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The principles embodied by the Developmental Origins of Health and Disease (DOHaD) view of ‘life history’ trajectory are increasingly
underpinned by biological data arising from molecular-based epigenomic and transcriptomic studies. Although a number of ‘omic’ platforms are
now routinely and widely used in biology and medicine, data generation is frequently confounded by a frequency distribution in the measurement
error (an inherent feature of the chemistry and physics of the measurement process), which adversely affect the accuracy of estimation and thus, the
inference of relationships to other biological measures such as phenotype. Based on empirical derived data, we have previously derived a probability
density function to capture such errors and thus improve the confidence of estimation and inference based on such data. Here we use published
open source data sets to calculate parameter values relevant to the most widely used epigenomic and transcriptomic technologies Then by using our
own data sets, we illustrate the benefits of this approach by specific application, to measurement of DNA methylation in this instance, in cases
where levels of methylation at specific genomic sites represents either (1) a response variable or (2) an independent variable. Further, we extend this
formulation to consideration of the ‘bivariate’ case, in which the co-dependency of methylation levels at two distinct genomic sites is tested for
biological significance. These tools not only allow greater accuracy of measurement and improved confidence of functional inference, but in the
case of epigenomic data at least, also reveal otherwise cryptic information.
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Introduction

The development of various ‘-omic’ platforms has greatly
enhanced the quantitative measurement of dynamic biological
phenomena. Microarray-based assays of gene expression were
the first widely applied -omic platform, but recent advances in
deep-sequencing and mass spectrometry technologies now
allow for more comprehensive and quantitatively sensitive
surveys of gene, protein and epigenetic profiles in cells and tissues.
It is generally anticipated that this depth of interrogation will
underpin a ‘systems’ level appreciation of the biological processes.
However, as measurement resolution and sensitivity continue to
increase greater attention must be directed at the analysis of the
data generated if the full benefit of these technical advances is to
be realized.

A particular case in point is the accurate measurement of
DNA methylation at specific genomic sites. Although it is
already recognized that interpretation of such measurements is
confounded by the inherent cellular and physiological hetero-
geneity that exists within complex tissues,1–3 it is also critical to

robustly partition the true biological signals from compound-
ing technical measurement errors arising from the increasingly
complex assay processes of sample preparation and physical
measurement. In a range of technology platforms (see below),
measurement errors display frequency distributions with
unusual properties, notably strong ‘kurtosis’ (highly peaked
with fat tails) and a level of ‘skewness’ arising because empirical
methylation measurements are bounded between 0 and 1,
which consequentially constrains measurement errors between
− 1 and + 1. Thus, if the mean of the methylation measurement
is close to zero, the error distribution is positively skewed, while if
close to 1 the error distribution is negatively skewed. These
features must be considered when deriving an expression for a
probability density function, which accurately accounts for the
nature of the methylation error distribution, without which
accurate estimation and inference (hypothesis testing) is com-
promised. The commonly observed distributional characteristics
can particularly mislead interpretation when the methylation
measurement constitutes either the response variable, or the
independent variable within a regression analysis.
Our previous analysis of DNA extracted from human

umbilical tissue samples using the Sequenom EpiTyper
massARRAY platform (www.sequenom.com/), which measures
methylation by comparison of the mass of transcription cleavage
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products derived from amplified bisulphite-modified DNA by
matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometry,4 confirms that error fre-
quency distributions are far from normal. When quantifying
levels of methylation, the observed variance in methylation
measurements across subjects represents the sum of naturally
occurring biological variance and the variability inherent
within the measurement procedure itself. The issue of errors in
Sequenom measurement protocols has received attention
previously5–7 and have been linked with a range of variables
including the type of, and position within the thermal cycler,
logistics of robotic handling and chip batch and positional effects.
The importance of minimizing such error effects cannot be
understated. We have since extended this interrogation to more
fully describe the errors implicit in the process of generating
epigenomic data by this platform.Having optimized the chem-
istry of the Sequenom assay by multifactorial testing of as many
variables as we could practically control, we have made a very
large number of replicate measures on the same biological sample
to evaluate the deviation in measurement due specifically to
sample spotting and the stochastic process MALDI-TOF mass
spectrometry detection. We have assumed that the heterogeneity
caused solely by the physics of the measurement procedure
follows a two-dimensional Poisson process with an exponentially
distributed Poisson parameter.8 In which case, the probability
that a particular methylation measurement will contain a given
level of absolute deviation will similarly follow an exponential
distribution (see Appendix 1). Accounting for the fact that
deviations may be positive or negative this gives a Laplace
distribution as a suitable description for the deviations.9 Having
empirically estimated the error contribution arising from the assay
chemistry and physics of machine measurement, we found that
the Laplace distribution required an extension based on Hermite
polynomials10 to properly describe the observed deviations. This
extended Laplace distribution allows for more confident inference
for Sequenom platform generated data.11

In brief, the bounded probability density we derived is
defined thus:

f zð Þ ¼ p4e�p zj j 1 + qH3 zj jð Þ� �
2 p3�3qp2 + 6q�e�p 3 1�2q

� �
p3 + 6pq + 6q

� �� � (1)

where p and q are parameters likely to be population depen-
dent, z is the methylation measurement deviation andH3(z) is the
third-order Hermite polynomial equal to z3− 3z (note the use of
the absolute value signs). The variables zi in probability density
(equation 1) can be the residuals of a linear (zi = yi− (µ+βxi)), or
nonlinear (zi = (yi− f(xiβ))) regression model, for observations
yi and parameters μ, β. Because of the presence of the absolute
value of the residual in the likelihood, differentiation of the log
likelihood presents a technical difficulty. However, the para-
meters may still be found by maximizing the likelihood using
non-gradient methods12 (using the equations summarized in
Appendix 2) and for the case of the Sequenom platform were
estimated to be p = 37.21; q = 0.0429. Subsequent analyses

assume this form of the distribution for methylation error
measurement.
Problems also arise in performing tests of inference and in

obtaining estimates of the standard errors of the regression
coefficients. Using bootstrap estimates provided exceptionally
poor estimates of the standard errors. Bootstrap estimates
are known to perform poorly when applied to skewed
distributions of the type of the methylation measurement error
distribution.13 The skewness parameter associated with the
third-order Hermite polynomial for this probability density
(now defined with absolute values) is defined as 6q,14 that is,
the skewness parameter for the Sequenom measurements is
6× 0.0429 = 0.2574, representing a difference from the
Laplace distribution. Notably, a similar Laplace probability
density has also been reported to fit the frequency distribution
of transcriptomics data generated by a microarray platform15

suggesting that error distributions across differing -omics
platform may have a common character.
By re-examining available measurements in the public data

(summarized in Appendix 3), we now demonstrate that the ‘usual’
methods of statistical analysis are unsuitable for a wide range of
-omic platform assays and illustrate that our bounded probability
density accurately describes the error distributions in all of the
measurement platforms considered. By the way of illustration,
alignment of the measurement error frequency distributions
between maximum-likelihood estimated normal (dashed) and
extended Laplace (solid) for meDIP data is shown in Fig. 1a.
Close examination of the error frequency distributions for other
omics platforms indicates that they too display features indicative
of non-normality. Further by re-examining our own published
data, we illustrate that our analysis approach, applied when
methylation is treated as a response variable, performs better than
the currently preferred approach, which uses the forgiving
β regression, but is based on the untested assumption that the
measurement distributions are in fact related to a β distribution.16

Further we illustrate the application of our approach when
methylation measurement is the independent variable, in which
case data analysis is complicated by an ‘errors-in-variables
problem’.17 Finally, using empirical measurements we extend the
utility of this function beyond the ‘univariate’ case. The depen-
dency parameter of the ‘bivariate’ distribution we present can be
standardized and is shown to provide a better estimate of the
relationship between methylation measurements at two CpG sites
(i) residing within the same gene target; (ii) within two different
gene targets; or (iii) whether temporally linked.

Methods

A range of author processed data was downloaded from the
NCBI repository GEO (http://www.ncbi.nlm.nih.gov/gds) for
four series (designated as GSE22513, GSE29231, GSE38352,
GSE40870) chosen to (i) contain technical replicate data; (ii) for
human tissue samples; and (iii) interrogated on different but
widely used epigenomic (meDIP and Infinium 450 bead array)
and transcriptomic (Illumina HT12 and Affymetrix U133_2)
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platforms (see Appendix 3). No additional processing was applied
to the data before the difference between replicates was calculated
for each probe.

Results

The extended Laplace measurement error distribution is
generally applicable across -omics platforms

The measurement error frequency distribution was calculated for
each data set (Fig. 1) after transformation to the interval [− 1,1]
by division of the errors by 10, 1, 10 and 104 for the meDIP,
Infinium 450, Illumina HT12 and Affymetrix U133_2 plat-
forms, respectively. The Normal distribution does not provide a
suitable characterization of the error distribution in any of these
cases [based on a Lilliefors test (P< 0.001), as illustrated by
the dashed curve (Fig. 1a), representing the corresponding
maximum-likelihood estimated Normal for the meDIP/Agilent
array assay protocol. However, the modified-Laplace probability
density (equation 1) was found to fit the measurement error
distributions for all four measurement platforms, representing the
extended Laplace for the meDIP/Agilent array assay protocol.
The estimated parameters that characterize the measurement
error distributions for each platform are presented in Table 1.

The extended Laplace regression compares favourably to
currently used analytic approaches when methylation
represents the response variable (case I)

The difficulties of estimation and inference with CpG methy-
lation measurements have been recognized previously. The
most recent literature applies β regressions16,18,19 to deal with
the distributional problems of CpG methylated data and
demonstrates better performance than the traditional ordinary
least squares approach. A comparison of our own algorithm

Figure 1. The measurement error frequency distribution for (a) meDIP, (b) Infinium 450, (c) Illumina HT12 and (d) Affymetrix U133_2.
Errors were transformed to the interval [− 1,1] by dividing the errors by 10, 1, 10 and 104 for meDIP/Agilent array, Infinium 450, Illumina
HT12 and Affymetrix U133_2 platforms, respectively. Also shown is the corresponding maximum-likelihood estimated Normal (dashed) and
extended Laplace (solid) fit to the data. The measurement error distribution is not consistent with the Normal distribution.

Table 1. Parameter values for each of the major -omics platforms

Platform P Q

meDIP/Agilent array 36.54 0.028
Infinium 450 55.67 0.118
Illumina HT-12 33.11 0.067
Affymetrix U133_2 463 0.033

The estimated parameters that characterize the measurement error
distribution was derived by equation 1. Errors were transformed to the
interval [− 1,1] by dividing the errors by 10, 1, 10, 104 for the
meDIP, Infinium 450, Illumina HT12 and Affymetrix U133_2
platforms, respectively.
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(see equation 1) against both ordinary least squares and β
regression using the R package Betareg20 for methylation
measurements that we have previously published for the
ABCG2 gene21 is shown in Table 2. In this instance, the
methylation status of the individual CpGs in the ABCG2 gene
was found to vary as the response variable and align to phe-
notypic outcome, in sheep following experimental exposure to
mycotoxin. Generally, the extended Laplace regression yields
higher levels of significance (lower P-values) than the other
methods, a feature consistent with it being based on a prob-
ability density more directly associated with the actual error
frequencies, rather than the assumption of Normality or a β
distribution for the errors.12 Note particularly the result with
ABCG2 gene CpG7, which is indeterminate under ordinary
least squares and β regression analysis, but not seen to be
significant under our algorithm. Further, analysis of the
ABCG2 gene CpG9 is inconclusive for the comparison
between ‘clinical’ and ‘resistant’ biological phenotypes with
ordinary least squares and β regression, but is found to be
highly significant (P< 0.004) with our algorithm. Using
in silico mapping tools we have identified consensus sites for
potential transcriptional regulation in the region of CpG9,
supporting the notion that this genomic region is indeed sig-
nificant for the expression of phenotype responses (Zhang et al.,
unpublished observations).

Application of the extended Laplace when estimation of
methylation influences phenotype; the errors-in-variables
problem (case II)

It is well known that errors in the independent variables of a
regression analysis produce estimators that are biased and
inconsistent.17 A number of general methods have been
developed for dealing with errors in the independent variables
of a regression, employing simulation where representative
samples are drawn from a probability distribution of the errors
in the independent variables. Although observed errors in
methylation measurements appear to be particularly prone to

these problems, here we show that the extended Laplace
probability density (equation 1) readily forms a basis for an
‘errors-in-variables’ or model II regression analysis. Specifically,
we have considered the instance in which the degree of
methylation at a genomic CpG site early in the life course is
thought to have an influence on later phenotypic outcome, by
re-analyzing data previously reported that describes a relation-
ship between methylation of the RXRA gene in umbilical cord
tissue at birth and the body mass index (BMI) of children at
ages 4 and 6 years.22 We have applied the scoring method
described by Carroll et al.,17 to this re-analysis, with random
samples drawn from the methylation measurement probability
density (equation 1).
The correlations between degrees of methylation of each of the

six adjacent CpG sites in this analysis was high, so it would be
expected that the relationships with children’s BMI would be
similar for each CpG site. Compared with the ‘traditional’ least
squares estimates (model I) calculated from the same data set
(Table 3), there are two essential points of importance to be
recognized. First, the errors-in-variables regression coefficients
that incorporate the error probability density (equation 1) are
much more consistent with each other. Note, the least squares
estimates do not show this relationship (and two estimators (CpG
1 and 3 in the 6-year data show reversed slopes) in keeping with
the known lack of consistency of least squares estimators in this
situation.17 Second, the standard error of the errors-in-variables
estimators is considerably lower, and the significant levels are
better identified with the error distribution based on equation 1.

Extension to a bivariate methylation measurement
error distribution

Of particular biological interest is determining the potential
relationship between methylation measurements made at
different CpG sites, either (a) within a given gene, (b) at CpG
sites in different genes, (c) at the same CpG site in a gene but at
different time points and (d) at the same CpG site in a gene but in
different tissues. The usual statistic for this purpose is to calculate
the correlation between variables. However, the high frequency of
significance deviations that characterize methylation measure-
ments may be misleading for the usual correlation calculation,
either parametric or non-parametric, because these calculations
do not allow for the probabilities or expected frequencies of large
measurement deviations. Fortunately, there are a number of
ways that the univariate methylation measurement probability
density (equation 1) could be extended to two dimensions to
accommodate these questions. The simplest approach adopted
here is to build on conditional densities using the identity

P z; y½ � ¼ P z j y½ �P y½ �
where z, y denote methylation levels. A suitable construction
must be found for the conditional probability density P[z|y],
which is the probability that methylation z will be measured on
CpG1 given that methylation y has already been observed on
CpG2. There are a variety of ways that this might be done, and

Table 2. Inference for the comparison of methylation levels for CpG sites
in the ABCG2 gene a disease sheep reported previously21

CpG site
for ABCG2
gene

Significance level
for least squares

estimation

Significance level
for β regression
estimation

Significance level
for extended

Laplace estimation

1 0.02 0.015 0.0001
2 0.01 0.002 0.0006
3 0.01 0.004 0.0006
4 ns ns ns
5 ns ns 0.02
6 ns ns ns
7 ns (0.07) ns (0.09) ns
8 ns (0.07) 0.04 0.004
9 ns (0.08 ns (0.06) 0.006

20 A. B. Pleasants et al.

https://doi.org/10.1017/S2040174414000476 Published online by Cambridge University Press

https://doi.org/10.1017/S2040174414000476


the usefulness of any construction must be judged in application.
The simplest modification adopted here is to assume a linear
relationship between the CpG measurements. Thus,

P z; y½ � ¼ Qp2e�p zj j + yj j + θzyð Þ 1 + q H3 zj jð Þ +H3 yj jð Þð Þ� �
(2)

whereQ is the normalizing constant and the cross-product in the
Hermite polynomials is ignored as being of order q2. Note that
the products of the two methylation measurements in the expo-
nential of probability density (equation 2) are not taken as
absolute values. The dependency parameter in the bivariate
probability density (equation 2) is θ.

The normalizing constant Q is given by

Q�1 ¼
ð1
�1

ð1
�1

p2e�p zj j + yj j + θzyð Þ 1 + q H3 zj jð Þ +H3 yj jð Þð Þ� �
dzdy

(3)

This double integral cannot be evaluated explicitly and must be
solved numerically, although this equation (equation 3) may be
manipulated so that only a single integral must be performed
numerically to calculate Q. These calculations are given in
Appendix 4. The log likelihood based on the bivariate prob-
ability density (equation 2) can be maximized for the parameter
θ using numerical optimization methods.

To interpret the dependency parameter as a measure of the
relationship between the methylation of two CpG sites, the
value needs to be standardizd, much as the product moment
correlation coefficient is a standardized covariance. In this case,
the standardization is carried out by estimating the dependency
parameter for each set of methylation measurements linked
with itself, and then dividing the bivariate dependency para-
meter by the maximum of these two estimates. That is, find the
maximum θ estimate from calculations of P[z, z] or P[y, y],
then divide the dependency parameter calculated for P[z, y] by
this maximum parameter. The necessity of calculating the

relationship between the methylations of two CpG sites in this
way can be seen in a comparison of multiple methylation
measurements made on the same CpG site. Because of the
discrepancies induced by the measurement procedure there is a
notable frequency of high errors in the multiple measurements.
To illustrate this, we present a comparison of methylation
values at the RXR gene promoter CpG sites (Table 4), in
umbilical cord22 and subject matched postnatal buccal swab
tissue (unpublished data). Note, for example, the product
moment correlation of these multiple tissue measurements for
CpG1 is 0.03 (low). However, the standardized dependency
parameter for this CpG calculated from the bivariate probability
density (equation 2) is –0.43 with 95% confidence interval
(−0.28 to − 0.64) showing that, as would be expected the mul-
tiple measurements are actually relatively strongly related. This
improvement in detecting relationships among the methylation
status of the CpG sites is because the bivariate probability density
(equation 2) takes into account the frequency of large errors
expected in duplicate measurements. In this instance, comparison
of multiple measurements at the same CpG sites suggests the
following biological behaviour through the early life of the
organism, which informs a discussion about the comparative
impact of foetal programming and postnatal modification on
epigenomic profiles. Specifically, at all of the measured CpG sites
in RXR estimated methylation is higher in the cord at birth than
in postnatal buccal samples. Further, the order of decrease in
estimated methylation between subjects was preserved for most
CpGs, with the specific exception of CpG4.

Discussion

Statistical procedures based on the Normal probability density are
widely used in biology. At the level of the organism, the char-
acteristics of interest are generally affected by the combination of

Table 3. The model II regression of BMI on the level of methylation at each of the measured CpG sites in the RXRA gene

Age CpG
Intercept
model I

Slope
model I

Significance of slope
model I

Intercept
model II

Slope
model II

Significance of slope
model II

4 years 1 16.00 ± 0.219 0.116 ± 0.406 ns 15.90 ± 0.063 0.251 ± 0.130 ns
2 15.91 ± 0.159 0.506 ± 0.433 ns 15.85 ± 0.051 0.551 ± 0.141 P< 0.01
3 15.87 ± 0.234 0.174 ± 0.446 ns 15.87 ± 0.071 0.302 ± 0.151 ns
4 15.74 ± 0.291 0.491 ± 0.435 ns 15.86 ± 0.093 0.244 ± 0.158 ns
5 15.88 ± 0.269 0.283 ± 0.423 ns 15.98 ± 0.083 0.056 ± 0.150 ns
6 15.43 ± 0.940 0.940 ± 0.405 P< 0.05 15.58 ± 0.088 0.665 ± 0.134 P< 0.001

6 years 1 16.23 ± 0.360 − 0.186 ± 0.651 ns 15.86 ± 0.085 0.356 ± 0.172 P< 0.05
2 16.00 ± 0.263 0.459 ± 0.713 ns 15.78 ± 0.057 0.798 ± 0.187 P< 0.001
3 16.29 ± 0.389 − 0.336 ± 0.735 ns 15.75 ± 0.114 0.440 ± 0.192 P< 0.05
4 15.44 ± 0.459 1.103 ± 0.682 ns 15.62 ± 0.114 0.674 ± 0.195 P< 0.01
5 15.21 ± 0.444 1.535 ± 0.690 P< 0.05 15.62 ± 0.115 0.670 ± 0.193 P< 0.01
6 15.05 ± 0.444 1.636 ± 0.635 P< 0.05 15.41 ± 0.108 0.935 ± 0.170 P< 0.0001

BMI = body mass index.
This analysis removes the outlier. The model I (i.e. standard least squares) regression estimates are included for comparison. Intercepts and slopes

are reported ± standard errors.
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many processes and the central limit theorem means that the
frequency of these characteristics tends towards a Normal
distribution, although the rate of this convergence can be slow.
However, at the molecular level nonlinear processes may dom-
inate, and become a factor especially if small amounts of biolo-
gical material are being measured. Under these circumstances of
nonlinear relationships, the central limit theorem may not apply
and the basic probability distributions of the molecular
measurements may not be Normal, or even close to Normal.12 In
these circumstances, basing estimation and inference on statistical
procedures that assume the error distribution is Normal may be
misleading, as we have sought to illustrate. Notably, important
aspects of the biology of these processes may be overlooked, lost
within the observation errors and not uncovered because the
nature of the errors is not accounted for correctly.

These problems appear to manifest in the measurement of both
epigenomics1–3 and transcriptomics15 data generated by widely
used and diverse technology platforms. The extended Laplace
approach based on a detailed empirical knowledge of the error
frequency distributions inherent in the measurements represents a
first attempt to deal with these issues. Although not necessarily
optimal, the current study provides a generic approach for inves-
tigating and formulating suitable statistical methods for estimation
and inference when the assumption of Normal errors fails.

The suggested steps are shown below:

∙ Perform a factorial experiment (changing the protocols under
the control of the experimenter) to optimize sample prepara-
tion and make measurements in a designed way. Analyse these
data to partition the sources of experimental variation and use
this analysis to define a protocol that minimizes variation in
the measurements due to experimental procedure.

∙ With this optimized assay, perform a number of repeated
measures of the same sample to obtain a measurement error
frequency distribution. Assess whether this distribution satisfies
requirements to be Gaussian or another known frequency
distribution. In particular, consider the impact of other factors
(e.g. the requirement that the error distribution be bounded) on
the chosen representation for this distribution.

∙ If the error frequency distribution does not satisfy the criteria
for known families of probability distributions, construct a
suitable representation (e.g. using Edgeworth expansions or
Gram–Charlier series23).

∙ When a suitable representation of the error distribution is
found derive methods of estimation and inference based on,
for example, maximum-likelihood methodology.9 Test the
efficacy of these methods using simulated data to quantify
the improvement in estimation and inference. If these tests
are satisfactory then analyse the data accordingly.

The most dramatic improvements in the application of the
derived methylation measurement probability density have been
in the errors-in-variables case, or model II regressions. When the
CpG site methylation affects some phenotypic outcome the
derived methylation measurement probability density can be
used with errors-in-variables methods such as the scoring algo-
rithm to considerably improve both estimation and inference.
The clarity brought to hypothesis testing using this methodology
is notable. Our data suggests that this issue is not restricted either
to epigenetic analysis or to the methodologies of epigenetic ana-
lysis but is likely to be a broadly based issue in systems biology.
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Appendix 1

The theory summarized here is taken from Hassell Sweatman
et al.,11 applicable to our case in which methylation proportion is
treated as the response variable and multiple explanatory variables
are considered. A linear model is assumed. Specifically, let y 2 Rn

be a vector of response variables, let X be a real-valued n×m
matrix, where xi1 ¼ 1, i = 1,… ,n. In practice, we usually have
n, the number of data points, much larger than m the number of
coefficients. Let β 2 Rm be a vector of coefficients for our linear
model and assume that E(y) = Xβ. The goal is to estimate the
components of β by ML principles, and to determine their
standard errors, given y, X and the response variable distribution
(1). Let z = y−Xβ be the error vector. We assume that the errors
are independent. The response variable distribution is modelled
by (1). Then the log likelihood (disregarding the constant term) is

l βð Þ ¼ lnðf zðβÞð ÞÞ
¼

Xn

i¼1
�p zij j + ln 1 + q zij j3�3 zij j� �� �� �

(1a)

The inclusion of the modulus (absolute value) function in the
perturbed Laplace probability density function (equation 1) is
the cause of abrupt changes in the gradient of the log-likelihood
function. Although gradient-based methods of ML parameter
estimation fail, such estimation may be done by non-gradient
methods such as the simplex method or simulated annealing.
The abrupt changes in gradient must be taken into account

when calculating the standard errors of the parameters. The fact that
l(β) is not differentiable in the classical sense at a local maximum
means that the assumptions made in the derivation of the usual
classical formulae for the information matrix, the expected value of
the Hessian of the log-likelihood function and the variance–covar-
iancematrix for themodel coefficients βi, j = 1,…,m, are notmet.
For C2 probability density functions, these formulae are derived
using Taylor series. In section 4 in Hassell Sweatman et al.11 using
generalized functions, alternative expressions for these quantities are
found, assuming truncated and/or perturbed Laplace response
functions which are C3 where the modulus function is non-zero. In
section 5 in Hassell Sweatman et al.,11 these expressions are used to
prove the asymptotic convergence of ourMLE to a random variable
with a normal distribution.
To derive these expressions, generalized functions have been

used:

sgn xð Þ ¼
1; x > 0
0; x ¼0

�1; x < 0

8<
:

and δ(x), which is the δ function that is zero except at one point
x = 0 and where

Ð1
�1 δ xð Þdx ¼ 1. These expressions and the

modulus function are connected by

d
dx

xj j ¼ sgn xð Þ
d
dx

sgn xð Þ ¼ 2δ xð Þ
where the differentiation is taken in a generalized sense.
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With respect to the model parameters, let E(H) denote the
expected value of the generalized Hessian of the log-likelihood
function, let J denote the information matrix and let V denote
the variance–covariance matrix. It is proved11 that

E Hð Þ ¼ ςX TX

J ¼ vX T X

and

V �1 ¼ ς2

ν
X TX

where ς ¼ E ∂2 l
∂z2i

� 	
and ν ¼ E ∂l

∂zi

� 	2
(these quantities do not

depend on the index i) and we assume that X has full rank m. It
is shown that the usual classical relation for smooth log-
likelihood functions, namely V = J− 1 = [−E(H)]− 1 does not
hold, although it is a good approximation for large p and small
q. For example, when q = 0 it turns out that v = p2 and
ς ¼ � p2

1�e�p. To compare a model with M coefficients to a
lesser model with P coefficients, let λ ¼ Lðβ1; ¼ βM Þ

Lðβ1; ¼ βP Þ be the
likelihood ratio. The generalized log-likelihood ratio statistic is
Dgen ¼ �2 ς

ν
ln λ; distributed approximately as x2(M− P) if the

lesser model gives a good description of the data.For example,
for the case m = 2 corresponding to one explanatory variable,
the log likelihood (disregarding the constant term) is

l β1; β2ð Þ ¼
Xn

i¼1
�p zij j + ln 1 + q zij j3�3 zij j� �� �� �

(1a)

where setting xi = xi2

zi ¼ yi� β1 + β2xið Þ
Since the log-likelihood function l(β1,β2) in (1a) involves the
modulus of the deviations zi then l(β1,β2) is not differentiable
with respect to its parameters when any zi = 0. The nature of
the maximization means that the maximum occurs on a ridge
in (β1, β2, l) space, defined by some zi = 0. Assuming that not
all the xi are equal (so that X has full rank 2), a maximum will
occur at the intersection of two distinct ridges defined by zi =
zj = 0, for some i ≠ j.

Generalized differentiation yields

∂l
∂zi

¼ �p sgn zið Þ + 3q zij j2�3q
� �

:sgnðziÞ
1 + q zij j3�3q zij j

and

∂2l
∂z2i

¼ δ zið Þ �2p�6q
� �

+
ð�3qÞ q zij j4�2 zij j + 3q

� 	
sgn zið Þð Þ2

1 + q zij j3 � 3 zij j� �2 :

Integrating over the error space [− 1,1]n with respect to (1)
yields expected values.

Appendix 2

The log likelihood (disregarding the constant term) is

f α; βð Þ ¼
Xn

i¼1
�p zij j + ln 1 + q zij j3�3 zij j� �� �� �

(2a)

where

zi ¼ yi� α + βxið Þ
Since the log-likelihood function f(α, β) in equation 2a involves
the modulus of the deviations zi then f(α, β) is not differentiable
with respect to the parameters α and β when zi = 0. The nature
of the maximization means that this is very likely to occur
for some zi and we have found that this often occurs in practice.
That is, the maximum will occur at the intersection of
two ridges in the (α, β, f) space at which zi = zj = 0. Accord-
ingly, maximization based on derivative-free methods is
necessary, for example, simplex optimization or simulated
annealing.
Notwithstanding this difficulty, the first and second deriva-

tives of the log-likelihood f(α, β) with respect to the parameters
α and β, needed for calculation of the standard errors, can be
determined using generalized function theory:

∂f
∂α

¼ p
Xn
i¼1

sgn zið Þ +
Xn
i¼1

3q zij j2�3q
� �

:sgnðziÞ
1 + q zij j3�3q zij j

∂f
∂β

¼ p
Xn
i¼1

xi sgn zið Þ +
Xn
i¼1

xi 3q zij j2�3q
� �

:sgn zið Þ
1 + q zij j3�3q zij j (2b)

The standard errors are given by the inverse of the variance–
covariance matrix:

V ¼ �
∂2f
∂α2

∂2f
∂α∂β

∂2f
∂α∂β

∂2f
∂β2

2
4

3
5
�1

∂2f
∂α2

¼ 3pq
Xn
i¼1

q zij j4�2 zij j + 3q
� 	

sgn zið Þð Þ2

1 + q zij j3�3 zij j� �2
� 2p + 3q
� �Xn

i¼1

δ zið Þ

∂2f
∂α∂β

¼ 3pq
Xn
i¼1

xi q zij j4�2 zij j + 3q
� 	

sgn zið Þð Þ2

1 + q zij j3�3 zij j� �2
� 2p + 3q
� �Xn

i¼1

ziδ zið Þ

∂2f
∂β2

¼ 3pq
Xn
i¼1

z2i q zij j4�2 zij j + 3q
� 	

sgn zið Þð Þ2

1 + q zij j3�3 zij j� �2
� 2p + 3q
� �Xn

i¼1

z2i δ zið Þ ð2cÞ

To derive these formulae generalized functions have been used:

sgn xð Þ ¼
1; x > 0
0; x ¼0

�1; x < 0

8<
:
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and δ(x) which is the δ function that is zero except at one point
x = 0 and where

Ð1
�1 δ xð Þdx ¼ 1. These expressions and the

modulus function are connected by

d
dx

xj j ¼ sgn xð Þ
d
dx

sgn xð Þ ¼ 2δ xð Þ
where the differentiation is taken in a generalized sense.

Since sgn(0) = 0 and δ(zi) = 0 for zi ≠ 0 only one (but not
both) of the terms on the RHS of equation (3a) is non-zero for
each zi. Thus, the calculation of the information matrix V for
the standard errors has to be made in the generalized sense if

one of the zis is zero, as it generally appears to be in practice.
Suppose that this happens at the kth zi. Then

V ¼ �
∂2f
∂α2

∂2f
∂α∂β

∂2f
∂α∂β

∂2f
∂β2

2
4

3
5
�1

The matrix below is a term in V when zk = 0,

� 2p + 3q
� � 1 zk

zk z2k


 �
δ zkð Þ ¼ 2p + 3q

� � 1 0
0 0


 �
δ zkð Þ

where we have used xδ(x) = 0, x2δ(x) = 0. This enables
calculation of the information matrix V.

Appendix 3

A summary of the features of the author processed data downloaded from the NCBI repository GEO (http://www.ncbi.nlm.nih.
gov/gds).

Appendix 4

Consider the bivariate methylation measurement probability
density:

P z; y½ � ¼ Qp2e�p zj j+ yj j+ θzyð Þ 1 + q H3 zj jð Þ +H3 yj jð Þð Þ� �

where Q is a normalizing constant and H3 represents the third-
order Hermite polynomial. The cross-product in the Hermite
polynomials is ignored as being of order q2<< 1. The depen-
dency parameter in the bivariate probability densityis θ.

The normalizing constant Q is given by

Q�1 ¼
ð1

�1

ð1
�1

p2e�p zj j+ yj j+ θzyð Þ 1 + q H3 zj jð Þ +H3 yj jð Þð Þ� �
dzdy

(4a)

Noting that the integral (4a) over the quadrant (z = 0 1, y = 0 1)
equals the integral (4a) over the quadrant (z = − 1 0, y = − 1 0),
and similarly the integral (4a) over the quadrant (z = − 1 0,
y = 0 1) equals the integral (4a) over the quadrant (z = 0 1,

y = −1 0), then

Q�1 ¼ 2
p4

ð1
0

e�py

1 + ϑyð Þ4 S1 yð Þ�e�p 1 + θyð ÞS2 yð Þ
h i

dy

+
2
p4

ð1
0

e�py

1�ϑyð Þ4 S3 yð Þ�e�p 1�θyð ÞS4 yð Þ
h i

dy ð4bÞ

where

S1 yð Þ ¼ 1 + θyð Þ3 p3 1 + q y2�3y
� �� �� ��3qp2

1 + θyð Þ2 + 6q

S2 yð Þ ¼ p3 1 + θyð Þ3 1�2q
� �

+ 6pq 1 + θyð Þ + 6q + p3q
1 + θyð Þ3 y3�2y

� �

S3 yð Þ ¼ S1 yð Þ with θ ! �θ

S4 yð Þ ¼ S2 yð Þ with θ ! �θ

The bivariate probability density (eqn 2) with the normalizing
constant given by equation (4b) can be formulated as a log
likelihood for the parameter θ, and estimation of this parameter

GEOs
series Data type Data platform Sample type No. of samples and replicates Pubmed

GSE22513 Transcriptome Affymetrix U133_2 Human breast needle tumour biopsy 14 samples, run in duplicate 21633166
20068102
20878462

GSE29231 Transcriptome Illumina HT-12 Human visceral adipose biopsy 6 samples, run in 4 replicates 23308243
GSE38352 DNA

methylation
MeDIP-Chip,
Agilent array

Human post-mortem hippocampus 17 samples, 9 run in duplicate, 8
in triplicate

23045659

GSE40870 DNA
methylation

Illumina Infinium
s450K

Human bone marrow derived, AML cell
lines with treatment

24 samples, run in duplicate 23297133
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along with a likelihood surface can be calculated for a bivariate
set of methylation data (zi, yi):

Log likelihood P z; y½ �ð Þ ¼ 2n ln pð Þ + n ln Q θð Þð Þ +
Xn

i¼1
�

p zij j + yij j + θziyið Þ + ln 1 + q H3 zij jð Þ +H3 yij jð Þð Þ� � ð4cÞ

Note that the normalizing factor Q is now a function of the
dependency parameter θ. The log likelihood (4c) can be max-
imized for θ numerically using non-gradient methods.
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