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Abstract

We assess the potential of network motif profiles to characterize ego-networks in much the

same way that a bag-of-words strategy allows text documents to be compared in a vector

space framework. This is potentially valuable as a generic strategy for comparing nodes in

a network in terms of the network structure in which they are embedded. In this paper,

we consider the computational challenges and model selection decisions involved in network

motif profiling. We also present three case studies concerning the analysis of Wikipedia edit

networks, YouTube spam campaigns, and peer-to-peer lending in the Prosper marketplace.

1 Introduction

Networks model objects and the relationships between those objects. Social network

analysis and network data analysis more generally are based on the fundamental

assumption that the network structure around an object can tell us a lot about

that object. This is a well-established idea not only in social network analysis

(Borgatti & Everett, 1992; Krause et al., 2007; Juszczyszyn et al., 2008) but also in

bioinformatics (Milo et al., 2004; Vazquez et al., 2004; Pržulj, 2007), in spam filtering

(Boykin & Roychowdhury, 2005; Becchetti et al., 2008; Kamaliha et al., 2008), and

in telecommunications (Allan et al., 2009).

In this paper, we consider the challenge of assessing the similarity between ego-

networks, that is the local network structure around specific objects of interest. This

similarity assessment is important because in many situations similar objects will be

embedded in similar networks—indeed in many situations the similarity in network

structure may be the main visible evidence of similarity.

Graph similarity is one of the core challenges in learning and analysis tasks associ-

ated with networks. It is computationally challenging because subgraph isomorphism

is NP-complete. Even if it were a tractable solution, subgraph isomorphism does

not solve the problem because graphs can be similar while having little structure

that matches exactly. This is true in the same way that two text documents can be

similar without matching at a sentence level.

The solution to the problem of graph similarity that we explore here is analogous

to the vector space model for document similarity in information retrieval. In

information retrieval, documents are represented as feature vectors of index terms

that map each document to a point in a high-dimension space. Here, we propose to

map each ego-network as a feature vector of motif counts so that networks can be

compared based on the similarity of these feature vectors (see Figure 1). This allows
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us to compare Wikipedia pages in terms of the similarity of their edit networks, or

identify YouTube users that are similar to known spammers or cluster users in a

peer-to-peer lending system in terms of their lending behavior.

An important principle in this strategy is that all motifs up to a given size

(typically five nodes) are used in the profiling. There is no a priori selection of

motifs that are considered to be important for the particular classification task. The

principle is that the full set of motifs should carry sufficient statistics to characterize

the ego-network. If the motif-based representation is to be used in a supervised

learning setting, there is always the potential to use feature selection methods to

identify the discriminating motifs. This in turn offers insight into the nature of the

classification problem.

The paper proceeds with a simple example in the next section to illustrate the idea

of profiles based on motif counts. Then, before presenting a series of case studies

we provide a review of related research in Section 3. The most detailed example

in the paper is the example in Section 4 illustrating the relationship between

edit network structure and article quality in Wikipedia. There follows two further

examples on YouTube spam in Section 5 and on Prosper in Section 6. The merits

and shortcomings of motif profiling are discussed in the conclusions in Section 7.

2 A simple example

The objectives of motif-based characterization are best illustrated with a simple

example. Figure 1 shows three simple Wikipedia edit networks of the type discussed

in Section 4. These are the target networks where we count instances of the motifs—

we can also refer to the motifs as query networks. Networks A and C have some of

the characteristics of high-quality networks in that editors collaborating on the ego-

page have collaborated on other pages, while the B network is typical of a “Start”

class article. An examination of the motif counts in the table shows that the motif

counts do discriminate between the high- and low-quality networks. Network B has

high counts of the star motifs 4 and 8 that indicate multiple editors collaborating

on a page. However, motifs 13, 14, and 15 that indicate dense collaboration across

multiple articles are absent in network B.

There are some technical details in the profiling process that are worth highlighting.

The profile covers all motifs of up to five nodes that can occur in a bipartite

network of editors and articles. The motif counts cover all occurrences of motifs in

the network. In some circumstances, it may be valid to limit the count to motifs

occurrences that actually include the ego node—for instance, there are examples of

motif 3 in networks A and C that do not contain the ego.

Another important issue is the question of induced motif counts. An induced motif

must contain all edges between its nodes that are present in the target network,

whereas a non-induced motif need not. To illustrate this, we can take motif 7 as

the target network and motif 6 as the query motif. There are two occurrences of

motif 6 in motif 7 if we count without the “induced” constraint. However, if we

consider induced motifs then the count is zero. A clear-cut example of where this

arises in Figure 1 is in the count of motif 17 in network C. While there are examples

of motif 17 in C there are no induced examples. The appropriateness of induced
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A 12 13 13 6 6 16 10 1 1 4 4 8 8 3 3 4 4

B 9 16 3 20 0 13 1 15 0 22 0 4 0 0 0 2 0

C 12 13 11 8 5 15 8 2 1 10 4 4 9 4 1 0 0

(A) (B) (C)

Fig. 1. An example of motif counts in three ego-networks A, B, and C. The networks are

simple versions of the Wikipedia edit networks discussed in Section 4. The light nodes are

articles and the dark nodes are editors, the large square indicates the ego node. (color online)

versus non-induced counting depends on the circumstances. Induced motif counting

is appropriate where the absence of an edge is significant.

3 Related research

In this paper, we bring together research on network motif analysis and egocentric

network analysis so we review the relevant research in subsections under these

headings. We also provide overviews of research on exponential random graph (p∗)

models and relevant research on graph kernels.

3.1 Network motif analysis

It is probably reasonable to identify the publication in Science in 2002 of the work

by Milo et al. (2002) as a key milestone for network motif analysis in computational

science. However, the roots of network motif analysis in social science are a good

deal older. While graph theoretic analysis has a long history in social science,

for our purpose it is the social science research that emphasizes local rather than

global network structure that is important (Moreno, 1934; Davis, 1963; Holland &

Leinhardt, 1976).

In this respect, the analysis by Moreno (1934) of sociograms in terms of chains,

triads, and stars could be considered the genesis of network motif analysis. The

work by Holland and Leinhardt (1976), which emphasizes the insight offered by

local rather than global analysis in social graphs, is also an important milestone.

Holland and Leinhardt introduce the notion of a triad census which is a count of

the occurrences of 16 possible triads in a graph (see Figure 2). They propose that, in

a graph with one node type and directed edges, the counts of the 16 possible triads

present a useful set of summary statistics for the graph.

Milo et al. (2002) use triad counts as summary statistics in their analysis and

also consider 4-node motifs. Because the objective of their work is to discover

motifs that occur more frequently than would be expected they also perform motif
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Fig. 2. The 16 triads used in the analysis by Holland and Leinhardt (1976). Milo et al. (2002)

also use these triads to produce summary statistics; however, they do not consider the first

three that are not completely connected. (color online)

counting on randomized versions of the networks. The networks are randomized by

rewiring at random while preserving the degree of individual nodes. Motif counts

in these rewired networks provide a baseline or null model against which frequently

occurring motifs can be identified.

This strategy whereby motifs are considered interesting if they occur significantly

more often in the real data than in a random model has been the subject of

some criticism. Artzy-Randrup et al. (2004) have pointed out that in many cases

the random models used are not appropriate and can suggest significance when

the evidence is not really there. This null model problem is not an issue when

comparing ego-networks as the motif statistics are used directly to compare ego-

networks without reference to a null model.

Because the vocabulary of motifs increases very rapidly as more nodes are

included, it is important to consider redundancy across motif counts. Clearly, counts

of motifs of the same size may be highly correlated and counts of higher order motifs

may not contain additional information that is not contained in their constituent

motifs. In this regard, Faust (2007) has shown that a triad census contains little

information that is not already available from a dyad census plus some other

simple statistics. She compares the triad census of 82 networks against lower-order

characterizations based on network density, out- and in-degree distribution, and

the dyad census. She shows that 90% of the triadic structure is accounted for by

these lower-order properties. In a sense, this is reassuring as it suggests that it is

not necessary to count higher-order motifs in order to characterize local network

structure. We pick up this issue again in Section 4.1.

Kalish & Robins (2006) have analyzed the relationship between psychological

predispositions and local network structure. They examine how triad counts in one-

step ego-networks entailing three types of edges (strong, weak, and no tie) predict

psychological traits such as neuroticism, extroversion, and group or individual focus.

With three types of edges, their triad census has nine types of triads. While this is

a relatively small motif vocabulary, it nevertheless reduces to just three principal

components that account for 72% of the variance in the data.

This is a clear demonstration that motif counts can be highly correlated so

there is considerable scope for effective dimension reduction. However, we need

to remember that features that do not capture much variance in the data may

be quite discriminating between classes. This is the whole motivation behind

discrimination-based dimension reduction techniques such as linear discriminant
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analysis (Fisher, 1936) that focus on discrimination rather than data distribution.

This issue of dimension reduction and classification is addressed in Section 4.3.1.

Beyond the original work in social science and bioinformatics, network motif

analysis has also found application in spam detection. Within a network built from

email addresses (Boykin & Roychowdhury, 2005), a low clustering coefficient (based

on the number of triangle structures within a network) may indicate the presence

of spam addresses, with regular addresses generally forming close-knit communities,

i.e. a relatively higher number of triangles. Becchetti et al. (2008) made use of

the number of triangles and clustering coefficient as features in the detection of

web spam. These two features were found to rank highly within an overall feature

set. Motifs of size three (triads) have also been used to detect spam comments in

networks generated from blog interaction (Kamaliha et al., 2008). It was found that

certain motifs were likely to indicate the presence of spam, based on comparison

with corresponding random network ensembles.

In telecommunications, network motifs have also been used to characterize

network traffic (Allan et al., 2009). A network was created for each application

(e.g. HTTP), and nodes within the network were classified using corresponding

motif profiles.

3.2 Egocentric networks

An egocentric network is the local social network around an individual. It will

include all individuals directly connected to the ego, the central node in the network.

It may also include the neighbors of the ego’s neighbors, that is individuals two hops

from the ego. If the network structure around an individual can tell us something

about that individual, then this information should be contained in the ego-network.

Egocentric analysis has a long history within the field of social network analy-

sis (White et al., 1976; Borgatti & Everett, 1989; Wellman, 1993). Some representative

recent work (Lubbers et al., 2010) describes a dynamic egocentric network analysis

of Argentinean immigrants in Spain. The analysis comprised qualitative interviews

and a quantitative analysis at three distinct levels (ego-alter dyads, alter-alter dyads,

and networks). The quantitative analysis investigated the characteristics of the egos,

the structural characteristics of the networks, the characteristics of the ego-alter

dyads and alters, the structural positions of the alters, and the characteristics of the

alter-alter dyads. The composition of the egocentric networks was visualized using

clustered networks (Brandes et al., 2008), where the size of four nodes encodes the

number of people in each of four groups (origin, fellows, host, and transnationals)

and the thickness of the edges quantifies the amount of communication between the

groups.

Welser et al. (2007) present an analysis of roles in an online discussion group.

They visualize egocentric networks and posting habits. Through visual inspection,

they identify three types of posters: answer people, discussion people, and disruptors.

Similarly, Stoica and Prieur (2009) analyze egocentric networks in a large mobile

phone call network. They partition the nodes according to roles and validate their

results using network attributes. Antiqueira and da Fontoura Costa (2009) present

a methodology for analyzing non-overlapping subnetworks, their interrelationships,

and their distribution in a network. They analyze four random network models
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Table 1. The configurations used in the analysis of biological networks by Saul and Filkov

et al. (2007).

Configuration Description

k-star The number of nodes in the network with

exactly k adjacent edges with unconnected

end points.

k-cycle The number of k-cycles in the network.

k-degree The number of nodes in the graph with

degree k.

k-edgewise shared partners The number of edges in the network

connecting nodes that have exactly k shared

partners.

Geometrically weighted degree The weighted sum of the counts of each

degree, weighted by the geometric sequence

(1 − e−α)i where α is a decay parameter.

Geometrically edgewise shared partners The weighted sum of the number of edges

connecting nodes having exactly i shared

partners weighted by the geometric

sequence (1 − e−α)i.

Isolates The number of nodes in the network with no

neighbors.

and five real-world networks and show, for example, that the real-world networks

have similarities with combinations of the random network models. These three

analyses (Welser et al., 2007; Stoica & Prieur, 2009; Antiqueira & da Fontoura

Costa, 2009) choose a number of network statistics, for example, degree, clustering

coefficient, and local triangle count, when characterizing subnetworks. The choice is

often specific to the task at hand. In adapting network motif analysis to egocentric

networks, we are not committing to a particular choice of network statistics.

Clearly, comparisons and the determination of similarity is a core issue in an

egocentric network analysis. Using motif counts to determine similarity in ego-

networks avoids the null model problem associated with network motif analysis

identified by Artzy-Randrup et al. (2004) since comparisons within collections of

ego-networks do not require a null model.

3.3 Exponential random graph (p*) models

Exponential random graph models (ERGMs) can be seen as a development on the

basic triadic model presented by Holland and Leinhardt (1976) (see Figure 2). A

network of n nodes can be represented by an n × n matrix X where Xi,j = 1 if there

is an edge between i and j. ERGMs present a descriptive model that provides a

probability density function P (X = x) that allows us to calculate the probability of

x, an observed instance of X. The model is based on a set of explanatory variables

z(x) = z1(x), z2(x), . . . , zr(x)). These explanatory variables (also called configurations

or local patterns) can be any graph or node statistic, some examples are listed in

Table 1.
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P (X = x) can be modeled with a log linear model as follows.

log(P (X = x)) ∝ θ1z1(x) + θ2z2(x) + . . . + θrzr(x)

∝ θ′z(x)

This allows us to estimate the probability of an observed network x:

P (X = x) =
eθ

′z(x)

κ(θ)
(1)

based on a vector of parameters θ, where κ(θ) is a normalizing term (Anderson

et al., 1999). The identification of appropriate explanatory variables z(x) and the

estimation of the model parameters θ have received much attention in the social

networks research literature (Robins et al., 2007a; Robins et al., 2007b).

Saul and Filkov et al. (2007) present an analysis of biological networks using

ERGMs that has similar objectives to the work presented here. They show that

what they call a topological profile based on ERGMs is effective for clustering

biological networks based on function. In their analysis, they use statistics based on

the features shown in Table 1.

We see our method as closely related to this ERGM strategy. The main difference

is that the ERGM strategy has a formal foundation where the objective is to produce

a descriptive model of the network. Then the coefficients of this model can be used

as a feature set that characterizes the network rather than the original network

statistics. It is an open question whether these model parameters are more effective

than the original network statistics for classification and clustering—which is our

objective here.

3.4 Graph kernels

Since the objective with motif analysis is to produce a profile that characterizes a

network, it is worth also looking at graph kernels that directly compare two networks.

Formally speaking, a graph kernel is a function that quantifies the similarity between

two graphs Gi and Gj

k(Gi, Gj) = 〈φ(Gi), φ(Gj)〉 (2)

While φ(G) is a function that maps the graph into a vector space where a dot product

is performed, there may be no direct representation of φ(G). Luo et al. (2003) present

a fairly fundamental family of graph kernels based on graph spectra. If Xi is the

adjacency matrix of graph Gi then the spectral decomposition of Xi is

Xi = ViΛiV
T
i (3)

where Vi is a matrix constructed from the eigenvectors of Xi and Λi is a diagonal

matrix of the eigenvalues of Xi. A basic characterization of Gi that can be derived

from this spectral decomposition is the vector of k leading eigenvalues. Luo et al.

show how basic subgraph features such as volume (sum of the degrees of nodes

belonging to the subgraph), perimeter, length (number of edges exiting the subgraph),

and Cheeger constant (the extent to which there is a bottleneck in the external

connections from the subgraph) relate to the spectral decomposition.
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Table 2. Datasets analyzed.

Good Medium

Datasets
Classes Count Classes Count

History-F-S F 149 S 299

US-F-S F 272 S 300

Meteorology-F-S F 131 S 300

History-FG-CS FG 440 CS 588

US-FG-CS FG 565 CS 598

Meteorology-FG-CS FG 431 CS 600

This basic idea has been extended in a number of ways to produce graph

kernels that capture notions of similarity focused on a variety of different criteria

(Shervashidze et al., 2009), for example random walks (Gärtner et al., 2003; Kashima

et al., 2004), shortest paths (Borgwardt & Kriegel, 2005), subtrees (Ramon &

Gärtner, 2003), and cycles (Horváth et al., 2004). In turn, Shervashidze et al. (2009)

have proposed graphlet kernels that compare graphs in terms of the distribution

of motifs which they term graphlets. This is closely related to the motif-based

characterization presented here except that the graphlets (i.e. motifs) are hidden

in the kernel implementation. Shervashidze et al. have focused on efficient kernel

computation at the expense of interpretability. In the next section, we demonstrate

the benefits of interpretability whereby the identification of discriminating motifs

provides an insight into the nature of the networks.

4 Case study on Wikipedia

In Section 2, we introduced Wikipedia edit networks (Figure 1) as an example

of ego-networks that might be suitable for motif-based analysis. We develop this

example in this section focusing on the objectives of classification and anomaly

detection. Before looking at performance against these objectives we consider some

important implementation issues—particularly the impact of motif size and also the

need for normalization.

The experiments are based on the articles from three collections on History, United

States, and Meteorology. These collections were selected because they include a large

number of articles, especially a sufficient number of featured articles. The evaluation

considered Wikipedia articles from four different quality classes, featured articles

(F), good article (G), C-class articles (C), and start articles (S). We consider the first

two classes to be articles of high quality while the last two are of medium or low

quality.

From these collections we created six datasets (see Table 2) representing two

types of classification challenge, an easy challenge comparing F and S articles and

a harder challenge with F and G as the good quality class and C and S as the

low/medium class.

To build our edit networks, we applied some rules to filter the raw data. Firstly,

as some articles have a long edit history, we only considered the last 200 revisions of

the articles, and extracted the editors who made these revisions. We also considered

all articles that are connected by hyperlinks from the originating or ego articles. We
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Table 3. Motif counting times for motifs sets of different sizes on a test collection of

600 networks.

No. of motifs Counting time

Up to 2 nodes 1 <1 minute

Up to 3 nodes 3 1 minute

Up to 4 nodes 7 11 minutes

Up to 5 nodes 17 251 minutes

Up to 6 nodes 44 8247 minutes

retained the linked-to articles that have been edited by at least one of the ego article

editors.

4.1 Impact of motif sizes

Faust (2007) considers motifs of size two, Holland and Leinhardt (1976) work with

motifs of size three, and Milo et al. (2002) consider motifs of size three and four.

In Figure 1, we present all motifs up to five nodes. Clearly, some larger motifs will

have the potential to capture some special characteristics of the networks. On the

other hand, motifs are compositional so there will be diminishing returns in terms

of characterization power as more motifs are added. There is also the problem that

computation cost increases steeply as motifs get larger. In Figure 3 and Table 3, we

present a simple analysis to illustrate this tradeoff.

With the objective of assessing the impact of motif size on classification accuracy

and motif counting time, we selected 100 featured and 100 start articles from each of

the History, United States, and Meteorology datasets. We performed motif counting

to produce characterizations considering motifs from two nodes to six nodes in

size. The FANMOD software (Wernicke & Rasche, 2006) was used to do the motif

counting—it is designed to output all induced subgraph instances for a particular

size in a given target network.

For two nodes, there is only one motif so the characterization is simply an edge

count. At five nodes, the motif set is the 17-node set shown in Figure 1. The 3-node

and 4-node collections are respectively the first three and the first seven motifs in

Figure 1. There are 44 motifs in the 6-node collection.

The increase in processing time for the larger motifs can be seen in Table 3.

The 4-node set takes 11 minutes, the 5-node set takes four hours, and the 6-

node set takes five days. On the positive side, the diminishing returns for the

larger motif sizes is evident in the classification accuracies shown in Figure 3. This

shows average cross-validation accuracies for logistic regression and random forest

classifiers (Cunningham et al., 2008) for the different motif sizes (see Section 4.3 for

more detail on the supervised learning methods used in this evaluation). Clearly, the

huge increase in computation to do the 6-node counting returns little in classification

accuracy. For this reason, for the remainder of this paper, we consider motifs up to

just five nodes.
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Table 4. Classification accuracies comparing raw and normalized data using

cross-validation on a balanced dataset of 200 samples. Entries in bold indicate the best results.

Logistic Random forest (100 trees)

Datasets Unnormalized Normalized Unnormalized Normalized

History 80.0% 79.5% 78.5% 80.5%

USA 82.5% 85.5% 82.0% 80.0%

Meteorology 82.0% 87.0% 79.5% 81.5%

HUM 83.2% 84.3% 82.3% 80.8%

Fig. 3. Classification accuracies for different sizes of motif. The number of motifs at each size

is shown in Table 3. These results are obtained using cross-validation on a balanced dataset

of 600 examples. (color online)

4.2 Impact of normalization

The results for 2-node motifs in Figure 3 show that a simple edge count has

significant classification power. This is because the edit networks for featured articles

are inclined to be larger than those for start articles. However, start articles can have

large networks and featured articles have small networks in some cases. Because of

this it is worth assessing the impact of normalizing the motif counts to remove the

effect of motif size. Table 4 shows the impact of L2 normalization (feature vectors

normalized to unit length) on four datasets. HUM is the three individual datasets

collected into a large dataset of 899 examples. While normalization does not have a

clear impact on classification accuracy, it is probably a good idea to normalize the

data in order to get rid of the size bias—a bias that is helpful with these data.

4.3 Classification

In this subsection, we look in more detail at classification accuracy using counts

of motifs of up to five nodes as shown in Figure 1. We assess the performance of

logistic regression, random forests, k-nearest neighbor (k-NN), and support vector

machines (SVM) on the datasets summarized in Table 2.
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Table 5. Cross-validation results on the complete datasets (F versus S). Entries in bold

indicate the best results.

Logistic Random forest k-NN SVM

Datasets Acc. ROC Acc. ROC Acc. ROC Acc. ROC

History-F-S 80.4% 0.88 82.6% 0.89 76.8% 0.73 79.5% 0.73

US-F-S 87.2% 0.94 85.8% 0.93 85.0% 0.85 83.4% 0.83

Meteorology-F-S 81.0% 0.87 78.9% 0.88 75.9% 0.72 75.2% 0.61

Table 6. Cross-validation results on the harder datasets (FG versus CS). Entries in bold

indicate the best results.

Logistic Random forest

Datasets Acc. ROC Acc. ROC

History-FG-CS 65.7% 0.70 65.3% 0.70

USA-FG-CS 71.8% 0.79 70.8% 0.79

Meteo-FG-CS 60.9% 0.67 66.4% 0.72

First, we applied the four classifiers on the three complete simple datasets (F versus

S). The results in terms of classification accuracy and ROC area are presented in

Table 5. The best classification accuracy is achieved with logistic regression scoring

above 80% in all cases.

A clear pattern in these results is that random forest and logistic regression are

performing better than k-NN and SVM. This pattern was maintained in our other

evaluations so, to simplify the picture, we do not report further results using k-NN

or SVM. The good performance of logistic regression is perhaps not surprising given

that we are operating in a 17-dimension space where linear separability is easy to

achieve and a linear classifier can produce reasonable accuracy. It is not surprising

that random forest performs well as it is an ensemble method.

In the next evaluation, we tackle the larger datasets where high-quality articles

include both featured and good articles and lower-quality articles are both C class

and start articles (Table 6). Each of the datasets contains over 1,000 articles (see

Table 2) and the classification is more difficult because the distinction between the

two classes is less clear. Accuracy falls as expected but roughly two-thirds of articles

are still classified correctly.

4.3.1 Feature selection

Given our objective of identifying the useful signal in edit network motifs for predict-

ing Wikipedia article quality, we now turn to the correlations and contributions of

individual motifs. In Section 3.1, we briefly reviewed other work (Kalish & Robins,

2006; Faust, 2007) that showed redundancy due to correlations in motif counts. If

we can identify a small selection of motifs that have the classification power of the

full set of motifs, then this tells us which motifs are characteristic of good-quality

collaboration. This will also allow us to simplify the motif characterization process.
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Cluster    Motifs

C1

C2

C3

C4

2 8 4

9 15 5

16 3 7 13 11

14 1 10 12 17 6

Fig. 4. A hierarchical clustering of network motifs with clustering based on correlations in

motif counts. Darker colors in the heatmap indicate high correlations between motif counts,

e.g. counts of M2, M4, and M8 are highly correlated. The dendrogram shows four clear

clusters and the corresponding motifs are shown in the table on the right. (color online)

Our objective here is to cluster motifs based on correlated counts and then select

a subset of motifs that are representative of the clusters. When we do this with the

History data, we get the hierarchical heatmap shown in Figure 4. If we split the

motif set into four clusters according to the obvious subtrees in the hierarchy, the

four motif clusters are {M2, M8, M4}, {M9, M15, M5}, {M16, M3, M7, M13, M11},

and {M14, M1, M10, M12, M17, M6}.

Next, we would like to select representatives from each of these clusters that

are easier to count. While the general problem of network motif counting is

computationally expensive, there are certain motifs such as stars and cycles (Paton,

1969) that are easier to count. It transpires that we can select motifs M1, M7, M8,

and M9 as representatives of each of the four clusters that satisfy this criterion

(highlighted in Figure 4).

Classification performance using just this set of four motifs is shown in Table 7.

There is a significant fall-off with logistic regression with reductions of about 2.5%

on the USA and Meteorology data. Performance holds up better using the random

forest classifier with performance on the three datasets using just four motifs within

1% of that using all motifs. If M7 is dropped from this group of four then accuracy

drops by a further 2% to 4% indicating that the information it contains about

collaboration is useful for classification.

Perhaps it is not surprising that the random forest classifier performs better than

logistic regression in the lower-dimension space given that logistic regression requires

linear separability.

5 YouTube spam

In our second case study, we consider the challenge of identifying spammers operating

on YouTube. Spamming is possible on YouTube through the facility that permits

users to post comments to videos. Orchestrated campaigns target popular YouTube

videos with bot-posted spam comments. These campaigns are often of a recurring
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Table 7. Classification results for using only four motifs.

Logistic Random forest

Datasets All motifs 4 motifs All motifs 4 motifs

History-F-S 80.4% 82.4% 82.6% 81.7%

USA-F-S 87.2% 84.8% 85.8% 85.0%

Meteo-F-S 81.0% 78.7% 78.9% 78.7%

Fig. 5. Spam campaign targeting YouTube, with a small number of accounts each commenting

on many videos. Darker nodes are videos, lighter nodes are user accounts, the five central

spam accounts are highlighted. (color online)

nature, operating with periodic bursts (Xie et al., 2008; Gao et al., 2010) of activity on

a continual basis, with different campaign strategies being employed. For example,

a real network associated with a typical campaign is shown in Figure 5, where

the strategy is to use a small number of spam accounts to target a large number

of videos. The objective in this case study is to see if such spam accounts have

characteristic network motif profiles.

Because we are interested in network motif profiling as a generic network analysis

mechanism, our strategy has been to consider all motifs. We do not assume any prior

knowledge of the nature of spam campaigns and motifs that might be characteristic

of spammers. However, the enumeration of all motif instances present in the user

networks can be a lengthy process, so the case study includes some motif subset

selection as in the Wikipedia case study. We have found that certain discriminating

motifs may be used to identify particular strategies and the associated users as they

periodically recur.

5.1 YouTube comment networks

A YouTube dataset was collected for the purpose of investigating contemporary

recurring spam campaigns (O’Callaghan et al., 2012). We periodically retrieved the

details and comments of popular videos on a continual basis, using the Most Viewed
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Campaign 1

1 2 3 4 5 6 7

Campaign 2

8 9 10 11 12 13 14

Campaign 3

15 16 17 18 19 20 21

Fig. 6. Selected discriminating YouTube motifs—darker nodes are videos, lighter nodes are

users. (color online)

standard feed provided by the YouTube Data API. We focus on the more popular

videos because they have a higher probability of attracting attention from spammers

because they ensure a larger audience.

Our methodology requires the generation of a network to represent the comment

posting activity of users to a set of videos. Comments made during a specified time

interval are selected from the dataset, which are then converted to a set of hashes

having first been tokenized. An undirected network consisting of two categories of

node, users and videos, is then generated. An edge is created between a user and

a video if at least one comment has been posted by the user to the video, where

the edge weight represents the number of comments in question. To capture the

relationship between the users involved in a particular spam campaign, undirected

and unweighted edges are created between user nodes based on the similarity of

their associated comment hash sets. Users having only a single video-node neighbor

are filtered at this point. This network has a vocabulary of 162 motifs up to five

nodes—see examples in Figure 6. The set of 162 motifs comprises all possible motifs

of between three and five nodes, where edges can exist between users and videos,

users and users but not between videos.

Finally, an approximate labeling of the user nodes is performed, where users are

labeled as spam users if at least one of their comments is flagged as spam through

the YouTube spam hint property. As the name suggests that the spam hint signal is

very noisy as it is often used maliciously against users who are not spammers while,

on the other hand, some real spam comments are not flagged. In our annotation

of the data, all remaining users are labeled as regular users. Although this can lead
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to label inaccuracies, the results shown later in this paper demonstrate that such

inaccuracies will be perceivable.

5.2 Identifying typical spam accounts

We performed an initial experiment that tracked two spam campaigns which we

had discovered following manual analysis of the data covering activity between

November 14, 2011 and November 17, 2011. Two distinct campaign strategies

were in use, i.e. a small number of accounts each commenting on many videos

(Campaign 1), and a larger number of accounts each commenting on few videos

(Campaign 2). In order to track the campaign activity over time, a 72-hour period

was split into 12 windows of six hours each. For each of these windows, a network

of user and video nodes was derived using the process described in the previous

section. Network motif profiles were generated for each ego (user), to which

principal component analysis (PCA) was then applied in order to produce two-

dimensional spatializations of the user nodes, using the first two components. These

spatializations acted as the starting point for the analysis of activity within the 12

time windows.

These spatializations based on the full motif set are similar to that shown on

the right in Figure 7. Spammers were identified by examining outliers in the PCA

spatializations, and confirming these users as belonging to the spam campaigns by

analyzing their posted comments. A third spam campaign (Campaign 3) was also

active in this 72-hour period. Its strategy appeared to use a large number of users

to each post almost identical messages to a small (∼1) number of videos.

This manual process (aided by the PCA) produced labeled examples of three

types of spam users. Having generated these three labeled training sets, we ranked

the motifs using information gain to determine those that discriminated between

spammers and regular users. A selection of 21 motifs was made from those that

generated the highest information gain values, seven for each of the three campaigns.

These motifs are shown in Figure 6.

5.3 Evaluation

Having selected the 21 discriminating motifs using the November data, a series of

experiments was run to analyze the spam activity in the period from December 29,

2011 to January 1, 2012, as it was known that all three campaigns were active

during this time. For each six-hour window, motif ratio profiles were generated

from the corresponding video and user networks. As the PCA spatializations are

used as the starting point for our analysis, we demonstrate the effectiveness of the

discriminating motifs in the detection of spam campaigns with the comparison of

two spatializations for Window 5 (12 am to 6 am, December 30, 2011); one created

using the motif profiles generated from the enumeration of the selected 21 motifs,

and the other with profiles generated from all motifs within the network. These

spatializations can be seen in Figure 7.

It is clear that the motif-based characterization of the ego-networks seems to

be effective in revealing the users involved in the spam campaigns. It is worth

remembering that the vast majority of users are regular and appear as overlapping
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Fig. 7. Spatialization of the first two principal components of the normalized ratio profiles

for the YouTube comment networks, Window 5 (12 am to 6 am, December 30, 2011) with

21 motifs (left) and all (161) motifs (right). Dark nodes are users with comments marked as

spam, lighter nodes are all other users. Most users are regular, and appear as overlapping

points at the top of the leftmost cluster. Both spam campaigns are highlighted. (color online)

points at the top of the leftmost cluster. The spammers are then spread out across

the spatialization.

Apart from the highlighted campaign clusters, other spam nodes in the spatial-

izations have been correctly marked as such. For example, those users toward the

bottom-left appear to be mostly individual spam accounts having similar behavior to

the strategy of Campaign 1, but on a smaller scale. They include users encouraging

channel views, i.e. promoters (Benevenuto et al., 2009), and also a number of users

belonging to a separate campaign. Given the similarity of the spatializations, we can

assume that the use of a subset of discriminating motifs in campaign detection can

be just as effective as the results obtained when using all motifs. For this application,

it seems that a vocabulary of some tens of motifs is required to characterize the

ego-networks adequately.

6 The Prosper marketplace

The final example presents publicly available data from Prosper.com, a peer-to-

peer lending network.1 As of August 2012, Prosper.com has more than 1.4 million

members and over $375 million in funded loans. Borrowers participate in the

Prosper.com marketplace by asking for money in the form of listings. Lenders bid

on listings specifying repayment terms including interest rates. If enough lenders

fund a listing, the listing becomes a loan. Prosper.com rates prospective borrowers

according to their creditworthiness. It also maintains borrower and lender groups,

endorsements, past listings, bids, and loans. The social structure of the service is

evident from the data: a node represents a borrower or lender and a directed-edge

represents a fraction of a listing or bid offered by a lender to a borrower.

1 More information about Prosper.com can be found on their website at http://www.prosper.com
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Fig. 8. The activity in the Prosper marketplace dataset during April 2010. Two egos are

selected in the egocentric spatialization. The selection has been manually annotated with two

black circles. Their corresponding egocentric networks and network ratio profiles are shown to

the right. The spatialization was produced using principal component analysis. (color online)

In principle, members should be either borrowers or lenders but not both.

In fact, about 5% of members act as both borrowers and lenders (Redmond

et al., 2012). This behavior is of interest because it may indicate undesirable

behavior such as money laundering or arbitrage. This Prosper case study is

fundamentally different from the Wikipedia and YouTube examples in the sense

that it is inherently unsupervised. In the earlier examples, node labels were available

to drive the analysis. By contrast, there is no annotation available to assist with

the Prosper analysis so the objective of the assessment is to see if the motif-based

characterization produces a spatialization that organizes the nodes in an insightful

way.

Figure 8 shows the activity in the Prosper marketplace during April 2010. This

figure shows the EgoNav interface (Harrigan et al., 2012), a visualization tool

for exploring spatializations of networks based on motif-based characterizations.

EgoNav is based on multiple coordinated views (see Figure 8). Each of the three

views in the system illustrates a specific aspect of the selected ego(s) and they

are coordinated. A selection in any view is highlighted in all other views. The

central view of the interface is an egocentric spatialization and is located to the left.

This spatialization is computed through network motif analysis PCA. The system

interprets the motif profiles as points in a high-dimensional space before projecting

them onto a two-dimensional spatialization.

In Prosper in this period, 462 borrowers and lenders agreed upon new loans which

were divided into 1,246 fractions. Four hundred and fifty-three of the borrowers

and lenders are in a single connected component. The first and second principal

components of the network motif profiles (the x- and y-axes of the spatialization)
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account for 54% and 16% of the variability in the original dataset (see the bar

indicators).

Through using EgoNav to explore these networks, it is clear that egos to the left

of the spatialization had more nodes and edges than those of the egos to the right.

However, the differences between the egos along the y-axis of the spatialization are

perhaps more interesting. Two representative egos are selected in Figure 8. The radar

chart of their network ratio profiles reveals that the ego to the top, when compared

with the ego to the bottom, has an egocentric network with relatively fewer low-

order network motifs (network motifs with two and three vertices) but relatively

more high-order network motifs (network motifs with four and five vertices). This

is corroborated by examination of the actual networks in the top-right of the figure.

The ego to the bottom of the spatialization has just two neighbors, both of whom

are connected to many others. The two neighbors are represented by the nodes at

the center of the two circles. However, the ego to the top of the spatialization (shown

on the right in the top-right pane) has many more neighbors. These are represented

by the nodes in the circle surrounding the ego.

This motif-based analysis suggests that the Prosper member at the bottom of

spatialization has an isolated involvement with Prosper while the member at the

top is more imbedded in the Prosper community. We note that the differences

between, say, the top and bottom egos in Figure 8 can be computed more easily and

directly using a combination of node degrees and clustering coefficients. However,

the importance and flexibility of the above approach lies in the fact that we did not

specify as input the nature of the distinguishing feature(s). Through the exploration

of the egocentric spatialization and the network motif profiles we are able to deduce

the distinguishing feature(s) and better understand the dataset.

7 Summary and conclusions

The motivation here is to develop a generic mechanism for comparing egocentric

networks, without requiring insight into the network features that will be useful for

comparison. The idea is to generate a vocabulary of all network motifs up to a

certain size (say five nodes) and then characterize the network around the ego node

using a vector of counts of these motifs. We see from the three example case studies

in Wikipedia edit networks, YouTube spam comments, and the Prosper peer-to-peer

lending that this strategy is reasonably effective in three quite different application

areas.

The first thing to be careful of is that the characterizations used with this strategy

do not in fact reduce to something trivial such as an edge count or a measure of

network density. The analysis presented in Figure 3 suggests that, in the Wikipedia

example, this is not the case. The more complex motifs of size four and five do

seem to provide some classification power beyond what is possible with edge, elbow,

and triangle counts. Similarly, the example in Figure 6 shows that in the YouTube

spam scenario some quite complex motifs indicating different types of collaboration

structure have discrimination power.

Perhaps the main shortcoming of this strategy is the fact that the policy of

counting all motifs up to a certain size results in a lot of redundant counting.

The results in Figure 4 and Table 7 demonstrate this issue. This suggests that in
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situations where performance is an issue the use of network motif profiling would

entail an initial feature selection phase to identify a subset of features that would

meet the requirements of the specific task.

The motif-based characterization strategy discussed in this paper is in the spirit

of the research originating with Moreno (1934) and developed by Holland and

Leinhardt (1976) and Milo et al. (2002). There is some recent work on motif-based

characterizations of collaborations in social media that focuses on the temporal

characteristics of interactions. Jurgens and Lu (2012) have used temporal sequence

motifs to model the dynamics of editor interactions in Wikipedia and Keegan

et al.(2012) have introduced the idea of trajectory networks to model the structure

and dynamics of collaborations in Wikipedia. It seems clear that the temporal

dynamics of interactions contains important information so our next research

challenge is to extend our work to capture the dynamics of interactions.
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