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Abstract

Purpose: To measure dosimetric characteristics for linear accelerator-based electron beams, which are
applied through locally manufactured acrylic tubes for intraoral radiotherapy and to calculate the secondary
cancer risk for organs at risk.

Materials and methods: Six different acrylic tubes were exposed to a 6-MeV electron beam; they had tips with three
angles (0°, 15° and 30°) and two diameters (2·5 and 3·0 cm). Gafchromic EBT2 film was horizontally and vertically
inserted in a solid water phantom to measure the dose profiles and percentage depth doses (PDDs). The measured
data from radio-photoluminescence glass dosimeters placed on the neck and both eyes were used to estimate the
lifetime attributable risk of secondary cancer resulting from intraoral radiotherapy for tongue cancer.

Results: A total of 12 dose profiles were obtained from six different acrylic applicators at 0·5 and 1·28 cm
depths. Circular shapes were obtained from 0° applicators, and oval shapes were obtained from 15° and
30° applicators. Absorbed doses at a 0·5 cm depth were higher than those at a 1·28 cm depth. PDD shapes for
the six acrylic applicators were similar to those of a normal 6 MeV electron beam. Larger-diameter applicators
showed higher PDD than smaller-diameter applicators with the same tip angle. According to our secondary
cancer risk estimation, if 100,000 patients received intraoral radiotherapy at 30 years and lived until
80 years, 122 female and 22 male patients would develop secondary thyroid cancer, while 13 female and
18 male patients would develop secondary ocular melanoma or retinoblastoma.

Conclusions: Dosimetric characteristics for linear accelerator-based intraoperative radiotherapy treatment
beam were confirmed. In addition, we found that 0·1% of tongue cancer patients would get secondary
malignancies for both eyes and thyroid from this treatment.

Keywords: dose; electron radiotherapy; intraoral cone radiotherapy; radio-photoluminescence glass
dosimeter; secondary cancer risk
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INTRODUCTION

In the early 1960s, Abe and Takahashi1 of Tokyo
University began studying intraoperative radio-
therapy (IORT). IORT is a treatment method
that exposes a tumour to direct radiation during
surgery.2,3 Some reports have claimed that
IORT with external beam irradiation can
improve survival in patients with localised
tumours.4–6 The electron beam is characterised
by rapid dose fall off such that it irradiates
the cancerous area on the surface region inten-
sively, while deeper placed normal tissues are
more protected.7–10 This treatment method uses
an electron-guiding device to irradiate treatment
target doses precisely in both intraoperative and
postoperative radiotherapy of the intraoral cavity.
The electron-guiding device is usually cylindrical
in shape with a variably angled tip. Different
devices have different diameters and tip angles, so
the size of the treatment beam can be adjusted to
the tumour size.11–13 The report of the American
Association of Physicists in Medicine Task
Group 7214 provides medical physicists with
information relating to appropriate room selec-
tion, radiation shielding, and equipment for
IORT, as well as the required acceptance test and
guidelines for clinical operation. Piriz et al.15 used
five different applicators with varying tip angles
to administer 6, 9 and 12MeV electron beams to
determine their percentage depth dose (PDD)
and isodose curves. They found that a small cone
contributes to uniform isodose distribution and
homogeneity of radiation dose and that 50% of
isodose curves have a diameter close to that of the
applicator. They also showed that the measured
R50, which is the depth, where 50% of the
maximum dose occurs for each applicator
depends on the electron beam energy and on the
angle and radius of the acrylic applicator.

In our study, a patient with a malignant neo-
plasm of the tongue and lateral floor of the
mouth (alveolar ridge) with mandibular invasion
(T4N1) was treated with oral-cavity IORT using
a 6MeV electron beam. Using a water-
equivalent solid phantom, we assessed the
characteristics of the 6MeV electron beam by
measuring the PDD, profile, and output factors.
During each of ten 300 cGy treatment sessions,
radio-photoluminescence glass dosimeters

(RPLGDs; GD-302M; Asahi Techno Glass Co.,
Tokyo, Japan) were placed on the patient’s neck
and both eyes and used to measure the radiation
scattered from the treatment site; dosimeter data
were then used to estimate secondary cancer risks
associated with IORT for the thyroid and both
eyes (such as ocular melanoma or retinoblastoma).

MATERIALS AND METHODS

Measurement setup
Before treating the patient, we forecast the beha-
viour of the electron beam in the patient’s body
using a treatment-planning system, using computed
tomography images of a tongue cancer patient as
reference (Brilliance CT Big Bore Oncology,
Philips Medical Systems, Eindhoven, the
Netherlands). Dose distribution in the patient’s
body was predicted using Eclipse (Varian Medical
Systems, Palo Alto, CA, USA). After evaluation of
planning, treatment was performed.

The cancer patient was exposed to a 6MeV
electron beam that was focussed upon the target
volume through an acrylic cylinder 2·5 cm in
diameter and 0·2 cm in thickness with a 30°
angle. The acrylic cylinder was attached to an
electron beam applicator that could be removed
from its gantry (21iX Linear Accelerator; Varian
Medical Systems). The tip of the acrylic cylinder
was inserted into the patient’s mouth, and the
electron beam was passed through the acrylic
cylinder. Electron beams were projected in a
6× 6 cm field with an IORT cone and a source-
surface distance (SSD) of 100 cm. In IORT, the
SSD is defined as the distance from the source to
the centre of the slope surface. The sloped
applicator was in contact with the surface of the
patient’s tongue (see Figure 1).

Calibration of the RPLGDs
In this study, we used RPLGDs (0·15 cm in dia-
meter, 0·85 cm in length) to measure the absor-
bed dose of radiation below the patient’s tongue
and organs at risk (OARs; thyroid and eyes
including lens, retina, choroid, etc. in this study)
to estimate the total dose absorbed by the target.
RPLGDs were used because they are easy to use
for in vivo measurement. When the irradiated
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dosimeters were exposed to 365 nm ultraviolet
light, they emitted orange light (500–700 nm);
the stronger the intensity, the greater the absor-
bed dose of radiation. RPLGD measurements
have good reproducibility, and RPLGDs have
low energy dependency at high energy
(>200 keV), low angular dependency, and low
toxicity in the human body.16–21

To calibrate the RPLGD, a 6MeV electron
beam was focussed upon a 10× 10 cm open field.
Electron beams of 10, 25, 50, 75, 100, 200 and
300MU were applied to RPLGDs at 1·28 cm
depth of the solid water phantom and 100 cm
of SSD.

Calibration of the EBT2 film
Gafchromic EBT2 film (International Specialty
Products, Alps Road, Wayne, NJ, USA) was
also used to measure the behaviour of the
electron beam in a water-equivalent phantom.
Gafchromic EBT2 film has a wide dosage range
(1 cGy to 40Gy), energy-independent dose
response, low radiation scatter and high spatial
resolution.22,23

To estimate the dose response of Gafchromic
EBT2 film, 10 × 10 cm open-field electron
beams of 0, 5, 10, 20, 40, 60, 80, 100, 130, 160,
200, 250 and 300MUwere applied to EBT2 film
at a beam-centre depth of 1·28 cm. Nine hours
after the EBT2 film was exposed to the electron
beam, it would stabilise, and a scan would be

carried out using a film scanner (EPSON Express-
ion 1680 Pro; Epson Co., Shinjuku, Japan).

Measurement of electron beam output
To measure the behaviour of the electron beam
in water and a water-equivalent phantom, we
prepared six different acrylic cylinders with dia-
meters of 2·5 and 3·0 cm, 0·2 cm thickness, and
0°, 15° and 30° angles. By contacting the surface
of the PPC40 chamber (IBA Dosimetry,
Schwarzenbruck, Germany) to the Blue
Phantom 2 water phantom (IBA Dosimetry), the
electron beam output was measured. The PDD
and beam profile were measured using the solid
water-equivalent phantomwith contact between
the tips of the acrylic cylinders and the phantom.
Gafchromic EBT2 film was used for this
measurement.

Secondary cancer risk evaluation
Estimations of secondary cancer risk were also
performed. RPLGDs were placed on the
patient’s neck and eyebrows to estimate the
secondary cancer risk for the thyroid and both
eyes. Cancer at eyes could be ocular melanoma,
retinoblastoma, etc. Data acquisitions from neck
and eyebrows could be replaced with secondary
doses at thyroid and both eyes. Secondary doses
for both eyes were measured individually because
it could be different from each other for a reason
such as patient setup error. Data were acquired
ten times during intraoperative radiotherapy with
the RPLGDs in the same position each time. The
excess absolute risk (EAR index) was calculated,
originally derived by Schneider et al.24 from
statistical data on atomic bomb survivors and
medical patients:

EAR ðD; s; e; aÞ= β �OED �
exp γe � e - 37ð Þ + γa � ln

a
46

� �� �
1 ± sð Þ

where + is for female, − for male, β the initial
slope, OED the organ effective dose, s related to
gender, e the age at exposure, and a the age
attained. Plateau models using three kinds of
OED calculation methods were used for this
experiment.25

Figure 1. Diagram of intraoperative radiotherapy treatment using
acrylic applicator.
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The plateau dose-response model is

OED=
1
V

X
i

Vi
1 - exp - σDið Þ

σ

� �

where V is the organ volume and D the dose.
The parameter σ is used to determine the dose-
response for each organ.

Finally, the lifetime attributable risk (LAR)—the
number of people who would develop
secondary cancer in the organ out of every
100,000 people exposed to radiation—could be

calculated from EAR and OED by the following
equation:

LAR=EAR � S að Þ
S eð Þ � ða - eÞ

RESULTS

PDD
The PDDs for the six different electron beams
of 500MU with different diameters (2·5, 3 cm)
and three angles (0°, 15°, 30°) were measured
in the solid water-equivalent phantom on
Gafchromic EBT2 film. The photograph of
six applicators is represented in Figure 2.
Figure 3 show the PDD profiles of six cylinders.
Cylinders 3 cm in diameter exposed the solid
water phantom to higher radiation doses than
did cylinders 2·5 cm in diameter. Slight changes
in the radiation dose patterns were observed
when cylinders with different slope angles were
attached.

Dose profile
Dose profiles were measured for each electron
beam, with an SSD of 100 cm, at depths of 0·5Figure 2. Photograph of acrylic applicator.

Figure 3. Percentage depth doses graph of 0° (solid line), 15° (dot line) and 30° (dash line) with 2·5 cm (♦) and 3·0 cm (Ⅹ)
applicators.
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and 1·28 cm. The effective depth for a 6MeV
electron beam is 1·28 cm, and we compared the
dose profiles at this depth to the dose profiles at
0·5 cm. Absolute doses at 1·28 cm were greater
than those at 0·5 cm in most cases, but not all. We
consider these results to be due to differences in
the applicator slopes: the dose profiles for sloped
applicators show tilted shapes, while the dose
profiles for non-sloped applicators show flat
shapes. Figure 4 shows the dose profiles for each
angle and depth.

Secondary cancer risk
The secondary cancer risks for the thyroid and
both eyes were calculated based on secondary
doses at OAR, which were measured ten times
during IORT using RPLGDs. Of the ten mea-
surements, one measurement was an outlier from
average value, so we calculated the secondary
cancer risk from the other nine measurements.
Standard deviation was decreased by excluding
this outlier. The calculation assumes initiation of
treatment at the age of 30. Secondary cancer risks

Figure 4. Dose profiles for 2·5 cm applicators [0° (a), 15° (b), 30° (c)] and 3·0 cm applicators [0° (d), 15° (e), 30° (f)].
Measurements were performed for 0·5 cm depth (♦) and 1·3 cm depth (■).
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were calculated for hypothetical cases wherein
patients lived until the ages of 50 and 80. As
shown in Table 1, if 100,000 female patients
receive tongue cancer treatment at 30 years and
live until 50 years, 48 will develop thyroid
cancer, three will develop cancer of the right eyes,
and three will develop cancer of the left eyes. In
the case of 100,000 male patients, six will develop
thyroid cancer, four will develop cancer of the
right eyes and four will develop cancer of the left
eyes. If 100,000 female and 100,000 male patients
receive IORT to the tongue at age 30 years and
live until 80 years, thyroid cancer would develop
in 122 women and 22 men, ocular melanoma or
retinoblastoma at right eye in 13 women and 18
men, and ocular melanoma or retinoblastoma at
left eye in 13 women and 18 men. Tables 1 and 2
present these data more fully.

DISCUSSION

We analysed 6MeV electron-beam dose patterns
for IORT for tongue cancer in a water-
equivalent phantom. All PDD shapes corre-
sponded well to normal electron PDD patterns
for the two diameters and three angles measured.
The PDD patterns of the IORT electron beam
were similar to those of normal electron beams,
but the absolute doses for each acrylic cylinder
differed from those for a normal 6MeV electron

beam. When two acrylic cylinders’ slope angles
are the same, the one with the larger diameter
will be associated with the greater radiation dose.
The maximum doses for the 2·5 and 3 cm dia-
meter cylinders were 394 and 467 cGy, respec-
tively, with a 0° slope. Results for the other
cylinder slopes are shown in Figure 3. These
results might be due to higher electron attenua-
tion by smaller-diameter acrylic cylinders.1–3

Dose distributions were different for each
cylinder slope, and absolute doses varied with
the measurement depth. Sharp shapes and
angular slopes appeared at the shallow 0·5 cm
depth, but blunt shapes appeared at the deeper
1·28 cm depth (see Figure 4). The reason why, in
some cases, greater doses were present at the
0·5 cm depth than at the 1·28 cm depth is that the
acrylic cylinder’s slope influences its original
effective depth.

The secondary cancer risk to the thyroid was
9·38 times greater than the risk to the eyes in
women and 1·22 times greater in men; the
RPLGD on the neck received a greater cumu-
lative dose than those on the eyes (see Tables 1
and 2). Radiation sensitivities of the thyroid and
eyes were also included in the secondary cancer
risk calculations. Women’s thyroids are more
sensitive to radiation than men’s, so the risk of
secondary thyroid cancer was higher for
women than for men.24–25 In addition, calcula-
tion results for secondary cancer risk from the
IORT tongue treatment suggest that <0·1%
patients would get secondary cancer at thyroid
or both eyes.

CONCLUSIONS

In this study, we measured and calculated dose
distribution and secondary cancer risk for the
IORT with an acrylic cylinder type of electron
cone. From the result, we found that all PDD
shapes correspond well to normal PDD patterns
and the output factor of IORT was changed by
cone size. For the secondary cancer risk study, we
found that the probability of getting secondary
cancer is <0·1%; therefore, the risk for patients
who would get IORT tongue cancer treatment
will be relatively low.

Table 1. Calculation results of each item when patients receive treatment
at the age of 30 years and live until 50 years

Site a e OED
SðaÞ
SðeÞ ðFÞ SðaÞ

SðeÞ ðMÞ LAR (F) LAR (M)

Thyroid 50 30 0·09576 0·95 0·94 48 6
R-eye 50 30 0·41885 0·95 0·94 3 4
L-eye 50 30 0·41896 0·95 0·94 3 4

Abbreviations: OED, organ effective dose; LAR, lifetime attributable risk.

Table 2. Calculation results of each item when patients receive treatment
at the age of 30 years and live until 80 years

Site a e OED
SðaÞ
SðeÞ ðFÞ SðaÞ

SðeÞ ðMÞ LAR (F) LAR (M)

Thyroid 80 30 0·09576 0·48 0·35 122 22
R-eye 80 30 0·41885 0·48 0·35 13 18
L-eye 80 30 0·41896 0·48 0·35 13 18

Abbreviations: OED, organ effective dose; LAR, lifetime attributable risk.
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