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Möbius automorphisms of surfaces with
many circles
Niels Lubbes
Abstract. We classify real two-dimensional orbits of conformal subgroups such that the orbits
contain two circular arcs through a point. Such surfaces must be toric and admit a Möbius
automorphism group of dimension at least two. Our theorem generalizes the classical classification
of Dupin cyclides.

1 Introduction

Our main result is Theorem 1, which states a classification of algebraic surfaces that
admit many conformal automorphisms. Let us consider some known examples in
order to motivate and explain this result. Suppose that a surface Z ⊆ Rn is a G-
orbit for some conformal subgroup G and that Z is not contained in a hyperplane or
hypersphere. It follows from Liouville’s theorem that the conformal transformations
ofRn for n ≥ 3 are exactly the Möbius transformations. If n = 3, then Z ⊂ R3 is Möbius
equivalent to either a circular cone, a circular cylinder, or a ring torus, and thus a Dupin
cyclide. If dim G > 2, then either Z = R2 or Z ⊂ R4 is a stereographic projection of a
Veronese surface in the unit-sphere S4. The considered examples of G-orbits contain at
least two circles through each point and motivate us to address the following problem
about surfaces that are in a sense “generalized Dupin cyclides”:

Problem. Classify, up to Möbius equivalence, real surfaces that are the orbit of a
Möbius subgroup and that contain at least two circles through a point.

We see in Figure 1 a linear projection of an orbit of a Möbius subgroup in R5 that
contains three circles through each point. This surface is characterized by the third
row of Theorem 1.

There has been recent interest in the classification of surfaces that contain at least
two circles through each point [12, 15]. Surfaces that contain infinitely many circles
through a general point are classified in [7] (see Theorem D). In this article, we
consider the Möbius automorphism group as Möbius invariant, and we use methods
from [3] (see Theorem B), a classification from [4] (see Theorem C), and results from
[9] (see Theorem A).
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Möbius automorphisms of surfaces with many circles 43

Figure 1: A projection of a smooth surface of degree 6 in R
5 that is an SO(2) × SO(2)-orbit

and that contains three circles through each point. The family of Möbius equivalence classes of
such surfaces is two-dimensional.

For our classification result, we require Möbius invariants that capture geometric
aspects at complex infinity. To uncover this hidden structure, we define a real variety
X to be a complex variety together with an antiholomorphic involution σ ∶X → X,
which is called its real structure [14, Section I.1]. We denote the real points of X
by X(R) ∶= {p ∈ X ∣ σ(p) = p}. Real varieties can always be defined by polynomials
with real coefficients [13, Section 6.1]. Curves, surfaces, and projective spaces Pn are
real algebraic varieties, and maps between such varieties are compatible with the real
structures unless explicitly stated otherwise. Instead of Rn , it is more natural to use
the Möbius quadric for our space:

Sn ∶= {x ∈ Pn+1 ∣ −x2
0 + x2

1 +⋯+ x2
n+1 = 0},

where σ ∶Pn+1 → Pn+1 sends x to (x0 ∶ ⋯ ∶ xn+1). The Möbius transformations of Sn

are the biregular automorphisms Aut(Sn), and they are linear so that Aut(Sn) ⊂
Aut(Pn+1). We denote a stereographic projection from the unit-sphere Sn ⊂ Rn+1 by
π∶Sn⇢Rn . Notice that Sn(R) ≅ Sn and that the inverse stereographic projection
π−1(Rn) ⊂ Sn is an isomorphic copy of Rn such that the Möbius transformations of
Sn restrict to Möbius transformations of Sn and π−1(Rn). In particular, the Möbius
transformations that preserve the projection center of π, correspond to the Euclidean
similarities of Rn .

A conic C ⊂ Sn is called a circle if C(R) defines a circle in Sn ⊂ Rn+1. We call
a surface in Sn λ-circled if it contains exactly λ circles through a general point. A
celestial surface is a λ-circled surface X ⊆ Sn such that λ ≥ 2 and such that X is not
contained in a hyperplane section of Sn . If in addition X is of degree d, then its celestial
type is defined as T(X) ∶= (λ, d , n). If the biregular automorphism group Aut(X)
is a Lie group, then its identity component is denoted by Aut○(X) and the Möbius
automorphism group of X is defined as M(X) ∶= Aut○(X) ∩ Aut○(Sn). We denote the
singular locus of X by S(X). A complex node, real node, complex tacnode, and real
tacnode are denoted by A1, A1, A3, and A3, respectively, and the union of such nodes
is written as a formal sum. We write S(X) = ∅, if X is smooth.

The Möbius moduli dimension D(X) is defined as the dimension of the space
of Möbius equivalence classes of celestial surfaces Y ⊂ Sn such that T(Y) = T(X),
S(Y) ≅ S(X) as algebraic sets and M(Y) ≅ M(X) as groups.

We use the following notation for subgroups of Aut○(P1). Let the real structure
σ ∶P1 → P1 be defined by (x ∶ y) ↦ (x ∶ y) so that Aut○(P1) ≅ PSL(2,R). If p, q, r ∈ P1
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44 N. Lubbes

such that p ≠ σ(p), q = σ(q), r = σ(r), and q ≠ r, then we denote

PSO(2) ∶= {φ ∈ Aut○(P1) ∣ φ(p) = p, φ(σ(p)) = σ(p)},
PSX(1) ∶= {φ ∈ Aut○(P1) ∣ φ(q) = q, φ(r) = r},
PSE(1) ∶= {φ ∈ Aut○(P1) ∣ φ(x ∶ y) = (x + α y ∶ y), α ∈ R}, and
PSA(1) ∶= {φ ∈ Aut○(P1) ∣ φ(r) = r}.

.

Notice that φ in PSO(2) or PSX(1) maps (x ∶ y) up to choice of coordinates to
(cos(α) x − sin(α) y ∶ sin(α) x + cos(α) y) and (α x ∶ y), respectively, for some α ∈
R/{0}. The elements in PSA(1) are combinations of elements in PSX(1) and PSE(1)
(see also Remark 31).

Theorem 1 (Möbius automorphisms of celestial surfaces) If X ⊆ Sn is a celestial
surface such that dim M(X) ≥ 2, then X is toric and its Möbius invariants T(X), S(X),
M(X) and D(X) are characterized by a row in the following table:

T(X) S(X) M(X) D(X) Name

(2, 8, 7) ∅ PSO(2) × PSO(2) 3 Double Segre surface

(2, 8, 5) ∅ PSO(2) × PSO(2) 2 Projected dS

(3, 6, 5) ∅ PSO(2) × PSO(2) 2 dP6 (see Figure 1)

(∞, 4, 4) ∅ PSO(3) 0 Veronese surface

(4, 4, 3) A1 + A1 + A1 + A1 PSO(2) × PSO(2) 1 Ring cyclide

(2, 4, 3) A1 + A1 + A1 + A1 PSO(2) × PSX(1) 0 Spindle cyclide

(2, 4, 3) A3 + A1 + A1 PSO(2) × PSE(1) 0 Horn cyclide

(∞, 2, 2) ∅ PSO(3, 1) 0 Two-sphere

Moreover, if T(X) ∉ {(2, 8, 7), (2, 8, 5), (∞, 4, 4)}, then M(X) = Aut○(X) and if
D(X) = 0, then X is unique up to Möbius equivalence.

If we replace Sn with Sn ≅ Sn(R), then Theorem 1 holds if we replace PSO(3, 1) by
SO(3) and remove the remaining P’s in the M(X) column. The case T(X) = (∞, 4, 4)
was already known and is revisited in Section 8 (see also [7, Theorem 23] and [1,
Section 2.4.3]).

A smooth model of a surface X ⊂ Pn+1 is a birational morphism X̃ → X from a
nonsingular surface X̃, such that this morphism does not contract (−1)-curves. If
λ < ∞, then the smooth models of the λ-circled surfaces in Theorem 1 are isomorphic
to S1 × S1 blown-up in either 0, 2, or 4 complex conjugate points (see Notation 11). A
smooth model of a Veronese surface is isomorphic to P2 such that σ ∶P2 → P2 sends x
to (x0 ∶ x1 ∶ x2) (see Lemma 12c).

Instead of Sn , one could also consider hyperquadrics of different signature.
Although we do not pursue this, we cannot resist to mention the following result,
which will come almost for free during our investigations:
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Corollary 2 If Q ⊂ P8 is a quadric hypersurface of signature (4, 5) or (3, 6), then
there exists a unique double Segre surface X ⊂ Q such that Aut○(X) ⊂ Aut○(Q) and
X is isomorphic to S1 × S1 and S2, respectively.

Our methods are constructive and allow for explicit coordinate description of the
moduli space of the celestial surfaces. See [8, moebius_aut] for an implementation
using [16, Sage].

Definition 4 (names of surfaces) A surface X ⊂ S3 is called a spindle cyclide, horn
cyclide, or ring cyclide if there exists a stereographic projection π∶ S3⇢R3 such that
π(X(R)) ⊂ R3 is a circular cone, circular cylinder, and ring torus, respectively. We
call X ⊂ P5 a Veronese surface if there exists a biregular isomorphism P2 → X whose
components form a basis of the vector space of degree 2 forms. We call X ⊂ P8 a double
Segre surface (or dS for short) if there exists a biregular isomorphism P1 × P1 → X
whose components form a basis of the vector space of bidegree (2,2) forms. A projected
dS is a surface X that is a degree preserving linear projection of a dS. We call X ⊂ P6

a sextic del Pezzo surface (or dP6 for short) if X is an anticanonical model of P1 × P1

blown up in two general complex points.

Remark 5 (overview) Suppose that X is a celestial surface of type T(X) = (λ, d , n)
such that dim M(X) ≥ 2 and λ < ∞.

In Section 2, we classify X under the additional assumption that X is toric.
In Section 3, we give coordinates for a double Segre surface Y⋆ ⊂ P8 and we

investigate actions of real structures on Y⋆. This will be needed for finding quadratic
forms of signature (1, n + 1) in the ideal of Y⋆.

We establish in Section 4, that X must be toric. Moreover, there exists a birational
linear projection ρ∶ Y⋆⇢X and M(X) is isomorphic to a subgroup of Aut○(Y⋆) that
leaves the center of ρ invariant. We characterize the possible configurations for the
center of ρ in Y⋆ and for each such configuration, we restrict the possible values for
T(X) and M(X).

In Section 5, we encode, up to Möbius equivalence, X as an M(X)-invariant
quadratic form in the ideal of Y⋆. From the Lie algebra of M(X), we recover
the subspace of M(X)-invariant quadratic forms, and each invariant form of
signature (1, n + 1) in this space encodes a possible Möbius equivalence class
for X.

In Section 6, we show how toric real structures act on the Lie algebra of
Aut○(Y⋆), and we recall the classification of Lie algebras of complex subgroups of
Aut○(Y⋆).

In Section 7, we make a case distinction on the established configurations for the
center of ρ and Lie algebras of M(X). If X is not a spindle or horn cyclide, then M(X) ≅
SO(2) × SO(2), and we obtain coordinates for the D(X) + 1 generators of all M(X)-
invariant quadratic forms of signature (1, n + 1) in the ideal of Y⋆. This enables us to
conclude Section 7 with a proof for Theorem 1 and Corollary 2.

Finally, we present in Section 8 an alternative proof for the known λ = ∞ case by
applying the same methods as before, but with Y⋆ replaced with the Veronese surface
Y○ ⊂ P5.
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Figure 2: Width of lattice polygon along directions↘ and↙.

2 Toric celestial surfaces

In this section, we classify toric celestial surfaces and their real structures.
Suppose that X ⊂ Pn is a surface that is not contained in a hyperplane section. The

linear normalization XN ⊂ Pm of X is defined as the image of its smooth model X̃ via
the map associated to the complete linear series of hyperplane sections of X. Thus,
m ≥ n, X is a linear projection of XN , and XN is unique up to Aut(Pm).

Let T1 ∶= (C∗ , 1) denote the algebraic torus. Recall that X is toric if there exists an
embedding i∶ T2↪X such that i(T2) is dense in X and such that the action of T2 on
itself extends to an action on X.

If X is a toric surface, then there exists, up to projective equivalence, a monomial
parametrization ξ∶ T2 → XN . The lattice polygon of X is defined as the convex hull of
the points in the lattice Z2 ⊂ R2, whose coordinates are defined by the exponents of
the components of ξ. The antiholomorphic involution σ ∶ X → X induces an involution
σ ∶ T2 → T2. Consequently, σ induces a unimodular involutionZ2 → Z2 that leaves the
lattice polygon of X invariant.

Notation 6 By abuse of notation we denote involutions on algebraic structures, that
correspond functorially with the real structure σ ∶ X → X, by σ as well.

A lattice projection Z2 ⊂ R2 → Z1 ⊂ R1 induces a toric map XN → P1. We call a
family of curves on XN toric if the family can be defined by the fibers of a toric map.
A family of circles on X is called toric if it corresponds to a toric family on XN via
a linear projection XN → X. The toric families of circles that cover a toric surface
X that is not covered by complex lines, correspond to the projections of the lattice
polygon of X to a line segment that is of minimal width among all such projections
[10, Proposition 31].

In Figure 2, we see two examples of lattice projections of a lattice polygon. The
width of the polygon in the ↙ direction is 4. The lattice polygon attains its minimal
width of 2 in the directions→, ↓, and↘. Notice that the lines through the origin, along
these three directions, are invariant under lattice involution defined by 180○ rotation
around the central lattice point.
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The lattice type L(X) of a toric surface X consists of the following data
(1) The lattice polygon Λ ⊂ R2 of X.
(2) The unimodular involution Z2 → Z2 that is induced by the real structure σ ∶ X →

X.
(3) The lattice projections that correspond to toric families of circles. We will rep-

resent such projections by arrows ( ↓, →, ↘, ↙) pointing in the corresponding
direction.

Lattice types L(X) and L(X′) are equivalent if there exists a unimodular isomorphism
between their lattice polygons that is compatible with the unimodular involution. Data
3 are uniquely determined by data 1 and 2. The unimodular involutions Z2 → Z2,
defined by (x , y) ↦ (x , y), (x , y) ↦ (−x , y), (x , y) ↦ (−x ,−y) and (x , y) ↦ (y, x),
are represented by their symmetry axes in the lattice polygons.

Proposition 7 (classification of toric celestial surfaces) If X ⊆ Sn is a toric surface that
is covered by at least two toric families of circles, then its lattice type L(X), together with
T(X) and the name of X, is up to equivalence characterized by one of the eight cases in
Table 9.

Corollary 8 (classification of toric celestial surfaces)
a) The antiholomorphic involutions of the double Segre surface—that act as unimodular

involutions as in Table 9a, Table 10a, and Table 10b—are inner automorphic via
Aut(P1 × P1).

b) The antiholomorphic involutions of the Veronese surface—that act as unimodular
involutions as in Table 9d and Table 10c—are inner automorphic via Aut(P2).

Before we prove Proposition 7, we state in Lemma 12 and Lemma 13 the known
classification of real structures of P1, P1 × P1, P2, and T2. We include proofs in case
we could not find a suitable reference. Theorem A collects results from [9] that we
need for Proposition 7, Lemma 16, and Proposition 22.

It will follow from Proposition 22 in Section 4 that Proposition 7 also holds with
the following hypothesis: “If X ⊆ Sn is a toric celestial surface, then . . .”
Notation 11 We consider the following normal forms for real structures:

σ+∶ P1 → P1 , (x ∶ y) ↦ (x ∶ y), σ−∶ P1 → P1 , (x ∶ y) ↦ (−y ∶ x),

σs ∶ P1 × P1 → P1 × P1 , (s ∶ t; u ∶ w) ↦ (u ∶ w; s ∶ t).

Notice that P1 × P1 with real structure σ+ × σ+ or σs is isomorphic to S1 × S1 and S2,
respectively.

Lemma 12 (real structures for P1, P1 × P1 and P2)
a) If σ ∶ P1 → P1 is an antiholomorphic involution, then there exists γ ∈ Aut(P1

C
) such

that (γ−1 ○ σ ○ γ) is equal to either σ+ or σ−.
b) If σ ∶ P1 × P1 → P1 × P1 is an antiholomorphic involution, then there exists γ ∈

Aut(P1
C
× P1

C
) such that (γ−1 ○ σ ○ γ) is equal to either σ+ × σ+, σ+ × σ−, σ− × σ−

or σs .
c) If σ ∶ P2 → P2 is an antiholomorphic involution, then there exists γ ∈ Aut(P2

C
) such

that (γ−1 ○ σ ○ γ) is equal to σ0 ∶ (s ∶ t ∶ u) ↦ (s ∶ t ∶ u).
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Table 9: See Proposition 7. Lattice types of toric celestial surfaces up to equivalence,
together with the corresponding name and possible celestial types. For the celestial
types, we have 3 ≤ n ≤ 7 and 4 ≤ m ≤ 5. The directions correspond to the toric families
of circles.

Table 10: See Corollary 8 and the proof of Proposition 7.

Proof Claim 1. If X is a variety with antiholomorphic involution σ ∶ X → X and very
ample anticanonical class −k, then the following diagram commutes

X Y ⊂ Ph0(−k)−1

X Y ⊂ Ph0(−k)−1

σ

φ−k

σ0

φ−k
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where σ0 ∶ (x0 ∶ ⋯ ∶ xn) ↦ (x0 ∶ ⋯ ∶ xn) and Y is the image of X under the birational
morphism φ−k associated to −k. This claim is a straightforward consequence of [14,
I.(1.2) and I.(1.4)].
a) We apply claim 1 with X = P1 so that Y ⊂ P2 is a real conic. We know that Y has

signature either (3, 0) or (2, 1). Thus there are, up to inner automorphism, two
antiholomorphic involutions of P1. Moreover, we have that ∣{p ∈ P1 ∣ σ(p) = p}∣ ∈
{0,∞}. This concludes the proof, since the σ must be inner automorphic to either
σ+ or σ−.

b) If σ does not flip the components of P1 × P1, then it follows from a) that σ is
inner automorphic to either σ+ × σ+, σ+ × σ− or σ− × σ−. Now suppose that σ
flips the components of P1 × P1. Let π1 and π2 be the complex first and second
projections of P1 × P1 to P1

C
, respectively. The composition π2 ○ σ ○ π−1

1 defines
an antiholomorphic isomorphism τ∶ P1

C
→ P1

C
. If σ and σ ′ are inner automorphic,

then there exists complex α, β ∈ Aut(P1
C
) such that π2 ○ σ ○ π−1

1 is equal to β ○ π2 ○
σ ′ ○ π−1

1 ○ α. Conversely, an antiholomorphic isomorphism τ∶ P1
C
→ P1

C
defines an

antiholomorphic involution (p; q) ↦ (τ−1(q); τ(p)) that flips the components of
P1 × P1. There exists α, β ∈ Aut(P1

C
) such that β ○ τ ○ α is defined by (s ∶ t) ↦ (s ∶

t). We conclude that σ is unique up to inner automorphisms and thus without loss
of generality inner automorphic to the real structure σs .

c) We apply claim 1 with X = P2, so that Y ⊂ P9 is a surface of degree 9. Since the
degree is odd, we obtain infinitely many real points on Y and thus also infinitely
many real points on P2. We know that −k = 3h, where −k is the anticanonical class
and h is the divisor class of lines in P2. We can construct two different real lines
in P2, since a line through two real points is real. The linear subseries of ∣ − k∣ that
consists of all cubics that contain these real two lines, is ∣ − k − 2h∣ = ∣h∣. Notice that
choosing a real subsystem of ∣ − k∣ is geometrically a real linear projection of Y. It
follows that the map φh ∶ P2 → P2 associated to h is real such that σ0 ○ φh = φh ○ σ .
We conclude that σ is inner automorphic to σ0 as was claimed. ∎

Lemma 13 (real structures forT2) If σ ∶ T2 → T2 is a toric antiholomorphic involution,
then there exists γ ∈ Aut(T2

C
) such that (γ−1 ○ σ ○ γ) is equal to either one of the

following:

σ0 ∶ (s, u) ↦ (s, u), σ1 ∶ (s, u) ↦ ( 1
s , u),

σ2 ∶ (s, u) ↦ ( 1
s , 1

u ), σ3 ∶ (s, u) ↦ (u, s),

and σi ∶ T2 → T2 induces, up to unimodular equivalence, the following unimodular
involution σi ∶ Z2 → Z2:

σ0 ∶ (x , y) ↦ (x , y), σ1 ∶ (x , y) ↦ (−x , y),
σ2 ∶ (x , y) ↦ (−x ,−y), σ3 ∶ (x , y) ↦ (y, x).

The corresponding real points �σ i ∶= {(s, u) ∈ T2 ∣ σi(s, u) = (s, u)} are:

�σ0 = {(s, u) ∈ T2 ∣ s = s, u = u } ≅ (R⋆)2 ,
�σ1 = {(s, u) ∈ T2 ∣ ss = 1, u = u } ≅ S1 ×R⋆ ,
�σ2 = {(s, u) ∈ T2 ∣ ss = 1, uu = 1} ≅ S1 × S1 ,
�σ3 = {(s, u) ∈ T2 ∣ s = u } ≅ R2/{(0, 0)}.
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Proof Since σ ∶ T2 → T2 extends to an antiholomorphic involution of an algebraic
surface, we may assume that σ is defined by (s, u) ↦ f (s, u) where f is some
bivariate rational function in C(s, u). From σ(1, 1) = (1, 1), it follows that f (s, u) =
(saub , scud) with a, b, c, d ∈ Z. From (σ ○ σ)(s, u) = (s, u), it follows that ad − bc =
±1, and thus the induced unimodular involution (x , y) ↦ (ax + by, cx + d y) is uni-
modular equivalent to σi ∶ Z2 → Z2 for some i ∈ {0, 1, 2, 3} as asserted. For σ1, we find
that f (s, u) = ( 1

s , u), and thus f (s, u) = (s, u) if and only if ss = 1 and u = u so that
�σ1 ≅ S1 ×R⋆. The proofs for �σ0 , �σ2 , and �σ3 are similar. ∎

For convenience of the reader, Theorem A below extracts result from [9, Theorem
1, Theorem 3, Theorem 4, Corollary 5, Lemma 1, and Lemma 3] that are needed for
Proposition 7, Lemma 16, and Proposition 22.

Notation 14 The Neron–Severi lattice of a surface X ⊂ Pn+1 consists of a unimodular
lattice N(X) that is defined by the divisor classes on the smooth model X̃ up to numerical
equivalence. In this article, N(X) will be a sublattice of ⟨�0 , �1 , ε1 , ε2 , ε3 , ε4⟩Z, where
�0 ⋅ �1 = 1, ε2

i = −1 and �2
0 = �2

1 = �0 ⋅ ε i = �1 ⋅ ε i = 0 for 1 ≤ i ≤ 4. The real structure σ
induces a unimodular involution σ ∶ N(X) → N(X) such that σ(�0) = �0, σ(�1) = �1,
σ(ε1) = ε2 and σ(ε3) = ε4 (see Notation 6). The function h0∶ N(X) → Z≥0 assigns to
a divisor class the dimension of the vector space of its associated global sections. The
two distinguished elements h, k ∈ N(X) correspond to the class of hyperplane sections
and the canonical class, respectively. We call a divisor class c ∈ N(X) indecomposable if
h0(c) > 0 and if there do not exist nonzero a, b ∈ N(X) such that c = a + b, h0(a) > 0
and h0(b) > 0. The subset of indecomposable (−2)-classes in N(X) is defined as

B(X) ∶= {c ∈ N(X) ∣ −k ⋅ c = 0, c2 = −2 and c is indecomposable}.

We use the following shorthand notation for elements in B(X):

b i j ∶= �0 − ε i − ε j , b′i j ∶= �1 − ε i − ε j , b1 ∶= ε1 − ε3 , and b2 ∶= ε2 − ε4 ,

and we underline the classes in {b ∈ B(X) ∣ σ(b) = b}. A (projected) weak dP6 is (a
degree preserving linear projection of) an anticanonical model of P1 × P1 blown up in
two complex points that lie in a fiber of a projection P1 × P1 → P1. We call X ⊂ S3 a CH1
cyclide, if X(R) ⊂ S3 is an inverse stereographic projection of a circular hyperboloid of
one sheet.

Theorem A (2019) Suppose that X is a celestial surface of type T(X) = (λ, d , n). We
use Notation 14.
a) If either λ = ∞, d > 4, ∣S(XN)∣ > 2 or ∣B(X)∣ > 3, then T(X), S(XN), B(X) and the

name of X is characterized by a row in the Table 15, where 3 ≤ n ≤ 7 and 4 ≤ m ≤ 5.
b) If λ < ∞, then the class h of hyperplane sections of X is equal to the anticanonical class

−k and without loss of generality equal to either 2 �0 + 2 �1, 2 �0 + 2 �1 − ε1 − ε2 or
2 �0 + 2 �1 − ε1 − ε2 − ε3 − ε4. If λ = ∞, then either h = − 2

3 k and k2 = 9, or h = − 1
2 k

and k2 = 8.
c) If λ < ∞, then the smooth model X̃ is isomorphic to the blowup of P1 × P1 in either

0, 2, or 4 nonreal complex conjugate points. These points may be infinitely near, but
at most two of the noninfinitely near points lie in the same fiber of a projection from
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T(X) S(XN) B(X) name

(∞, 4, 4) ∅ ∅ Veronese surface

(∞, 2, 2) ∅ ∅ Two-sphere

(2, 8, n) ∅ ∅ (Projected) dS

(3, 6, m) ∅ ∅ (Projected) dP6

(2, 6, m) A1 {b12} (Projected) weak dP6

(4, 4, 3) 4A1 {b13 , b24 , b′14 , b′23} Ring cyclide

(2, 4, 3) 2A1 + 2A1 {b13 , b24 , b′12 , b′34} Spindle cyclide

(2, 4, 3) A3 + 2A1 {b13 , b24 , b′12 , b1 , b2} Horn cyclide

(3, 4, 3) A1 + 2A1 {b13 , b24 , b′12} CH1 cyclide

Table 15: See Theorem A.

P1 × P1 to P1. The pullback into X̃ of a fiber that contains two points is contracted to
an isolated singularity of the linear normalization XN .

Proof of Proposition 7 and Corollary 8 Let X ⊆ Sn be a λ-circled toric celestial
surface of degree d that is covered by at least two toric families of circles. The lattice
polygon of X contains i interior and b boundary lattice points.

Claim 1: (i , b, d) ∈ {(0, 4, 2), (0, 6, 4), (1, 4, 4), (1, 6, 6), (1, 8, 8)} and λ = ∞ if i =
0. We know from [2, Propositions 10.5.6 and 10.5.8] that i and b are equal to the sec-
tional genus pa(h) = 1

2 (h2 + k ⋅ h) + 1 and anticanonical degree −k ⋅ h, respectively
(see also [5]). This claim now follows from Theorem Ab.

Claim 2: The lattice polygon of X is, up to unimodular equivalence, preserved by the
unimodular involution σ ∶ Z2 → Z2 that is defined by either σ0, σ1, σ2, or σ3. This claim
follows from Lemma 13.

Claim 3: A boundary line segment of the lattice polygon of X, that contains no more
and no less than two lattice points, is not left invariant by the unimodular involution
σ ∶ Z2 → Z2. Up to unimodular equivalence, we may assume that the two lattice points
on a boundary line segment have coordinates (0, 0) and (0, 1), and that the remaining
lattice points of the polygon lie strictly on the right side of these two points. Without
loss of generality, the two lattice points correspond to the first two components s0u0

and s0u1 of a monomial parametrization ξ∶ T2 → XN so that ξ(0, u) = (1 ∶ u ∶ 0 ∶ ⋯ ∶
0) parametrizes a line in XN . This line is either linear equivalent or linearly projected
to a line in X. We conclude that claim 3 holds, since X(R) ⊆ Sn does not contain real
lines.

Claim 4: If d ≠ 2, then the lattice polygon of X attains its minimal width along at least
two directions that are left invariant by the unimodular involution σ ∶ Z2 → Z2. Indeed,
recall that such a direction corresponds to a toric family of circles.

Claim 5: If the lattice polygon of X is contained in a 3 × 3 grid centered at the origin,
then L(X) together with T(X) and the name of X is in Table 9 or Table 10. For each real
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structure σ and pair (i , b) listed at claims 1 and 2, we list up to equivalence all lattice
polygons in the 3 × 3 grid that are left invariant by σ and that have i interior and b
boundary lattice points. Of these polygons, we discard those that contradict claim 3
or claim 4. For example, we exclude the lattice types in Table 10c,d as they contradict
claim 4 and the lattice polygon of Table 10d together with unimodular involution σ0
would contradict claim 3. We find that a candidate for L(X) is equivalent to one
of Table 9 or Table 10a,b. We recover ∣S(XN)∣ from the monomial parametrization
associated to the lattice polygon. For each lattice type in Table 9 and Table 10a,b, we
apply claim 1 and find that either λ = ∞, d > 4, or ∣S(XN)∣ > 2. It follows that the name
and celestial type of X correspond to a row of Theorem Aa. If L(X) is Table 9d or Table
10c, then X is a Veronese surface by Definition 4 as the monomials associated to its
lattice polygon span a basis for vector space of degree 2 forms on P2. If L(X) is Table
9h, then X is a two-sphere by claim 1. If L(X) is Table 9e, then there are 4 directions
and thus 4 ≤ λ < ∞ so that X must be a ring cyclide. If L(X) is Table 9f or Table 9g,
then X is a spindle cyclide and horn cyclide, respectively (see forward Example 35).
This concludes the proof of claim 5.

Claim 6: The lattice polygon of X is contained in a 3 × 3 grid centered at the origin. If
λ = ∞ or d > 4, then it follows from Theorem Aa, that XN is unique up to projective
equivalence and thus its lattice type is already realized in Table 9 or Table 10 at claim
5. If λ < ∞, then the lattice polygon of X must be one of [2, Theorem 8.3.7] such that
(i , b) is as in claim 1. It follows that claim 6 holds.

Claim 7: Corollary 8 holds. Notice that X is covered by two families of conics that
contain real points. Therefore, the real structure of a celestial double Segre surface
must be inner automorphic to σ+ × σ+ by Lemma 12b so that Corollary 8a holds.
Corollary 8b is a consequence of Lemma 12c.

We concluded the proof of Proposition 7, since it follows from claims 5, 6, and 7
that L(X), T(X) and the name of X is up to equivalence characterized by one of the
eight cases in Table 9. ∎

3 Embeddings of P1
× P1

In this section, we give explicit coordinates for double Segre surfaces, which are
embeddings of P1 × P1 into P8. We describe how real structures and projective
automorphisms act on these embeddings.

We denote the vector space of quadratic forms in the ideal I(X) of a surface X as

I2(X) ∶= ⟨q ∈ I(X) ∣ deg q = 2⟩
C

.

Lemma 16 If X is a toric celestial surface, then dim I2(XN) for the linear normalization
XN is as follows:

Table 9: a b c d e f g h

dim I2(XN): 20 9 9 6 2 2 2 1 .

Proof The dimension of the space U of quadratic forms vanishing on XN ⊂ Pm is
equal to h0(2h), where h is the class of hyperplane sections. The dimension of the
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Table 17: Coordinates for lattice points.

space W of quadratic forms in Pm is equal to (2+m
2 ). Thus, we find that

dim I2(XN) = dim W/U = dim W − dim U = (2 + m
2

) − h0(2h).

We obtain h0(2h) = 1
2 (4 h2 − 2 h ⋅ k) + 1 as a straightforward consequence of Theo-

rem Ac, Riemann–Roch theorem and Kawamata–Viehweg vanishing theorem. The
main assertion now follows from Theorem Ab. ∎

Let Y⋆ ⊂ P8 denote the linear normalization of the double Segre surface with lattice
polygon as in Table 9a. We consider the left coordinates in Table 17 so that we obtain
the parametric map

ξ∶ T2 → Y⋆ ⊂ P8 , (s, u) ↦
(1 ∶ s ∶ s−1 ∶ u ∶ u−1 ∶ su ∶ s−1u−1 ∶ su−1 ∶ s−1u)

= (y0 ∶ y1 ∶ y2 ∶ y3 ∶ y4 ∶ y5 ∶ y6 ∶ y7 ∶ y8).

Using ξ, we find the following 20 generators for the vector space of quadratic forms
on Y⋆ and it follows from Lemma 16 that these form a basis:

I2(Y⋆) = ⟨y2
0 − y1 y2 , y2

0 − y3 y4 , y2
0 − y5 y6 , y2

0 − y7 y8 , y2
1 − y5 y7 , y2

2 − y6 y8 ,
y2

3 − y5 y8 , y2
4 − y6 y7 , y0 y1 − y4 y5 , y0 y2 − y3 y6 , y0 y3 − y2 y5 , y0 y4 − y1 y6 ,

y0 y1 − y3 y7 , y0 y2 − y4 y8 , y0 y3 − y1 y8 , y0 y4 − y2 y7 , y0 y5 − y1 y3 ,
y0 y6 − y2 y4 , y0 y7 − y1 y4 , y0 y8 − y2 y3⟩C .

Lemma 18 (real structures for P8) Let i denote the imaginary unit. The maps σi ∶ P8 →
P8 and μ i ∶ P8 → P8 which are defined by

σ0 ∶ y ↦ (y0 ∶ y1 ∶ y2 ∶ y3 ∶ y4 ∶ y5 ∶ y6 ∶ y7 ∶ y8),
σ1 ∶ y ↦ (y0 ∶ y2 ∶ y1 ∶ y3 ∶ y4 ∶ y8 ∶ y7 ∶ y6 ∶ y5),
σ2 ∶ y ↦ (y0 ∶ y2 ∶ y1 ∶ y4 ∶ y3 ∶ y6 ∶ y5 ∶ y8 ∶ y7),
σ3 ∶ y ↦ (y0 ∶ y3 ∶ y4 ∶ y1 ∶ y2 ∶ y5 ∶ y6 ∶ y8 ∶ y7),
μ0∶ x ↦ x ,
μ1 ∶ x ↦ (x0 ∶ x1 + ix2 ∶ x1 − ix2 ∶ x3 ∶ x4 ∶ x5 + ix8 ∶ x7 − ix6 ∶ x7 + ix6 ∶ x5 − ix8),
μ2 ∶ x ↦ ( x0

2 ∶ x1 + ix2 ∶ x1 − ix2 ∶ x3 + ix4 ∶ x3 − ix4 ∶ x5 + ix6 ∶ x5 − ix6 ∶ x7 − ix8 ∶ x7 + ix8),
μ3 ∶ x ↦ (x0 ∶ x3 − ix1 ∶ x2 + ix4 ∶ x3 + ix1 ∶ x2 − ix4 ∶ x5 ∶ x6 ∶ x8 − ix7 ∶ x8 + ix7),
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make the following diagram commute for all 0 ≤ i ≤ 3:

T2 Y⋆ X i

T2 Y⋆ X i

σ i

ξ

σ i

μ−1
i

σ0

ξ μ−1
i

where Xi ∶= μ−1
i (Y⋆) and real structure σi ∶ T2 → T2 is defined in Lemma 13.

Proof The specification of σi ∶ Y⋆ → Y⋆ for 0 ≤ i ≤ 3 follows from the action on the
lattice coordinates in Table 17 (recall Notation 6). It is straightforward to verify that
μ−1

i makes the diagram commute. ∎
Remark 19 Recall from Corollary 8, Notation 11, and Lemma 12 that the real
structures σi ∶ Y⋆ → Y⋆ for 0 ≤ i ≤ 2 are inner automorphic to σ+ × σ+ via Aut(P1 × P1)
so that X i ≅ S1 × S1 in these cases. Notice that σ3∶ Y⋆ → Y⋆ is via Aut(P1 × P1) inner
automorphic to σs so that X3 ≅ S2.

The surface X2 from Lemma 18 is contained in S7. Indeed, if we compose the first
four generators of I2(Y⋆) with μ2, then

(y2
0 − y1 y2) ○ μ2 = 1

4 x2
0 − x2

1 − x2
2 , (y2

0 − y5 y6) ○ μ2 = 1
4 x2

0 − x2
5 − x2

6 ,

(y2
0 − y3 y4) ○ μ2 = 1

4 x2
0 − x2

3 − x2
4 , (y2

0 − y7 y8) ○ μ2 = 1
4 x2

0 − x2
7 − x2

8 ,

and their sum is the equation of S7.
We extend ξ∶ T2 → Y⋆ such that we obtain the biregular isomorphism

ξ̃∶ P1 × P1 → Y⋆ , (s ∶ t; u ∶ w) ↦
(stuw ∶ s2uw ∶ t2uw ∶ stu2 ∶ stw2 ∶ s2u2 ∶ t2w2 ∶ s2w2 ∶ t2u2)

= (y0 ∶ y1 ∶ y2 ∶ y3 ∶ y4 ∶ y5 ∶ y6 ∶ y7 ∶ y8),

and thus Aut○(Y⋆) ≅ Aut○(P1 × P1).

Lemma 20 Aut○(P1 × P1) ≅ Aut○(P1) × Aut○(P1).

Proof Automorphisms in the identity component Aut○(P1 × P1) act trivially on the
Neron–Severi lattice N(P1 × P1) = ⟨�0 , �1⟩Z, where generators �0 and �1 are the classes
of the fibers of the first and second projection of P1 × P1 to P1. Thus a fiber of π i is
mapped by φ ∈ Aut○(P1 × P1) as a whole to a fiber of π i for all 1 ≤ i ≤ 2 so that the
main assertion is concluded. We remark that Aut○(P1) ≅ PSL(2,R) ⊊ PGL(2,R) ≅
Aut(P1). ∎

We associate to φ = (φ1 , φ2) ∈ Aut○(P1) × Aut○(P1) an automorphism

S(φ) ∶= Sym2(φ1) ⊗ Sym2(φ2) ∈ Aut○(Y⋆) ⊂ Aut○(P8).

We can compute S(φ) via the following specification:

S(φ)∶ Y⋆ → Y⋆ , ξ̃(p) ↦ (ξ̃ ○ φ)(p),(1)

for all p ∈ P1 × P1 ≅ Y⋆.
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Example 21 (toric automorphisms ofP1 × P1) Since φ ○ ξ∶ T2↪Y⋆ defines an embed-
ding of the algebraic torus T2 for all automorphisms φ ∈ Aut(Y⋆), the double Segre
surface Y⋆ does not have a unique toric structure. Let AutT○ (Y⋆) denote the identity
component of the toric automorphisms with respect to ξ. We have the following
parametrization:

ϕ∶ T2 ≅→ AutT○ (Y⋆), (s, u) ↦ B(u) ○ A(s), where

A(α) ∶= S([α 0
0 α−1] , [1 0

0 1]) and B(α) ∶= S([1 0
0 1] , [α 0

0 α−1]) .

Suppose that the real structure of Y⋆ is defined by σ2 in Lemma 18. It follows from
Lemma 13 that {p ∈ T2 ∣ σ2(p) = p} ≅ S1 × S1 and thus

ϕ∶ S1 × S1 ≅→ AutT○ (Y⋆), ( (cos(α), sin(α)), (cos(β), sin(β)) ) ↦

S([cos(α) + i sin(α) 0
0 cos(α) − i sin(α)] , [cos(β) + i sin(β) 0

0 cos(β) − i sin(β)]) .

Let μ2∶ P8 → P8 be as defined in Lemma 18. From the composition of ϕ with the
pullback μ∗2 ∶ AutT○ (Y⋆) → AutT○ (X2) we obtain

μ∗2 ○ ϕ∶ S1 × S1 → AutT○ (X2), ( (cos(α), sin(α)), (cos(β), sin(β)) ) ↦

S([cos(α) − sin(α)
sin(α) cos(α) ] , [cos(β) − sin(β)

sin(β) cos(β) ]) .

Notice that the real structure of X2 ⊂ S7 is defined by σ0 in Lemma 18 and that
AutT○ (X2) ≅ PSO(2) × PSO(2).

4 Blowups of P1
× P1

The smooth model of a celestial surface that is not ∞-circled is either P1 × P1 or the
blowup ofP1 × P1 in two or four points. Such a blowup is realized by a linear projection
of the double Segre surface Y⋆ in P8. The automorphisms of the image surface induce
automorphisms of P1 × P1 that leave the center of blowup invariant. This allows us
to formulate restrictions on the possible Möbius automorphism groups of celestial
surfaces. In particular, we find that celestial surfaces with many symmetries must be
toric.

Proposition 22 (blowups of P1 × P1) If a celestial surface X ⊂ Sn is not ∞-circled and
dim Aut○(X) ≥ 2, then its linear normalization XN is a toric surface, each family of
circles on X is toric, and Aut○(X) embeds as a subgroup into Aut○(P1) × Aut○(P1).
Moreover, there exists a birational linear projection

ρ∶ Y⋆ ⊂ P8⇢X ⊂ Pn+1 ,

whose center of projection is characterized by a row in Table 23 together with T(X),
S(XN) and the projections of Aut○(X) to a subgroup of Aut○(P1).

Proof By Theorem Ac,b, the smooth model X̃ is isomorphic to the blowup of P1 ×
P1 in a center Λ such that ∣Λ∣ ∈ {0, 2, 4} and XN is its anticanonical model. Hence
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Table 23: See Proposition 22. The possible configurations of the center of blowup
Λ ⊂ P1 × P1 realized by the birational linear projection ρ∶ Y⋆⇢X via the isomorphism
P1 × P1 ≅ Y⋆. At the entries for T(X) we have 3 ≤ n ≤ 7 and 4 ≤ m ≤ 5. Since Aut○(X)
embeds into Aut○(P1) × Aut○(P1), we find that the projection π i(Aut○(X)) is a
subgroup of Aut○(P1) for i ∈ {1, 2}. An entry for π1(Aut○(X)) and π2(Aut○(X))
denotes the maximal possible subgroup. The vertical and horizontal line segments
in the diagrams represent fibers of the projections π i ∶ P1 × P1 → P1 for i ∈ {1, 2}.
The complex conjugate points q and q in diagram (f) are infinitely near to p and
p, respectively. A fiber that contains two centers of blowup is contracted by ρ to an
isolated singularity of X.

Aut○(XN) ≅ Aut○(X̃) and thus Aut○(X) defines a subgroup of Aut○(X̃). Moreover,
Aut○(X̃) is isomorphic to a subgroup of Aut○(P1 × P1)whose action leaves the blowup
center Λ invariant. It now follows from Lemma 20 that Aut○(X) is isomorphic to a
subgroup of

{φ ∈ Aut○(P1) × Aut○(P1) ∣ φ(π1(Λ), π2(Λ)) = (π1(Λ), π2(Λ))} ,

where π1 and π2 denote the projections of P1 × P1 to its P1 factors. We will denote the
projections of Aut○(P1) × Aut○(P1) to its Aut○(P1) factors, by π1 and π2 as well.
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We claim that ∣π1(Λ)∣ ≤ 2 and ∣π2(Λ)∣ ≤ 2. Suppose by contradiction that ∣π1(Λ)∣ >
2 so that ∣Λ∣ = 4. Let π1(Aut○(X)) and π2(Aut○(X)) denote the subgroups of
Aut○(P1) that preserve π1(Λ) and π2(Λ), respectively. Recall that Aut○(P1) is three-
transitive and thus dim π1(Aut○(X)) = 0. By assumption, dim Aut○(X) ≥ 2, hence
∣π2(Λ)∣ = 1 and dim Aut○(X) = dim π2(Aut○(X)) = 2. By Theorem Ac, at most two
noninfinitely near points lie in the same fiber and these points are nonreal. Thus Λ
consists of two complex conjugate points and two infinitely near points. We arrived
at a contradiction as π2(Aut○(X)) must be a proper subgroup of PSA(1) so that
π2(Aut○(X)) ≅ PSE(1).

As ∣π1(Λ)∣ ≤ 2, ∣π2(Λ)∣ ≤ 2 and Λ does not contain real points, it follows that all
possible configurations of Λ together with π1(Aut○(X)) and π2(Aut○(X)) are listed
in Table 23. Moreover, since the algebraic torus T1 embeds into P1/π i(Λ) such that
Aut○(T1) extends to a subgroup of π i(Aut○(X)) for i ∈ {1, 2}, we deduce that XN
must be toric.

The bidegree (2, 2) forms define an isomorphism P1 × P1 → Y⋆ ⊂ P8. Since XN is
an anticanonical model, the bidegree (2, 2) forms that pass through the blowup center
Λ, define a birational map P1 × P1⇢XN ⊂ Pr for some n + 1 ≤ r ≤ 8. Assigning linear
conditions to the forms, so that they pass through Λ, corresponds to a linear projection
f ∶ Y⋆ ⊂ P8⇢XN ⊂ Pr . It follows from the definition of linear normalization that there
exists a degree preserving linear projection g∶ XN → X. We now define ρ∶ Y⋆⇢X as the
composition of f with g. Notice that Y⋆ ≅ P1 × P1 and thus we may interpret the blowup
center Λ instead as the center of projection of ρ. It follows from Theorem Ac that the
fibers that contain two points in Λ are contracted via ρ to an isolated singularity of X.

We assume without loss of generality that the generators �0 and �1 as defined at
Notation 14 are the classes of the pullbacks to X̃ of the fibers of π1 and π2, respectively.
The generators ε1, ε2, ε3, and ε4 are the classes of the pullbacks of (−1)-curves that
contract to the points p, p, q, and q, respectively. For each configuration of Λ we obtain
an explicit description of B(X). For example, if Λ is as in Table 23f, then b1 ∈ B(X)
since q is infinitely near to p, and b12 ∈ B(X) since p and p lie in a real fiber of π2, and so
on. Notice that S(XN) corresponds to the Dynkin diagram with vertex set B(X) and
edge set {(a, b) ∣ a ⋅ b > 0}. We find that ∣B(X)∣ > 3 in each case and thus the values
at the T(X), S(XN) and name columns are a direct consequence of Theorem Aa.

If any two choices for the blowup center Λ are characterized by the same row of
Table 23, then these choices are equivalent up to Aut(P1 × P1). It follows that the
linear normalization XN ⊂ Pr is up to Aut(Pr) uniquely determined by the name of
the celestial surface X, and thus L(X) is up to equivalence determined by this name as
well. We now apply Proposition 7 and find by comparing Table 23 with Table 9, that
each family of circles on X is realized by some toric family. ∎
Remark 24 (toric projections of the double Segre surface) Recall that a lattice poly-
gon in Table 9 defines, up to projective isomorphism, a monomial parametrization of
the linear normalization of a toric celestial surface. The inclusion of lattice polygons
with the same unimodular involution defines an arrow reversing projection between
the corresponding toric models. The corresponding toric projection is defined by
omitting components of the monomial parametrization associated to the bigger lattice
polygon such that the exponents of the remaining components define the lattice points
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of the smaller lattice polygon. Thus toric surfaces with lattice types b, c, e, f, g in Table 9
are toric projections of b, a, b, a, a in Table 10, respectively. We will use this concept in
Example 25, Example 35, and in the proof of Lemma 37.

Example 25 (dP6 as the image of a toric projection) Suppose that Y⋆ ⊂ P8 and Z ⊂ P6

have lattice types as in Table 10b and Table 9b, respectively. Thus the real structure of
Y⋆ is defined by σ2 in Lemma 18. We use the left coordinates of Table 17 and omit the
monomial components corresponding to y5 and y6 coordinates such that

ξb ∶ T2 → Z ⊂ P6 , (s, u) ↦(1 ∶ s ∶ s−1 ∶ u ∶ u−1 ∶ su−1 ∶ s−1u)
= (y0 ∶ y1 ∶ y2 ∶ y3 ∶ y4 ∶ y7 ∶ y8).

Let the projective isomorphism μ2∶ P6 → P6 be a restriction of μ2 as defined in
Lemma 18. We find that X ∶= μ2(Z) is contained in S5 and has celestial type
(3, 6, 5) (see Figure 1). The center of the linear projection ρ∶ P8⇢P6 is a line
that intersects Y⋆ transversely in p = (0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 1 ∶ 0 ∶ 0 ∶ 0) and its complex
conjugate p = σ2(p) = (0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 1 ∶ 0 ∶ 0). We remark that σ2∶ Y⋆ → Y⋆ is
inner automorphic to σ0 via Aut(Y⋆) by Corollary 8a. The projection ρ realizes a
blowup of P1 × P1 ≅ Y⋆ with centers p and p as in Table 23b. Notice that Aut○(Z) ≅
{φ ∈ Aut○(P1 × P1) ∣ φ(p) = p, φ(p) = p}, since ρ is an isomorphism almost every-
where. Recall that Aut○(P1 × P1) ≅ Aut○(P1) × Aut○(P1) by Lemma 20 and thus
π1(Aut○(Z)) ≅ π2(Aut○(Z)) ≅ PSO(2) as it is stated in Table 23b.

5 Invariant quadratic forms on P1
× P1

In this section, we reformulate the problem of classifying Möbius automorphism
groups of celestial surfaces, into the problem of finding invariant quadratic forms of
given signature in a vector space.

Suppose that Y ⊂ Pm is a surface such that Aut(Y) ⊂ Aut(Pm). For example, Y ⊂
P8 is the double Segre surface or Y ⊂ P5 is the Veronese surface. Suppose that we have
a birational linear projection with m ≥ n + 1 ≥ 3:

ρ∶ Y ⊂ Pm⇢X ⊂ Sn ⊂ Pn+1 .

The Möbius pair of X with respect to ρ is defined as

(Y , Q) where Q ⊂ Pm is the Zariski closure of ρ−1(Sn).

Notice that Q is a hyperquadric of signature (1, n + 1) such that Y ⊂ Q and such that
the singular locus of Q coincides with the center of the linear projection ρ. We define
the following equivalence relation on Möbius pairs:

(Y , Q) ∼ (Y , Q′) ∶⇔ ∃φ ∈ Aut(Pm)∶ φ(Y) = Y and φ(Q) = Q′ .

Suppose that G ⊆ Aut○(Y) is a subgroup. The vector space of G-invariant quadratic
forms in the ideal I(Y) of Y is defined as

IG
2 (Y) ∶= ⟨q ∈ I2(Y) ∣ q ○ φ = q for all φ ∈ G⟩

C
,
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where we assume that φ ∈ G ⊂ PSL(m + 1) is normalized to have determinant one.
Notice that the real structure σ ∶ Y → Y induces an antiholomorphic involution on
IG

2 (Y). We denote the zeroset of a form q ∈ I(Y) by V(q).

Proposition 26 (properties of Möbius pairs) Let (Y , Q) and (Y , Q′) be the Möbius
pairs of surfaces X ⊂ Sn and X′ ⊂ Sn , respectively.
a) There exists α ∈ Aut(Sn) with α(X) = X′ if and only if (Y , Q) and (Y , Q′) are

equivalent. In particular, we have that

M(X) ≅ {φ ∈ Aut○(Pm) ∣ φ(Y) = Y and φ(Q) = Q}.

b) The subgroup G ⊆ Aut○(Y) is isomorphic to a subgroup of M(X) if and only if Q =
V(q) for some q ∈ IG

2 (Y).
c) If G , G′ ⊂ Aut○(Y) are inner automorphic subgroups and q ∈ IG

2 (Y), then there
exists q′ ∈ IG′

2 (Y) such that (Y , V(q)) and (Y , V(q′)) are equivalent as Möbius
pairs.

Proof a) Let ρ∶ Pm⇢Pn+1 be a birational linear projection such that ρ(Q) = Sn and
ρ(Y) = X. Similarly, let ρ′∶ Pm⇢Pn+1 be such that ρ′(Q′) = Sn and ρ′(Y) = X′.

⇒: We show that there exists φ ∈ Aut(Pm) such that the following diagram com-
mutes:

Y Q Q′ Y

X Sn Sn X′
ρ ρ

φ

ρ′ ρ′

α

If m = n + 1, then ρ and ρ′ are projective isomorphisms and the claim follows immedi-
ately. If m > n + 1, then the centers of the linear projections ρ and ρ′ coincide with the
singular loci S(Q) and S(Q′) of Q and Q′, respectively. Let Λ, Λ′ ⊂ Y be the centers
of the projections ρ∣Y and ρ′∣Y , respectively. The linear isomorphism α induces via
the projections ρ and ρ′ the algebraic isomorphisms φ∣Q ∶ Q/S(Q) → Q′/S(Q′) and
φ∣Y ∶ Y/Λ → Y/Λ′. The automorphism α leaves the union of exceptional curves that
contract to points in Λ invariant, and thus we can extend φ∣Y so that φ ∈ Aut○(Y) and
φ(Λ) = Λ′. Since Aut(Y) ⊂ Aut(Pm) and since Q contains ρ−1(Sn) by assumption,
we find that φ ∈ Aut(Pm) such that φ(Q) = Q′ and φ(Y) = Y as was to be shown.

⇐: For the converse, we need to show that for given φ ∈ Aut(Pm), there exists α ∈
Aut(Sn) such that the above diagram commutes. This is immediate, since we define α
as the composition ρ′∣Q′ ○ φ ○ (ρ∣Q)−1.

The remaining assertion follows if we set Q′ ∶= Q and X′ ∶= X in the above diagram.
b) We first show the ⇐ direction. By assumption q ○ φ = q for all φ ∈

G. Since φ−1(V(q)) = {φ−1(x) ∈ Pm ∣ q(x) = 0} = V(q ○ φ), we find that G ⊆
{φ ∈ Aut○(Pm) ∣ φ(Y) = Y and φ(Q) = Q}. It now follows from a) that G embeds
as a subgroup into M(X). For the ⇒ direction, we again apply the characterization
of M(X) in a) and find that φ−1(Q) = Q and thus q ○ φ = q for all φ ∈ G so that
q ∈ IG

2 (Y).
c) Since q ∈ IG

2 (Y) the following holds for all φ ∈ G and α ∈ Aut(Y):

q ○ φ = q ⇔ q ○ φ ○ α = q ○ α ⇔ q ○ α ○ α−1 ○ φ ○ α = q ○ α.
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By assumption G′ = α−1 ○ G ○ α for some α ∈ Aut(Y) and thus for all φ′ ∈ G′, there
exists φ ∈ G such that φ′ = α−1 ○ φ ○ α. It follows that q′ ○ φ′ = q′ for all φ′ ∈ G′, where
q′ ∶= q ○ α so that q′ ∈ IG′

2 (Y). Thus

α−1(V(q)) = {α−1(x) ∈ Pm ∣ q(x) = 0} = V(q ○ α) = V(q′),

so that (Y , V(q)) is equivalent to (Y , V(q′)). ∎
The following theorem is essentially [3, Theorem 2.5] and allows us to compute

G-invariant quadratic forms via the Lie algebra Lie(G) of G.

Theorem B (DeGraaf–Pílniková–Schicho, 2009) Suppose that Y ⊂ Pm−1 is a variety
such that Aut○(Y) ⊂ Aut○(Pm−1). Let the one-parameter subgroup H ⊂ Aut○(Y) be
represented by an m × m matrix whose entries are smooth functions in the parameter
α such that det H(α) = 1 for all α and such that H(0) is the identity matrix. Let the
m × m matrix D in Lie(H) be the tangent vector (∂α H)(0) of H at the identity. Then
the H-invariant quadratic forms are

IH
2 (Y) = ⟨qA ∈ I2(Y) ∣ DT ⋅ A+ A ⋅ D = 0⟩

C
,(2)

where qA denotes the quadratic form x⊺ ⋅ A ⋅ x associated to the symmetric m × m
matrix A.

Proof We observe that IH
2 (Y) = ⟨qA ∈ I2(Y) ∣ H⊺ ⋅ A ⋅ H = A⟩

C
. Let us first assume

that H⊺ ⋅ A ⋅ H = A. We differentiate both sides of the equation with respect to α and
evaluate at 0 so that we obtain the necessary condition D⊺ ⋅ A+ A ⋅ D = 0. For the
converse, we assume that D⊺ ⋅ A+ A ⋅ D = 0. Thus G⊺ ⋅ A ⋅ G = B for some matrix B
where G = exp(αD) is a one-parameter subgroup. We differentiate both sides of the
equivalent equation G⊺ ⋅ A ⋅ G ⋅ exp(α) = B ⋅ exp(α) with respect to α and evaluate at
0 so that we obtain D⊺ ⋅ A+ A ⋅ D + A = B. It follows that A = B and we know from Lie
theory that H = G so that H⊺ ⋅ A ⋅ H = A as is required. ∎
Remark 27 (goal) Our goal is to classify subgroups G ⊆ Aut○(Y) up to inner auto-
morphism such that dim G ≥ 2 and IG

2 (Y) contains quadratic forms q of signature
(1, n + 1) with n ≥ 3. It follows from Proposition 26 that the Möbius pairs (Y , V(q))
for such q, correspond to the celestial surfaces X ⊂ Sn such that G is isomorphic to a
subgroup of M(X).

6 Automorphisms of P1
× P1

Motivated by Remark 27 with Y the double Segre surface Y⋆ ≅ P1 × P1, we would like
to classify Lie subgroups of Aut○(P1 × P1) up to inner automorphism. By Theorem B,
it is sufficient to classify Lie subalgebras of sl2 ⊕ sl2.

Let us first investigate real structures of sl2 ⊕ sl2. Consider the toric involutions
σi ∶ T2 → T2 in Lemma 13 with 0 ≤ i ≤ 3. By Lemma 18, these toric involutions induce
involutions on related algebraic structures (recall Notation 6): σi ∶ P1 × P1 → P1 × P1,
σi ∶ Aut○(P1 × P1) → Aut○(P1 × P1) and σi ∶ sl2 ⊕ sl2 → sl2 ⊕ sl2.
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Lemma 28 (real structures for sl2 ⊕ sl2) If

m ∶= ([a b
c d] , [e f

g h]) ∈ sl2 ⊕ sl2 ,

then

σ0(m) = ([a b
c d

] , [e f
g h

]) , σ1(m) = ([d c
b a

] , [e f
g h

]) ,

σ2(m) = ([d c
b a

] , [h g
f e

]) , σ3(m) = ([e f
g h

] , [a b
c d

]) ,

where σ0, σ1, σ2, and σ3 are real structures sl2 ⊕ sl2 → sl2 ⊕ sl2 induced by the corre-
sponding involutions in Lemma 13 and Lemma 18.

Proof Suppose that M ⊂ Aut○(P1 × P1) is a one-parameter subgroup such that m
is the tangent vector of M at the identity. The one-parameter subgroup σi(M)
has tangent vector σi(m) for all 0 ≤ i ≤ 3. We compute the representation S(M) ∈
Aut(P8) using (1), where the entries of M are set as indeterminates. Let L i denote the
9 × 9 permutation matrix corresponding to the induced antiholomorphic involution
σi ∶ P8 → P8 as stated in Lemma 18. It is immediate to verify that L−1

i ○ S(M) ○ L i =
S(σi(M)), where σi acts on Aut○(P1 × P1) as an involution and ⋅ denotes complex
conjugation. We conclude that the lemma holds, since the action of σi on m is the
same as the action of σi on M. ∎
Remark 29 The real structure σ2∶ sl2 ⊕ sl2 → sl2 ⊕ sl2 is inner automorphic to σH ∶=
α ○ σ2 ○ α−1, where

α ∶= [ i 0
0 −i] so that σH ([a b

c d] , [e f
g h]) = ([ d −c

−b a
] , [ h −g

− f e
]) .

The Lie algebra sl2 ⊕ sl2 with real structure σH is usually denoted by su2 ⊕ su2.
The real elements in su2 are skew Hermitian matrices. Similarly, sl2 ⊕ sl2 with real
structure σ1 can be identified with su2 ⊕ sl2(R).

Notation 30 We consider the following elements in sl2:

t ∶= [0 1
0 0] , q ∶= [0 0

1 0] , s ∶= [1 0
0 −1] , r ∶= [0 −1

1 0 ] , e ∶= [0 0
0 0] .

Recall that sl2 over the complex numbers is generated by ⟨t, q, s⟩, where the Lie
brackets of the generators are [t, q] = s, [t, s] = −2t, and [q, s] = 2q. We shall denote
(g , e) ∈ sl2 ⊕ sl2 by g1 and (e , g) ∈ sl2 ⊕ sl2 by g2 for all g ∈ sl2. Notice that sl2 ⊕ sl2 =
⟨t1 , q1 , s1 , t2 , q2 , s2⟩ where the Lie bracket acts componentwise.

Remark 31 Suppose that the real structure of sl2 ⊕ sl2 is defined by σ0 in Lemma 28.
In this case,

Lie(PSE(1)) = ⟨t⟩, Lie(PSX(1)) = ⟨s⟩, Lie(PSO(2)) = ⟨r⟩,
Lie(PSA(1)) = ⟨t, s⟩ and Lie(PSL(2)) = ⟨t, q, s⟩.
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These groups correspond to translations, scalings, rotations, affine transformations,
and projective transformations, respectively. Indeed the generators are the tangent
vectors at the identity of the following one-parameter subgroups:

t ↭ [1 α
0 1] , s ↭ [α + 1 0

0 (α + 1)−1] , r ↭ [cos(α) − sin(α)
sin(α) cos(α) ] .

Now suppose that the real structure of sl2 ⊕ sl2 is defined by σ2 in Lemma 28. In this
case, Lie(PSO(2)) = ⟨is⟩, since

is = [ i 0
0 −i] ↭ [cos(α) + i sin(α) 0

0 cos(α) − i sin(α)] .

See also Example 21.

Suppose that F is a Lie group. We call two Lie subalgebras g, h ⊂ Lie(F) (complex)
inner automorphic if there exists (complex) M ∈ F such that g = M−1 ⋅ h ⋅ M. Theorem
C and thus Corollary 32 follow from [4].

Theorem C (Douglas–Repka, 2016) A Lie subalgebra 0 ⊊ g ⊆ sl2 ⊕ sl2 is, up to flipping
the left and right factor, complex inner automorphic to either one of the following with
α ∈ C∗:

⟨t1⟩, ⟨s1⟩, ⟨t1 + t2⟩, ⟨t1 + s2⟩, ⟨s1 + αs2⟩, ⟨t1 , s1⟩, ⟨t1 , t2⟩, ⟨t1 , s2⟩, ⟨s1 , s2⟩,
⟨s1 + t2 , t1⟩, ⟨t1 + t2 , s1 + s2⟩, ⟨s1 + αs2 , t1⟩, ⟨t1 , q1 , s1⟩, ⟨t1 , s1 , t2⟩, ⟨t1 , s1 , s2⟩,
⟨s1 + αs2 , t1 , t2⟩, ⟨t1 + t2 , q1 + q2 , s1 + s2⟩, ⟨t1 , s1 , t2 , s2⟩, ⟨t1 , q1 , s1 , t2⟩,
⟨t1 , q1 , s1 , s2⟩, ⟨t1 , q1 , s1 , t2 , s2⟩, ⟨t1 , q1 , s1 , t2 , q2 , s2⟩.

Corollary 32 If g ⊆ sl2 ⊕ sl2 is a Lie subalgebra such that dimg ≥ 2 and g is not
complex inner automorphic to ⟨s1 , s2⟩, then g contains a subalgebra that is complex inner
automorphic to either ⟨t1⟩, ⟨t2⟩ or ⟨t1 + t2⟩.

7 The classification of P1
× P1

In a perfect world, we directly use Theorem B to compute for each Lie subalgebra
Lie(G) ⊆ sl2 ⊕ sl2, the vector space IG

2 (Y⋆) generated by G-invariant quadratic forms
on the double Segre surface Y⋆ ≅ P1 × P1. We would then proceed by classifying
quadratic forms in IG

2 (Y⋆) of signature (1, n + 1) as was suggested in Remark 27.
Unfortunately, there are two problems. Theorem C only provides the classification

of subalgebras of sl2 ⊕ sl2 up to complex inner automorphisms and thus the real
structure is not preserved. The second problem is that it is in general difficult to classify
quadratic forms in IG

2 (Y⋆) of fixed signature. For example, for what n ≥ 3, do there
exist quadratic forms of signature (1, n + 1) in the vector space IG

2 (X1) at Lemma 33c?
Lemma 36 plays a crucial role in circumventing these two problems using geomet-

ric arguments. We are able to prove Lemma 37, since the invariant quadratic forms
in Lemma 33a have a particularly nice basis. This section will end with a proof for
Theorem 1 and Corollary 2. In particular, we will see that the answer to the question
in the previous paragraph is n ∈ {3}.
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Lemma 33 (invariant quadratic forms for P1 × P1) Let the real structures σ0, σ1, σ2,
and σ3 for Lie algebras be as defined in Lemma 28. Let Y⋆, X0, X1, X2, and X3 be the
double Segre surfaces in P8 as defined in Lemma 18. We suppose that G is a Lie subgroup
of Aut○(Y⋆).
a) If Lie(G) = ⟨is1 , is2⟩ with real structure σ2, then G ≅ PSO(2) × PSO(2),

IG
2 (Y⋆) = ⟨y2

0 − y1 y2 , y2
0 − y3 y4 , y2

0 − y5 y6 , y2
0 − y7 y8⟩

C
, and

IG
2 (X2) = ⟨ 1

4 x2
0 − x2

1 − x2
2 , 1

4 x2
0 − x2

3 − x2
4 , 1

4 x2
0 − x2

5 − x2
6 , 1

4 x2
0 − x2

7 − x2
8⟩C .

b) If Lie(G) = ⟨is1 , s2⟩ with real structure σ1, then G ≅ PSO(2) × PSX(1),

IG
2 (Y⋆) = ⟨y2

0 − y1 y2 , y2
0 − y3 y4 , y2

0 − y5 y6 , y2
0 − y7 y8⟩

C
, and

IG
2 (X1) = ⟨x2

0 − x2
1 − x2

2 , x2
0 − x3x4 , x5x6 − x7x8 , x2

0 − x5x7 − x6x8⟩
C

.

c) If Lie(G) = ⟨is1 , t2⟩ with real structure σ1, then G ≅ PSO(2) × PSE(1),

IG
2 (Y⋆) = ⟨ y2

0 − y3 y4 , y2
4 − y6 y7 , y1 y6 − y2 y7 , 2y1 y2 − y5 y6 − y7 y8 ⟩

C
, and

IG
2 (X1) = ⟨ x2

0 − x3x4 , x2
4 − x2

6 − x2
7 , x1x6 − x2x7 , x2

1 + x2
2 − x5x7 − x6x8 ⟩

C
.

d) If Lie(G) = ⟨t1 , q1 , s1 , t2 , q2 , s2⟩ with real structure either σ0 or σ3, then G ≅
PSL(2) × PSL(2),

IG
2 (Y⋆) = ⟨ 2y2

0 − 2y1 y2 − 2y3 y4 + y5 y6 + y7 y8 ⟩C ,
IG

2 (X0) = ⟨ 2x2
0 − 2x1x2 − 2x3x4 + x5x6 + x7x8 ⟩C , and

IG
2 (X3) = ⟨ 2x2

0 − 4x2x3 − 4x1x4 + x5x6 + x2
7 + x2

8 ⟩C
Proof a) We know from Remark 31 that G ≅ PSO(2) × PSO(2), since is1 and is2 are
the tangent vectors of the following two one-parameter subgroups of Aut○(P1 × P1):

([cos(α) + i sin(α) 0
0 cos(α) − i sin(α)] , [1 0

0 1])&

([1 0
0 1] , [cos(α) + i sin(α) 0

0 cos(α) − i sin(α)]) .

Via the map ϕ∶ S1 × S1 → Aut○T(Y⋆) ⊂ Aut(P8) from Example 21, we obtain one-
parameter subgroups H1 and H2 of Aut○(P8). We use Theorem B to compute the
vector spaces IH1

2 (Y⋆) and IH2
2 (Y⋆) of invariant quadratic forms. Since Lie(G) =

⟨is1 , is2⟩, we have IG
2 (Y⋆) = IH1

2 (Y⋆) ∩ IH2
2 (Y⋆). In order to compute IG

2 (X2), we
compose the generators of IG

2 (Y⋆) with μ2 from Lemma 18. The proofs of b), c), and
d) are similar. The invariant quadratic forms can be computed automatically with [8,
moebius-aut]. ∎
Remark 34 It follows from Remark 19 that X3 is a two-uple embedding of S2 into
P8. Hence, X3 cannot be projectively equivalent to a celestial surface. We nevertheless
included the real structure σ3∶ Y⋆ → Y⋆ at Lemma 33d in order to prove Corollary 2. If
G ≅ PSL(2) × PSL(2), then σ3∶ sl2 ⊕ sl2 → sl2 ⊕ sl2, and thus σ3∶ G → G, is specified
in Lemma 28. Notice that in this case, {φ ∈ G ∣ σ3(φ) = φ} is three-dimensional and
not six-dimensional.
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Example 35 (spindle cyclide and horn cyclide) Let Zs ⊂ P4 be the image of the
monomial parametrization defined by Table 9f (spindle cyclide) using the left coor-
dinates in Table 17. Let Zh ⊂ P4 denote the image of the monomial parametrization
defined by Table 9g (horn cyclide). Recall from Remark 24, that both Zs and Zh are
toric projections of Y⋆. It follows from Lemma 16 that I2(Zs) is generated by the
generators of I2(Y⋆) that do not contain y i for i ∈ {5, 6, 7, 8}. Similarly, I2(Zh) is
generated by generators of I2(Y⋆) that do not contain y i for i ∈ {1, 2, 5, 8}. Thus

I2(Zs) = ⟨y2
0 − y1 y2 , y2

0 − y3 y4⟩C and I2(Zh) = ⟨y2
0 − y3 y4 , y2

4 − y6 y7⟩C .

Let μs and μh be restrictions of μ1∶ P8 → P8 in Lemma 18 as follows:

μs ∶ P4 → P4 , (x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4) ↦ (x0 ∶ x1 + ix2 ∶ x1 − ix2 ∶ x3 ∶ x4),
μh ∶ P4 → P4 , (x0 ∶ x3 ∶ x4 ∶ x6 ∶ x7) ↦ (x0 ∶ x3 ∶ x4 ∶ x7 − ix6 ∶ x7 + ix6).

We set Xs ∶= (αs ○ μs)−1(Zs) and Xh ∶= (αh ○ μh)−1(Zh), where

αs ∶ P4 → P4 , (x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4) ↦ (x4 ∶ x1 ∶ x2 ∶ 1√
2
(x0 − x3) ∶ 1√

2
(x0 + x3)),

αh ∶ P4 → P4 , (x0 ∶ x3 ∶ x4 ∶ x6 ∶ x7) ↦ ( 1√
2
x4 ∶ x3 ∶ −x0 − x3 ∶ x6 ∶ x7).

Notice that Xs , Xh ⊂ S3, since I2(Xs) = ⟨x2
1 + x2

2 − x2
4 , x2

0 − x2
3 − 2x2

4⟩C and

I2(Xh) = ⟨x2
4 + 2x0x3 + 2x2

3 , x2
0 + 2x0x3 + x2

3 − x2
6 − x2

7⟩C .

Let πh , πs ∶ S3⇢R3 be stereographic projections so that the projective closures of these
projections with the above coordinates are

π̃h ∶ S3⇢P3 , (x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4) ↦ (x0 − x3 ∶ x1 ∶ x2 ∶ x4),
π̃s ∶ S3⇢P3 , (x0 ∶ x3 ∶ x4 ∶ x6 ∶ x7) ↦ (x0 + x3 ∶ x4 ∶ x7 ∶ x6).

We verify that πh(Xs(R)) is a circular cone and that πs(Xh) is a circular cylinder
so that, by Definition 4, Xs and Xh are indeed a spindle cyclide and horn cyclide,
respectively. Notice that both πh and πs have a real isolated singularity as center of
projection. Since these isolated singular points have to be preserved by the Möbius
automorphisms, it follows from Section 1 that M(Xs) and M(Xh) are subgroups of
Euclidean similarities. The circular cone and the circular cylinder are unique up to
Euclidean similarities and thus D(Xs) = D(Xh) = 0. By Lemma 33b, the generators of
the vector space I2(Zs) are PSO(2) × PSX(1) invariant. Similarly, by Lemma 33c, the
generators of the vector space I2(Zh) are PSO(2) × PSE(1) invariant. Proposition 22
characterizes the projections from Aut○(Xs) and Aut○(Xh) to Aut○(P1). We conclude
that M(Xs) ≅ PSO(2) × PSX(1) and M(Xh) ≅ PSO(2) × PSE(1) so that Aut○(Xs) =
M(Xs) and Aut○(Xh) = M(Xh).

Lemma 36 (Möbius automorphism groups) If X ⊂ Sn is a λ-circled celestial surface
such that λ < ∞ and dim M(X) ≥ 2, then either
(1) M(X) ≅ PSO(2) × PSO(2) and Lie(M(X)) ⊂ sl2 ⊕ sl2 is, up to inner automor-

phism, equal to ⟨is1 , is2⟩ with real structure σ2 in Lemma 28,
(2) M(X) ≅ PSO(2) × PSX(1), T(X) = (2, 4, 3), S(X) = 2A1 + 2A1, D(X) = 0,

M(X) = Aut○(X) and X is a spindle cyclide, or
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(3) M(X) ≅ PSO(2) × PSE(1), T(X) = (2, 4, 3), S(X) = A3 + 2A1, D(X) = 0,
M(X) = Aut○(X) and X is a horn cyclide.

Proof In Proposition 22, we related P1 × P1 to X, via a birational linear projection
ρ∶ Y⋆⇢X, where Y⋆ ≅ P1 × P1. Recall from Remark 34 that the real structure of Y⋆,
that is via ρ compatible with the real structure of X, cannot be σ3. We know from
Lemma 20 that Aut○(P1 × P1) ≅ Aut○(P1) × Aut○(P1). The first and second projection
are denoted by π i ∶ P1 × P1 → P1 with i ∈ {1, 2}, and we denote the projections of
Aut○(P1) × Aut○(P1) to Aut○(P1) by π1 and π2 as well. The automorphisms of X in the
identity component factor via ρ through automorphisms of Y⋆ that leave the center
of projection Λ invariant. We make a case distinction on the configurations of Λ in
Table 23 were we identified Y⋆ with P1 × P1. By Proposition 22, these are all possible
configurations for Λ.

We first suppose that Λ is the empty-set as in Table 23a.
We consider the action of subgroups of the Möbius automorphism group M(X)

on P1 × P1. We start by showing that either Lemma 36.1 holds or there exists a one-
dimensional subgroup of M(X) whose action on P1 × P1 leaves a real fiber L of
π2 invariant and leaves a real point ĉ ∈ L on this fiber invariant. We write g ∼C h

and g ∼ h if Lie subalgebras g, h ⊂ sl2 ⊕ sl2 are complex and real inner automorphic,
respectively. Recall from Corollary 32 that if Lie(M(X)) ≁C ⟨s1 , s2⟩, then there exists
a one-dimensional Lie subgroup H ⊂ M(X) such that without loss of generality either
Lie(H) ∼C ⟨t2⟩ or Lie(H) ∼C ⟨t1 + t2⟩.

Suppose that Lie(M(X)) ∼C ⟨s1 , s2⟩ such that both π1(M(X)) and π2(M(X))
leave complex conjugate basepoints invariant while acting on P1. By Corollary 8a,
we may assume without loss of generality that the real structure of Y⋆ is defined
by σ2 in Lemma 18. The induced real structure on sl2 ⊕ sl2 is as in Lemma 28. It
follows from Remark 31 that Lie(M(X)) ∼ ⟨is1 , is2⟩, so that π i(M(X)) consists of
all automorphisms in Aut○(P1) that preserve two complex conjugate basepoints for
1 ≤ i ≤ 2. Hence, M(X) ⊆ PSO(2) × PSO(2) and since dim M(X) ≥ 2 by assumption
this must be an inclusion of connected Lie groups of the same dimension, so that
M(X) ≅ PSO(2) × PSO(2). We conclude that Lemma 36.1 holds in this case.

Suppose that Lie(M(X)) ∼C ⟨s1 , s2⟩ such that π2(M(X)) leaves real points invari-
ant while acting on P1. Thus there exists a subgroup H ⊂ M(X) such that Lie(H) ∼
⟨s2⟩ and the action of H on P1 × P1 leaves two real fibers L and L′ of π2 pointwise
invariant.

Suppose that Lie(H) ∼C ⟨t2⟩. It follows from Remark 31 that the action of H
on P1 × P1 leaves exactly one fiber L ∶= π−1

2 (u) pointwise invariant for some point
u ∈ P1. The number of fibers that are preserved are invariant under complex inner
automorphisms, and thus this fiber must be real so that Lie(H) ∼ ⟨t2⟩.

Suppose that Lie(H) ∼C ⟨t1 + t2⟩. Analogously as before we find that Lie(H) ∼
⟨t1 + t2⟩, since the action of H on P1 × P1 leaves M and L invariant, where M and
L are real fibers of π1 and π2, respectively. Moreover, the action leaves the real point
ĉ ∈ L invariant such that {ĉ} = M ∩ L.

Now suppose by contradiction that Lemma 36.1 does not hold. Notice that we
are still in the case where Λ = ∅ as in Table 23a. We showed that there exists a one-
dimensional subgroup H ⊂ M(X) such that either Lie(H) ∼ ⟨s2⟩, Lie(H) ∼ ⟨t2⟩ or

https://doi.org/10.4153/S0008414X20000693 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000693


66 N. Lubbes

Figure 3: Euclidean similarities acting on a stereographic projection of X(R). A dotted arrow
depicts the direction of the orbit of the point at the tail.

Lie(H) ∼ ⟨t1 + t2⟩. Moreover, the action of H on P1 × P1 leaves a real fiber L of π2
invariant as a whole and leaves a real point ĉ ∈ L invariant. The point ĉ corresponds
via ρ to a point c ∈ X such that c ∈ X(R) ⊂ Sn . We assume without loss of generality
that c is the center of a stereographic projection π ∶ Sn⇢Rn . Recall from Section 1
that H induces a one-dimensional subgroup of the Euclidean similarities of Rn that
leaves π(X(R)) invariant as a whole. We call fibers of π1 horizontal and fibers of π2
vertical, since they correspond to horizontal and vertical line segments in Table 23,
respectively. A horizontal/vertical fiber that meets ĉ correspond via ρ and π to a
horizontal/vertical line in π(X(R)). The horizontal/vertical fibers that do not meet ĉ
correspond to horizontal/vertical circles in π(X(R)). Let L ⊂ π(X(R)) be the vertical
line corresponding to the vertical fiber L. Thus L is the stereographic projection of the
set of real points in ρ(L) and the action of H on π(X(R)) leaves the lineL invariant as
a whole. The H-orbits of a general point on L and a general point on a horizontal fiber
corresponds to the H-orbits of points on L and some horizontal circle, respectively.
The directions of such orbits in a small neighborhood are illustrated in Figure 3a
if Lie(H) ∼ ⟨s2⟩ or Lie(H) ∼ ⟨t2⟩, and in Figure 3b if Lie(H) ∼ ⟨t1 + t2⟩. Suppose
that φ is a general Euclidean similarity in H. Recall that an Euclidean similarity
of Rn factors as a rotation, translation, and/or scaling. Notice that π(X(R)) is not
covered by lines and thus the scaling component of φ is trivial. It follows from Figure
3a,b that φ has a nontrivial rotational component. We arrived at a contradiction,
since the line L meets the horizontal circles and thus cannot be left invariant by
the action of H. We established that if Λ = ∅ as in Table 23a, then Lemma 36.1
holds.

For the next case, we suppose that Λ is as in Table 23b or Table 23d. It follows from
Proposition 22 that M(X) ⊆ PSO(2) × PSO(2) and since dim M(X) ≥ 2, we find as
before that M(X) ≅ PSO(2) × PSO(2). We know from Proposition 7 and Table 9b,e
that X has real structure σ2. Hence Lemma 36.1 holds as well for these cases.

If Λ is as in Table 23e or Table 23f, then X ⊂ S3 is either the spindle cyclide or
the horn cyclide. We showed in Example 35 that M(X) and D(X) are as asserted in
Lemma 36.2 and Lemma 36.3, respectively. The assertions for T(X) and S(X) follow
from Proposition 22. We remark that the fiber corresponding to L as considered for the
case Λ = ∅ is in this case contracted to an isolated singularity c ∈ X so that π(X(R))
is covered by lines.

Finally, we suppose by contradiction that Λ is as in Table 23c.
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Let L be the real vertical fiber of π2 spanned by the complex conjugate points p
and p as depicted in Table 23c. We first show that there exists a subgroup H ⊂ M(X)
whose action on P1 × P1 leaves L and the horizontal fibers invariant.

If Lie(M(X)) ∼C ⟨s1 , s2⟩, then the action of π2(M(X)) on P1 leaves π2(p) and
some other point r ∈ P1 invariant. Thus in this case, there exists a subgroup H ⊂
M(X) whose action on P1 × P1 leaves the vertical fibers L′ ∶= π−1

2 (r) and L pointwise
invariant, and leaves each horizontal fiber invariant as a whole. Now suppose that
Lie(M(X)) ≁C ⟨s1 , s2⟩. It follows from Corollary 32 that there exists a subgroup H ⊂
M(X) such that Lie(H) ∼C ⟨t1 + t2⟩ or Lie(H) ∼C ⟨t i⟩ for i ∈ {1, 2}. Since automor-
phisms ofP1 are three-transitive and ∣π1(Λ)∣ = 2, it follows that dim π1(M(X)) ≤ 1 and
Lie(H) ≁C ⟨t1⟩. Since dim M(X) ≥ 2 by assumption, we find that dim π2(M(X)) ≥ 1.
Therefore, there exists a subgroup H ⊂ M(X) such that Lie(H) ∼C ⟨t2⟩. In this case,
the action of H on P1 × P1 leaves L and the horizontal fibers invariant.

Since ∣Λ ∩ L∣ = 2, it follows that ρ(L) is an isolated singularity of X. We assume
without loss of generality that this isolated singularity c ∈ X(R) is the center of
stereographic projection π∶ Sn → Rn . We use the same notation as before and find that,
except for L, the horizontal fibers and vertical fibers correspond via ρ to horizontal
lines and vertical circles in π(X(R)) ⊂ Rn , respectively. We showed that there exists
a subgroup H ⊂ M(X) of Euclidean similarities whose action on π(X(R)) leaves the
horizontal lines invariant and sends vertical circles to vertical circles as in Figure 3c.
Thus, the orbit of a point in a vertical circle is a horizontal line. If we let the subgroup
of scalings or translations act on the spanning plane of a circle contained in π(X(R)),
then we obtain R3 so that X ⊂ S3. We arrived at a contradiction as T(X) is equal to
(2, 6, m), where m > 3 by Proposition 22.

We concluded the proof, as we considered all cases for Λ in Table 23. ∎
Lemma 37 (rotational Möbius automorphism group) If X ⊂ Sn is a λ-circled celestial
surface such that λ < ∞ and such that M(X) ≅ PSO(2) × PSO(2), then Theorem 1 holds
for X.

Proof Let (Y⋆ , Qc) denote the Möbius pair of X, where Qc is a hyperquadric of
signature (1, n + 1). The existence of this pair follows from Proposition 22, and we
denote the corresponding birational linear projection by ρ∶ Y⋆⇢X. By Corollary 8,
we may assume without loss of generality that the real structure of Y⋆ is defined by
σ2 in Lemma 18. We know from Proposition 26 that we may assume up to Möbius
equivalence that Qc = V(q) for some invariant quadratic form q ∈ IG

2 (Y⋆), where G
is isomorphic to PSO(2) × PSO(2). Thus it follows from Lemma 36 and Lemma 33a
that

Qc =
⎧⎪⎪⎨⎪⎪⎩

y ∈ P8 @@@@@@@ ∑
i∈{1,3,5,7}

c i (y2
0 − y i y i+1) = 0

⎫⎪⎪⎬⎪⎪⎭
,

for some coefficient vector c = (c1 ∶ c3 ∶ c5 ∶ c7) ∈ P3. The singular locus of Qc is
defined by

S(Qc) = ⋂
i∈I

{y ∈ P8 ∣ y i = y i+1 = 0} with I ∶= {i ∈ {1, 3, 5, 7} ∣ c i ≠ 0}.
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It follows from Lemma 18 that ρ factors as μ−1
t ○ ρ� and ρr ○ μ−1

2 as in the following
commutative diagram

Y⋆ X2

Z X

ρ�

μ−1
2

ρr

μ−1
t

Thus ρ� and ρr are birational linear projections, so that the real structures of Z and X
are induced by σ2∶ Y⋆ → Y⋆ and σ0∶ X2 → X2, respectively. The center of ρ� coincides
with the singular locus of Qc by the definition of Möbius pair and thus ρ� is a toric
projection (see Remark 24). The vector space IG

2 (Z) is generated by the generators of
IG

2 (Y⋆) that do not contain an element in {y i}i∈I ∪ {y i+1}i∈I as a variable. We obtain
the lattice type L(Z) by taking the convex hull of the lattice polygon that is obtained
by removing the lattice points of the polygon in Table 10b that are indexed by {y i}i∈I ∪
{y i+1}i∈I in Table 17.

We first want to determine the possible values for T(X), S(X), dimP(IG
2 (X)) and

whether M(X) is equal to Aut○(X). We make a case distinction on I ⊂ {1, 3, 5, 7}.
Notice that ∣I∣ ≤ 2, otherwise the resulting lattice polygon is one-dimensional.
• If I = ∅, then T(X) = (2, 8, 7), S(X) = ∅, dimP(IG

2 (X)) = 3, and M(X) ⊊ Aut○(X)
as a direct consequence of the definitions.

• If I ∈ {{1}, {3}}, then L(Z) is as in Table 10b, T(X) = (2, 8, 5) and M(X) ⊊
Aut○(X). Notice that if I = {3}, then the surface Z is projectively isomorphic to
the surface obtained with I = {1}. If I = {1}, then, as discussed before, we omit
the generators of IG

2 (Y⋆) that contain y1 or y2 as variable and find that IG
2 (Z) =

⟨y2
0 − y3 y4 , y2

0 − y5 y6 , y2
0 − y7 y8⟩C so that dimP(IG

2 (X)) = 2. We conclude from
the monomial parametrization ρ� ○ ξ∶ T2 → Z that S(Z) = ∅ and thus S(X) = ∅.

• If I ∈ {{5}, {7}}, then T(X) = (3, 6, 5) and L(Z) is equivalent to Table 9b. It follows
from Proposition 22 that M(X) = Aut○(X) and S(X) = ∅. As before we verify that
dimP(IG

2 (X)) = 2.
• If I ∈ {{1, 5}, {1, 7}, {3, 5}, {3, 7}, {5, 7}}, then T(X) = (4, 4, 3) and L(Z) is equiv-

alent to Table 9e. It follows from Proposition 22 that M(X) = Aut○(X) and S(X) =
4A1. We verify that dimP(IG

2 (X)) = 1 as before.
• If I = {1, 3}, then the lattice points corresponding to y0, y5, y6, y7 and y8 in

Table 17, correspond after the unimodular transformation (x , y) ↦ (x − y, y + x)
to a 2:1 monomial map ξe(s2 , t2) such that the lattice type of the monomial
parametrization ξe(s, t) is as in Table 9e. Thus L(Z) is equivalent to Table 9e and we
may assume without loss of generality that I = {5, 7} which we already considered.

We verify that X is in all five cases biregular isomorphic to its linear normalization
XN . We know from Proposition 22 that XN is toric and thus X is toric as well.

It remains to show that D(X) = dimP(IG
2 (X)). It follows from Proposition 26a

that (Y⋆ , Qc) and (Y⋆ , Qc′) correspond to Möbius equivalent celestial surfaces if
and only if there exists α ∈ Aut(Y⋆) such that α(Qc) = Qc′ . Let φ = (φ1 , φ2) be an
indeterminate element of Aut○(P1) × Aut○(P1). Thus φ1 and φ2 are nonsingular 2×2
matrices in eight indeterminates a⃗ = (a1 , . . . , a8). Recall from (1) that there exist, a
value for a⃗ such that α is defined by the 9×9-matrix S(φ). We compose, for all i ∈ I,
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the polynomials y2
0 − y i y i+1 with the map defined by S(φ) so that we obtain quadratic

polynomials in y i and coefficients inQ[a1 , . . . , a8]. Since α(Qc) = Qc′ , we require that
coefficients of monomials, that are not of the form y2

0 or y j y j+1 for some j > 0, vanish.
We verify with a computer algebra system that the only possible value for a⃗ such that
φ1 and φ2 have nonzero determinant, is when a⃗ defines the identity automorphism.
Therefore (Y⋆ , Qc) and (Y⋆ , Qc′) are equivalent if and only if c = c′. We conclude that
D(X) = dimP(IG

2 (X)) as was left to be shown. ∎
Proof of Theorem 1 Suppose that the celestial surface X ⊂ Sn is λ-circled. If λ < ∞,
then Theorem 1 follows from Lemma 36 and Lemma 37. If λ = ∞, then Theorem 1
follows from [7, Section 1] and [1, Section 2.4.3]; we will give an alternative proof at
Theorem D. ∎
Proof of Corollary 2 Our goal is as in Remark 27, but with signature (4, 5) or
(3, 6) instead of (1, n + 1). Notice that everything in Section 5 works if we replace
Sn with a hyperquadric Q of different signature. It follows from Lemma 12b that the
real structure of P1 × P1 with real points is either σ+ × σ+ or σs . These real structures
are compatible with σ0∶ Y⋆ → Y⋆ and σ3∶ Y⋆ → Y⋆ in Lemma 18, respectively. This
corollary is now a direct consequence of Proposition 26 and Lemma 33d. We remark
that if Q has signature (3, 6), then the unique double Segre surface in Q is not covered
by real conics. ∎

8 The classification of P2 revisited

If X ⊆ Sn is ∞-circled, then T(X) is either (∞, 4, 4) or (∞, 2, 2). We know from [7,
Section 1] and [1, Section 2.4.3] that M(X) is either PSO(3) or PSO(3, 1). Moreover,
X ⊆ Sn is in both cases unique up to Möbius equivalence. We believe it might be
instructive to give an alternative proof by using the methods of Section 5. We hope
that this convinces the reader that our methods have the potential to be used outside
the scope of this paper.

Suppose that Y○ ⊂ P5 is the Veronese surface with lattice type L(Y○) as in Table 9d.
Indeed, by Corollary 8b, we may assume without loss of generality that the antiholo-
morphic involution acting on Y○ is complex conjugation. We proceed analogously as
in Section 3 with the coordinates in Table 17 (right side) so that we obtain the following
parametric map

ξd ∶ T2 → Y○ ⊂ P5 , (s, t) ↦ (1 ∶ st ∶ s ∶ t ∶ s2 ∶ t2) = (y0 ∶ . . . ∶ y5),

which extends to ξ̃d ∶ P2 → Y○ ⊂ P5 , (s ∶ t ∶ u) ↦ (u2 ∶ st ∶ su ∶ tu ∶ s2 ∶ t2). Since Y○
is isomorphic toP2 via ξ̃d , we have Aut○(Y○) ≅ PSL(3). Using ξd , we find the following
six generators for the vector space of quadratic forms on Y○ and it follows from Lemma
16 that these form a basis:

I2(Y○) = ⟨y1 y1 − y4 y5 , y0 y1 − y2 y3 , y2 y2 − y0 y4 , y3 y3 − y0 y5 ,
y1 y2 − y3 y4 , y1 y3 − y2 y5⟩C .

Our goal is as in Remark 27 with Y○ as Y. Notice that the real structure of Y○ acts as
complex conjugation on the Lie algebra sl3. We consider the following elements in sl3:
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a1 ∶= [ 0 1 0
0 0 0
0 0 0

] , a2 ∶= [ 0 0 1
0 0 0
0 0 0

] , a3 ∶= [
0 0 0
0 0 1
0 0 0

] , c1 ∶= [ 1 0 0
0 −1 0
0 0 0

] ,

b1 ∶= [ 0 0 0
1 0 0
0 0 0

] , b2 ∶= [
0 0 0
0 0 0
1 0 0

] , b3 ∶= [
0 0 0
0 0 0
0 1 0

] , c2 ∶= [ 0 0 0
0 1 0
0 0 −1

] .

Lemma 38 (invariant quadratic forms for P2) Suppose that G ⊆ Aut○(Y○) is a Lie
subgroup, where Y○ ⊂ P5 is the Veronese surface. If Lie(G) = ⟨b1 − a1 , b2 − a2 , b3 − a3⟩,
then G ≅ PSO(3) and

IG
2 (Y○) = ⟨x2

1 + x2
2 + x2

3 − x0x4 − x0x5 − x4x5⟩C .

If Lie(G) = ⟨a1 , a2 , a3 , b1 , b2 , b3 , c1 , c2⟩, then G ≅ PSL(3) and IG
2 (Y○) = ⟨1⟩

C
.

Proof The subgroup PSO(3) ⊂ PSL(3) is generated by the three 3×3 rotation matri-
ces and thus so3 = ⟨b1 − a1 , b2 − a2 , b3 − a3⟩. The generators for the Lie algebra sl3
can be found for example in [6, Section 6.2]. For the remaining assertions, we apply
Theorem B as in the proof of Lemma 33. ∎
Lemma 39 If (Y○ , Q) and (Y○ , Q′) are Möbius pairs of celestial surfaces in Sn for
n ≥ 3, then these pairs are equivalent.

Proof We consider the following group actions

A∶ PSL(3) × P2 → P2 and B∶ PSL(3) × Y○ → Y○ .

As in (1), the group action B is defined via Sym2(⋅) and can be computed via the
isomorphism ξ̃d ∶ P2 → Y○ ⊂ P5. These group actions induce group actions on the
spaces of quadratic forms V ∶= P(I2(P2)) and W ∶= P(I2(Y○)):

A⋆∶ PSL(3) × V → V and B⋆∶ PSL(3) × W → W .

Recall that a quadratic form in V is equivalent via A⋆ to a diagonal form of signature
(1, 0), (2, 0), (1, 1), (3, 0), or (2, 1). It is left to the reader to verify that W contains
quadratic forms of signatures (1, 2), (1, 3), (1, 5), (2, 2), and (3, 3). We can also define
a group action C⋆∶ PSL(3) × W → W via the action A⋆ and an isomorphism V →
W . Irreducible representations PSL(3) → Aut(P5) are isomorphic and thus B⋆ and
C⋆ must be isomorphic group actions. Hence, we can match the orbits of A⋆ with
the orbits of B⋆ and thus we identified all possible signatures of quadratic forms in
W. Thus, Q = V(q) and Q′ = V(q′), where the quadratic forms q and q′ in W have
both signature (1, 5). The group action A⋆, and thus also the group action B⋆, acts
transitively on quadratic forms of the same signature. It follows that q′ = q ○ φ−1 for
some φ ∈ Aut○(Y○). Therefore φ(Q) = Q′ so that (Y○ , Q) and (Y○ , Q′) are equivalent
as Möbius pairs. ∎

The following theorem is a consequence of [7, Theorem 23]. We give an alternative
proof by applying the methods in Section 5.

Theorem D (Kollár, 2018) If X ⊂ Sn is an ∞-circled celestial surface, then Theorem 1
holds for X.

Proof If n ≤ 2, then T(X) = (∞, 2, 2), S(X) = ∅, M(X) ≅ PSO(3, 1) and D(X) = 0
so that Theorem 1 holds. If n > 2, then we know from Theorem Aa that T(X) =
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(∞, 4, 4), S(X) = ∅ and X is projectively equivalent to the Veronese surface Y○. By
assumption there exists a subgroup G ⊆ M(X) such that dim G ≥ 2. We know from
Proposition 26b that X has Möbius pair (Y○ , V(q)) for some invariant quadratic form
q ∈ IG

2 (Y○) of signature (1, 5). It follows from Lemma 38 and Proposition 26c that
G ≇ PSL(3) and that if G ≅ PSO(3), then q ○ φ = x2

1 + x2
2 + x2

3 − x0x4 − x0x5 − x4x5
for some φ ∈ Aut(Y○). It follows from Lemma 39 and Proposition 26a that X is unique
up to Möbius equivalence. Therefore, PSO(3) ⊆ M(X) and D(X) = 0. There exists
no subgroup G such that PSO(3) ⊊ G ⊊ PSL(3) and thus we conclude that M(X) ≅
PSO(3). ∎
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