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Abstract

An important issue towards a broader acceptance of answer-set programming (ASP) is the deploy-
ment of tools which support the programmer during the coding phase. In particular, methods for
debugging an answer-set program are recognised as a crucial step in this regard. Initial work on
debugging in ASP mainly focused on propositional programs, yet practical debuggers need to handle
programs with variables as well. In this paper, we discuss a debugging technique that is directly
geared towards non-ground programs. Following previous work, we address the central debugging
question why some interpretation is not an answer set. The explanations provided by our method are
computed by means of a meta-programming technique, using a uniform encoding of a debugging
request in terms of ASP itself. Our method also permits programs containing comparison predicates
and integer arithmetics, thus covering a relevant language class commonly supported by all state-of-
the-art ASP solvers.
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1 Introduction

During the last decade, answer-set programming (ASP) has become a well-acknowledged
paradigm for declarative problem solving. Although there exist efficient solvers (see, e.g.,
Denecker et al. (2009) for an overview) and a considerable body of literature concerning
the theoretical foundations of ASP, comparably little effort has been spent on methods to
support the development of ASP programs. Especially novice programmers, tempted by the
intuitive semantics and expressive power of ASP, may get disappointed and discouraged
soon when some observed program behaviour diverges from his or her expectations. Unlike
for other programming languages like Java or C++, there is currently little support for
debugging a program in ASP, i.e., methods to explain and localise unexpected observations.
This is a clear shortcoming of ASP and work in this direction has already started (Brain
and De Vos 2005; Syrjänen 2006; Brain et al. 2007; Mikitiuk et al. 2007; Caballero et al.
2008; Gebser et al. 2008; Pontelli et al. 2009; Wittocx et al. 2009).
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514 J. Oetsch et al.

Most of the current debugging approaches for ASP rely on declarative strategies, focus-
ing on conceptual errors of programs, i.e., mismatches between the intended meaning and
the actual meaning of a program. In fact, an elegant realisation of declarative debugging is
to use ASP itself to debug programs in ASP. This has been put forth, e.g., in the approaches
of Brain et al. (2007) and Gebser et al. (2008). While the former uses a “tagging” method
to decompose a program and applying various debugging queries, the latter is based on a
meta-programming technique, i.e., using a program over a meta-language to manipulate
a program over an object language (in this case, both the meta-language and the object
language are instances of ASP). Such techniques have the obvious benefits of allowing
(i) to use reliable state-of-the-art ASP solvers as back-end reasoning engines and (ii) to
stay within the same paradigm for both the programming and debugging process. Indeed,
both approaches are realised by the system spock (Gebser et al. 2009). However, like
most other ASP debugging proposals, spock can deal only with propositional programs
which is clearly a limiting factor as far as practical applications are concerned.

In this paper, we present a debugging method for non-ground programs, following the
methodology of the meta-programming approach of Gebser et al. (2008) for propositional
programs. That is to say, we deal with the problem of finding reasons why some inter-
pretation is not an answer set of a given program. This is addressed by referring to a
model-theoretic characterisation of answer sets due to Lee (2005): An interpretation I

is not an answer set of a program P iff (i) some rule in P is not classically satisfied by
I or (ii) I contains some loop of P that is unfounded by P with respect to I . Intuitively,
Item (ii) states that some atoms in I are not justified by P in the sense that no rules in
P can derive them or that some atoms are in I only because they are derived by a set
of rules in a circular way—like the Ouroboros, the ancient symbol of a dragon biting its
own tail that represents cyclicality and eternity. Besides that, this characterisation seems
to be quite natural and intuitive for explaining why some interpretation is not an answer
set, a particular benefit is that it can ease the subsequent localisation of errors since the
witnesses why an interpretation is not an answer set, like rules which are not satisfied,
unfounded atoms, or cyclic rules responsible for unfounded loops, can be located in the
program or the interpretation.

Although, at first glance, one may be inclined to directly apply the original approach
of Gebser et al. (2008) to programs with variables by simply grounding them in a prepro-
cessing step, one problem in such an endeavour is that then it is not immediate clear how
to relate explanations for the propositional program to the non-ground program. The more
severe problem, however, is that the grounding step requires exponential space and time
with respect to the size of the problem instance which yields a mismatch of the overall
complexity as checking whether an interpretation is an answer set of some (non-ground)
program is complete for ΠP

2 (Eiter et al. 2004), and thus the complementary problem why
some interpretation is not an answer set is complete for ΣP

2 —our method to decide this
problem accounts for this complexity bound and avoids exponential space requirements.
Indeed, we devise a uniform encoding of our basic debugging problem in terms of a fixed
disjunctive logic program Γ and an efficient reification of a problem instance as a set
Δ(P , I ) of facts, where P is the program to be debugged and I is the interpretation under
consideration. Explanations why I is not an answer set of P are then obtained by the
answer sets of Γ ∪ Δ(P , I ).
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We stress that the definition of Γ is non-trivial: while the meta-program in the approach
of Gebser et al. (2008) for debugging propositional disjunctive programs could be achieved
in terms of a normal non-ground program, by uniformly encoding a ΣP

2 property, we reach
the very limits of disjunctive ASP and have to rely on advanced saturation techniques that
inherently require disjunctions in rule heads (Eiter et al. 1997).

Currently, our approach handles disjunctive logic programs with constraints, integer
arithmetic, comparison predicates, and strong negation, thus covering a practicably relevant
program class. Further language constructs, in particular aggregates and weak constraints,
are left for future work.

2 Preliminaries

We deal with disjunctive logic programs which are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am , not am+1, . . . , not an ,

where n � m � l � 0, “not” denotes default negation, and all ai are literals over a
function-free first-order languageL. A literal is an atom possibly preceded by the strong
negation symbol ¬. In the sequel, we assume thatL will be implicitly defined by the con-
sidered programs. For a rule r as above, we define the head of r as H (r) = {a1, . . . , al}, the
positive body as B+(r) = {al+1, . . . , am}, and the negative body as B−(r) = {am+1, . . . , an}.
If n = l and l � 1, r is a fact; if r contains no disjunction, r is normal; and if l = 0 and
n > 0, r is a constraint. For facts, we will omit the symbol←. A literal, rule, or program
is ground if it contains no variables. Furthermore, a program is normal if all rules in it are
normal. Finally, we allow arithmetic and comparison predicate symbols +, ∗, =, �=, �, <,
�, and > in programs, but these may appear only positively in rule bodies.

Let C be a set of constants. A substitution over C is a function ϑ assigning each
variable an element of C . We denote by eϑ the result of applying ϑ to an expression e.
The grounding of a program P relative to its Herbrand universe, denoted by grd(P ), is
defined as usual.

An interpretation I (over some language L) is a finite and consistent set of ground
literals (over L) that does not contain any arithmetic or comparison predicates. Recall
that consistency means that {a ,¬a} �⊆ I , for any atom a . The satisfaction relation, I |=
α, between I and a ground atom, a literal, a rule, a set of literals, or a program α is
defined in the usual manner. Note that the presence of arithmetic and comparison operators
implies that the domain of our language will normally include natural numbers as well as a
linear ordering,	, for evaluating the comparison relations (which coincides with the usual
ordering in case of constants which are natural numbers).

For any ground program P and any interpretation I , the reduct, PI , of P with respect to
I (Gelfond and Lifschitz 1991) is defined as PI = {H (r)← B+(r) | r ∈ P , I ∩ B−(r) =

∅}. I is an answer set of a program P iff I is a minimal model of grd(P ).
We will base our subsequent elaboration on an alternative characterisation of answer

sets following Lee (2005), described next. Given a program P , the positive dependency
graph is a directed graph (V ,A), where (i) V equals the Herbrand base of the considered
languageL and (ii) (a , b) ∈ A iff a ∈ H (r) and b ∈ B+(r), for some rule r ∈ grd(P ).
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A non-empty set L of ground literals is a loop1 of a program P iff, for each pair a , b ∈ L,
there is a path π of length greater than or equal to 0 from a to b in the positive dependency
graph of P such that each literal in π is in L.

Let P be a program and I and J interpretations. Then, J is externally supported by P

with respect to I iff there is a rule r ∈ grd(P ) such that (i) I |= B+(r) and I ∩B−(r) = ∅,
(ii) H (r) ∩ J �= ∅, (iii) (H (r) \ J ) ∩ I = ∅, and (iv) B+(r) ∩ J = ∅.

Intuitively, Items (i)–(iii) express that J is supported by P with respect to I , in the sense
that the grounding of P contains some rule r whose body is satisfied by I (Item (i)) and
which is able to derive some literal in J (Item (ii)), while all head atoms of r not contained
in J are false under I . Moreover, Item (iv) ensures that this support is external as it is
without reference to the set J itself.

Answer sets are now characterised thus:

Proposition 1 (Lee 2005)
Let P be a program and I an interpretation. Then, I is an answer set of P iff (i) I |= P and
(ii) every loop of P that is contained in I is externally supported by P with respect to I .

We actually mainly make use of the complementary relation of external support: Follow-
ing Leone et al. (1997), we call J unfounded by P with respect to I iff J is not externally
supported by P with respect to I .

3 The basic debugging approach

As discussed in the introduction, we view an error as a mismatch between the intended
answer sets and the observed actual answer sets of some program P . More specifically,
our basic debugging question is why a given interpretation I is not answer set of some
program P , and thus we deal with finding explanations for I not being an answer set
of P . Proposition 1 allows us to distinguish between two kinds of such explanations:
(i) instantiations of rules in P that are not satisfied by I and (ii) loops of P in I that
are unfounded by P with respect to I . Although our basic debugging question allows
for different, multi-faceted, answers, we see two major benefits of referring to this kind
of categorisation: First, in view of Proposition 1, these kinds of explanations are always
sufficient to explain why I is not an answer set of P , and second, this method provides
concrete witnesses, e.g., unsatisfied rules or unfounded atoms, that can help to localise the
source for something unexpected in a program or an interpretation in a rather intuitive way.

Before we introduce the details of our approach, we discuss its virtues compared to a
method for debugging non-ground programs by relying on the previous meta-programming
technique for propositional programs by Gebser et al. (2008).

3.1 Prelude: A case for directly debugging non-ground programs

Explaining why some interpretation is not an answer set of some program based on the
characterisation of Lee (2005) has been dealt with in previous work for the problem of
debugging propositional disjunctive logic programs (Gebser et al. 2008). In principle, we

1 Note that loops have first been studied by Lin and Zhao (2004); different definitions of loops for non-ground
programs are given by Chen et al. (2006) and Lee and Meng (2008). For our purposes, it suffices to refer to the
basic definition for ground programs.
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could use this method for debugging non-ground programs as well by employing a prepar-
atory grounding step. However, such an undertaking comes at a higher computational cost
compared to our approach which respects the inherent complexity of the underlying tasks.
We lay down our arguments in what follows.

To begin with, let us recall that Gebser et al. (2008) defined a fixed normal (non-ground)
program γ and a mapping δ from disjunctive propositional programs and interpretations to
sets of facts. Given a disjunctive program P without variables and some interpretation I ,
explanations why I is not an answer set of P can then be extracted from the answer sets of
γ∪ δ(P , I ). Such a problem encoding is uniform in the sense that γ does not depend on the
problem instance determined by P and I .

To find reasons why some interpretation I is not an answer set of a non-ground program
P , the above approach can be used by computing the answer sets of γ ∪ δ(grd(P ), I ).
However, the size of grd(P ) is exponential in the size of P in general, and the computation
of the answer sets of a ground program requires exponential time with respect to the size
of the program in general, unless the polynomial hierarchy collapses. Hence, this outlined
approach to compute explanations using a grounding step requires, all in all, exponential
space and double-exponential time with respect to the size of P . But this is a mismatch to
the inherent complexity of the overall task, as the following result shows:

Proposition 2

Given a program P and an interpretation I , deciding whether I is not an answer set of P

is ΠP
2 -complete.

This property is a consequence of the well-known fact that the complementary problem,
i.e., checking whether some given interpretation is an answer set of some program, is ΣP

2 -
complete (Eiter et al. 2004). Hence, checking whether an interpretation is not an answer
set of some program can be computed in polynomial space.

Our approach, however, takes this complexity property into account, and we exploit
the expressive power of disjunctive non-ground ASP by providing a uniform encoding
that avoids both exponential space and double-exponential time requirements: Given a
program P and an interpretation I , we define an encoding Γ ∪ Δ(P , I ), where Γ is a
fixed disjunctive non-ground program, and Δ(P , I ) is an efficient encoding of P and I

by means of facts. Explanations why I is not an answer set of P are determined by the
answer sets of Γ∪Δ(P , I ). Since Γ is fixed, the grounding of Γ∪Δ(P , I ) is bounded by a
polynomial in the size of P and I . Thus, our approach requires only polynomial space and
single-exponential time with respect to P and I .

Note that presumably disjunctions in Γ cannot be avoided due to the ΠP
2 -hardness of

deciding whether an interpretation is not an answer set of some program. One may ask,
however, whether Γ could be normal in case P is normal. We have to answer in the
negative: answer-set checking for normal programs is complete for DP , even if no negation
is used or only in a stratified way (Eiter et al. 2004). (We recall that problems in DP are
characterised by the property that they can be decided by a conjunction of an NP and an
independent co-NP property.) Hence, Γ cannot be normal unless NP = co-NP. However,
one could use two independent normal meta-programs to encode our desired task.
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A further benefit of directly debugging a program at the non-ground level is that we
can immediately relate explanations for errors to first-order expressions in the considered
program, e.g., to rules or literals with variables instead of their ground instantiations.

In what follows, we give details of Γ and Δ and describe their main properties.

3.2 Construction of the meta-program

3.2.1 Reification of input instances

For realising the encoding Δ(P , I ) for program P and interpretation I , we rely on a
reification �prg(P ) of P and a reification �int(I ) of I . The former is, in turn, constructed
from reifications �rule(r) of each individual rule r ∈ P . We introduce the programs �rule(·),
�prg(·), and �int(·) in the following.

To begin with, we need unique names for certain language elements. By an extended
predicate symbol (EPS) we understand a predicate symbol, possibly preceded by the sym-
bol for strong negation. Let ·′ be an injective labelling function from the set of program
rules, literals, EPSs, and variables to some infinite set of labels from the symbols in our
languageL. Note that we do not need labels for constant symbols since they will serve as
unique names for themselves.

A single program rule is reified by means of facts according to the following definition.

Definition 1
Let r be a rule. Then,

�rule(r) = {rule(r ′)} ∪ {head(r ′, a ′) | a ∈ H (r)}∪
{posbody(r ′, a ′) | a ∈ B+(r)} ∪ {negbody(r ′, a ′) | a ∈ B−(r)}∪
{pred(a ′,L′) | a = L(x1, . . . , xn ) is a literal in r ,L is an EPS}∪
{struct(a ′, i , var, x ′i ) | a =L(x1, . . . , xn ) is a literal in r , L is an EPS,

i ∈ {1, . . . , n}, xi is a variable}∪
{struct(a ′, i , const, xi ) | a = L(x1, . . . , xn ) is a literal in r , L is an EPS,

i ∈ {1, . . . , n}, and xi is a constant symbol}∪
{var(r ′, x ′) | x is a variable occurring in r}.

The first fact states that label r ′ denotes a rule. The next three sets of facts associate labels of
the literals in the head, the positive body, and the negative body to the respective parts of r .
Then, each label of some literal in r is associated with a label for its EPS. The following
two sets of facts encode the positions of variables and constants in the literals of the rule.
Finally, the last set of facts states which variables occur in the rule r .

A program is encoded as follows:

Definition 2
Let P be a program. Then,

�prg(P ) =
⋃

r∈P �rule(r) ∪ {dom(c) | c is a constant symbol in P}∪
{arity(L’,n) | a = L(x1, . . . , xn ) is a literal in P ,L is an EPS}.

The first sets of facts stem from the reification of the single rules in the program. The
remaining facts represent the Herbrand universe of the program and associate the EPSs
occurring in the program with their arities.

The translation from an interpretation to a set of facts is formalised by the next definition.
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γ
guess
unsat = {guessRule(R) ∨ nguessRule(R)← rule(R),

someRule← guessRule(R),

← not someRule, rule(R),

← guessRule(R1), guessRule(R2),R1 �= R2,

subst(X ,C ) ∨ nsubst(X ,C )← guessRule(R), var(R,X ), dom(C ),

assigned(X )← subst(X ,C ),

← not assigned(X ), guessRule(R), var(R,X ),

← subst(X ,C1), subst(X ,C2),C1 �= C2 }.
γcheck

unsat = {unsatisfied← satBody, not satHead,
satBody← not unsatPosbody, not unsatNegbody,
satHead← guessRule(R), head(R,A), true(A),

unsatPosbody← guessRule(R), posbody(R,A), false(A),

unsatNegbody← guessRule(R), negbody(R,A), true(A)}.

Fig. 1. Modules γguess
unsat and γcheck

unsat .

Definition 3
Let I be an interpretation. Then,

�int(I ) = {int(a ′) | a ∈ I } ∪ {pred(a ′,L′) | a = L(x1, . . . , xn ) is a literal in I ,
L is an EPS}∪
{struct(a ′, i , const, xi ) | a = L(x1, . . . , xn ) is a literal in I , L is an EPS,

i ∈ {1, . . . , n}, and xi is a constant symbol}.

The first two sets of facts associate the literals in I with their respective labels and EPSs.
The last set of facts reifies the internal structure of the literals occurring in I .

Definition 4
Let P be a program and I an interpretation. Furthermore, let N be the the maximum of
|I | and the arities of all predicate symbols in P . Then, Δ(P , I ) = �prg(P ) ∪ �int(I ) ∪
{natNumber(n) | n ∈ {0, . . . ,N }}.

The literals natNumber(·) are necessary to add sufficiently many natural numbers to the
Herbrand universe of Δ(P , I ) to carry out correctly all computations in the subsequent
program encodings. Note that the size of Δ(P , I ) is always linear in the size of P and I .

3.2.2 The meta-program Γ

We proceed with the definition of the central meta-program Γ. The complete program
consists of more than 160 rules. For space reasons, we only present the relevant parts and
omit modules containing simple auxiliary definitions. The full encodings can be found at

www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.
gz.

Γ consists of the following modules: (i) γunsat, related to unsatisfied rules, (ii) γloop,
related to loops, (iii) γunfd, for testing unfoundedness of loops, and (iv) γcons, integrating
(i)–(iii) for performing the overall test of whether a given interpretation I is not an answer
set of a given program P .

We first introduce the program module γunsat to identify unsatisfied rules.
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γ
guess
loop = {inLoop(X ) ∨ outLoop(X )← int(X ),

someInLoop← inLoop(X ),

← not someInLoop, int(X )}.
γcheck

loop = {inRuleSet(N ,R) ∨ outRuleSet(N ,R)← 1 � N ,N � S , loopSz(S ), rule(R),

natNumber(N ),

someRule(N )← inRuleSet(N ,R),

← not someRule(N ), 1 � N ,N � S , loopSz(S ), rule(R), natNumber(N ),

← inRuleSet(N ,R1), inRuleSet(N ,R2),R1 �= R2,

← inRuleSet(N1,R1), inRuleSet(N2,R2),N1 � N2,R1 > R2,

loopSubst(N ,X ,C ) ∨ nloopSubst(N ,X ,C )← var(R,X ), dom(C ),

inRuleSet(N ,R),

loopAssigned(N ,X )← loopSubst(N ,X ,C ),

← not loopAssigned(N ,X ), inRuleSet(N ,R), var(R,X ),

← loopSubst(N ,X ,C1), loopSubst(N ,X ,C2),C1 �= C2,

isLoop← not unreachablePair, inLoop(X ),

unreachablePair← inLoop(X ), inLoop(Y ), not path(X ,Y ),

path(X ,X )← inLoop(X ),

path(X ,Y )← inLoop(X ), inLoop(Y ), pred(X ,T1), pred(Y ,T2), loopSz(S ),

1 � N ,N � S , head(R,H ), inRuleSet(N ,R), posbody(R,B ),

pred(H ,T1), pred(B ,T2), not differSeq(N ,X ,H ),

not differSeq(N ,Y ,B ),

path(X ,Z )← inLoop(X ), inLoop(Z ), path(X ,Y ), path(Y ,Z )}.

Fig. 2. Modules γguess
loop and γcheck

loop .

Definition 5
By γunsat we understand the program γ

guess
unsat ∪ γcheck

unsat ∪ γaux
unsat, where γguess

unsat and γcheck
unsat are given

in Figure 1, and γaux
unsat defines the auxiliary predicates true(·) and false(·).

Intuitively, for a program P and an interpretation I , γguess
unsat guesses a rule r ∈ P , repres-

ented by predicate guessRule, and a substitution ϑ, represented by subst, and γcheck
unsat defines

that unsatisfied holds if I �|= rϑ. Module γaux
unsat (omitted for space reasons) defines the

auxiliary predicates true(·) and false(·) such that true(l ′) holds if I |= lϑ, for some literal
l , and false(l ′) holds if I �|= lϑ.

Module γunsat has the following central property:

Theorem 1
Let P be a program and I an interpretation. Then, I �|= P iff some answer set of γunsat ∪
Δ(P , I ) contains unsatisfied. More specifically, for each rule r ∈ P with I �|= rϑ, for some
substitution ϑ over the Herbrand universe of P , γunsat ∪ Δ(P , I ) has an answer set S such
that (i) {unsatisfied, guessRule(r ′)} ⊆ S and (ii) subst(x ′, c) ∈ S iff ϑ(x ) = c.

We next define module γloop for identifying loops.

Definition 6
By γloop we understand the program γ

guess
loop ∪ γcheck

loop ∪ γaux
loop, where γ

guess
loop and γcheck

loop are given
in Figure 2, and γaux

loop defines the auxiliary predicates loopSz(·) and differSeq(·, ·, ·).

Intuitively, for a program P and an interpretation I , γguess
loop guesses a non-empty subset

L of I , represented by inLoop(·), as a candidate for a loop, and γcheck
loop defines that isLoop
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γ
guess
unfd = {variable(X )← var(R,X ),

suppSubst(X ,C ) ∨ nsuppSubst(X ,C )← variable(X ), dom(C ),

saturate← suppSubst(X ,C1), suppSubst(X ,C2),C1 �= C2,

saturate← unassigned(X ),

unass(X ,C )← first(C ), nsuppSubst(X ,C ),

unass(X ,C2)← succ(C1,C2), unass(X ,C1), nsuppSubst(X ,C2),

unassigned(X )← last(C ), unass(X ,C ) }.
γcheck

unfd = {unfounded← unsupp(R), lastR(R),

unsupp(R)← firstR(R), unsuppRule(R),

unsupp(R2)← succR(R1,R2), unsupp(R1), unsuppRule(R2),

saturate← unfounded,
suppSubst(X ,C )← variable(X ), dom(C ), saturate,
nsuppSubst(X ,C )← variable(X ), dom(C ), saturate }∪
{unsuppRule(R)← ci (R) | i ∈ {1, . . . , 5}}.

Fig. 3. Modules γguess
unfd and γcheck

unfd .

holds if L is a loop of P . More specifically, this check is realised as follows. Assume L

contains n literals.

1. Guess a set G of n pairs (r , ϑ), where r is a rule from P and ϑ is a substitution over the
Herbrand universe of P .

2. Check, for each a , b ∈ L, whether there is a path π in the positive dependency graph
of the ground program consisting of rules {rϑ | (r , ϑ) ∈ G} such that π starts with a

and ends with b, and all literals in π are in L. A path π is represented by the binary
predicate path(·, ·).

Module γaux
loop (again omitted for space reasons) defines that (i) loopSz(n) holds if |L| = n

and (ii) differSeq(i , a ′, b ′) holds if aϑ �= bϑ, where a , b are literals and ϑ is the substitution
stemming from a pair in G that is associated with index i by γloop.

Theorem 2
For any program P and any interpretation I , L ⊆ I is a loop of P iff, for some answer set
S of γloop ∪ Δ(P , I ), isLoop ∈ S and L = {x | inLoop(x ′) ∈ S }.

We proceed with module γunfd for checking whether some set J of ground literals is
unfounded by P with respect to an interpretation I . We later combine this co-NP check
with γloop to identify unfounded loops, i.e., we will integrate a loop guess with a co-NP
check, thus reaching the very limits of disjunctive ASP by uniformly encoding a ΣP

2

property.

Definition 7
By γunfd we understand the program γ

guess
unfd ∪ γcheck

unfd ∪ γaux
unfd, where γ

guess
unfd and γcheck

unfd are given
in Figure 3, and γaux

unfd defines the auxiliary predicates succ(·, ·), succR(·, ·), first(·), last(·),
firstR(·), lastR(·), and c1(·), . . . , c5(·).

The intuition behind this definition is as follows. Consider a program P , some set J

of ground literals, encoded via inLoop(·), and an interpretation I . Module γ
guess
unfd non-

deterministically guesses a binary relation suppSubst(·, ·) between the variables and the
constant symbols in P . In case this relation is not a function, γguess

unfd establishes saturate.
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Module γcheck
unfd , in turn, encodes whether, for each substitution ϑ and each rule r ∈ P , some

of the conditions from the definition of J being externally supported by P is violated. In
fact, unfounded is derived if some of these conditions is violated. Moreover, saturate holds
if unfounded holds, and γcheck

unfd saturates the relation defined by predicate suppSubst(·, ·) if
saturate holds. Module γaux

unfd (omitted for space reasons) defines succ(·, ·) and succR(·, ·),
which express the immediate successor relation, based on 	, for the constant symbols
and rules in P , respectively, as well as the predicates first(·), firstR(·), last(·), and lastR(·),
which mark the first and the last elements defined by succ(·, ·) and succR(·, ·), respectively.
Moreover, the module defines predicates c1(·), . . . , c5(·), expressing failure of one of the
conditions for J being externally supported by P with respect to I .

The rough idea behind the encoded saturation technique is to search, via γ
guess
unfd , for

counterexample substitutions that witness that the set J of ground literals is not unfounded.
For such a substitution, neither saturate nor unfounded can become true, which implies
that no answer set can contain unfounded due to the saturation of suppSubst(·, ·) and the
minimality of answer sets.

Theorem 3
Consider a program P , an interpretation I , and a set J of ground literals. Then, J is un-
founded by P with respect to I iff the unique answer set of γunfd ∪ Δ(P , I ) ∪ {inLoop(x ′) |
x ∈ J } contains unfounded.

Given the above defined program modules, we arrive at the uniform encoding of the
overall program Γ.

Definition 8
Let γunsat, γloop, and γunfd be the programs from Definitions 5, 6, and 7, respectively. Then,
Γ = γunsat ∪ γloop ∪ γunfd ∪ γcons, where

γcons = {notAnswerSet← unsatisfied, notAnswerSet← isLoop, unfounded,
← not notAnswerSet}.

Module γcons encodes that each answer set of Γ witnesses either I �|= P or that some
loop L ⊆ I of P is unfounded by P with respect to I .

We obtain our main result which follows essentially from the semantics of module γcons

and Theorems 1, 2, and 3.

Theorem 4
Given a program P and an interpretation I , Π = Γ ∪ Δ(P , I ) satisfies the following
properties:

(i) Π has no answer set iff I is an answer set of P .
(ii) I is not an answer set of P iff, for each answer set S of Π, {unsatisfied, unfounded}∩

S �= ∅.
(iii) I �|= P iff unsatisfied ∈ S , for some answer set S of Π. Moreover, for each rule

r ∈ P with I �|= rϑ, for some substitution ϑ over the Herbrand universe of P ,
there is some answer set S of Π such that (a) {unsatisfied, guessRule(r ′)} ⊆ S and
(b) subst(x ′, c) ∈ S iff ϑ(x ) = c.

(iv) A loop L ⊆ I is unfounded by P with respect to I iff some answer set S of Π

contains both isLoop and unfounded, and L = {x | inLoop(x ′) ∈ S }.
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4 Applying the debugging approach

In this section, we first describe a simple scenario with different debugging tasks and we
show how the meta-program defined in the previous section can be used to solve them.
Afterwards, we discuss some pragmatic aspects relevant for realising a prospective user-
friendly debugging system based on our approach.

4.1 A simple debugging scenario

We assume that students have to encode the assignments of papers to members of a pro-
gram committee (PC) based on some bidding information in terms of ASP. We consider
three cases, each of them illustrates a different kind of debugging problem. In the first case,
an answer set is expected but the program is inconsistent. In the second case, multiple
answer sets are expected but the program yields only one answer set. In the third case,
it is expected that a program is inconsistent, but it actually yields some answer set. We
illustrate that, in all cases, our approach gives valuable hints how to debug the program in
an iterative way.

Assume that pc(X ) means that X is a member of the PC, paper(X ) means that X is a
paper, and bids(X ,Y ,Z ) means that PC member X bids on paper Y with value Z , where
Z is a natural number ranging from 0 to 3 expressing a degree of preference for that paper.

To start with, Lucy wants to express that the default bid for a paper is 1. That is, if a
PC member does not bid on a paper, then it is assumed that the PC member bids 1 on that
paper per default. Lucy’s first attempt looks as follows:

L1 = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2), bid(m2, p1, 3),

some bid(M ,P )← bid(M ,P ,X ),

bid(M ,P , 1)← not some bid(M ,P ), pc(M ), paper(P )}.

Lucy’s intention is that some bid(M ,P ) is true if PC member M bids on paper P , and
bid(M ,P , 1) is true if there is no evidence that PC member M has bid on that paper. Indeed,
the unique answer set of L1 is

S1 = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2), bid(m2, p1, 3),

some bid(m1, p1), some bid(m2, p1)}.

S1 is indeed as expected: We have that each PC member bids on some paper in L1 and
the last rule is inactive. Lucy’s next step is to delete the fact bid(m2, p1, 3) from L1—let
us denote the resulting program by L2. Lucy expects that the answer sets of L2 contain
bid(m2, p1, 1). However, it turns out that L2 yields no answer set at all!

To find out what went wrong, Lucy defines her expected answer set as

E1 = (S1 ∪ {bid(m2, p1, 1)}) \ {some bid(m2, p1), bid(m2, p1, 3)}

and inspects the answer sets of Γ ∪ Δ(L2,E1). It turns out that one answer set contains the
facts unsatisfied and guessRule(r ′1), where r ′1 is the label for the rule

r1 = some bid(M ,P )← bid(M ,P ,X ).

Hence, r1 is not satisfied by E1: bid(m2, p1, 1) is in E1 and thus satisfies the body of r1, but
the head of r1 is not satisfied since E1 does not contain some bid(m2, p1).
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Now that Lucy sees that L2’s answer set has to contain some bid(m2, p1), she defines E2

as E1 plus the fact some bid(m2, p1). The answer sets of Γ∪Δ(L2,E2) reveal that E2 is not
an answer set of L2 because the singleton loop bid(m2, p1, 1) is contained in E2 but it is
unfounded by L2 with respect to E2. The reason is clear: the only rule that could support
bid(m2, p1, 1) is

r2 = bid(M ,P , 1)← not some bid(M ,P ), pc(M ), paper(P ).

However, r2 is blocked since E2 contains some bid(m2, p1).
Lucy concludes that, to make r2 work as expected, some bid(m2, p1) must not be con-

tained in the answer set. To achieve this, Lucy changes r1, the only rule with predicate
some bid in the head, into

some bid(M ,P )← bid(M ,P ,X ),X �= 1.

The resulting program works as expected and contains bid(m2, p1, 1) in its answer set.
The next student who is faced with a mystery is Linus. He tried to formalise that each

paper is non-deterministically assigned to at least one member of the PC. His program
looks as follows:

P1 = {pc(m1), pc(m2), paper(p1), paper(p2), bid(m1, p1, 2),

bid(m1, p2, 3), bid(m2, p1, 1), bid(m2, p2, 1),

assigned(P ,M ) ∨ ¬assigned(P ,M )← paper(P ), pc(M ),

← paper(P ), pc(M ), not assigned(P ,M )}.

Linus expects that the disjunctive rule realises the non-deterministic guess, and then the
constraint prunes away all answer set candidates where a paper is not assigned to some
PC member. Now, poor Linus is desperate since the non-deterministic guess seems not to
work correctly; the only answer set of P1 is

S3 = {paper(p1), paper(p2), pc(m1), pc(m2), bid(m1, p1, 2), bid(m1, p2, 3),

bid(m2, p1, 1), bid(m2, p2, 1), assigned(p1,m1), assigned(p1,m2),

assigned(p2,m1), assigned(p2,m2)},

although Linus expected one answer set for each possible assignment. In particular, Linus
expected

E3 = (S3 ∪ {¬assigned(p1,m2)}) \ {assigned(p1,m2)}
to be an answer set as well. Hence, Linus inspects the answer sets of Γ ∪ Δ(P1,E3) and
learns that the constraint in P1 is not satisfied by E3. In particular, it is the substitution that
maps the variable P to p1 and M to m2 that is responsible for the unsatisfied constraint,
which can be seen from the subst(·) atoms in each answer set that contains unsatisfied.

Having this information, Linus observes that the constraint in its current form is un-
satisfied if some paper is not assigned to each PC member. However, he intended it to
be unsatisfied only when a paper is assigned to no PC member. Hence, he replaces the
constraint by the two rules

← paper(P ), pc(M ), not at least one(P ) and at least one(P )← assigned(P ,M ).

The resulting program yields the nine expected answer sets.
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Meanwhile, Peppermint Patty encounters a strange problem. Her task was to write a
program that expresses the following issue: If a PC member M bids 0 on some paper P ,
then this means that there is a conflict of interest with respect to M and P . In any case,
there is a conflict of interest if M (co-)authored P . A PC member can only be assigned to
some paper if there is no conflict of interest with respect to that PC member and that paper.
This is Peppermint Patty’s solution:

Q1 = {pc(m1), paper(p1), bid(m1, p1, 2), assigned(p1,m1), author(p1,m1),

conflict of interest(M ,P )← bid(M ,P , 0),

conflict of interest(M ,P )← pc(M ), paper(P ), author(M ,P ),

bid(M ,P , 0)← pc(M ), paper(P ), conflict of interest(M ,P ),

← assigned(P ,M ), bid(M ,P , 0)}.

The facts in Q1 should model a scenario where a PC member authored a paper and is
assigned to that paper. According to the specification from above, this should not be
allowed. Since Patty is convinced that her encoding is correct, she expects that Q1 has
no answer sets. But Q1 has the unique answer set

S4 = {assigned(p1,m1), pc(m1), paper(p1), author(p1,m1), bid(m1, p1, 2)}.

What Peppermint Patty finds puzzling is that S4 does not contain any atoms signalling a
conflict of interest. Hence, she decides to analyse why

E4 = S4 ∪ {conflict of interest(m1, p1), bid(m1, p1, 0)}

is not an answer set of Q1. If Q1 was correct, then the only reason why E4 is not an answer
set of Q1 would be that the (only) constraint in Q1 is unsatisfied.

As expected, some answer sets of Γ ∪ Δ(Q1,E4) contain unsatisfied and guessRule(r ′),
where r ′ is the label of the constraint in Q1. However, some answer sets contain the atom
unfounded as well—a surprising observation. Patty learns, by inspecting the inLoop(·)
atoms, that E4 contains the loop

{conflict of interest(m1, p1), bid(m1, p1, 0)}

which is unfounded by Q1 with respect to E4: bid(m1, p1, 0) seems to be justified only
by literal conflict of interest(m1, p1), and vice versa. This should not be the case since Q1

contains the rule

conflict of interest(M ,P )← pc(M ), paper(P ), author(M ,P )

that should support conflict of interest(m1, p1) because all the facts pc(m1), paper(p1), and
author(m1, p1) should be contained in Q1. Now, the error is obvious: Q4 does not contain
author(m1, p1) but author(p1,m1)—the order of the arguments was wrong. After Pepper-
mint Patty fixed that bug, her program is correct.

4.2 Some pragmatic issues and future prospects

For a debugging system of practical value, certain pragmatic aspects have to be taken into
account which we briefly sketch in what follows. To start with, our encodings can be seen
as a “golden design”—tailored towards clarity and readability—which leaves room for
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optimisations. Related to this issue, solver features like limiting the number of computed
answer sets or query answering are needed to avoid unnecessary computation and to limit
the amount of information presented to the user.

Our debugging approach requires information about the intended semantics in form of
the interpretation representing a desired answer set. Typically, answer sets of programs
encoding real-world problems tend to be large which makes it quite cumbersome to manu-
ally create interpretations from scratch. It is therefore vital to have convenient means for
obtaining an intended answer set in the first place. For this purpose, we envisage a tool-
box for managing interpretations that allows for their manipulation and storage. In such
a setting, answer sets of previous versions of the debugged program could be a valuable
source of interpretations which are then tailored towards an intended answer set of the
current version. In addition to manual adaptations, partial evaluation of the program could
significantly accelerate the creation of interpretations. We plan to further investigate these
issues and aim at an embedding of our debugging technique, together with an interpretation
management system as outlined, in an integrated development environment (IDE). Here,
an important issue is to achieve a suitable user interface for highlighting the identified
unsatisfied rules and unfounded loops in the source code and for visualising the involved
variable substitutions.

5 Related work

Besides the debugging approach by Gebser et al. (2008), as already discussed earlier, other
related approaches on debugging include the work of Pontelli et al. (2009) on justifications
for non-ground answer-set programs that can be seen as a complementary approach to ours.
Their goal is to explain the truth values of literals with respect to a given actual answer set
of a program. Explanations are provided in terms of justifications which are labelled graphs
whose nodes are truth assignments of possibly default-negated ground atoms. The edges
represent positive and negative support relations between these truth assignments such that
every path ends in an assignment which is either assumed or known to hold. The authors
have also introduced justifications for partial answer sets that emerge during the solving
process (online justifications), being represented by three-valued interpretations.

The question why atoms are contained or not contained in an answer set has also been
raised by Brain and De Vos (2005) who provide algorithms for recursively computing ex-
planations in terms of satisfied supporting rules. Note that these problems can in principle
also be handled by our approach, as illustrated in Section 4.1. Indeed, consider program P

with answer set I and suppose we want to know why a certain set L of literals is contained
in I . Using our approach, explanations why I \L is not an answer set of P will reveal rules
which are unsatisfied under I \L but which support literals in L under I . Likewise, we can
answer the question why expected atoms are missing in an answer set.

Syrjänen (2006) aims at finding explanations why some propositional program has no
answer sets at all. His approach is based on finding minimal sets of constraints such that
their removal yields consistency. Hereby, it is assumed that a program does not involve
circular dependencies between literals through an odd number of negations which might
also cause inconsistency. The latter can be handled within our approach when an intended
answer set is known, as illustrated by debugging program L2 in Section 4.1. Otherwise, an
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interpretation can be chosen from the answer sets resulting from temporarily removing all
constraints from the considered program (providing this yields consistency).

Brain et al. (2007) rewrite a program using some additional control atoms, called tags,
that allow, e.g., for switching individual rules on or off and for analysing the resulting
answer sets. Debugging requests in this approach can be posed by adding further rules that
can employ tags as well. One such extension allows also for detecting atoms in unfounded
loops. However, as opposed to our current approach, the individual loops themselves are
not identified.

Caballero et al. (2008) developed a declarative debugging approach for datalog using
a classification of error explanations similar to the one by Gebser et al. (2008) and our
current work. Their approach is tailored towards query answering and, in contrast to our
approach, the language is restricted to stratified datalog. However, Caballero et al. provide
an implementation that is based on computing a graph that reflects the execution of a query.

Wittocx et al. (2009) show how a calculus can be used for debugging first-order theories
with inductive definitions in the context of model expansion problems, i.e., problems of
finding models of a given theory that expand some given interpretation. The idea is to trace
the proof for the inconsistency of such an unsatisfiable model expansion problem. The
authors provide a system that allows for interactively exploring the proof tree.

Besides the mentioned approaches which rely on the semantical behaviour of programs,
Mikitiuk et al. (2007) use a translation from logic-program rules to natural language in
order to detect program errors more easily. This seems to be a potentially useful feature for
an IDE as well, especially for novice and non-expert ASP programmers.

6 Conclusion

Our approach for declaratively debugging non-ground answer-set programs aims at provid-
ing intuitive explanations why a given interpretation fails to be an answer set of the program
in development. To answer this question, we localise, on the one hand, unsatisfied rules
and, on the other hand, loops of the program that are unfounded with respect to the given
interpretation. As underlying technique, we use a sophisticated meta-programming method
that reflects the complexity of the considered debugging question, which resides on the
second level of the polynomial hierarchy.

Typical errors in ASP may have quite different reasons and many of them could be
avoided rather easily in the first place, e.g., by a compulsory declaration of predicates
(Brain and De Vos 2005), forbidding uneven loops through negation (Syrjänen 2006),
introducing type checks, and defining program interfaces. We plan to realise these kinds
of simple prophylactic techniques for our future IDE for ASP that will incorporate our
current debugging approach. In this context, courses on logic programming at our institute
shall provide a permanent testbed for our techniques. Moreover, as part of an ongoing re-
search project on methods and methodologies for developing answer-set programs (Oetsch
et al. 2010), we want to put research efforts into methodologies that avoid or minimise
debugging needs right from the start. As a next direct step regarding our efforts towards
debugging, we plan to extend our approach to language features like aggregates, function
symbols, and optimisation techniques such as minimise-statements or weak constraints.
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