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Super- and sub-rotating equatorial jets in
shallow water models of Jovian atmospheres:
Newtonian cooling versus Rayleigh friction
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Numerical simulations of the shallow water equations on rotating spheres produce
mixtures of robust vortices and alternating zonal jets, as seen in the atmospheres of
the gas giant planets. However, simulations that include Rayleigh friction invariably
produce a sub-rotating (retrograde) equatorial jet for Jovian parameter regimes,
whilst observations of Jupiter show a super-rotating (prograde) equatorial jet that
has persisted over several decades. Super-rotating equatorial jets have recently
been obtained in shallow water simulations that include a Newtonian relaxation
of perturbations to the layer thickness to model radiative cooling to space, and in
simulations of the thermal shallow water equations that include a similar relaxation
term in their temperature equation. Simulations of global quasigeostrophic forms of
these different models produce equatorial jets in the same directions as the parent
models, suggesting that the mechanism responsible for setting the direction lies
within quasigeostrophic theory. We provide such a mechanism by calculating the
effective force acting on the thickness-weighted zonal mean flow due to the decay
of an equatorially trapped Rossby wave. Decay due to Newtonian cooling creates
an eastward zonal mean flow at the equator, consistent with the formation of a
super-rotating equatorial jet, while decay due to Rayleigh friction leads to a westward
zonal mean flow at the equator, consistent with the formation of a sub-rotating
equatorial jet. In both cases the meridionally integrated zonal mean of the absolute
zonal momentum is westward, consistent with the standard result that Rossby waves
carry westward pseudomomentum, but this does not preclude the zonal mean flow
being eastward on and close to the equator.

Key words: geostrophic turbulence, shallow water flows, waves in rotating fluids

1. Introduction

Observations of Jupiter’s atmosphere reveal a highly turbulent cloud deck containing
long-lived coherent vortices, such as the Great Red Spot, that are transported around
the planet by an alternating pattern of zonal jets (Vasavada & Showman 2005).

† Email address for correspondence: dellar@maths.ox.ac.uk
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FIGURE 1. (Colour online) Observed mean zonal winds versus planetographic latitude for
Jupiter. The blue dots show Voyager 2 data from Limaye (1986) and the red line shows
Cassini data from Porco et al. (2003).

Following the pioneering non-divergent barotropic model of Williams (1978), shallow
water theory has been widely used to model the Jovian atmosphere (Williams &
Yamagata 1984; Marcus 1988; Dowling & Ingersoll 1989; Ingersoll 1990; Cho &
Polvani 1996a,b; Iacono, Struglia & Ronchi 1999a; Iacono et al. 1999b; Scott &
Polvani 2007; Showman 2007; Scott & Polvani 2008). The visible cloud deck is
treated as a homogeneous dynamically active layer separated from a much deeper
and relatively quiescent lower layer by a sharp density contrast, which may be linked
to latent heat being released at the water vapour condensation level. The equivalent
barotropic approximation (Gill 1982; Dowling & Ingersoll 1989) gives a closed set
of shallow water equations for the flow in the cloud deck.

Numerical simulations of the shallow water equations on rotating spheres with
Jovian parameter values reproduce a mixture of robust vortices and alternating zonal
jets. The latter arise naturally from the nonlinear inverse cascade characteristic of
two-dimensional turbulence being arrested through coupling to Rossby waves at
the Rhines scale (Rhines 1975) though the quasilinear ‘zonostrophic instability’
mechanism may also have a role (Srinivasan & Young 2012, 2014, and references
therein). The equatorial jets are invariably sub-rotating (retrograde) in both freely
decaying and forced-dissipative simulations in the Jovian regime (e.g. Cho & Polvani
1996a,b; Iacono et al. 1999a,b; Scott & Polvani 2007; Showman 2007). By contrast,
the mean zonal wind profiles in figure 1, as obtained from tracking visible features
in Jupiter’s atmosphere, show a broad, super-rotating equatorial jet. The similarity of
the two profiles, taken from the Voyager 2 (Limaye 1986) and Cassini (Porco et al.
2003) missions over 20 years apart, demonstrates the remarkable stability of Jupiter’s
zonal winds, and the longevity of the super-rotating equatorial jet.

Forced-dissipative shallow water simulations typically include a Rayleigh friction
term to absorb the slow inverse cascade of energy past the Rhines scale to the largest
scales in the system, which tends to create large coherent vortices in place of the
alternating zonal jets (e.g. Vasavada & Showman 2005). Scott & Polvani (2007, 2008)
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added an additional radiative relaxation term with time scale τrad to the continuity
equation in their shallow water model:

ht +∇ · (hu)=−(h− h0)/τrad, (1.1a)
ut + (u · ∇)u+ f ẑ× u=−g′∇h+F− u/τfric. (1.1b)

Here h is the thickness of the active layer, commonly called the ‘height’, u is the
depth-averaged horizontal velocity, f = 2Ω sin φ is the Coriolis parameter at latitude
φ on a planet rotating with angular velocity Ω , ∇ is the horizontal gradient operator,
ẑ is a unit vector in the local vertical direction, F is an isotropic random forcing
and τfric is the time scale for Rayleigh friction. The reduced gravity is g′ = g1ρ/ρ0,
where g is the actual gravitational acceleration, 1ρ is the density contrast between
the cloud deck and the lower layer and ρ0 is the density of the lower layer. These
parameters are possibly constrained by observations of what appear to be internal
gravity waves radiating from the impact points of Shoemaker–Levy comet debris
(Dowling 1995; Ingersoll et al. 2007), although this interpretation is not without its
critics (Walterscheid, Brinkman & Schubert 2000).

The right-hand side of (1.1a) models the effects of radiation to space with a
Newtonian relaxation of h towards its constant mean value h0 on the time scale τrad,
following earlier shallow water models of the upper ocean mixed layer (Philander,
Yamagata & Pacanowski 1984; Hirst 1986) and the terrestrial stratosphere (Juckes
1989; Polvani, Waugh & Plumb 1995; Thuburn & Lagneau 1999). Scott & Polvani’s
(2007, 2008) simulations of this system with dissipation only by thickness relaxation
(no τfric term) produced a sharply localised super-rotating equatorial jet, as do our
subsequent simulations described in § 3, and in Warneford & Dellar (2014).

Thermal shallow water theory was introduced by Lavoie (1972) to describe
atmospheric mixed layers over frozen lakes. It permits horizontal variations of
the thermodynamic properties of the fluid within each layer, which are taken to
be uniform in the standard shallow water equations. The density contrast 1ρ thus
becomes a dynamical variable. However, subsequent developments of thermal shallow
water theory have been much more focused on modelling the oceanic mixed layer
(Schopf & Cane 1983; Hirst 1986; McCreary & Kundu 1988; McCreary, Fukamachi
& Kundu 1991; McCreary & Yu 1992; Ripa 1993, 1995, 1996a,b; Røed & Shi 1999).

Warneford & Dellar (2014) simulated Jovian atmospheres using the forced-
dissipative thermal shallow water equations

ht +∇ · (hu)= 0, (1.2a)
Θt + (u · ∇)Θ =−(Θh/h0 −Θ0)/τrad, (1.2b)

ut + (u · ∇)u+ f ẑ× u=−h−1∇
(

1
2Θh2

)
+F− u/τfric. (1.2c)

We introduce the symbol Θ = g1ρ/ρ0 for the reduced gravity to emphasise that it
is now a function of space and time. The first term on the right-hand side of (1.2c)
is then the usual shallow water pressure gradient term, as rewritten for a spatially
varying reduced gravity. The right-hand side of (1.2b) is a Newtonian cooling term
that represents radiative relaxation towards a temperature Θ0h0/h with time scale
τrad. We show below that this form of coupling between Θ and h changes the
behaviour of equatorially trapped Rossby waves in almost exactly the same way
as the radiative relaxation of h itself in Scott & Polvani’s (2007, 2008) model. In
particular, the damping rates calculated in § 4 are very similar function of wavenumber
and τrad. The resulting Reynold stresses calculated in § 5 have very similar spatial
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structures between the two models, and are proportional to the difference between
the dimensionless radiative and frictional decay rate constants in both models.

The thermal shallow water equations (1.2a–c) conserve both mass and momentum
in the absence of the τfric and F terms, unlike the Scott and Polvani model (1.1a,b).
Simulations of the thermal shallow water equations for Jovian parameter values
(reported in § 3 and Warneford & Dellar 2014) reproduce a super-rotating equatorial
jet, and more substantial mid-latitude jets than simulations of the Scott & Polvani
(2007, 2008) model. Henceforth, for brevity we refer to the radiative relaxation terms
as relaxation and the Rayleigh friction term as friction. We also refer to (1.1a,b) as
the ‘standard’ shallow water equations to distinguish them from the thermal shallow
water equations (1.2a–c).

Quasi-geostrophic (QG) theory (Charney 1949; Obukhov 1949) offers a simplified
description of slow vortical motions that filters out inertia–gravity waves. Although
QG theory is usually employed for mid-latitude beta planes, Matsuno (1970, 1971)
presented a global QG theory for fully stratified atmospheres on spheres. Schubert,
Taft & Silvers (2009) and Verkley (2009) revived this theory for the standard shallow
water equations on a sphere in the form

qt + [ψ, q] = 0, q= f +∇2ψ − L−2
D ψ, (1.3)

where the Jacobian [ψ, q]= ẑ · (∇ψ ×∇q). The Rossby deformation scale is LD= c/f ,
where c is the speed of short shallow water gravity waves. Both f and LD vary with
latitude when QG theory is used in spherical coordinates. The sole evolving variable
is the potential vorticity q, which is advected by the velocity field derived from a
streamfunction ψ . The elliptic equation relating ψ to q involves the spatially varying
Coriolis parameter f . It corresponds to Daley’s (1983) simplest form of geostrophic
balance, as justified by assuming that ψ varies on length scales much smaller than
the planetary scales on which f varies. The system (1.3) reduces to the familiar beta-
plane QG equations on approximating f by f0 + βy in the first term, and by f0 in
the second term. Warneford (2014) derived a thermal form of this global QG theory,
building on the beta-plane thermal QG equations in Ripa (1996a) and Warneford &
Dellar (2013). Numerical simulations produced super-rotating equatorial jets when the
dimensionless radiative relaxation time τrad is sufficiently short, as did simulations of
the corresponding global QG form of Scott & Polvani’s (2007, 2008) shallow water
model with a relaxing thickness. By contrast, both QG models produced sub-rotating
equatorial jets when τrad is sufficiently long. The mechanism responsible for setting
the equatorial jet direction must therefore lie within QG theory. This focuses attention
on momentum fluxes due to Rossby waves, rather than by inertia–gravity waves, or
the equatorially trapped Kelvin and Yanai waves. None of these waves exist in QG
theory.

2. Momentum transport by Rossby waves

Dickinson (1969) showed that the meridional flux of zonal momentum due to
Rossby waves produces a net eastward acceleration in regions where Rossby waves
are generated, and a net westward acceleration in regions where Rossby waves are
dissipated. This argument was further developed by Green (1970) and Thompson
(1971). A detailed version based on ray theory may be found in Held (2000) and
Vallis (2006). The QG equations on a mid-latitude beta plane lead to the Rossby
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wave dispersion relation ω = −βk/(k2
+ `2
+ L2

D) for plane-wave disturbances with
streamfunction ψ = ψ̂ exp(i(kx+ `y−ωt)) implies a meridional group velocity

∂ω

∂`
=

2βk`
(k2 + `2 + L2

D)
2
, (2.1)

while the off-diagonal component of the Reynolds stress (see § 4 for notation) is

〈u′v′〉 =− 1
2 ψ̂

2k`. (2.2)

The radiation condition requires the meridional group velocity to point away from
wave sources, so the sign of k` is such as to create a flux of westward (negative)
zonal momentum away from sources of Rossby waves towards regions where Rossby
waves are dissipated. For example, Schneider & Liu (2009) and Liu & Schneider
(2010) identified Rossby wave sources due to divergent motions associated with the
breakdown of geostrophy near the equator in their three-dimensional simulations of
Jovian atmospheres. Propagation of these Rossby waves to higher latitudes thus creates
a net eastward acceleration at the equator according to the above theory, which is
consistent with the formation of super-rotating equatorial jets in their simulations.

However, the focus of our present paper will be on the equatorially trapped Rossby
waves that play a key role in near-equatorial dynamics (e.g. Matsuno 1966; Gill 1982;
McCreary 1985; Majda & Klein 2003; Khouider, Majda & Stechmann 2013). These
waves are confined by a Gaussian envelope whose extent scales with the equatorial
deformation scale Leq =

√
c/(2β). This corresponds to latitudes within about 30◦ of

the equator for Jovian parameters (see § 4). We therefore need to compute the latitude
dependence of the momentum fluxes inside the scale of this envelope, for which a ray
theory approach is inadequate.

The generalised Lagrangian mean (GLM) theory is a powerful approach for
addressing this and other problems in wave–mean flow interaction (Andrews &
McIntyre 1976a; Bühler 2000, 2014). It defines the Lagrangian mean of an arbitrary
field φ(x, t) by

φL(x, t)= φ(x+ ξ(x, t), t), (2.3)

where (· · ·) is some linear averaging operator and ξ(x, t) is a Lagrangian displacement
field such that x + ξ(x, t) is the actual position of the particle whose mean
position is x at time t. GLM theory establishes circumstances for the validity of
a ‘pseudomomentum rule’ (McIntyre 1981; Bühler 2000, 2014) under which the
waves behave for some purposes as if they carried a momentum equal to their
pseudomomentum and the background fluid were absent. The pseudomomentum is a
disturbance quantity related to the pseudoenergy defined in § 5.

A linearised version of GLM theory for small ξ was presented in Andrews &
McIntyre (1976a, 1978). However, the Lagrangian picture of a fluid evolving through
displacements of indestructible particles fits awkwardly with the mass source or sink
term on the right-hand side of (1.1a) that models radiative relaxation. In particular,
lack of mass conservation requires modification of Bühler’s (2000) shallow water
pseudomomentum rule obtained from GLM theory. Nevertheless, McIntyre (2014,
personal communication) has established, firstly, that is possible to reproduce our
results below using the linearised GLM theory slightly adapted to apply to (1.1a,b)
and, secondly, that an eastward zonal acceleration at the equator is obtained for two
interesting cases, (i) equatorially trapped Rossby waves freely decaying by radiative
relaxation – as we compute independently below – and (ii) the same waves, but
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maintained at constant amplitude by a balance between forcing and dissipation, with
the dissipation again by radiative relaxation but with the forcing mimicked by negative
Rayleigh friction. The linearised GLM theory shows why negative Rayleigh friction,
if spatially uniform, has an effect qualitatively similar to that of free temporal decay
– as illustrated by the curves in figure 4(b) of Andrews & McIntyre (1976a) with
suitable sign changes.

Following the approach of McIntyre & Norton (1990) for stratified fluids, Bühler
(2000) formulated a general approach for shallow water equations of the form

ht +∇ · (hu)= 0, (2.4a)
ut + (u · ∇)u+ f ẑ× u=−g′∇h+F, (2.4b)

with a general term F, not necessarily a forcing. The shallow water potential vorticity
q= ( f + ζ )/h, where ζ = ẑ · (∇× u) is the relative vorticity, evolves according to

∂t(hq)+∇ · (hqu−F⊥)= 0, (2.5)

with an extra flux F⊥ = ẑ × F. Bühler’s (2000) pseudomomentum rule holds for
systems of this form that conserve linear momentum, i.e. those for which hF=∇ · σ
is the divergence of a stress tensor σ .

However, neither of the shallow water models from § 1 fits this form. The shallow
water system with relaxation of the thickness does not conserve momentum. In the
absence of forcing and friction equations (1.1a) and (1.1b) together imply

(hu)t +∇ ·
(
huu+ 1

2 g′h2I
)
+ f ẑ× (hu)=−(h− h0)u/τrad, (2.6)

where I is the 2× 2 identity matrix. Moreover, the potential vorticity for the system
(1.1a,b) obeys

(hq)t +∇ · (hqu+ u⊥/τfric)= 0, (2.7)

where u⊥= ẑ× u, while the potential vorticity in the thermal shallow water equations
(1.2a–c) obeys

(hq)t +∇ ·
(
hqu− 1

2 h∇⊥θ + u⊥/τfric
)
= 0. (2.8)

Radiative relaxation thus does not contribute to either potential vorticity equation.
However, equation (2.8) contains an extra term involving the perpendicular temperature
gradient ∇⊥θ = ẑ × ∇θ that arises from the curl of the (1/2)h∇Θ term on the
right-hand side of (1.2c). The thermal shallow water equations thus do not materially
conserve potential vorticity, even in the absence of forcing and dissipation. Instead,
the total potential vorticity inside a closed isotherm is conserved. This is the thermal
shallow water analogue of the potential vorticity impermeability property of isentropic
surfaces in three-dimensional stratified fluids (Haynes & McIntyre 1990).

Since the Scott & Polvani (2007, 2008) radiatively relaxed shallow water model
lacks both mass and momentum conservation, and hence does not fit naturally into
the above general frameworks, in §§ 4 and 5 below we derive from first principles
equations for the evolution of the thickness-weighted zonal mean velocity components
〈u〉∗ and 〈v〉∗ (see § 5 for notation) caused by the decay of an equatorially trapped
Rossby wave by friction and/or radiative relaxation.
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490 E. S. Warneford and P. J. Dellar

a 2π/Ω
√

g′h0 g τrad τfric

7.1× 107 m 9.9 h 678 m s−1 26 m s−2 429 h 9900 h

TABLE 1. Parameter values for Jupiter (from Ingersoll 1990; Beebe 1994; Warneford &
Dellar 2014).

3. Numerical experiments
We now show some results from numerical simulations of three different models:

the standard shallow water equations with dissipation only through friction (i.e.
(1.1a,b) with no τrad term), the Scott & Polvani (2007, 2008) model with relaxation
of the thickness, and our thermal shallow water model. Table 1 gives typical Jovian
values for the planetary radius a, angular velocity Ω , gravitational acceleration g and
internal wave speed

√
g′h0. The last is deduced from impacts of Shoemaker–Levy

comet debris (Dowling 1995; Ingersoll et al. 2007), and implies that there are 232
polar deformation scales LD =

√
g′h0/(2Ω) around the circumference. We used a

radiative relaxation time scale τrad of 43 Jovian days, as calculated for a temperature
of 120 K at the 25 millibar pressure level, and all simulations employed a friction
with a time scale of 1000 Jovian days. Liu & Schneider (2010) used the 25 millibar
pressure level when comparing their three-dimensional simulations with observations
of Neptune. Calculating τrad at the 25 millibar pressure level for both planets leads
to a super-rotating equatorial jet for Jupiter, and a sub-rotating equatorial jet for
Neptune, in our thermal shallow water model (Warneford & Dellar 2014). The theory
in § 5 below suggests that the direction of the equatorial jet is insensitive to these
parameters provided the radiative relaxation time scale remains much shorter than the
frictional time scale.

Simulations of geostrophic turbulence in the Jovian regime require thousands of
rotation periods to reach statistically steady states. The superior memory bandwidth
and peak floating point performance of graphical processing units (GPUs) thus
becomes attractive, but existing spherical harmonic transform algorithms for GPUs
only achieve performance parity with conventional microprocessors (Hupca et al.
2012). We therefore employed the doubly periodic Cartesian domain sketched in
figure 2, which we refer to as the square planet domain. The horizontal axis denotes
longitude, while the vertical axis denotes latitude. Starting from the north pole at
the top of the domain and moving down, we reach the equator a quarter of the way
down, and the south pole half-way down. We then continue to reach the equator again,
before returning to the north pole at the bottom of the domain. We imagine following
a meridian (constant longitude line) from the north pole to the equator to the south
pole, and then following a second meridian with longitude offset by 180◦ back across
the equator to the north pole. The Coriolis force is still fully varying in latitude, and
is defined in the simulations by f (y)= 2Ω cos(2πy/ymax), where ymax is the length of
the side of the square planet domain, i.e. the circumference of Jupiter (see table 1).
The Coriolis force and all its derivatives are thus doubly periodic. This allowed us
to exploit a high performance GPU fast Fourier transform library. We discretised
the domain using 1024 × 1024 Fourier collocation points, and used the Hou & Li
(2007) spectral filter to control the buildup of enstrophy at the highest wavenumbers.
We integrated the resulting large system of ordinary differential equations using the
standard fourth-order Runge–Kutta scheme, with a time step determined dynamically
from the Courant–Friedrichs–Lewy stability condition.

Our initial conditions were h= h0 and u= v = 0 for all runs, and Θ =Θ0 for the
thermal shallow water simulation. Following Scott & Polvani (2007, 2008) we applied
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FIGURE 2. Schematic of the doubly periodic Cartesian domain used for the numerical
simulations. Each half of the domain represents a full planet, so for ease of interpretation
we show simulation results for just the top planet.

a divergence-free isotropic random forcing F that is localised to a narrow annulus
of wavenumbers |k| ∈ [40, 44] in Fourier space, counting the longest axis-aligned
sinusoidal mode in the domain as wavenumber 1. We forced each mode inside this
annulus with amplitude εf using random phases that were δ-correlated (white) in
time. This forcing is widely used in numerical studies of zonal jet formation, and
models the energy injected by three-dimensional convection at horizontal length scales
comparable to the deformation radius. Our simulations slowly adjusted the amplitude
of the forcing εf to reach a prescribed value of the total kinetic energy in the
eventual statistical steady state. Further details of the numerical models, parameters,
and simulation outputs may be found in Warneford (2014) and Warneford & Dellar
(2014).

Figure 3 shows the instantaneous absolute vorticity ωa = vx − uy + f (y) after
2 × 104 Jovian days for the top planet in figure 2 for three different simulations:
the standard shallow water equations with friction alone, the standard shallow water
equations with friction and radiative relaxation of the thickness and the thermal
shallow water equations with friction and radiative relaxation of the temperature.
Figure 4 shows the corresponding instantaneous zonal velocity and figure 5 shows
the instantaneous zonally averaged zonal velocity, 〈u〉 = y−1

max

∫
u(x, y, t) dx. All three

simulations produced a mixture of vortices, turbulence and multiple zonal jets, with
amplitudes that decrease at higher latitudes. The two simulations with radiative
relaxation produced a strong super-rotating equatorial jet in line with observations of
Jupiter. However, our simulation of the standard shallow water model, with dissipation
only by friction, produced a sub-rotating equatorial jet. The simulation with radiative
relaxation of the thickness produced very weak jets away from the equator, whereas
the other two simulations produced stronger mid-latitude jets in better agreement with
observations.
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FIGURE 3. (Colour online) Absolute vorticity ωa= vx− uy+ f (y) in units of 10−4 s−1 for
(a) the standard shallow water equations with dissipation by friction alone, (b) the standard
shallow water equations with friction and radiative relaxation of the thickness and (c) the
thermal shallow water equations with friction and radiative relaxation of the temperature.

4. Rossby waves on an equatorial beta plane
We now investigate the properties of equatorially trapped waves on an equatorial

beta plane in the different shallow water models, as they decay freely due to Rayleigh
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FIGURE 4. (Colour online) Zonal velocity u in units of m s−1 for (a) the standard shallow
water equations with dissipation by friction alone, (b) the standard shallow water equations
with friction and radiative relaxation of the thickness and (c) the thermal shallow water
equations with friction and radiative relaxation of the temperature.

friction and/or Newtonian radiative relaxation. The equatorial beta plane uses local
Cartesian coordinates with x eastward and y northward. The underlying spherical
geometry appears only through the linearisation of f = 2Ω sin φ for small latitudes
|φ| � 1 into f (y)= βy with β = 2Ω/a, where a is the planetary radius.
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FIGURE 5. (Colour online) Mean zonal velocity 〈u〉 against latitude for simulations of the
standard shallow water equations with dissipation by friction alone, the standard shallow
water equations with friction and radiative relaxation of the thickness, and the thermal
shallow water equations with friction and radiative relaxation of the temperature.

4.1. Shallow water equations with thickness relaxation
The linearised form of the unforced (F = 0) shallow water equations (1.1) with
radiative relaxation of the thickness on an equatorial beta plane may be written as
(Matsuno 1966; Gill 1982)

h′t + u′x + v
′

y =−κh′, (4.1a)

u′t −
1
2 yv′ + h′x =−γ u′, (4.1b)

v′t +
1
2 yu′ + h′y =−γ v

′. (4.1c)

The dashes denote small perturbations about a rest state with uniform thickness h0.
We have non-dimensionalised using the internal wave speed c=

√
g′h0 as the velocity

scale, the equatorial deformation radius Leq =
√

c/2β as the horizontal length scale,
and h0 as the thickness scale. Using the Jovian parameters in table 1, a latitude of 33◦
corresponds to y = 5 in the subsequent plots. The dimensionless radiative relaxation
and friction rates are κ = T/τrad and γ = T/τfric based on the advective time scale
T = Leq/c. Their values were κ = 7.88 × 10−3 and γ = T/τfric = 3.42 × 10−4 in our
simulation with radiative relaxation of the thickness.

Following standard practice (e.g. Matsuno 1966; Gill 1982) we seek waves that are
harmonic in longitude and time of the form h′(x, y, t)= Re{ĥ(y) exp(i(kx− ωt))} etc.
With no dissipation (κ = γ = 0) the three equations (4.1) may be combined into a
single ordinary differential equation (ODE) for the meridional velocity v̂(y),

d2v̂

dy2
= (Ay2

− B)v̂, A=
1
4
, B=ω2

− k2
−

k
2ω
, (4.2)

the same equation that governs a quantum harmonic oscillator. The solutions that
decay as y→±∞ may be written using the Hermite polynomials Hn(ξ) as

v̂ =Hn(ξ) exp(−ξ 2/2), ξ = yA1/4. (4.3)
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FIGURE 6. (Colour online) Dimensionless dispersion relation (4.4) for equatorially trapped
waves in the standard shallow water equations on the equatorial beta plane with no
dissipation.

The dispersion relation A−1/2B= 2n+ 1 for n=−1, 0, 1, 2, . . . gives a cubic equation
for ω,

ω2
− k2
−

k
2ω
= n+

1
2
. (4.4)

The Rossby wave branch of solutions is characterised by n > 1 and 0 < −ω/k� 1.
The other two roots give inertia–gravity waves with |ω| > 1 (the dimensionless
inertial frequency). The cases n = 0 and n = −1 give the Yanai and Kelvin waves
respectively. Figure 6 shows these different branches of the dispersion relation, all of
which represent trapped waves localised within a few equatorial deformation scales
Leq of the equator. The inertia–gravity, Kelvin and Yanai wave branches all exceed
the inertial frequency |ω| = 1. The inertia–gravity and Kelvin waves thus do not exist
in QG theory, while the frequency of the QG form of the Yanai wave approaches 0
as k→ 0 like a Rossby wave. The mechanism responsible for setting the direction
of equatorial jet in the shallow water models is expected to lie within QG theory, so
we only consider the Rossby waves in the remainder of this paper.

The friction and radiative relaxation terms in (4.1a–c) change the A and B
coefficients to (Yamagata & Philander 1985)

A=
1
4

(
ω+ iκ
ω+ iγ

)
, B=ω2

− k2
−

k
2 (ω+ iγ )

+ iω(κ + γ )− κγ , (4.5a,b)

so the dispersion relation becomes

ω2
− k2
−

k
2(ω+ iγ )

+ iω(κ + γ )− κγ =
(

n+
1
2

)(
ω+ iκ
ω+ iγ

)1/2

for n= 1, 2, . . . .

(4.6)
Figure 7 shows the real and imaginary parts of the complex frequency ω for the

first few equatorial Rossby waves (n= 1, 2, 3) for different values of γ and κ . The
dispersion relation (4.4) is invariant under the transformation (k, ω) 7→ (−k,−ω), so
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FIGURE 7. (Colour online) The (a) real and (b) imaginary parts of the dimensionless
equatorial Rossby wave frequency ω for the standard shallow water equations with no
dissipation (green solid lines), dissipation by relaxation of the thickness (red dash-dot
lines) and dissipation by friction (blue dotted lines). The three lines appear coincident
in (a).

we choose to take k > 0. The Rossby wave frequency Re(ω) is now negative, and
virtually unchanged by either weak friction (κ = 0.001, γ = 0) or weak radiative
relaxation (κ = 0, γ = 0.001). The decay rate −Im(ω) due to cooling (κ = 0.001,
γ = 0) is largest at k= 0 and tends to zero as k→∞. By contrast, the decay due to
friction (γ = 0.001, κ = 0) is monotonically increasing with k and −Im(ω) tends to
−γ as k→∞. Figure 7(b) also suggests a symmetry about the line Im(ω) = −ε/2
between small radiative relaxation (κ = ε and γ = 0) and small friction (κ = 0 and
γ = ε). We expand the roots of (4.6) as ω=ω0+ ε ω1,rad + ε

2 ω2,rad + · · · for radiative
relaxation, and ω=ω0+ ε ω1,fric+ ε

2 ω2,fric+ · · · for friction, where ω0 is the real root
of (4.4). The O(ε) corrections are both purely imaginary:

ω1,rad =
1
2 iω0(−4ω2

0 + 2n+ 1)/(k+ 4ω3
0), (4.7a)

ω1,fric =
1
2 iω0(−4ω2

0 − 2n− 1− 2k/ω0)/(k+ 4ω3
0). (4.7b)

The symmetry about Im(ω) = −ε/2 visible in figure 7(b) is a consequence of the
relation

ω1,rad +
i
2
=

i
2

(
k+ (2n+ 1)ω0

k+ 4ω3
0

)
=−

(
ω1,fric +

i
2

)
(4.8)

between the two dispersion relations truncated at O(ε).

4.2. Thermal shallow water equations
Linearising the thermal shallow water equations (1.2a–c) about a rest state with uniform
thickness h0 and temperature Θ0, and applying the equivalent non-dimensionalisation
to § 4.1 based on the velocity scale

√
h0Θ0 gives

h′t + u′x + v
′

y = 0, (4.9a)
Θ ′t =−κ(h

′
+Θ ′), (4.9b)
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FIGURE 8. (Colour online) The real and imaginary parts of the dimensionless equatorial
Rossby wave frequency ω for the thermal shallow water equations with no dissipation
(green solid lines), dissipation by relaxation of the temperature (red dash-dot lines) and
dissipation by friction (blue dotted lines). The three lines appear coincident in (a).

u′t −
1
2 yv′ + h′x +

1
2Θ
′

x =−γ u′, (4.9c)

v′t +
1
2 yu′ + h′y +

1
2Θ
′

y =−γ v
′. (4.9d)

The four equations (4.9) may again be combined into the single ODE (4.2) for v̂(y),
with coefficients

A=
1
4

ω(ω+ iκ)
(ω+ iγ )(ω+ iκ/2)

, B=
ω(ω+ iγ )(ω+ iκ)

ω+ iκ/2
− k2
−

k
2(ω+ iγ )

, (4.10a,b)

so the dispersion relation for equatorially trapped waves is

ω(ω+ iγ )(ω+ iκ)
ω+ iκ/2

− k2
−

k
2(ω+ iγ )

=

(
n+

1
2

)(
ω(ω+ iκ)

(ω+ iγ )(ω+ iκ/2)

)1/2

. (4.11)

Figure 8 shows the real and imaginary parts of the complex frequency ω for the first
few equatorial Rossby waves with n ∈ {1, 2, 3}, and three different sets of κ and γ

values. As before, the real part of ω is virtually unchanged by weak dissipation (κ =
0.002 or γ = 0.001) while Im(ω) becomes negative. The plot of Im(ω) in figure 8
closely resembles our earlier figure 7, with the same apparent symmetry, if we now
take κ = 2γ . A similar perturbation analysis to before shows that including this factor
of 2 indeed makes Im(ω) symmetric about −ε/2 between the cases of small radiative
relaxation (κ = 2ε and γ = 0) and small friction (κ = 0 and γ = ε).

5. Acceleration of the zonal mean zonal flow

We now investigate the acceleration of the zonal mean zonal flow created by these
solutions for decaying equatorially trapped Rossby waves.
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5.1. Shallow water equations with thickness relaxation
We consider the shallow water model (1.1) with radiative relaxation of the thickness,
and no forcing, on an equatorial beta plane, and apply the non-dimensionalisation
from § 4.1 to obtain

ht + (hu)x + (hv)y =−κ(h− 1), (5.1a)
(hu)t +

(
hu2
+

1
2 h2
)

x + (huv)y − 1
2 yhv =−γ hu− κu(h− 1), (5.1b)

(hv)t + (huv)x +
(
hv2
+

1
2 h2
)

y +
1
2 yhu=−γ hv − κv(h− 1). (5.1c)

The mean thickness h0 becomes unity under this non-dimensionalisation.
Following standard practice, we decompose the velocity and other fields as

u = 〈u〉 + u′ into a zonal mean 〈u〉 and a deviation u′. The zonal mean of the
dimensionless mass conservation equation may then be written as

〈h〉t + 〈hv〉y =−κ(〈h〉 − 1). (5.2)

Similarly, the zonal means of the two momentum equations are

〈hu〉t + 〈huv〉y − 1
2 y〈hv〉 =−γ 〈hu〉 − κ(〈hu〉 − 〈u〉), (5.3)

and
〈hv〉t + 〈hv2

+
1
2 h2
〉y +

1
2 y〈hu〉 =−γ 〈hv〉 − κ(〈hv〉 − 〈v〉). (5.4)

We now consider the form of solutions to the system (5.1a–c) for initial conditions
corresponding to a Rossby wave of small amplitude O(a) superimposed on a rest state
with unit thickness. For these initial conditions, and under the subsequent evolution,
the thickness and velocity components satisfy the scalings

h= 1+ h′︸︷︷︸
O(a)

+ (〈h〉 − 1)︸ ︷︷ ︸
O(a2)

, u= u′︸︷︷︸
O(a)

+ 〈u〉︸︷︷︸
O(a2)

, v = v′︸︷︷︸
O(a)

+ 〈v〉︸︷︷︸
O(a2)

. (5.5a−c)

We define 〈η〉∗ = 〈hη〉/〈h〉 to be the thickness-weighted zonal mean of a quantity η,
as in Thuburn & Lagneau (1999). Using 〈h〉 = 1+O(a2), we can simplify the above
to obtain evolution equations correct to O(a2) in the form

〈h〉t + 〈v〉∗y + κ(〈h〉 − 1)= 0, (5.6a)

〈u〉∗t −
1
2 y〈v〉∗ + γ 〈u〉∗ =−〈u′v′〉y − κ〈h′u′〉, (5.6b)

〈v〉∗t +
1
2 y〈u〉∗ + γ 〈v〉∗ + 〈h〉y =−〈v′v′〉y − κ〈h′v′〉 − 1

2 〈h
′2
〉y. (5.6c)

On the left-hand sides we have only the three mean quantities 〈h〉, 〈u〉∗, 〈v〉∗. On the
right-hand sides we have only means of quadratic products of the fluctuations h′, u′, v′.
These include the meridional derivatives of the Reynolds stress components 〈u′v′〉 and
〈v′v′〉. The contribution −〈h′2〉y/2 from the fluctuating pressure gradient arises from
using (5.5a) to write

h2
= 1+ 2h′ + 2(〈h〉 − 1)+ h′2 +O(a3). (5.7)

There are also radiative relaxation terms proportional to the so-called bolus
velocity components 〈h′u′〉 and 〈h′v′〉. These terms would be absent for the
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momentum-conserving variant of the shallow water equations with relaxation of
the thickness.

The effect of the Rossby wave thus appears as an effective force on the right-hand
sides of the evolution equations for 〈u〉∗ and 〈v〉∗. Our use of the thickness-weighted
means 〈u〉∗ and 〈v〉∗ in place of the unweighted means 〈u〉 and 〈v〉 eliminates a 〈h′v′〉
term that would otherwise appear in (5.6a). This is similar to the transformed Eulerian
mean (TEM) approach for stratified fluids (Andrews & McIntyre 1976a, 1978).

A further simplification is possible by assuming that geostrophic balance holds
in the meridional momentum equation (5.6c), since the meridional length scale and
velocity component are both smaller than the zonal length scale and zonal velocity
component. The same scaling argument is used in the semi-geostrophic theory of
atmospheric front formation. The time derivative of this meridional geostrophic
balance condition gives

1
2 y〈u〉∗t + 〈h〉yt =−

1
2 〈h
′2
〉yt, (5.8)

which can be used in place of (5.6c) to obtain a closed system with (5.6a) and (5.6b).
We now evaluate these right-hand sides using the equatorially trapped Rossby wave

solutions in § 4.1. These represent small perturbations about a state of rest with
unit thickness in dimensionless variables. The meridional velocity perturbation is
v′= α Re{v̂(y) exp(i(kx−ωt))}, with v̂(y) defined by (4.3) and (4.5), and the constant
α sets the amplitude. The corresponding zonal velocity and thickness perturbations
are u′ = α Re{û(y) exp(i(kx−ωt))} and h′ = α Re{ĥ(y) exp(i(kx−ωt))}, where

û(y)= i

(
k(dv̂/dy)− 1

2 y(ω+ iκ)v̂
k2 − (ω+ iγ )(ω+ iκ)

)
, ĥ(y)=−i

(
(iω− γ )û+ 1

2 yv̂
k

)
, (5.9a,b)

for k 6=0. The denominator in the expression for û(y) vanishes when k2
= (ω+ iγ )(ω+

iκ). This gives the dispersion relation for equatorially trapped Kelvin waves, which are
distinguished by having zero meridional velocity (v̂ = 0), and frequencies ω=±k in
the absence of dissipation.

To allow a fair comparison between the effective forces generated by waves with
different n and k values, we normalise the disturbance amplitudes by choosing α so
that

1
2

∫
〈u′2〉 + 〈v′2〉 + 〈h′2〉 dy= a2. (5.10)

The left-hand side of (5.10) is the quadratic approximation to the disturbance
pseudoenergy, an exact conserved quantity of the unforced, non-dissipative shallow
water equations that takes the above form when expanded for small-amplitude
disturbances from a rest state of constant thickness (Shepherd 1993). Using a standard
formula for the average of a product of sinusoidal disturbances represented by the
real parts of complex exponentials, we can compute the integrand in (5.10), and the
terms on the right-hand sides of (5.6b) and (5.6c), using

〈u′v′〉 = 1
2 Re(û(y)v̂(y)†), (5.11)

where the superscript † denotes a complex conjugate, and similarly for the other
quadratic combinations of h′, u′, v′.

Figures 9 and 10 show the two quantities −〈u′v′〉y and −κ〈h′u′〉 on the right-hand
side of (5.6b), and their sum, for waves with k= 1 and n ∈ {1, 2} for dissipation by
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FIGURE 9. (Colour online) The effective zonal forcing terms −〈u′v′〉y and −κ〈h′u′〉 on the
right-hand side of (5.6b), and their sum, for (a) dissipation solely by radiative relaxation
(κ = 0.001, γ = 0) and (b) dissipation solely by friction (κ = 0, γ = 0.001). All terms are
calculated for n= 1, k= 1, and a= 1 for scaling. In (b) the sum equals the first term as
κ = 0. Here and in subsequent figures the legend applies to both plots.
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FIGURE 10. (Colour online) The effective zonal forcing terms −〈u′v′〉y and −κ〈h′u′〉
on the right-hand side of (5.6b), and their sum, for (a) dissipation solely by radiative
relaxation (κ = 0.001, γ = 0) and (b) dissipation solely by friction (κ = 0, γ = 0.001). All
terms are calculated for n= 2, k= 1, and a= 1 for scaling. In (b) the sum equals the first
term as κ = 0.

either Rayleigh friction (γ > 0, κ = 0) or radiative relaxation (γ = 0, κ > 0). The plots
show the quantities divided by a2, or as given by setting a= 1. The Reynolds stress
〈u′v′〉 vanishes for undamped waves, since ω, A, and v̂ are then all real, while û and
ĥ are purely imaginary. The bolus velocity term −κ〈h′u′〉 is explicitly proportional to
κ , and so vanishes for κ = 0.

A perturbative analysis similar to that in § 4.1 shows that the Reynolds stress 〈u′v′〉
is proportional to κ − γ for small κ and γ . This explains the antisymmetry visible
when comparing case (a) with κ > 0, γ = 0 to case (b) with κ = 0, γ > 0 in each of
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figures 9 and 10. Increasing k while holding n, κ , γ fixed increases the magnitude of
〈u′v′〉 without changing its general shape, as does increasing κ or γ while holding k
and n fixed.

The Reynolds stress convergence is close to zero at the equator when n is odd,
leaving just the contribution from the bolus velocity visible in figure 9(a). However,
the Reynolds stress convergence has a local extremum on the equator when n is even.
Its sign for n = 2 is such as to produce eastward acceleration at the equator under
radiative relaxation (figure 10a), and an westward acceleration at the equator under
Rayleigh friction (figure 10b). We can infer the sign of the acceleration directly from
the right-hand side of (5.6b) on the equator. Since y = 0, the Coriolis contribution
from the mean meridional velocity 〈v〉∗ does not contribute to the left-hand side of
(5.6b). This leaves the ordinary differential equation

d
dt
〈u〉∗|y=0 + γ 〈u〉∗|y=0 =−e−σ t(〈u′v′〉y + κ〈h′u′〉)|y=0,t=0, (5.12)

where σ = −2Imω is twice the decay rate of the Rossby wave calculated in § 4.1.
The quadratic products on the right-hand side of (5.6b) thus decay in proportion to
exp(−σ t). The solution of (5.12) for γ 6= σ is

〈u〉∗|y=0 =

[
e−γ t
− e−σ t

σ − γ

]
(〈u′v′〉y + κ〈h′u′〉)|y=0,t=0. (5.13)

The time-dependent coefficient in square brackets [· · ·] is always positive for t > 0,
so the direction of the zonal mean flow 〈u〉∗ at the equator is set by the sign of the
combined Reynolds stress and bolus velocity term evaluated at y= 0 and t= 0. This
is consistent with the directions of the equatorial jets found in numerical simulations
for different rates of Rayleigh friction and radiative relaxation (Scott & Polvani 2007,
2008; Warneford & Dellar 2014).

However, away from the equator one would need to compute the solution to the
full response problem coupling 〈h〉, 〈u〉∗, 〈v〉∗ as three functions of y and t to find
the mean flow produced by the wave sources on the right-hand sides of (5.6b) and
(5.6c). Figure 11 shows the three terms −〈h′2〉y/2, −〈v′v′〉y and −κ〈h′u′〉 on the right-
hand side of (5.6c), and their sum, for k = 1, n ∈ {1, 2} and dissipation solely by
radiative relaxation (κ = 0.001, γ = 0). The first two terms are non-zero even with no
dissipation, and typically much larger in magnitude than either the bolus terms or the
Reynolds stress convergence in the zonal equation.

Omitting the κ terms from the right-hand sides of (5.1b) and (5.1c) leads to a
shallow water model that relaxes the thickness field but conserves momentum. This
model is no less justified than the model that supposes that κ should not appear in
(1.1b) for evolving the velocity u. The contributions 〈h′u′〉 and 〈h′v′〉 from the bolus
velocity would then be absent in the right-hand sides of the analogues of (5.6b) and
(5.6c) for this model. Figures 9(a) and 10(a) show that these contributions are in
any case small compared with the contribution from the Reynolds stress convergence.
This is consistent with the directions of the equatorial jets in the two models, with
and without momentum conservation, showing the same behaviour in simulations
(Warneford & Dellar 2014).
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FIGURE 11. (Colour online) The effective meridional forcing terms −〈h′2〉y/2, −〈v′v′〉y
and −κ〈h′u′〉 on the right-hand side of (5.6c), and their sum, for dissipation solely by
radiative relaxation (κ = 0.001, γ = 0). All terms are calculated for k= 1, a= 1 for scaling,
and either (a) n= 1 or (b) n= 2. The bolus velocity term −κ〈h′u′〉 is much smaller than
the other two terms, which are not proportional to κ .

5.2. Thermal shallow water equations
We now apply the same approach to the dimensionless form of the unforced thermal
shallow water equations (1.2a–c) on an equatorial beta plane. The mass and zonal
momentum equations are

〈h〉t + 〈v〉∗y = 0, (5.14)

and
〈u〉∗t −

1
2 y〈v〉∗ + γ 〈u〉∗ =−〈u′v′〉y. (5.15)

There are no κ terms in these equations, as radiative relaxation conserves mass and
momentum in our thermal shallow water model. The temperature Θ also does not
appear in these equations, because the zonal pressure gradient disappears under zonal
averaging.

To calculate the thermal contributions to the other equations, it is convenient to
decompose the temperature as

Θ = 1+ θ = 1+ θ ′︸︷︷︸
O(a)

+ 〈θ〉︸︷︷︸
O(a2)

. (5.16)

This decomposition eliminates O(1) terms proportional to the reference temperature
Θ0, which is scaled to unity by the non-dimensionalisation in § 4.2. Although θ ′=Θ ′,
we use θ ′ below so that all equations are written using the symbol θ .

The meridional momentum equation is

(hv)t + (huv)x +
(
hv2
+

1
2 h2(1+ θ)

)
y +

1
2 yhu=−γ hv, (5.17)

and the conservation form of the temperature equation is

(hθ)t + (huθ)x + (hvθ)y =−κ(h2(1+ θ)− h). (5.18)
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The unit term from the decomposition Θ = 1+ θ disappears from the left-hand side
of (5.18) because h satisfies the mass conservation equation with no source terms.
However, the combination h2(1+ θ) appears in both the pressure gradient in (5.17) and
the radiative relaxation term in (5.18). We may reduce this expression to a quadratic
product by writing

h2θ = hθ + h′θ ′ +O(a3). (5.19)

The zonal mean of the temperature equation may thus be written as

〈θ〉∗t + κ(〈θ〉
∗
+ 〈h〉 − 1)=−〈v′θ ′〉y − κ(〈h′θ ′〉 + 〈h′2〉). (5.20)

As before for the velocity components, we use 〈θ〉∗ instead of 〈θ〉 to absorb a
contribution from 〈θ ′h′〉 in the time derivative. As θ =O(a) under our decomposition,
we may neglect factors of 〈h〉 = 1 + O(a2) that we could not neglect for 〈Θ〉∗.
Similarly, the zonal mean of the meridional momentum equation is

〈v〉∗t +
1
2 y〈u〉∗ + γ 〈v〉∗ + 〈h〉y + 1

2 〈θ〉
∗

y =−〈v
′v′〉y −

1
2 〈h
′2
〉y −

1
2 〈h
′θ ′〉y, (5.21)

so we again have four equations for evolving 〈h〉, 〈u〉∗, 〈u〉∗, 〈θ〉∗ with linear left-
hand sides. The right-hand sides are again zonal means of quadratic products of the
fluctuating quantities h′, u′, v′, θ ′.

The meridional velocity perturbation for an equatorial Rossby wave is again v′ =
α Re{v̂(y) exp(i(kx− ωt))}, with v̂(y) defined by (4.3) and (4.10). The corresponding
perturbations to the thickness, temperature and zonal velocity take the same functional
forms, with

ĥ(y)=−i
(

ikû+ dv̂/dy
ω

)
, Θ̂(y)=−i

(
κ ĥ

ω+ iκ

)
,

û(y)= i

(
k(1+ iκ/(2ω)) dv̂/dy− 1

2 y(ω+ iκ)v̂
k2(1+ iκ/(2ω))− (ω+ iγ )(ω+ iκ)

)
,


(5.22)

for ω 6= 0 and ω 6=−iκ . The vanishing denominator in the expression for û when k2
=

(ω+ iγ )(ω+ iκ)/(1+ iκ/(2ω)) again gives the dispersion relation for the equatorially
trapped Kelvin waves. We choose the normalisation constant α so that the disturbances
u′, v′, h′ and θ ′ satisfy

1
2

∫
〈u′2〉 + 〈v′2〉 +

〈(
h′ +

1
2
θ ′
)2
〉

dy= a2. (5.23)

The left-hand side is the dimensionless quadratic approximation for small-amplitude
disturbances to the pseudoenergy

1
2

∫
h(u2
+ v2)+ (h

√
Θ − h0

√
Θ0)

2 dx dy (5.24)

of finite-amplitude disturbances from a rest state of constant thickness h0 and
temperature Θ0 in the thermal shallow water equations (Ripa 1995; Røed 1997;
Warneford & Dellar 2013)

Figures 12 and 13 show the Reynolds stress convergences on the right-hand side
of (5.15). These all closely resemble those for the previous shallow water equations
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FIGURE 12. (Colour online) The effective zonal force −〈u′v′〉y on the right-hand side of
(5.15) for k= 1, n= 1, and a= 1 for scaling. Plot (a) shows dissipation solely by radiative
relaxation (κ=0.002, γ =0) and (b) shows dissipation solely by friction (κ=0, γ =0.001).
The zero line is shown dotted. The ratio of κ to γ reflects the symmetry of the dispersion
relation in § 4.2.
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FIGURE 13. (Colour online) The effective zonal force −〈u′v′〉y on the right-hand side of
(5.15) for k= 1, n= 2, and a= 1 for scaling. Plot (a) shows dissipation solely by radiative
relaxation (κ=0.002, γ =0) and (b) shows dissipation solely by friction (κ=0, γ =0.001).
The zero line is shown dotted. The ratio of κ to γ reflects the symmetry of the dispersion
relation in § 4.2.

with radiative relaxation of the thickness. Thus the mean flow at the equator (y= 0)
is almost identical to that for the previous model, provided κ is rescaled by a factor
of 2. A perturbative analysis similar to that in § 4.1 shows that the Reynolds stress
〈u′v′〉 for this model is proportional to κ/2− γ for small κ and γ .

Figure 14 shows the forcing terms in the right-hand side of the mean meridional
momentum equation (5.21). The dominant terms, −〈v′v′〉y and −〈h′2〉y/2 are very
similar to those in figure 11 for the shallow water model with relaxation of the
thickness. The thermal term −〈h′θ ′〉y/2 is much smaller. Finally, figure 15 shows the
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FIGURE 14. (Colour online) The effective meridional forcing terms −〈v′v′〉y, −〈h′2〉y/2,
−〈h′θ ′〉y/2 on the right-hand side of (5.21), and their sum, for dissipation solely by
radiative relaxation (κ = 0.002, γ = 0). All terms are calculated for k= 1, a= 1 for scaling,
and either (a) n= 1 or (b) n= 2.
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FIGURE 15. (Colour online) The effective thermal terms −〈v′θ ′〉y, −κ〈h′θ ′〉, −κ〈h′2〉 on
the right-hand side of (5.20), and their sum, for dissipation solely by radiative relaxation
(κ=0.002, γ =0). All terms are calculated for k=1, a=1 for scaling, and either (a) n=1
or (b) n= 2.

forcing terms in the right-hand side of the mean temperature equation (5.20). These
all vanish for dissipation solely by friction (κ = 0), since the temperature perturbation
θ̂ given by (5.22) then vanishes, so they are only shown for κ > 0 and γ = 0. As for
the meridional velocity, the contribution from 〈h′θ ′〉 is much smaller than the other
contributions.

5.3. Discussion
Our simulation parameters imply a dimensionless radiative relaxation rate κ = 7.88×
10−3 roughly 23 times larger than our dimensionless frictional rate γ = 3.42 × 10−4.
In § 5.1 we established that the Reynolds stress 〈u′v′〉 in the mean zonal momentum
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equation is proportional to κ−γ (for thickness relaxation) or κ/2−γ (for temperature
relaxation) for small relaxation and friction rates. For κ� γ , our theory thus suggests
that 〈u〉∗ > 0 on the equator, consistent with the super-rotating equatorial jets seen in
our simulations. Conversely, for the purely frictional case (κ = 0) our theory gives
〈u〉∗ < 0 on the equator, again consistent with the sub-rotating equatorial jet in our
simulation. These conclusions hold for the two shallow water models that relax either
the thickness or the temperature. The Reynolds stresses in the two models are very
similar for small relaxation and friction rates, provided one rescales the radiative
relaxation rate κ in the thermal model by a factor of 2, as in figures 12(a) and 13(a).

We have performed a similar analysis for decaying equatorially trapped Kelvin,
Yanai, and inertia–gravity waves in the two shallow water models with radiative
relaxation of the thickness or temperature. The effective zonal forces due to these
waves are at least an order of magnitude smaller than those due to decaying Rossby
waves of the same pseudoenergy. Thus, as expected from our global QG simulations,
these other types of wave make no significant contribution to setting the direction of
the equatorial jet.

Our thermal shallow water model conserves both mass and momentum in the
absence of friction (γ = 0). This offers a simple demonstration that there is no
inconsistency between our calculation of positive (eastward) zonal acceleration at the
equator due to radiative dissipation of Rossby waves and the arguments reviewed
in § 2 that Rossby waves carry westward pseudomomentum. The evolution equation
for u may be rewritten in conservation form as

∂t(h(u− y2/4))+ ∂x(hu(u− y2/4)+Θh2/2)+ ∂y(hv(u− y2/4))= 0. (5.25)

The combination u− y2/4 corresponds to the zonal velocity seen in an inertial frame,
such that ∂xv − ∂y(u − y2/4) = y/2 + ∂xv − ∂yu is the absolute vorticity (Ripa 1993).
The combination h(u− y2/4), sometimes called absolute zonal momentum, is the beta-
plane analogue of azimuthal angular momentum in spherical geometry.

The zonal mean of (5.25) is

∂t〈h(u− y2/4)〉 + ∂y〈hv(u− y2/4)〉 = 0, (5.26)

which becomes

∂t
(
〈u〉∗ − 1

4 y2
〈h〉
)
+ ∂y

(
〈u′v′〉 − 1

4 y2
〈hv〉

)
= 0, (5.27)

correct to O(a2). Integrating (5.27) over y implies that the global absolute zonal
momentum

M=
∫
∞

−∞

〈u〉∗ −
1
4

y2(〈h〉 − 1) dy (5.28)

is constant in time. We have added the time-independent term y2/4 to the integrand
defining M so that this integral converges when 〈h〉→ 1 as y→±∞. Evaluating M
at t= 0 for the equatorially trapped Rossby wave solution from § 4.2 for which 〈h〉= 1
and 〈u〉 = 0 initially, we obtain

M|t=0 =

∫
∞

−∞

1
2

Re{ĥ(y)û(y)∗} dy< 0, (5.29)

where ĥ(y) and û(y) are defined in (5.22), and v̂(y) is defined by (4.3) and (4.10).
This negative sign agrees with the arguments reviewed in § 2 that Rossby waves carry
westward pseudomomentum.
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The mass-weighted mean zonal velocity 〈u〉∗ generated by the decaying Rossby
wave may be positive (eastward) at the equator, but the meridional integral of
〈u〉∗ − (1/4)y2(〈h〉 − 1) that defines M is still negative (westward). This is all that is
required to reconcile conservation of zonal angular momentum with the requirement
that Rossby waves should carry westward zonal pseudomomentum, as established
concretely by (5.29).

6. Conclusions

Numerical simulations of shallow water equations on a sphere with isotropic random
forcing reliably produce a mix of coherent vortices and alternating zonal jets. These
simulations typically include Rayleigh friction to absorb the gradual inverse cascade
of energy past the Rhines scale, since the zonal jets would otherwise break up into
domain-sized coherent vortices after very long times. Such simulations invariably
produce sub-rotating equatorial jets when run with Jovian parameters (Vasavada &
Showman 2005). However, simulations that model radiative effects by relaxing the
thickness field produce a super-rotating equatorial jet (Scott & Polvani 2007, 2008),
as do simulations of the thermal shallow water equations with a radiative relaxation
term in the temperature equation (see § 3 and Warneford & Dellar 2014).

We have provided a possible explanation for the different directions of the equatorial
jets in different shallow water models with dissipation by Rayleigh friction or
Newtonian radiative relaxation. We formulated evolution equations for the zonal
mean thickness 〈h〉, and the thickness-weighted zonal mean quantities 〈u〉∗, 〈v〉∗,
〈θ〉∗. These equations contain effective forces due to zonal means of products of
fluctuations, such as the Reynolds stress convergence 〈u′v′〉y in the evolution equation
for 〈v〉∗. We evaluated these effective forces for an equatorially trapped Rossby waves
superimposed on a background rest state on an equatorial beta plane. Dissipation
changes the usual phase relations between the perturbations u′, v′, h′, and permits
a non-zero Reynolds stress 〈u′v′〉 that transports zonal momentum in the meridional
direction. This Reynolds stress is proportional to κ − γ for the shallow water model
with relaxation of the thickness, and to κ/2− γ for the thermal shallow water model
with relaxation of the temperature. The Reynolds stress divergence 〈u′v′〉y is the sole
forcing term in the equation for 〈u〉∗t in the momentum-conserving shallow water
models, and the larger forcing term in the Scott & Polvani (2007, 2008) model
with radiative relaxation of both thickness and momentum. In all cases, Newtonian
radiative relaxation produces a Reynolds stress with the opposite sign to that due to
Rayleigh friction. This suffices to determine that the zonal mean flow 〈u〉∗ on the
equator created by the decaying Rossby wave with n= 2 is eastward (super-rotating)
for dissipation by Newtonian radiative relaxation, and westward (sub-rotating) for
dissipation by Rayleigh friction.

Our work relies upon several major simplifying assumptions. We considered trapped
equatorial Rossby waves on a background rest state, which allowed us to use the
known analytical expressions for these waves in terms of Hermite polynomials. A
more complete theory would calculate the Rossby wave spectrum supported by
a zonally symmetric background flow. Secondly, we only calculated the effective
forces in the evolution equations for the thickness-weighted zonal mean quantities
〈u〉∗, 〈v〉∗, 〈θ〉∗. This is only sufficient to determine the evolution of 〈u〉∗ at the
equator. Elsewhere, one would need to solve the system of three or four coupled
equations to determine the Coriolis contribution to 〈u〉∗ from 〈v〉∗. However, it is
worth noting that the latitude dependence of the Reynolds stress divergence 〈u′v′〉y
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for the n = 1 equatorially trapped Rossby wave, with two local maxima around
y=±1 in figures 9(a) and 12(a), is suggestive of the presence of two ‘horns’, peaks
of maximal eastward velocity, at latitudes around ±7◦ near the edges of the broad
Jovian equatorial jet, and a slightly smaller velocity precisely on the equator (see
figure 1).

Finally, we assumed that the waves are excited by sources outside the equatorial
region, and neglected the effect of this excitation on the zonal mean flow. Some
support for this second assumption is offered by simulations of the quasilinear
version of the Scott & Polvani (2007, 2008) model in spherical geometry by Saito
& Ishioka (2015) which show that the zonal mean zonal acceleration due to the
ensemble of Rossby waves excited by random forcing of the wavenumbers in the
annulus described in § 3, and decaying by either radiative relaxation or friction,
produce an equatorial jet in the direction predicted by our arguments, and with an
amplitude consistent at early times with their fully nonlinear simulations. They also
gave an elegant argument to determine the direction of the zonal acceleration from
the tilting of the constant phase lines in the separable Rossby wave solutions, as
previously demonstrated by Andrews & McIntyre (1976b) for stratified fluids, and
later adapted to shallow water models by Mofjeld (1981) and Yamagata & Philander
(1985). Although our work falls short of a full wave–mean flow interaction theory,
we believe it offers at least a step towards a theoretical explanation of the origins of
equatorial super- or sub-rotation in shallow water simulations of Jovian atmospheres.
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