. This indicates a small degree of stochastic
behavior that can affect the number of iterations needed to find a pouring trajectory which falls within
a strict tolerance of task success. For context, it should be noted that the variation in poured volumes
when the task is performed by humans, even with practice, is much higher that the robot variation.

An initial library of 40 points was generated by evaluating randomly generated points in the
parameter space. Three were removed where either the entire bottle of fluid was poured (450 g) or
no fluid was poured. With this initial data set, 12 targets were given uniformly from 100 to 400 g.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 163

Figure 17 shows the performance on these targets for three different task success tolerance values.
In keeping with our results from function approximation, the algorithm has faster convergence with
less restrictive tolerance. Figure 18 shows a second experiment where the same targets were repeated
but the initial data set used included the points tested in all previous targets. Again, paralleling the
results from the previous section, there is a visible trend of a decreasing number of iterations needed
as the initial library size grows. Also, note that all the means for the long-term learning in Fig. 18,
using a 20 g tolerance, are lower than the mean for the 20 g tolerance case in Fig. 17.

6. Conclusions
We presented an approach that allows a robot to generate task trajectories using a set of linear
metamodels. These models were successfully learned from sparse initial exploratory experiments and
enabled the system to learn to perform a complex task instance with very few attempts needed. Our
approach made use of multiple features which we demonstrated to improve the overall performance
of the algorithm, including single parameter adjustments, local quadratic error models, and adaptive
neighborhood selection. Experimental results using both synthetic and real robot tasks revealed that
the algorithm converges faster as more experiments were conducted, suggesting that the algorithm
supports lifelong learning. We also discussed how alternative well-known approaches were not ideal
for solving this particular problem, which our’s handles quite well. We conclude that it is primarily
useful for motion planning problems where many similar task instances must be solved and in which
model prediction by simulating the underlying physics involving the trajectory variables and task
behavior is very difficult.

Future work will focus on extending the approach to be feasible for more complex problems. In
particular, how the complexity and computational limits of the algorithm scale to higher dimensions is
still an open question. Currently, we update all local models as new data is acquired but the formulation
naturally extends to an incremental learning scheme where only the models in the vicinity of the new
data point are adjusted. Additionally, other modeling algorithms can also be used with the exploitation
strategy effectively. This suggests we could expand the approach to become model agnostic and even
use a hybrid approach where different regions of the parameter space could be modeled by different
algorithms, depending on the function behavior. The linear models could be used in regions of sparse
data with high computational performance, a Gaussian process can be used to provide more accurate
predictions in regions of high variability, and LWPR could be used when sufficient samples had been
acquired to slow down the other algorithms. These improvements may enable the approach to be
competitive for much higher dimensional problems as well.

Acknowledgements
This work was supported in part by Office of Naval Research under grant N000141310597. The
information in this paper does not necessarily reflect the position or policy of the sponsors.

References
1. E. Aboaf, C. G. Atkeson and D. J. Reinkensmeyer, Task Level Robot Learning: Ball Throwing. Technical

report, MIT, Cambridge, MA, 1987.
2. F. J. Abu-Dakka, F. J. Valero, J. Luis Suner and V. A, “Mata direct approach to solving trajectory planning

problems using genetic algorithms with dynamics considerations in complex environments,” Robotica
33(3), 669–683 (2015).

3. B. Akgun, M. Cakmak, K. Jiang and A. L. Thomaz, “Keyframe-based learning from demonstration,” Int.
J. Soc. Robot. 4(4), 343–355 (2012).

4. H. F. N. Al-Shuka, B. Corves and W.-H. Zhu, “Function approximation technique-based adaptive virtual
decomposition control for a serial-chain manipulator,” Robotica 32(3), 375–399 (2014).

5. M. Arif, T. Ishihara and H. Inooka, “Incorporation of experience in iterative learning controllers using
locally weighted learning,” Automatica 37(6), 881–888 (2001).

6. C. G. Atkeson, A. W. Moore and S. Schaal, “Locally weighted learning,” Artif. Intell. 11, 11–73 (1997).
7. D. Berenson, P. Abbeel and K. Goldberg, “A Robot Path Planning Framework that Learns from Experience,”

Proceedings of the International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA (2012)
pp. 3671–3678.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

164 Selection of trajectory parameters using local metamodels

8. B. Bocsi, L. Csato and J. Peters, “Alignment-Based Transfer Learning for Robot Models,” Proceedings of
the International Joint Conference on Neural Networks, Dallas, TX (2013) pp. 1–7.

9. C. Bowen, G. Ye and R. Alterovitz, “Asymptotically optimal motion planning for learned tasks using
time-dependent cost maps,” IEEE Trans. Autom. Sci. Eng. 12(1), 171–182 (2015).

10. S. Brandi, O. Kroemer and J. Peters, “Generalizing Pouring Actions Between Objects using Warped
Parameters,” Proceedings of the 14th IEEE-RAS International Conference on Humanoid Robots, Madrid,
Spain (2014) pp. 616–621.

11. M. S. Branicky, R. A. Knepper and J. J. Kuffner, “Path and Trajectory Diversity: Theory and Algorithms,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA,
USA (2008) pp. 1359–1364.

12. A. Broun, C. Beck, T. Pipe, M. Mirmehdi and C. Melhuish, “Bootstrapping a robot’s kinematic model,”
Robot. Auton. Syst. 62(3), 330–339 (2014).

13. B. Castro da Silva, G. Konidaris and A. G. Barto, “Learning Parameterized Skills,” Proceedings of the 29th

International Conference on Machine Learning (ICML-12), Edinburgh, Scotland (2012) pp. 1679–1686.
14. M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and Data-Efficient Approach to Policy

Search,” Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA
(2011) pp. 465–472.

15. A. El-Fakdi and M. Carreras, “Two-step gradient-based reinforcement learning for underwater robotics
behavior learning,” Robotics and Autonomous Systems 61(3), 271–282 (2013).

16. H. Esfandiar, S. Daneshmand and R. D. Kermani, “On the control of a single flexible arm robot via
Youla-Kucera parameterization,” Robotica 34(01), 150–172 (2016).

17. D. H. Grollman and O. C. Jenkins, “Sparse Incremental Learning for Interactive Robot Control Policy
Estimation,” Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena,
CA, USA (2008) pp. 3315–3320.

18. L. Jamone, B. Damas and J. Santos-Victor, “Incremental Learning of Context-Dependent Dynamic Internal
Models for Robot Control,” Proceedings of the IEEE International Symposium on Intelligent Control (ISIC),
Antibes, France (2014) pp. 1336–1341.

19. S. M. Kakade, M. J. Kearns and J. Langford, “Exploration in Metric State Spaces,” Proceedings
of the 20th International Conference on Machine Learning (ICML), Washington, D.C., USA (2003)
pp. 306–312.

20. B. Kim, A. Kim, H. Dai, L. Kaelbling and T. Lozano-perez, “Generalizing over Uncertain Dynamics for
Online Trajectory Generation,” Proceedings of the International Symposium on Robotics Research (ISRR),
Sestri Levante, Italy (2015) pp. 1–16.

21. J. Kober, A. Wilhelm, E. Oztop and J. Peters, “Reinforcement learning to adjust parametrized motor
primitives to new situations,” Auton. Robots 33, 361–379 (2012).

22. C. Lehnert and G. Wyeth, “Locally Weighted Learning Model Predictive Control for Nonlinear and Time
Varying Dynamics,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany (2013) pp. 2619–2625.

23. C. Lovell, G. Jones, K.-P. Zauner and S. R. Gunn, “Exploration and Exploitation with Insufficient
Resources,” JMLR: Workshop and Conference Proceedings, Bellevue, WA, USA, vol. 26 (2012)
pp. 37–61.

24. J. Luo and K. Hauser, “Robust Trajectory Optimization Under Frictional Contact with Iterative Learning,”
Lydia E. Kavraki, David Hsu, and Jonas Buchli, editors. Robotics: Science and Systems (RSS), Rome, Italy
(2015) ISBN 978-0-9923747-1-6.

25. L. Mihalkova and R. Mooney, “Using Active Relocation to Aid Reinforcement Learning,” Proceedings of
the 19th International FLAIRS Conference, Melbourne Beach, FL, USA (2006) pp. 580–585.

26. T. Mihai Moldovan, S. Levine, M. I. Jordan and P. Abbeel, “Optimism-Driven Exploration for Nonlinear
Systems,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA (2015) pp. 3239–3246.

27. I. Mordatch and E. Todorov, “Combining the Benefits of Function Approximation and Trajectory
Optimization,” Dieter Fox, Lydia E. Kavraki and Hanna Kurniawati, editors. Robotics: Science and Systems
(RSS), Berkeley, CA USA (2014) ISBN 978-0-9923747-0-9.

28. B. Nemec, D. Forte, R. Vuga, M. Tamosiunaite, F. Worgotter and A. Ude, “Applying Statistical
Generalization to Determine Search Direction for Reinforcement Learning of Movement Primitives,”
IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan (2012) pp. 65–70.

29. D. Nguyen-Tuong and J. Peters, “Model learning for robot control: A survey,” Cognitive Science 12(4),
319–40 (2011).

30. G. Pajak and I. Pajak, “Sub-optimal trajectory planning for mobile manipulators,” Robotica 33(06), 1181–
1200 (2015).

31. C. Park, J. Pan and D. Manocha, “High-DOF robots in dynamic environments using incremental trajectory
optimization,” Int. J. Humanoid Robot. 11(02) (2014).

32. P. Pastor, H. Hoffmann, T. Asfour and S. Schaal, “Learning and Generalization of Motor Skills by Learning
from Demonstration,” Proceedings of the IEEE International Conference on Robotics and Automation,
ICRA ’09, Kobe, Japan (May 2009) pp. 763–768.

33. J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradients,” Neural Netw. 21,
682–697 (2008).

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

Selection of trajectory parameters using local metamodels 165

34. T. Petrič, A. Gams, L. Žlajpah and A. Ude, “Online Learning of Task-Specific Dynamics for Periodic
Tasks,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2014), Chicago, IL, USA (2014) pp. 1790–1795.

35. M. Posa and R. Tedrake, “Direct Trajectory Optimization of Rigid Body Dynamical Systems Through
Contact,” In: Algorithmic Foundations of Robotics X (E. Frazzoli, T. Lozano-Perez, N. Roy, D. Rus, eds.),
volume 86 (Springer Berlin Heidelberg, 2013) pp. 527–542.

36. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, Boston,
Massachusetts, United States, 2006).

37. C. Rosales, A. Ajoudani, M. Gabiccini and A. Bicchi, “Active Gathering of Frictional Properties from
Objects,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2014), Chicago, IL, USA (Sep. 2014) pp. 3982–3987.

38. L. Rozo, P. Jimenez and C. Torras, “Force-Based Robot Learning of Pouring Skills using Parametric Hidden
Markov Models,” International Workshop on Robot Motion and Control, RoMoCo, Wasowo, Poland (Jul.
2013) pp. 227–232.

39. J. Schulman, S. Levine, M. Jordan and P. Abbeel, “Trust Region Policy Optimization,” Proceedings of the
International Conference on Machine Learning (ICML), Lille, France (2015) pp. 1889–1897.

40. N. Srinivas, A. Krause, S. M. Kakade and M. Seeger, “Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design,” Proceedings of the 27th International Conference on Machine
Learning (ICML 2010), Haifa, Israel (2010) pp. 1015–1022.

41. M. Tamosiunaite, B. Nemec, A. Ude and F. Wörgötter, “Learning to pour with a robot arm combining goal
and shape learning for dynamic movement primitives,” Robot. Auton. Syst. 59(11), 910–922 (2011).

42. E. Theodorou, J. Buchli and S. Schaal, “Learning Policy Improvements with Path Integrals,” International
Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy (2010).

43. Y. Zhang, J. Luo and K. Hauser, “Sampling-Based Motion Planning with Dynamic Intermediate State
Objectives: Application to Throwing,” IEEE International Conference on Robotics and Automation (ICRA),
St. Paul, MN, USA (2012) pp. 2551–2556.

Appendix A. Gaussian Process Regression Method
GPR fits a Gaussian process over a set of training samples comprised of multi-dimensional inputs
and real-valued outputs, and produces a predicted normal distribution for the output of any point
in the input space. While a Gaussian process can be thought of as an infinite-dimensional normal
distribution, when making predictions for new input points the formulation depends only on the
training data, which makes the algorithm simple to implement. The standard training and prediction
algorithm is derived in ref. [36] and gives efficient prediction for specified points in the input space.
However, it does not provide any guidance on how to select test points. Here, we extend the basic
algorithm to be applicable for our use case, where we are searching the input space for a point that
corresponds to a desired output.

The standard algorithm takes a data set of previous trials, with inputs X ⊂ Rn, and outputs Y ⊂ R,
and returns a predicted mean (μ∗) and variance (σ∗) of the output for a test point, x(∗). The most
important component of the GP is the covariance function, k : Rn × Rn → R, which controls the
similarity of neighboring points in the input space and enforces the smoothness of functions that are
fit to the training data. We use the standard squared exponential covariance function of the form:

k(x, y) = σf e(x−y)T D(x−y). (A1)

Here, D is a symmetric, positive-definite matrix that defines a distance metric. In our experiments,
we used a diagonal matrix with each diagonal element as a free parameter that controls how quickly
the influence of two points drops as the distance between them increases along a particular axis. The
other free parameter used is σf , which is a uniform scaling factor for the covariance.

The covariance function is used to compute correlations between the training set and the test point.
The matrix K ∈ Rm×m is the covariance matrix of the training data, computed by Kij = k(x(i), x(j))
for all m points in X . The covariance vector k∗ is computed by pairing x(∗) with each x(i) from the
training data. The predicted mean and variance of the output corresponding to x(∗) are then given by

μ∗ = kT
∗ (K + σ 2

n I)−1Y

σ∗ = k(x(∗), x(∗)) − kT
∗ (K + σ 2

n I)−1k∗
(A2)

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

166 Selection of trajectory parameters using local metamodels

Notice that the majority of the computation is inverting the matrix Kn = K + σ 2
n I which can be

quite expensive if its dimensions are large. However, as Kn is only dependent on the training data, it
can be computed once and cached for future predictions of test points. This is crucial for efficient use
of the prediction in our extension.

After a training set of data is obtained, prediction accuracy can be increased by finding a set of
hyperparameters that maximizes the likelihood of the training data. In our case, the hyperparameters
consist of the diagonal elements of D and σf , forming the parameter vector θ . The log-likelihood of
the hyperparameters for a given training set can be analytically derived as

logp(y|X, θ) = −1

2
yT K−1y − 1

2
log|K| − n

2
log2π (A3)

To maximize this function, a standard gradient ascent algorithm in the space of the parameter
vector θ is used as the derivative can be analytically computed. For each parameter θi , this derivative
is

∂

∂θi

logp(y|X, θ) = 1

2
tr

[(
K−1y(K−1y)T − K−1) ∂K

∂θi

]
(A4)

Note that the calculation of K (and therefore K−1) is dependent on the values of θ , essentially
requiring a full retraining of the GP at each new point in the hyperparameter space. This cost is
sufficient that it becomes prohibitive to reoptimize the hyperparameters every time new data is
acquired, for example. However, we found it is possible to obtain sufficient prediction accuracy when
finding the optimal parameters for the initial training set only.

https://doi.org/10.1017/S0263574717000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000212

