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We consider a homogenization problem for highly anisotropic conducting fibres
embedded into an isotropic matrix. For a ‘double porosity’-type scaling in the
expression of high contrast between the conductivity along the fibres and the
conductivities in the transverse directions, we prove the homogenization theorem and
derive two-scale homogenized equations using a version of the method of two-scale
convergence, supplemented in the case when the spectral parameter λ = 0 by a newly
derived variant of high-contrast Poincaré-type inequality. Further elimination of the
‘rapid’ component from the two-scale limit equations results in a non-local
(convolution-type integro-differential) equation for the slowly varying part in the
matrix, with the non-local kernel explicitly related to the Green function on the fibre.
The regularity of the solution to the non-local homogenized equation is proved.

1. Introduction

The mathematical theory of homogenization (see, for example, [4, 5, 15]) estab-
lishes that in the ‘classical’ case, i.e. when a periodic heterogeneous medium has
a moderate contrast (mathematically, is described by a uniformly elliptic partial
differential equation (PDE) with rapidly oscillating coefficients), the homogenized
equations preserve the local character of the original equations. The coefficients of
the homogenized equations are characterized explicitly in terms of the solutions to
certain ‘canonical’ unit-cell problems.

However, in the ‘non-classical’ case, i.e. when a heterogeneous medium consists
of materials with highly contrasting parameters, the homogenized constitutive rela-
tion may reveal a ‘non-standard’ (for example, non-local) structure (see, for exam-
ple, [1,6–8,20], and references therein). The related studies have covered a number
of settings that lead to non-local limits of various types. In spite of the large lit-
erature on the subject, there are not many contributions rigorously demonstrating
explicit convolution-type spatial non-local effects for non-uniformly elliptic opera-
tors. Motivated by the study of higher-order (higher-gradient) effects in the overall
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Figure 1. Geometry of the problem.

behaviour of heterogeneous media (see [9, 11, 21]), we consider here a special class
of non-uniformly elliptic homogenization problems exhibiting this kind of limit-
ing behaviour. Specifically, the present work concerns a homogenization problem
of ‘double porosity’ type involving highly anisotropic fibres, with large contrast
between the conductivity along the fibres and the conductivities in the transverse
directions, for which the homogenized equation is an integro-differential one, dis-
playing non-locality along the fibres. The kernel of the emerging integral operator
is expressed explicitly in terms of the Green function on the fibre, and the local
part is determined as in classical homogenization theory.

Earlier contributions on ‘non-local’ homogenization were mainly concerned with
homogenization of dynamical problems, and the observed non-localities were of
memory-like type, i.e. the non-local parts of the arising homogenized operators
were convolution operators with respect to time t. In particular, Tartar [23] and
Amirat et al . [3] consider homogenization of a rather general hyperbolic equation
of first order and find the (weak) limit of the oscillating solutions as the small
parameter ε tends to zero using the Fourier and Laplace transforms. Tartar [24]
rigorously proved that the limiting operator contains a convolution kernel with
respect to time. Homogenization of a general class of parabolic equations with
memory has been established rigorously in [12,16].

A related theory was further developed by Allaire [1] and Zhikov [28], among
others, who considered the problems of homogenization of an elliptic equation and a
parabolic equation, respectively, with coefficients that diminish as εγ , γ > 0, when
ε → 0. They showed that ‘non-standard’ (non-locality-type) effects arise in the
critical case γ = 2 (the so-called double porosity case) and derived and investigated
the corresponding coupled system of homogenized equations (see also [19]).

The novelty of the present work is in investigating a non-uniformly elliptic homog-
enization problem whose homogenized limit exhibits an explicit non-locality due to
high anisotropy in the properties of the ‘components’. Namely, the non-uniform
ellipticity is due to an appropriate order of contrast between the constitutive be-
haviour along the fibres and in the transverse directions, i.e. high anisotropy.
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More precisely, we consider a periodic composite of a fixed size L, whose physical
properties oscillate rapidly on the scale l � L, such that ε := l/L is a small
dimensionless parameter. The composite consists of a ‘matrix’ of a certain ‘main’
material, which is assumed to be connected, and (highly anisotropic) fibres included
periodically into the matrix (figure 1). Section 2.1 contains a precise mathematical
formulation of the problem. Preliminary analysis of the energy balance shows that,
in the case when the ‘anisotropy contrast’ is of ‘critical’ order ε2, the composite may
exhibit non-standard features in the homogenized behaviour, which is demonstrated
rigorously in this work. The results are obtained under rather general assumptions
on the regularity properties of the fibres using the method of two-scale convergence
originated by Nguetseng [18] and further developed by Allaire [1] and Zhikov [28].
(In the case when additional regularity properties are assumed, the results can be
recovered by a version of an alternative method of two-scale asymptotic expansions,
with additional control over the rate of convergence [10].)

We first establish the related convergence results in the case when the ‘spectral
parameter’ λ takes strictly positive values (see § 2.2). This is done by combining the
use of the classical Lax–Milgram lemma and the compactness property of the two-
scale convergence in appropriate functional spaces (see, for example, [1, 28]). As a
result, we obtain a weak formulation (2.24) for the limiting homogenized boundary-
value problem (2.26), (2.27). The latter exhibits a coupling between the slowly
varying part u(1)(x) of the homogenized limit, corresponding to the limiting field
in the matrix, and the oscillatory component w(x,y), y := x/ε, which represents
rapid oscillations in the fibres and vanishes in the matrix.

The case λ = 0 presents additional difficulties. To overcome those, we develop
a high-contrast version of the Poincaré inequality (see § 3), specially suited to our
particular setting, using some ideas of [2]. This allows us to also prove the validity
of the homogenization for the case λ = 0 in the original equation (2.2), from which
we conclude that the homogenized equations (2.26), (2.27) also hold the case of
vanishing λ.

All of the above forms the basis for deriving, in § 4, an integro-differential equation
for the homogenized limit u(1)(x) by eliminating the oscillatory component w(x,y)
from the coupled system. Using the methods of Fourier analysis, we demonstrate
that u(1)(x) is infinitely smooth; hence, the homogenized equation can be considered
in the classical, rather than generalized, sense. The presence of a convolution-type
operator in the limiting equation can thus be viewed as a non-locality in the overall
behaviour of the composite material.

2. Statement of the problem and its homogenization

2.1. Formulation of the problem

We study the problem of homogenization for two-phase electric conducting compos-
ites in which one of the constituent materials is a periodic set of highly anisotropic
‘fibres’ included in a ‘matrix’ of an isotropic conductor (figure 1). The conductiv-
ity in the fibres is assumed to be ‘high’ along the fibres and low in the transverse
directions. (This problem serves also as a prototype, for example, for the case of
an elastic composite with analogous geometry, where the fibres are considered to
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be ‘stiff’ in one direction and ‘soft’ in the orthogonal directions, while the main
material is stiff in all directions.)

We next state the mathematical formulation of this problem. We introduce first
a reference ‘matrix-fibres’ periodic medium as follows. We denote by Q2 and Q
the unit cells in dimensions 2 and 3, respectively: Q2 := [0, 1]2 and Q := Q2 ×
[0, 1]. For a Q2-periodic set F̃0 ⊂ R

2, we consider the set F0 := F̃0 × R of periodic
‘fibres’, and the sets F̃1 := R

2 \ F̃0 and F1 := R
3 \ F0, which correspond to the

‘matrix’. Throughout the paper, unless otherwise stated, we denote the volume
fractions of the phases F0 and F1 by f0 and f1, respectively; then f0 = |F̃0 ∩ Q2| and
f1 = |F̃1 ∩ Q2|. Furthermore, we fix a positive number T and define T := [−T, T ]3.
We impose periodic boundary conditions with fixed period 2T to avoid dealing
with boundary layers. For a small positive ε, such that ε−1T =: N is a large
positive integer, we introduce contracted sets F ε

0 := εF0 and F ε
1 := εF1. Henceforth,

x = (x1, x2, x3) and y = (y1, y2, y3) denote points of R
3 and Q, respectively, and we

denote by ỹ and x̃ the two-dimensional vectors (y1, y2) and (x1, x2), respectively.
We assume that the set F1 is non-empty, open and connected. Note that under

these conditions the measure dµ1 := dx|F1 (understood as the restriction of the
Lebesgue measure dx on F1, continued by 0 on F0) is ergodic1 and non-degenerate2,
which allows us to use certain techniques originated by Zhikov [28]. (The construc-
tions of the present paper permit further generalization by considering arbitrary
ergodic Borel measures µ1 to allow for various ‘concentration’ effects [28], which we
do not pursue here.)

Define a matrix function (Aε
ij(y)) by the following formula

(Aε
ij(y)) =

{
diag(ε2, ε2, α), if y ∈ F0,

diag(1, 1, 1) =: I, if y ∈ F1,
(2.1)

where α > 0 is fixed. Henceforth, diag(a1, a2, a3) denotes a diagonal 3 × 3-matrix
(Aij), Aij = δijaj (no summation), where δij is the Kronecker delta.

Consider an elliptic equation of ‘double porosity’ type:

−
(

Aε
ij

(
x

ε

)
u,j

)
,i

+ λu = f(x), λ � 0, (2.2)

where the comma in the subscript denotes differentiation with respect to the appro-
priate variable and summation is implied with respect to repeated indices. We

1A Borel measure µ is called ergodic (on the period torus generated by Q) if u(x) = const.
µ-almost everywhere (a.e.) once there exists a sequence φn(x) ∈ C∞

per(Q) such that∫
Q

|φn(x) − u(x)|2 dµ(x) → 0 and
∫

Q
|∇φn(x)|2 dµ(x) → 0 as n → ∞

(see, for example, [28]).
2A measure µ is said to be non-degenerate (see, for example, [28]) if the zero vector is the

only constant potential vector in [L2
per(Q, dµ)]3, which is defined as the closure of the space of

Q-periodic infinitely differentiable functions φ(x) with respect to the norm(∫
Q

|φ(x)|2 dµ(x)
)1/2

.

(For the definition of a potential vector, see [28] or footnote 14 in Appendix C of the present
paper.)
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assume that3 f(x) ∈ L2(T ) ⊂ H−1(T ). In the case λ = 0, we assume in addition
that

∫
T

f(x) dx = 0 and
∫

T
u(x) dx = 0. Equation (2.2) is understood in the weak

sense, that is, for a given ε > 0, a T -periodic function4 uε(x) ∈ H1
per(T ) is a solu-

tion to the equation (2.2) if, for any test function ψ(x) ∈ H1
per(T ), the following

identity holds:∫
T

(
Aε

ij

(
x

ε

)
u,jψ,i + λuεψ

)
dx

=
∫

T ∩F ε
1

∇uε∇ψ dx + ε2
∫

T ∩F ε
0

(uε
,1ψ,1 + uε

,2ψ,2) dx

+ α

∫
T ∩F ε

0

uε
,3ψ,3 dx + λ

∫
T

uεψ dx

=
∫

T

fψ dx. (2.3)

We initially consider λ > 0 in (2.2), which allows us to simplify certain analyses.
The case λ = 0 is also considered later, and requires additional development of
a certain Poincaré-type inequality for high-contrast media, which is implemented
below (§ 3).

Before studying the behaviour of the solution of the above problem when ε → 0,
we give an informal idea that led us to consider equation (2.2). In [28], Zhikov
studied the Cauchy problem for a parabolic equation in the two-dimensional case,
as follows

∂uε

∂t
(x̃, t) −

(
aε

ij

(
x̃

ε

)
uε

,j(x̃, t)
)
,i

= 0, x̃ ∈ Ω ⊂ R
2, t > 0, (2.4)

uε(x̃, 0) = f(x̃). (2.5)

Here, the entries of the 2 × 2-matrix (aε
ij(ỹ)) are defined by

aε
ij(ỹ) = (χF̃1

(ỹ) + ε2χF̃0
(ỹ))δij ,

where χF̃1
and χF̃0

are the characteristic functions of the sets F̃1 and F̃0, respec-
tively. It was shown in [28] that if Ω is a bounded domain with Lipschitz boundary,
then for any t the solution5 uε ∈ H1

0 (Ω) of the problem (2.4), (2.5) ‘two-scale con-
verges’ to the sum u(1)(x̃, t) + v(x̃, ỹ, t), where the functions u(1) ∈ H1

0 (Ω) and6

3For a given measure space (Ω, µ), we define the Lebesgue class L2(Ω, dµ) as the set of µ-
measurable functions u(x), x ∈ Ω, such that the integral

∫
Ω |u(x)|2 dµ(x) =: ‖u‖2

L2(Ω,dµ) is well
defined and finite. In particular, L2(T ) := L2(T , dx). The class H−1(T ) is the set of linear
continuous functionals on H1

per(T ); for definition of the latter, see next footnote.
4The class H1

per(T ) is defined as the closure of the set of T -periodic infinitely differentiable
functions φ(x) with respect to the norm ‖φ(x)‖L2(R3) + ‖∇φ(x)‖[L2(R3)]3 .

5The class H1
0 (Ω) is defined as the closure of the set C∞

0 (Ω) of functions φ(x) that are infinitely
differentiable in R

2 and that vanish outside a compact subset of the interior of Ω, with respect to
the norm ‖∇φ(x)‖[L2(R3)]3 .

6Given an arbitrary set Ω ∈ R
d and a normed space X , the class L2(Ω, X ) is defined as the class

of functions u(x) with values in X , such that the integral
∫
Ω ‖u‖2

X dx is well defined and finite.
The definition of the space H1

per(Q2) is analogous to that of the space H1
per(T ) (see footnote 4).
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v ∈ L2(Ω, H1
per(Q2)) satisfy the following coupled system of equations:

v,t + u
(1)
,t − ∆ỹv = 0, ỹ ∈ F̃0 ∩ Q2, v|ỹ∈F̃1∩Q2

= 0,

u
(1)
,t + 〈v〉,t − div(Ahom

2D ∇u(1)) = 0, x̃ ∈ Ω,

⎫⎬
⎭ (2.6)

together with the initial conditions

u(1)(x̃, 0) = f(x̃), v(x̃, ỹ, 0) = 0.

Here, the two-dimensional homogenized matrix Ahom
2D is given by

Ahom
2D :=

⎛
⎜⎜⎜⎝

∫
F̃1∩Q2

(1 + (N1),1(ỹ)) dỹ

∫
F̃1∩Q2

(N1),2(ỹ) dỹ

∫
F̃1∩Q2

(N2),1(ỹ) dỹ

∫
F̃1∩Q2

(1 + (N2),2(ỹ)) dỹ

⎞
⎟⎟⎟⎠ , (2.7)

where N1(ỹ) and N2(ỹ) are the solutions of the corresponding two-dimensional
‘perforated’ unit-cell problems in F̃1 ∩ Q2 with the natural (Neumann) boundary
condition on ∂F̃1 ∩ Q2 and the periodicity conditions on the rest of ∂(F̃1 ∩ Q2), and
can be obtained by solving the minimization problems

min
U

∫
F̃1∩Q2

2∑
i=1

(
∂U(y)

∂yi
+ δki

)2

dy, k = 1, 2,

in an appropriate function space.
Note that, by expressing the function v in terms of the function u(1) from the first

of equations (2.6) and substituting it in the second, we obtain a non-local problem
for u(1) containing a convolution operator with respect to time t.

Now, apply to (2.4) the Laplace transform with respect to t:

ûε(x̃, µ) :=
∫ ∞

0
uε(x̃, t) exp(−µt) dt, µ > 0.

This yields

−(aε
ij(x̃/ε)ûε

,i(x̃)),j + µûε(x̃) = f(x̃), µ > 0, x̃ ∈ Ω ⊂ R
2. (2.8)

If we now consider the case Ω = [−T, T ]2 and introduce an additional spatial vari-
able x3 ∈ [−T, T ], so that the function ûε(x) is sought to satisfy periodic boundary
conditions with respect to x ∈ T , then the equation (2.8) can be formally viewed as
the Fourier transform with respect to x3 of the problem (2.2) with α = 1, λ = 0 and
f(x) = f(x̃), where µ = ξ2 and ξ is the variable of the Fourier transform. Hence,
formally, the parabolic equation (2.4) and the particular form of the elliptic equa-
tion (2.2) turn out to be the inverse Laplace and Fourier transforms, respectively,
of the same equation, i.e. (2.8).

From this point of view, the time t in (2.4) is somewhat analogous to the spatial
variable x3 in (2.2). One can expect, therefore, that the time non-locality for the
system (2.6) should translate into spatial non-locality with respect to x3 when
passing to the limit ε → 0 in the equation (2.2). This is indeed the case, as has
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been rigorously established in the present work. Note, however, that the methods
we develop are more general, i.e. they are valid even when the Fourier transform is
not applicable (for α 	= 1 in (2.2)).

Moreover, the techniques developed in the present paper remain capable of ac-
counting for a somewhat more general case of anisotropy of the fibres than the one
represented by (2.1). Namely, in (2.2), Aε

ij(x/ε) can be replaced by Aε
ij(x,x/ε), with

a ‘two-scale’ matrix (Aε
ij(x,y)) of a more general form than (2.1). For example, one

may assume that, while being periodic with respect to y for every x, it satisfies the
‘usual’ uniform ellipticity conditions in the matrix phase F1:

ν|η|2 � Aε
ij(x,y)ηiηj � ν−1|η|2 (2.9)

for some positive ε-independent constant ν, any η ∈ R
3, x ∈ T and y ∈ Q, and a

‘relaxed’ anisotropic ellipticity condition in the fibres F0:

ν[ε2(η2
1 + η2

2) + η2
3 ] � Aε

ij(x,y)ηiηj � ν−1[ε2(η2
1 + η2

2) + η2
3 ]. (2.10)

The condition (2.10) means that Aε(x,y) = (Aε
ij(x,y)) can be represented as fol-

lows:

Aε(x,y) =

⎛
⎜⎝

ε2Bε
11 ε2Bε

12 εBε
13

ε2Bε
21 ε2Bε

22 εBε
23

εBε
31 εBε

32 Bε
33

⎞
⎟⎠ , (2.11)

where Bε(x,y) = (Bε
ij(x,y)) satisfies the ‘classical’ ellipticity conditions (2.9) with

Aε
ij replaced by Bε

ij . In (2.11) the terms Bε
12 = Bε

21 represent possible rotation of
the ‘principal axes’ of the conductivity tensor in the transverse plane, and the terms
Bε

13 = Bε
31 and Bε

23 = Bε
32 correspond to a possible slight deviation of the ‘main’ axis

of anisotropy from the x3-direction (more precisely, the angle between this principal
axis and the direction of the fibres is O(ε) as ε → 0) and the values of the moduli
that are O(1) in the direction of the axis and O(ε2) in the transverse directions. The
dependence of Aε

ij on x reflects the possibility of non-trivial dependence on the slow
as well the fast variables (x and x/ε, respectively), both in the matrix F ε

1 and on the
fibres F ε

0 , while keeping the order of anisotropy of the fibres as before. We claim that
all the methodology we employ in this paper remains applicable to this generalized
case too, including the emergence of non-locality in the homogenized limit as ε → 0.
The above generalization will not, in our opinion, lead to additional difficulties in
the mathematical treatment: in particular, all the a priori estimates, for example,
(2.12), below, remain valid. Extending the related calculations to include these
extra features will present no challenge to a motivated reader and, since dealing
with the matrix (2.1) facilitates the exposition of the main ideas and results, we
refrain from elaborating further in this direction.

2.2. Passing to the limit in equation (2.2) when ε → 0

In this section we assume that λ > 0 in (2.2). Using the classical Lax–Milgram
lemma (see, for example, [15, 27]) it is not difficult to see that, for every ε > 0,
there exists a unique solution uε to the equation (2.2) in the class H1

per(T ).
To find the limiting, or homogenized, behaviour of the solution uε when ε → 0 we

will implement the method of two-scale convergence, introduced by Nguetseng [18]
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and further developed by Allaire [1] and Zhikov [28]. Basic facts about the two-scale
convergence are reviewed in Appendix A for the reader’s convenience. With the aim
of employing a compactness argument, we first prove that the expressions uε and
ε∇uε are bounded in L2(T ), uniformly with respect to ε ∈ (0, 1], i.e.∫

T

|uε|2 dx � C, ε2
∫

T

|∇uε|2 dx � C, (2.12)

where C is a constant independent of ε but possibly dependent on λ. Taking ψ = uε

in (2.3), we get

∫
T ∩F ε

1

|∇uε|2 dx + ε2
∫

T ∩F ε
0

((uε
,1)

2 + (uε
,2)

2) dx

+ α

∫
T ∩F ε

0

(uε
,3)

2 dx + λ

∫
T

(uε)2 dx =
∫

T

fuε dx.

Hence,

∫
T ∩F ε

1

|∇uε|2 dx + ε2
∫

T ∩F ε
0

((uε
,1)

2 + (uε
,2)

2) dx + α

∫
T ∩F ε

0

(uε
,3)

2 dx + λ

∫
T

(uε)2 dx

�
(∫

T

f2 dx

)1/2(∫
T

(uε)2 dx

)1/2

� 1
2λ

∫
T

f2 dx +
λ

2

∫
T

(uε)2 dx,

and, therefore,

∫
T ∩F ε

1

|∇uε|2dx + ε2
∫

T ∩F ε
0

((uε
,1)

2 + (uε
,2)

2) dx

+ α

∫
T ∩F ε

0

(uε
,3)

2 dx +
λ

2

∫
T

(uε)2 dx � 1
2λ

∫
T

f2 dx, (2.13)

which implies (2.12).
Using the compactness property of two-scale convergence (see, for example, [1,18];

Appendix A), we deduce that, up to a subsequence,

uε(x) 2
⇀ u(x,y) ∈ L2(T , H1

per(Q)) (2.14)

and

ε∇uε(x) 2
⇀ ∇yu(x,y), (2.15)

where the notation ‘ 2
⇀’ stands for the (weak) two-scale convergence. We note in

passing that the latter convergence statement implies that, on denoting the char-
acteristic function of the set F1 by χ1(y), we have

εχ1(ε−1x)∇uε(x) 2
⇀ χ1(y)∇yu(x,y), (2.16)

using the property of multiplication by a function for two-scale convergence (see,
for example, [28] or Appendix A).
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On the other hand, it is clear from (2.13) that the expression χ1(ε−1x)∇uε(x) is
bounded in L2(T ) and therefore εχ1(ε−1x)∇uε(x) → 0 in [L2(T )]3 strongly. Hence,

εχ1(ε−1x)∇uε(x) 2
⇀ 0. (2.17)

Comparing (2.16) and (2.17), we conclude that

χ1(y)∇yu(x,y) = ∇yu(x,y)|y∈F1∩Q = 0.

Therefore, u(x,y)|y∈F1∩Q = u(1)(x) for some function u(1)(x) ∈ L2(T ), by the er-
godicity of F1. Moreover, we prove in Appendix B that u(1)(x) ∈ H1

per(T ).
In the same fashion, from (2.13), εuε

,3(x) → 0 in L2(T ) and hence u,y3(x,y) = 0.
Thus, we conclude that u ∈ V , where the function space V is defined by the formula7

V = {u(x, ỹ) ∈ L2(T , H1
per(Q2)) : u|ỹ∈F̃1∩Q2

= u(1)(x) ∈ H1
per(T )}.

To perform the passage to the two-scale limit, let us next consider, in (2.3), the
test functions ψ of a particular type: ψ(x) = ψε(x) = Φ(x, ε−1x̃), where Φ(x, ỹ) is
of the form

Φ(x, ỹ) = Φ1(x) + β(x)h(ỹ). (2.18)

Here Φ1(x), β(x) ∈ C∞
per(T ) and h ∈ X := {h(ỹ) ∈ C∞

per(Q2), h|F̃1∩Q2
= 0}. Obvi-

ously,
∇ψε(x)|T ∩F ε

1
= ∇Φ1(x)|T ∩F ε

1

and

ε∇ψε(x) = ε∇Φ1(x) + ε∇β(x)h(ε−1x̃) + β(x)∇yh(ỹ)|y=ε−1x

= β(x)∇yh(ỹ)|y=ε−1x + o(1)

as ε → 0, where o(1) is understood in the sense of the L2(T ) norm. Substituting
ψ = ψε into the identity (2.3), we get∫

T ∩F ε
1

∇uε(x)∇Φ1(x) dx

+ ε

∫
T ∩F ε

0

(uε
,1(x)β(x)h,y1(ỹ)|ỹ=ε−1x + uε

,2(x)β(x)h,y2(ỹ)|ỹ=ε−1x) dx

+ ε

∫
T ∩F ε

0

(uε
,1(x)o(1) + uε

,2(x)o(1)) dx + α

∫
T ∩F ε

0

uε
,3(x)Φ,x3(x, ε−1x̃) dx

+ λ

∫
T

uε(x)Φ(x, ε−1x̃) dx

=
∫

T

f(x)Φ(x, ε−1x̃) dx. (2.19)

7In the case of a more general ergodic Borel measure µ1 (see the discussion preceding (2.1)),
the space

V = {u(x, ỹ) ∈ L2(T , H1
per(Q2, dµ1)) :

u|ỹ∈F̃1∩Q2
= u(1)(x) ∈ H1

per(T ), ∇ỹu|ỹ∈F̃1∩Q2
= 0̃ a.e. x ∈ T }

should be used instead, where H1
per(Q2, dµ1) is an appropriately defined Sobolev space with

respect to the measure µ1 (see, for example, [28]).

https://doi.org/10.1017/S0308210500004455 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004455


96 K. D. Cherednichenko, V. P. Smyshlyaev and V. V. Zhikov

We want next to pass to the limit when ε → 0 in the identity (2.19). Firstly, note
that, as shown in Appendix C,

lim
ε→0

∫
T ∩F ε

1

∇uε(x)∇Φ1(x) dx =
∫

T

Ahom
1 ∇u(1)(x)∇Φ1(x) dx, (2.20)

where Ahom
1 is the homogenized matrix for ‘hollow’ fibres (cf. (2.7)):

Ahom
1 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
F̃1∩Q2

(1 + (N1),1(ỹ)) dỹ

∫
F̃1∩Q2

(N1),2(ỹ) dỹ 0

∫
F̃1∩Q2

(N2),1(ỹ) dỹ

∫
F̃1∩Q2

(1 + (N2),2(ỹ)) dỹ 0

0 0 f1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.21)

Secondly, using (2.15) we obtain

ε

∫
T ∩F ε

0

(uε
,1(x)β(x)h,1(ỹ)|ỹ=ε−1x̃ + uε

,2(x)β(x)h,2(ỹ)|ỹ=ε−1x̃) dx

= ε

∫
T

(uε
,1(x)β(x)h,1(ỹ)χ0(ỹ) + uε

,2(x)β(x)h,2(ỹ)χ0(ỹ))|ỹ=ε−1x̃ dx

ε→0−−−→
∫

T

∫
Q2

(u,y1(x, ỹ)β(x)h,1(ỹ)χ0(ỹ) + u,y2(x, ỹ)β(x)h,2(ỹ)χ0(ỹ)) dỹ dx

=
∫

T

∫
F̃0∩Q2

(u,y1(x, ỹ)β(x)h,1(ỹ) + u,y2(x, ỹ)β(x)h,2(ỹ)) dỹ dx

=
∫

T

∫
F̃0∩Q2

(u,y1(x, ỹ)Φ,y1(x, ỹ) + u,y2(x, ỹ)Φ,y2(x, ỹ)) dỹ dx.

In the formula above, χ0 denotes the characteristic function of the set F̃0 ∩ Q2.
Furthermore, due to the fact that ε∇uε is bounded in L2(T ), the following con-

vergence holds:

ε

∫
T ∩F ε

0

(uε
,1(x)o(1) + uε

,2(x)o(1)) dx
ε→0−−−→ 0.

Finally, we find the limit of the term

α

∫
T ∩F ε

0

uε
,3(x)Φ,x3(x, ε−1x̃) dx (2.22)

as ε → 0. Note that the inequality (2.13) implies the estimate∫
T

(uε
,3)

2 dx � C,

and therefore there exists such a function q(x,y) ∈ L2(T × Q) that, up to a subse-
quence,

uε
,3

2
⇀ q(x,y). (2.23)

In order to obtain the limit of the expression (2.22), we establish the following
lemma.
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Lemma 2.1. Let u(x, ỹ) ∈ V and q(x,y) be the limiting functions from (2.14)
and (2.23). Then the Sobolev derivative u,x3(x, ỹ) ∈ L2(T ×Q2) exists and is given
by the equality u,x3(x, ỹ) = 〈q(x,y)〉y3 , where

〈q(x,y)〉y3 :=
∫ 1

0
q(x,y) dy3.

Proof. Assume that Ψ = Ψ(x, ỹ) ∈ C∞
per(T , C∞

per(Q2)). By means of integration by
parts we may write∫

T

uε
,3(x)Ψ(x, ε−1x̃) dx = −

∫
T

uε(x)Ψ,x3(x, ε−1x̃) dx.

Using convergences (2.14) and (2.23), we pass to the limit as ε → 0 in the above
formula, and obtain the following identity:∫

T

∫
Q

q(x,y)Ψ(x, ỹ) dy dx = −
∫

T

∫
Q2

u(x, ỹ)Ψ,x3(x, ỹ) dỹ dx.

Clearly, it can be rewritten as∫
T

∫
Q2

〈q(x,y)〉y3Ψ(x, ỹ) dỹ dx = −
∫

T

∫
Q2

u(x, ỹ)Ψ,x3(x, ỹ) dỹ dx.

By the definition of Sobolev derivative, this implies the statement of the lemma.

Now, employing the above lemma, we get∫
T ∩F ε

0

uε
,3(x)Φ(x, ε−1x̃) dx

ε→∞−−−→
∫

T

∫
Q

q(x,y)Φ,x3(x, ỹ) dy dx

=
∫

T

∫
Q2

〈q(x,y)〉y3Φ,x3(x, ỹ) dỹ dx

=
∫

T

∫
Q2

u,x3(x, ỹ)Φ,x3(x, ỹ) dỹ dx.

Using the convergence results obtained, we pass to the limit in (2.19) as ε → 0,
which yields∫

T

Ahom
1 ∇u(1)(x)∇Φ1(x) dx

+
∫

T

∫
F̃0∩Q2

(u,y1(x, ỹ)Φ,y1(x, ỹ) + u,y2(x, ỹ)Φ,y2(x, ỹ)) dỹ dx

+ α

∫
T

∫
Q2

u,x3(x, ỹ)Φ,x3(x, ỹ) dỹ dx + λ

∫
T

∫
Q2

u(x, ỹ)Φ(x, ỹ) dỹ dx

=
∫

T

∫
Q

f(x)Φ(x, ỹ) dy dx, (2.24)

for any function Φ of the form (2.18).
The identity (2.24) is naturally equivalent to a system of two partial differential

equations. To see this, we first take Φ = Φ1(x) ∈ C∞
per(T ) in (2.24) and obtain the
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equality∫
T

Ahom
1 ∇u(1)(x)∇Φ1(x) dx + α

∫
T

∫
F̃0∩Q2

u,x3(x, ỹ)(Φ1),3(x) dỹ dx

+ λ

∫
T

∫
Q2

u(x, ỹ)Φ1(x) dỹ dx =
∫

T

∫
Q

f(x)Φ1(x) dy dx,

which can be rewritten in the following way, denoting w(x, ỹ) := u(x, ỹ) − u(1)(x)
(hence, w(x, ỹ) = 0 for ỹ ∈ F̃1):∫

T

Ahom
1 ∇u(1)(x)∇Φ1(x) dx + αf0

∫
T

u
(1)
,3 (x)(Φ1),3(x) dx

+ α

∫
T

〈w〉,3(x)(Φ1),3(x) dx + λ

∫
T

(u(1)(x) + 〈w〉(x))Φ1(x) dx

=
∫

T

f(x)Φ1(x) dx,

where 〈w〉(x) :=
∫

Q
w(x, ỹ) dy. Note that the last identity holds for any Φ1(x) ∈

C∞
per(T ). Therefore, it is equivalent to

− div(Ahom∇u(1)) − α
∂2〈w〉
∂x2

3
+ λ(u(1) + 〈w〉) = f,

where the matrix Ahom is defined by the following formula (cf. (2.21) and (2.7))

Ahom :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫
F̃1∩Q2

(1 + (N1),1(ỹ)) dỹ

∫
F̃1∩Q2

(N1),2(ỹ) dỹ 0

∫
F̃1∩Q2

(N2),1(ỹ) dỹ

∫
F̃1∩Q2

(1 + (N2),2(ỹ)) dỹ 0

0 0 f1 + αf0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, taking Φ(x, ỹ) = β(x)h(ỹ), where β(x) ∈ C∞
per(T ) and h(ỹ) ∈ X, and substi-

tuting it into the identity (2.24), we get∫
T

∫
F̃0∩Q2

(w,y1(x, ỹ)h,1(ỹ) + w,y2(x, ỹ)h,2(ỹ))β(x) dỹ dx

+ α

∫
T

∫
F̃0∩Q2

u,x3(x, ỹ)h(ỹ)β,3(x) dỹ dx

+ λ

∫
T

∫
F̃0∩Q2

u(x, ỹ)h(ỹ)β(x) dỹ dx

=
∫

T

∫
Q

f(x)h(ỹ)β(x) dy dx.

The last equality holds for any β(x) ∈ C∞
per(T ) and h(ỹ) ∈ C∞

per(Q2), h|ỹ∈F̃1∩Q2
= 0.

Hence, it is equivalent to the partial differential equation

−∂2w

∂y2
1

− ∂2w

∂y2
2

− α
∂2w

∂x2
3

− α
∂2u(1)

∂x2
3

+ λ(u(1) + w) = f, ỹ ∈ F̃0 ∩ Q2.
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Summarizing, we conclude that the following theorem holds.

Theorem 2.2. Let λ > 0. Then, for the solutions uε(x) of the problems (2.2),

uε(x) 2
⇀ u(1)(x) + w(x, ỹ) as ε → 0, (2.25)

where the T -periodic (with respect to x) functions u(1) and w satisfy (in the weak
sense) the following system of elliptic equations:

− div(Ahom∇u(1)) − α
∂2〈w〉
∂x2

3
+ λ(u(1) + 〈w〉) = f, x ∈ T ,

−∂2w

∂y2
1

− ∂2w

∂y2
2

− α
∂2w

∂x2
3

− α
∂2u(1)

∂x2
3

+ λ(u(1) + w) = f, ỹ ∈ F̃0 ∩ Q2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.26)

together with the boundary condition8

w(x, ỹ)|ỹ∈F̃1∩Q2
= 0. (2.27)

Note that, due to the uniqueness of the weak solution of (2.26), (2.27) (equiva-
lently, of the function u(x,y) satisfying (2.24)), the whole ‘sequence’ uε(x) two-scale
converges to the function u(1)(x) + w(x, ỹ).

3. The case λ = 0

Before studying further the homogenized system (2.26), we argue that the parame-
ter λ in the original equation (2.2) can be set to zero9 without altering the validity
of the stated results. In particular, we argue that in this case the homogenized
equation (2.26), with λ = 0, still holds.10 However, establishing this requires some
additional analysis. The result follows from the next theorem, which establishes a
version of Poincaré’s inequality, adapted to the present high-contrast case under
study.

Theorem 3.1. Let T = [−T, T ]d, T > 0 and Q = [0, 1]d. Let F0 be a Q-periodic set
with Lipschitz boundary such that F1 = R

d \ F0 is non-empty, open and connected;
F ε

0 = εF0 and F ε
1 = εF1, where ε > 0 is such that ε−1T =: N is a positive integer.

There then exists an ε-independent positive constant C such that, for any function
u ∈ H1(T ) with zero mean over T , the following Poincaré-type inequality holds:

‖u‖L2(T ) � C(‖∇u‖L2(T ∩F ε
1 ) + ε‖∇u‖L2(T ∩F ε

0 )). (3.1)

Proof. Here we use some ideas presented by Allaire and Murat [2].

8In addition, the function w(x, ỹ) is required to be Q2-periodic in ỹ.
9Note that in this case the function f(x) is assumed to have zero mean over T and the solution

u(x) is sought in the class H1
0,per(T ) of the functions from H1

0 (T ) that have zero mean over T ;
for the definition of H1

0 (T ) see footnote 5.
10Of course, in the case λ = 0, in addition to the condition (2.27), one more constraint should be

imposed on the unknown functions u(1) and w, namely
∫
T (u(1)(x) + 〈w〉(x)) dx = 0. We get this

condition by observing that
∫
T uε(x) dx →

∫
T

∫
Q(u1(x) + w(x, ỹ)) dy dx due to the two-scale

convergence (2.25).
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Throughout the proof we use the following notation:

〈g〉D := |D|−1
∫

D

g(x) dx,

where D is a bounded measurable set in R
d and the function g belongs to the space

L1(D). Let us list some useful basic properties of the operation of averaging 〈·〉D.
First, this operation is linear: for any g1, g2 ∈ L1(D),

〈g1 + g2〉D = 〈g1〉D + 〈g2〉D. (3.2)

Next, if D = D0 ∪ D1 is a partition of the set D into two disjoint subsets D0 and
D1, and f0 = |D|−1|D0| and f1 = |D|−1|D1| are their volume fractions, then

〈g〉D = f0〈g〉D0 + f1〈g〉D1 . (3.3)

Finally, if g ∈ L2(D), then the following well-known inequality holds:

〈g2〉D � 〈g〉2D. (3.4)

Now, partition the cube T into disjoint cubes Qi
ε, i = 1, . . . , Kε, of size ε, where

Kε := (2N)d, and consider two piecewise constant functions on T :

ū(x) = 〈u〉Qi
ε
,x ∈ Qi

ε,

and

ũ(x) = 〈u〉Qi
ε∩F ε

1
,x ∈ Qi

ε.

Using the triangle inequality in L2(T ), we get

‖u‖L2(T ) � ‖u − ū‖L2(T ) + ‖ū − ũ‖L2(T ) + ‖ũ‖L2(T ). (3.5)

Let us estimate separately each of the terms in (3.5). For the first term we obtain

‖u − ū‖2
L2(T ) =

Kε∑
i=1

∫
Qi

ε

|u(x) − 〈u〉Qi
ε
|2 dx

= εd
Kε∑
i=1

∫
ε−1Qi

ε

|u(εx′) − 〈u(εx′)〉x′∈ε−1Qi
ε
|2 dx′

� εdCP (Q)
Kε∑
i=1

∫
ε−1Qi

ε

|∇x′u(εx′)|2 dx′

= ε2CP (Q)
Kε∑
i=1

∫
Qi

ε

|∇u(x)|2 dx

= ε2CP (Q)‖∇u‖2
L2(T ).

Here we split the original integral into a sum of Kε constituent integrals, then rescale
the variable of integration; after that we use the standard Poincaré inequality (3.10)
for each cell ε−1Qi

ε, and finally rescale the variable of integration back. Thus,

‖u − ū‖L2(T ) � C1ε‖∇u‖L2(T ), (3.6)

where C1 =
√

CP (Q).
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In what follows, we require the following lemma.

Lemma 3.2. Let Ω be a bounded, open and connected set in R
d with a Lipschitz

boundary. Then, for any partition Ω = Ω0 ∪ Ω1 of the domain Ω into two dis-
joint subsets Ω0 and Ω1 with non-zero volumes, there exists a positive constant
C = C(Ω0, Ω1) such that, for any function v ∈ H1(Ω), the following inequality
holds:

|〈v〉Ω0 − 〈v〉Ω1 | � C‖∇v‖L2(Ω). (3.7)

Proof. Note first that, if we denote the volume fractions |Ω|−1|Ω0| and |Ω|−1|Ω1|
of the constituent subsets Ω0 and Ω1 by f0 and f1, respectively, then

〈|v − 〈v〉Ω |2〉Ω = f0〈|v − 〈v〉Ω |2〉Ω0 + f1〈|v − 〈v〉Ω |2〉Ω1

� f0〈|v − 〈v〉Ω |〉2Ω0
+ f1〈|v − 〈v〉Ω |〉2Ω1

� f0〈v − 〈v〉Ω〉2Ω0
+ f1〈v − 〈v〉Ω〉2Ω1

= f0(〈v〉Ω0 − 〈v〉Ω)2 + f1(〈v〉Ω1 − 〈v〉Ω)2

= f0f
2
1(〈v〉Ω0 − 〈v〉Ω1)

2 + f1f
2
0(〈v〉Ω1 − 〈v〉Ω0)

2

= f0f1(〈v〉Ω0 − 〈v〉Ω1)
2. (3.8)

In (3.8), we use (3.3) with D0 = Ω0 and D1 = Ω1, the property (3.4) with D = Ω0
and then with D = Ω1, and (3.2) with D = Ω0 and D = Ω1. After that we use (3.3)
once again, followed by the trivial fact that f0 + f1 = 1. Thus, it is proved that

(〈v〉Ω0 − 〈v〉Ω1)
2 � (f0f1)−1〈|v − 〈v〉Ω |2〉Ω . (3.9)

Now, using the formula (3.9) and the classical Poincaré inequality

〈|v − 〈v〉Ω |2〉Ω � CP (Ω)‖∇v‖2
L2(Ω), (3.10)

we obtain
(〈v〉Ω0 − 〈v〉Ω1)

2 � (f0f1)−1CP (Ω)‖∇v‖2
L2(Ω), (3.11)

which implies (3.7) with C =
√

(f0f1)−1CP (Ω).

The second term in the right-hand side of (3.5) is now estimated as follows:

‖ū − ũ‖2
L2(T ) =

Kε∑
i=1

∫
Qi

ε

(〈u〉Qi
ε
− 〈u〉Qi

ε∩F ε
1
)2 dx = εd

Kε∑
i=1

(〈u〉Qi
ε
− 〈u〉Qi

ε∩F ε
1
)2

(3.12)

= εd
f
2
0

Kε∑
i=1

(〈u〉Qi
ε∩F ε

0
− 〈u〉Qi

ε∩F ε
1
)2

= εd
f
2
0

Kε∑
i=1

(〈u(εx′)〉x′∈ε−1Qi
ε∩F0 − 〈u(εx′)〉x′∈ε−1Qi

ε∩F1)
2 (3.13)

� εd
f0f

−1
1 CP (Q)

Kε∑
i=1

∫
ε−1Qi

ε

|∇x′u(εx′)|2 dx′ (3.14)
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= f0f
−1
1 CP (Q)ε2

Kε∑
i=1

∫
Qi

ε

|∇u(x)|2 dx

= f0f
−1
1 CP (Q)ε2

∫
T

|∇u(x)|2 dx = f0f
−1
1 CP (Q)ε2‖∇u‖2

L2(T ), (3.15)

where f0 = |F0 ∩ Q| and f1 = |F1 ∩ Q|. In formula (3.12) we split the original
expression into a sum of Kε integrals over cells of size ε and use the fact that every
integration in (3.12) is performed on a constant function. Then we make use of (3.3),
where D0 = Qi

ε ∩ F ε
0 and D1 = Qi

ε ∩ F ε
1 , and rescale the variable of integration to

obtain the expression in (3.13), which we estimate using inequality (3.11) with
Ω = Q. Finally, in (3.14) we rescale the variable of integration back and get (3.15)
by the additivity of the integral.11 Hence, it is proved that

‖ū − ũ‖L2(T ) � C2ε‖∇u‖L2(T ), (3.16)

where C2 =
√

f0f
−1
1 CP (Q). Note that

‖ū − ũ‖2
L2(T ) =

Kε∑
i=1

∫
Qi

ε

|〈u〉Qi
ε
− 〈u〉Qi

ε∩F ε
1
|2 dx = εd

Kε∑
i=1

|〈u〉Qi
ε
− 〈u〉Qi

ε∩F ε
1
|2,

and therefore it follows that

Kε∑
i=1

|〈u〉Qi
ε
− 〈u〉Qi

ε∩F ε
1
|2 � C2

2ε2−d‖∇u‖2
L2(T ). (3.17)

Finally, we estimate the third term in the right-hand side of (3.5). To this end,
note that, due to the fact that

Kε∑
i=1

〈u〉Qi
ε

= (2N)d〈u〉T = 0,

the following formulae hold:

∣∣∣∣
Kε∑
i=1

〈u〉Qi
ε∩F ε

1

∣∣∣∣ =
∣∣∣∣

Kε∑
i=1

(〈u〉Qi
ε∩F ε

1
− 〈u〉Qi

ε
)
∣∣∣∣

�
Kε∑
i=1

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qi

ε
| �

(
Kε

Kε∑
i=1

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qi

ε
|2

)1/2

.

(3.18)

Using inequality (3.17), we can make a further estimate of (3.18) to obtain

∣∣∣∣
Kε∑
i=1

〈u〉Qi
ε∩F ε

1

∣∣∣∣ � C2(Kεε
2−d)1/2‖∇u‖L2(T ). (3.19)

11Note that, in spite of the assumptions f0 	= 0, f1 	= 0 in lemma 3.2, we can drop the first of them
in the course of getting the estimates (3.12)–(3.15), for, clearly, if f0 = 0, then ‖ū − ũ‖L2(T ) = 0.

https://doi.org/10.1017/S0308210500004455 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004455


Non-local homogenized limits for composite media 103

In addition to the estimate (3.19), we claim that there exists a positive constant ĉ
such that the following inequality holds:

Kε∑
i,j=1

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qj

ε∩F ε
1
|2 � ĉε−2d‖∇u‖2

L2(T ∩F ε
1 ). (3.20)

To show this, we use the following particular case of lemma 3.2.

Proposition 3.3. Let Q and Q′ be two cells that share a common side. There
then exists a positive constant c̃, depending only on F1, such that, for any function
v ∈ H1((Q ∪ Q′) ∩ F1), the following inequality holds:

|〈v〉Q∩F1 − 〈v〉Q′∩F1 | � c̃‖∇v‖L2((Q∪Q′)∩F1). (3.21)

If Qi
ε and Qj

ε share a common side, then, by rescaling (3.21),

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qj

ε∩F ε
1
|2 � c̃ε2−d(‖∇u‖2

L2(Qi
ε∩F ε

1 ) + ‖∇u‖2
L2(Qj

ε∩F ε
1 )). (3.22)

Let (m1
k, m2

k, . . . , md
k) be the d-tuple of coordinates of the centre of the cell Qk

ε ,
k = 1, . . . , Kε. We fix two arbitrary cells Qi

ε and Qj
ε and construct a ‘path’ across

consecutive cells in the cube T , such that Qi
ε and Qj

ε are its ‘endpoints’, in the
following way. First, we move along the segment xk(t) = m1

i + t(m1
j − m1

i ), t ∈
[0, 1], so that only the first coordinate of cells changes; the others are fixed and
equal to those of the starting endpoint. Upon reaching the cell (m1

j , m
2
i , . . . , m

d
i ),

we change the direction of the path so that, at the second leg of the path, only
the second coordinate changes. Upon reaching the cell (m1

j , m
2
j , . . . , m

d
i ), we ‘turn’

again, and so on, until we reach the cell (m1
j , m

2
j , . . . , m

d
j ). Let us now number

the cells that are members of the constructed path in the order of passing them,
from 1 to Mij , where Mij is the total number of cells involved in the path, so that
cell Qi

ε has number 1 and cell Qj
ε has number Mij . Obviously, Mij � 2dN , where

N = ε−1T . Let us introduce a temporary notation Qr for the cell with number r
in the path, r = 1, . . . , Mij . It follows from inequality (3.22) that

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qj

ε∩F ε
1
|2 =

∣∣∣∣∣
Mij−1∑

r=1

(〈u〉Qr − 〈u〉Qr+1)

∣∣∣∣∣
2

� (Mij − 1)
Mij−1∑

r=1

|〈u〉Qr − 〈u〉Qr+1 |2

� (Mij − 1)c̃ε2−d

Mij−1∑
r=1

(‖∇u‖2
L2(Qr) + ‖∇u‖2

L2(Qr+1))

� 4dNc̃ε2−d

Mij∑
r=1

‖∇u‖2
L2(Qr). (3.23)

We perform the above procedure for any pair (i, j) of endpoints. It is not difficult to
see that the total number of times that any particular cell is encountered during this
process does not exceed d(2N)d+1. Therefore, summing (3.23) over all possible i, j,
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we get

Kε∑
i,j=1

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qj

ε∩F ε
1
|2 � 2d+3d2Nd+2c̃ε2−d‖∇u‖2

L2(T )

= 2d+3d2T d+2c̃ε−2d‖∇u‖2
L2(T ).

Hence, it is proved that (3.20) holds with ĉ = 2d+3d2T d+2c̃. Using inequalities (3.19)
and (3.20), we can now complete estimation of the third term in the right-hand side
of (3.5):

‖ũ‖2
L2(T ) = εd

∑
i

〈u〉2Qi
ε∩F ε

1

= εd(2Kε)−1
(∑

i,j

|〈u〉Qi
ε∩F ε

1
− 〈u〉Qj

ε∩F ε
1
|2 + 2

(∑
i

〈u〉Qi
ε∩F ε

1

)2)

� εd(2Kε)−1ĉε−2d‖∇u‖2
L2(T ∩F ε

1 ) + εd(2Kε)−1C2
22Kεε

2−d‖∇u‖2
L2(T )

= C̃2‖∇u‖2
L2(T ∩F ε

1 ) + C2
2ε2‖∇u‖2

L2(T ),

where C̃ = 2Td
√

c̃, and hence

‖ũ‖L2(T ) � C̃‖∇u‖L2(T ∩F ε
1 ) + C2ε‖∇u‖2

L2(T ). (3.24)

Finally, by summing inequalities (3.6), (3.16) and (3.24) we get the required
inequality (3.1) with C = max{C1 + 2C2, C̃}.

The availability of the Poincaré-type inequality (3.1) allows us to apply the argu-
ment of § 2.2 to the problem (2.2) with λ = 0, subject to the appropriate restrictions
on the averages of the right-hand side f(x) and solution uε(x) (see the text follow-
ing (2.2)), and under the requirement that the boundary of the set F0 be Lipschitz
continuous. Indeed, even under the assumption that λ = 0 in (2.13), the com-
pactness property for the ‘sequences’ uε(x) and ε∇uε(x) persists, in view of (3.1).
Further, by extracting a (weakly) two-scale convergent subsequence and passing
to the limit in the identity (2.3), we arrive at (2.24) with λ = 0, or, equivalently,
(2.26), (2.27) with λ = 0.

We next demonstrate that the problem (2.26), (2.27) leads to a (non-local)
integro-differential equation on the limiting function u(1)(x).

4. Non-local nature of the homogenized system (2.26)

Now we intend to show how non-locality arises from consideration of the homog-
enized system (2.26), where we set λ = 0 and assume that the boundary ∂F0 is
Lipschitz continuous. Before doing this we make one more remark. Note that the
problem (2.26), (2.27) is understood in the weak sense, i.e. in the sense of the iden-
tity (2.24). If the right-hand side f(x) of the system belongs to the space L2(T ),
as it has so far, we can a priori claim that the solution (u(1), w) belongs to the
space H1

per(T ) × L2(T , H1
per(Q)). However, if the right-hand side f(x) of the origi-

nal equation is smooth, then the function u(1)(x) representing the restriction of the

https://doi.org/10.1017/S0308210500004455 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004455


Non-local homogenized limits for composite media 105

homogenized solution to the hard phase is smooth too. This fact is obtained as a
by-product in what follows.

We denote by
G = G(y1, y2, y

′
1, y

′
2, x3)

the Green function of the operator −∂2
y1

− ∂2
y2

− α∂2
x3

in the cylinder (F̃0 ∩ Q2) ×
[−T, T ] with periodic boundary condition on the ‘bases’ x3 = ±T , Dirichlet con-
ditions on (∂F̃0 ∩ Q2) × [−T, T ], and Q2-periodicity conditions on Int(F̃0) ∩ ∂Q2,
where Int(F̃0) denotes the interior of F̃0. The above Green function exists (see, for
example, [25]). From the second equation in system (2.26), where λ = 0, we get

w(x, ỹ) = f0

∫ T

−T

〈G(ỹ, ỹ′, x3 − x′
3)〉ỹ′(α−1f(x̃′, x′

3) + u
(1)
,x′

3x′
3
(x̃, x′

3)) dx′
3, (4.1)

where 〈G(ỹ, ỹ′, x3 − x′
3)〉ỹ′ is the average of the Green function with respect to the

vector ỹ′ ∈ F̃0 ∩ Q2. We write (4.1) also in a concise form as follows:

w = f0〈G〉ỹ′
x3∗ (α−1f + u(1)

,x3x3
), (4.2)

where the symbol ‘
x3∗ ’ denotes convolution with respect to the variable x3 only.

Substituting expression (4.2) for the function w(x, ỹ) into the first equation of
the system (2.26), we obtain

− div(Ahom∇u(1)) − αf
2
0〈G〉ỹ′,ỹ

x3∗ ∂4u(1)

∂x4
3

= f + f
2
0〈G〉ỹ′,ỹ

x3∗ ∂2f

∂x2
3
. (4.3)

To prove that a periodic solution to the equation (4.3) is infinitely smooth we use
some standard techniques of Fourier analysis. To this end observe that, if we denote

F := f + f
2
0〈G〉ỹ′,ỹ

x3∗ ∂2f

∂x2
3
,

then the Fourier coefficients û(1)(m) and F̂ (m), m ∈ Z
3, of the periodic functions

u(1)(x) and F (x) are related by the following formula (henceforth in this section
we assume, without loss of generality, that T = π):

(h̃prmpmr + (f1 + αf0)m2
3 − αf

2
0m

4
3〈K̂(ỹ, m3)〉ỹ)û(1)(m) = F̂ (m). (4.4)

Here
h̃ij :=

∫
F̃1∩Q2

(δij + (Ni),j(ỹ)) dỹ, i, j = 1, 2,

are elements of the matrix Ahom
2D (see (2.7)), and K̂(ỹ, m3) are the Fourier coeffi-

cients of the function K(ỹ, x3) := 〈G(ỹ, ỹ′, x3)〉ỹ′ . Note that the Green function G
is the x3-periodic solution to the following boundary-value problem (henceforth we
also assume the Q2-periodicity condition on Int(F̃0) ∩ ∂Q2 without mentioning it
explicitly):

−∂2G

∂y2
1

− ∂2G

∂y2
2

− ∂2G

∂x2
3

= δ(ỹ − ỹ′, x3), (ỹ, x3), (ỹ′, x3) ∈ (F̃0 ∩ Q2) × [−T, T ],

(4.5)

G(ỹ, ỹ′, x3)|ỹ∈∂F̃0∩Q2
= 0. (4.6)
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Taking the average with respect to ỹ′ ∈ F̃0 ∩ Q2 in (4.5), (4.6), we arrive at a
boundary-value problem for the function K(ỹ) as follows:

−∂2K
∂y2

1
− ∂2K

∂y2
2

− ∂2K
∂x2

3
= f

−1
0 δ(x3), (ỹ, x3) ∈ (F̃0 ∩ Q2) × [−T, T ],

K(ỹ, x3)|ỹ∈∂F̃0∩Q2
= 0.

Hence, the following boundary-value problem for the Fourier coefficients K̂(ỹ, m3)
holds:

−∂2K̂(ỹ, m3)
∂y2

1
− ∂2K̂(ỹ, m3)

∂y2
2

+ m2
3K̂(ỹ, m3) = f

−1
0 , ỹ ∈ F̃0 ∩ Q2, (4.7)

K̂(ỹ, m3)|ỹ∈∂F̃0∩Q2
= 0. (4.8)

We treat m3 ∈ Z in (4.7)–(4.8) as a parameter. Clearly,

K̂(ỹ, m3) = f
−1
0

∫
F̃0∩Q2

G(ỹ, ỹ′, m3) dỹ′, (4.9)

where G(ỹ, ỹ′, m3) is the Green function of the operator −∂2
y1

− ∂2
y2

+ m2
3 in the

domain F̃0 ∩ Q2. The formula (4.9) implies that

〈K̂(ỹ, m3)〉ỹ = f
−2
0

∫
F̃0∩Q2

∫
F̃0∩Q2

G(ỹ, ỹ′, m3) dỹ′ dỹ. (4.10)

The Green function G can be split into two parts: the fundamental solution E of
the operator −∂2

y1
− ∂2

y2
+ m2

3 in R
2 and the ‘reflected’ part G̃ as follows:

G(ỹ, ỹ′, m3) = E(ỹ − ỹ′, m3) + G̃(ỹ, ỹ′, m3). (4.11)

The fundamental solution E is well known, namely,

E(z, m3) =
1
2π

K0(|m3||z|), z ∈ R
2, (4.12)

where m3 	= 0 and K0 is a modified Bessel function of the third kind.
Due to formula (4.11), the value 〈K̂(ỹ, m3)〉ỹ in (4.10) splits into two correspond-

ing parts as follows:

〈K̂(ỹ, m3)〉ỹ = f
−2
0

∫
F̃0∩Q2

∫
F̃0∩Q2

E(ỹ − ỹ′, m3) dỹ′ dỹ

+ f
−2
0

∫
F̃0∩Q2

∫
F̃0∩Q2

G̃(ỹ, ỹ′, m3) dỹ′dỹ. (4.13)

It is relatively easy to estimate the first term in the right-hand side of (4.13). To
this end, note that, using formula (4.12) and assuming henceforth that m3 	= 0, we
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obtain

f
−2
0

∫
F̃0∩Q2

∫
F̃0∩Q2

E(ỹ − ỹ′, m3) dỹ′ dỹ

� f
−2
0

∫
F̃0∩Q2

∫
R2

E(ỹ − ỹ′, m3) dỹ′dỹ

= f
−1
0

∫
F̃0∩Q2

∫
R2

E(z̃, m3) dz̃ dỹ′

=
f
−1
0

2π

∫
R2

K0(|m3||z̃|) dz̃ = f
−1
0 m−2

3

∫ ∞

0
K0(ζ)ζ dζ = f

−1
0 m−2

3 .

The last equality results from the following formula:∫ ∞

0
K0(ζ)ζ dζ = 1,

(see, for example, [14, formula 6.561(16), p. 668]).
The function G̃ is non-positive, as follows from the maximum principle. Hence,

recalling the equation (4.4) for the Fourier coefficients of the function u(1)(x), we
get

û(1)(m) = (V (m))−1F̂ (m), (4.14)

where

V (m) := h̃prmpmr + (f1 + αf0)m2
3 − αf

2
0m

4
3〈K̂(ỹ, m3)〉ỹ

� h̃prmpmr + f1m
2
3. (4.15)

Due to the fact that the function F (x) is infinitely smooth, its Fourier coefficients
decay faster than any power of |m| when |m| → ∞. Therefore, in view of for-
mula (4.14) and the estimate (4.15), the Fourier coefficients of the function u(1)(x)
also decay faster than any power of |m|, which implies smoothness of the function
u(1)(x). Hence, we have proved the following theorem.

Theorem 4.1. Let λ = 0 in equations (2.2), f(x) ∈ C∞
0 (T ),∫

T

f(x) dx = 0

and the boundary of the set F0 is Lipschitz continuous. Then the restriction u(1)(x)
of the two-scale limit of the solutions uε(x) to the hard phase F1 is infinitely smooth
and satisfies the integro-differential equation (4.3).

The above result establishes that the limit u(1)(x) of the restriction of uε(x)
on the matrix solves the non-local equation (4.3), and in this sense (4.3) may be
regarded as a non-local homogenized limit of the original equation (2.2).

5. Discussion

In this work we proposed a study of a linear periodic rapidly oscillating problem
set on a mixture of materials whose homogenized limit exhibits a spatially non-
local behaviour. The problem derives from an equation with a scaling of ‘double
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porosity’ type, which has previously been mathematically investigated by a number
of authors (see, for example, [1,28] and further references therein). The key feature
of the double porosity models is that the small parameter κ of contrast between
the constituent phases and the small period ε of the coefficients of the original
heterogeneous equation are related by the formula κ ∼ ε2. It has been demonstrated
in a number of settings (see also [6, 20]) that problems of this type may lead to
non-locality in the overall behaviour. However, the case of high anisotropy in the
properties of one of the phases (with the related ‘anisotropy scaling’ of the double
porosity type) remained unaddressed.

Using these ideas as a starting point, we studied a model situation of a mixture
of two conducting materials, one of which is included in the other as periodic
fibres having conductivity of order 1 in the direction along the fibres and very
small conductivities (of order ε2) in the directions orthogonal to the fibres. We
demonstrated in theorem 2.2 how a version of the two-scale convergence method,
widely used in the literature over the recent years for passing to the limit in rapidly
oscillating problems, can be used to find the non-local homogenized limit and to
adequately describe the convergence of solutions.

These results were first obtained under the restriction λ > 0 on the ‘spectral
parameter’ λ in the original problem (2.2). However, we further showed that the
case λ = 0 can also be accounted for, via the use of a ‘non-standard’ version of the
Poincaré inequality (see theorem 3.1). The homogenized limit in the matrix u(1)(x)
is shown to satisfy a convolution-type homogenized equation (theorem 4.1), thus
exhibiting non-locality in the overall behaviour.

As discussed at the end of § 2.1, the results stated in this paper could be extended
in a rather straightforward way to a slightly more general case of high anisotropy
(see (2.9) and (2.10)).

The results presented may also be of interest as precedents for mathematical
study of a number of interesting phenomena. We next outline two of these.

First, the above non-locality statement, rigorously established using the tech-
nique of two-scale convergence, can also be re-derived formally, from the strain-
gradient asymptotics (see [9,11,21]) of the solution to the (uniformly elliptic) prob-
lem −(Aκ

ij(x/ε)u,j),i = f(x), where the matrix of coefficients is initially determined
by the formula (Aκ

ij(y)) = diag(κ, κ, 1) if y ∈ F0, and by (Aκ

ij(y)) = diag(1, 1, 1)
if y ∈ F1. Firstly, fixing κ and treating ε as a parameter, we arrive at a two-
scale asymptotic expansion of the kind discussed in [9, 11, 21], with coefficients
depending on κ. Further, one can observe that when κ is of order ε2 this asymp-
totic expansion ‘breaks up’: all the terms become of equal ‘strength’. It turns
out that the main-order terms constitute certain expansion to the two-scale limit
u0(x)+w(x, x1/ε, x2/ε) (see [9, ch. 4] for more details). This observation may point
at certain relations between the so-called ‘size effects’ widely documented in engi-
neering literature (see, for example, [13]) and the non-locality effects in the overall
response of periodic media when expressed in terms of ‘ensemble mean’ stresses and
strains for the underlying ‘small but fixed’ ε (see, for example, [26]). The double-
porosity models (for which κ ∼ ε2) are therefore a good testing ground for exploring
a relationship between these phenomena, since the overall constitutive laws for such
models are non-local not only for fixed ε > 0 but also in the homogenized limit as
ε → 0, a feature not present in the ‘classical’ uniformly elliptic homogenization.
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Secondly, in the context of wave propagation, in both acoustics and electromag-
netism, the property of ‘intrinsic non-locality’ of the double-porosity models may
be related to the “propagation versus localization” effects in high-contrast media.
The dependence of the overall response at a given point on values of the fields
at ‘remote’ points in the present static setting may be analogous in the dynamic
setting of wave propagation to the capability of the medium to guide oscillations
with certain frequencies along the fibres, while ‘forbidding’ their transverse spread-
ing. There has been an explosion of interest in these phenomena among physicists
and experimentalists concerned with physical properties of photonic and phononic
crystals for fibre optics and for optimal design of elastics waveguides (see, for exam-
ple, [22]). The latter has also been gaining interest in the mathematical community
(see, for example, [17]): a tendency that is certain to grow in view of the scope of
potential applications.
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Appendix A. Two-scale convergence: definition and basic properties

Here we review some of the facts about the two-scale convergence, due to Nguet-
seng [18], Allaire [1] and Zhikov [28]. (Some properties are formulated in a more
general setting involving periodic measures (see [28]).)

1. Definition. Let µ be a Q-periodic Borel measure in R
d, T a bounded domain

in R
d. Define the ‘scaling’ measure µε by setting µε = εdµ(ε−1B) for any Borel

set B ⊂ R
d. A sequence of functions uε(x) ∈ L2(T , dµε) is said to (weakly) two-

scale converge to the function u(x,y) ∈ L2(T × Q,dx × dµ) (with respect to the
measure µ), if for any test function ψ(x,y) ∈ C(T × Q):∫

T

uε(x)ψ
(

x,
x

ε

)
dµε ε→0−−−→

∫
T

∫
Q

u(x,y)ψ(x,y) dµ(y) dx.

If uε(x) two-scale converges to u(x,y), we write uε(x) 2
⇀ u(x,y), assuming that it

is clear from the context what measure is associated with the convergence.

2. Compactness property. If a sequence of functions uε(x) ∈ L2(T , dµε) is bounded
in L2(T , dµε), then there exist a subsequence uεj (x) and a function

u(x,y) ∈ L2(T × Q,dx × dµ)

(possibly depending on the chosen subsequence), such that uεj (x) 2
⇀ u(x,y).

3. If the sequences uε(x) ∈ H1(T ) and ε∇uε(x) are bounded in L2(T ) and [L2(T )]3,
respectively, then there exists a function u(x,y) ∈ L2(T , H1

per(Q)) such that, up
to a subsequence, uε(x) 2

⇀ u(x,y) and ε∇uε(x) 2
⇀ ∇yu(x,y) with respect to the

Lebesgue measure on Q.
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4. Multiplication by a bounded function. If uε(x) 2
⇀ u(x,y) and ϕ(y) ∈ L∞(Q),

then

uε(x)ϕ
(

x

ε

)
2
⇀ u(x,y)ϕ(y).

5. Relation to weak convergence. If uε(x) 2
⇀ u(x,y), then

uε(x) ⇀

∫
Q

u(x,y) dµ(y),

where ⇀ denotes the usual weak convergence.12

Appendix B. The restriction u(1)(x) of the limiting function to the
hard phase u(1)(x) belongs to the space H1

per(T )

In this appendix we prove that the ‘restriction’ u(1)(x) of the limiting function
u(x,y) from (2.14) to the hard phase F ε

1 , considered as a function of x only, belongs
to the Sobolev space H1

per(T ). The argument follows [28, theorem 4.2].
Denote dµε

1 := dx|F ε
1
. Then the relation

χ1(ε−1x)uε(x) 2
⇀ χ1(y)u(1)(x),

which follows from property 4 in Appendix A, can be rewritten in the sense of two-
scale convergence with respect to the measure µ1 (see the definition in Appendix A):

L2(T , dµε
1) � uε(x) 2

⇀ u(1)(x) ∈ L2(T , dx). (B 1)

Note that, for any ε > 0, the function uε(x) is the limit of a sequence of smooth
T -periodic functions Uε

n(x) as n → ∞ in the H1(T )-norm. Furthermore, for any
function φ(x) ∈ C∞

per(T ) and vector function h(y) ∈ Vsol(Q,dµ1)13 and for any
ε > 0, n ∈ N , the following formula holds:∫

T

φ(x)∇Uε
n(x) · h(ε−1x) dµε

1

=
∫

T

∇(Uε
n(x)φ(x)) · h(ε−1x) dµε

1 −
∫

T

Uε
n(x)∇φ(x) · h(ε−1x) dµε

1

= −
∫

T

Uε
n(x)∇φ(x) · h(ε−1x) dµε

1.

Here we have used integration by parts, periodicity of the functions involved and
the fact that h(y) is a solenoidal vector function. Passing to the limit as n → ∞,
we conclude that∫

T

φ(x)∇uε(x) · h(ε−1x) dµε
1 = −

∫
T

uε(x)∇φ(x) · h(ε−1x) dµε
1. (B 2)

12A sequence uε(x) ∈ L2(T , dµε) is said to converge weakly to a function u(x) ∈ L2(T ) if, for
any test function φ(x) ∈ C(T ), the convergence∫

T
uε(x)φ(x) dµε →

∫
T

u(x)φ(x) dx

holds as ε → 0.
13The set Vsol(Q, dµ1) of periodic solenoidal vectors (with respect to the measure µ1) is defined

as the orthogonal complement of the set {∇φ : φ ∈ C∞
per(Q)} in the space [L2

per(Q, dµ1)]3.
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It follows from the inequality (2.13) that ∇uε(x) is bounded in [L2(T , dµε
1)]

3 and
therefore (see the compactness property, Appendix A), there exists a vector function
p(x,y) ∈ [L2(T × Q,dx × dµ1)]3 such that, up to a subsequence,

∇uε 2
⇀ p(x,y).

Using this and (B 1), we pass to the limit in (B 2) and arrive at the following
identity:∫

T

∫
Q

φ(x)p(x,y) · h(y) dµ1 dx = −
∫

T

∫
Q

u(1)(x)∇φ(x) · h(y) dµ1dx.

We rewrite the right-hand side of the last formula to get∫
T

∫
Q

φ(x)p(x,y) · h(y) dµ1 dx = −
∫

T

u(1)(x)∇φ(x) · 〈h〉dx.

Thus, denoting 〈h〉 =: a ∈ R
3 we conclude that

a · ∇u(1)(x) =
∫

Q

p(x,y) · h(y) dµ1,

and hence a · ∇u(1)(x) ∈ L2(T ).
From the fact that the measure µ1 is non-degenerate, we deduce that, for any

a ∈ R
3, there exists h ∈ Vsol(Q,dµ1) such that 〈h〉 = a (for a proof of this,

see [28, proposition 3.2]). Therefore, for any a ∈ R
3, the expression a · ∇u(1)(x)

belongs to the Lebesgue class L2(T ). This results in ∇u(1)(x) ∈ [L2(T )]3; hence
u(1)(x) ∈ H1(T ).

Denote by T the torus obtained in the usual way from the periodicity cell T , by
identifying appropriate parts of the boundary of T . Consider a smooth partition of
unity

m∑
i=1

ζm(x) = 1 on T ,

such that, for any i = 1, . . . , m, supp(ζi) is contained in an appropriately ‘translated’
copy, Ti, of T . Then, repeating the above argument for the sequence uε(x)ζi(x) ∈
L2(Ti, dµε) yields u(1)(x)ζi(x) ∈ H1

0 (Ti). Hence,

u(1)(x) =
m∑

i=1

u(1)(x)ζi(x) ∈ H1(T ) ≡ H1
per(T ).

Appendix C. Proof of the equality (2.20)

In our proof of the equality (2.20) we follow the argument of Zhikov [28, lemmas
6.1 and 4.3].

Let us consider test functions of the form

ψ(x) = ψε(x) = εφ(x)h(ε−1x̃),

where φ(x) ∈ C∞
per(T ) and h ∈ C∞

per(Q2). Then

∇ψε(x) = φ(x)∇yh(ỹ)|ỹ=ε−1x̃ + εh(ε−1x̃)∇φ(x).
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We substitute ψε(x) into the original integral identity (2.3) and obtain the fol-
lowing equality:∫

T ∩F ε
1

φ(x)∇uε(x) · ∇yh(ỹ)|ỹ=ε−1x̃ dx

+ ε

∫
T ∩F ε

1

h(ε−1x̃)∇uε(x) · ∇φ(x) dx

+ ε2
∫

T ∩F ε
0

[uε
,1(x)(φ(x)h,1(ỹ)|ỹ=ε−1x̃ + εh(ε−1x̃)φ,1(x))

+ uε
,2(x)(φ(x)h,2(ỹ)|ỹ=ε−1x̃ + εh(ε−1x̃)φ,2(x))] dx

+ ε

∫
T ∩F ε

0

uε
,3(x)h(ε−1x̃)φ,3(x) dx + λε

∫
T

uε(x)φ(x)h(ε−1x̃) dx

= ε

∫
T

f(x)φ(x)h(ε−1x̃) dx.

Using the a priori estimates obtained in § 2.2, it is easy to see that, in the last
identity, all terms but the first vanish as ε → 0. Hence, the first term also vanishes,
i.e. ∫

T ∩F ε
1

φ(x)∇uε(x) · ∇yh(ỹ)|ỹ=ε−1x̃ dx
ε→0−−−→ 0. (C 1)

Denote dµε
1 := dx|F ε

1
. It is proved by Zhikov [28, theorem 4.2] that, due to bound-

edness of the sequence ∇uε in the space L2(T , dµε
1), the following convergence

holds:
∇uε(x) 2

⇀ ∇u(1)(x) + r(x,y) with respect to dµ1, (C 2)

where r(x,y) ∈ L2(T , Vpot(Q,dµ1)).14 In particular,

∇uε(x) ⇀

∫
Q

(∇u(1)(x) + r(x,y)) dµ1 in [L2(T )]3. (C 3)

Due to (C 2),∫
T

φ(x)∇uε(x) · ∇yh(ỹ)|y=ε−1x dµε
1

ε→0−−−→
∫

T

∫
Q

(∇u(1)(x) + r(x,y)) · ∇yh(ỹ)φ(x) dµ1 dx

and, in view of (C 1),∫
T

∫
Q

(∇u(1)(x) + r(x,y)) · ∇yh(ỹ)φ(x) dµ1 dx = 0

for arbitrary φ(x) ∈ C∞
per(T ) and h ∈ C∞

per(Q2). Thus,∫
Q

(∇u(1)(x) + r(x,y)) · ∇yh(ỹ) dµ1 = 0

14By definition, the set Vpot(Q, dµ1) of periodic potential vectors is the closure of the set
{∇φ : φ ∈ C∞

per(Q)} in the space [L2
per(Q, dµ1)]3.
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for any h ∈ C∞
per(Q2) or, rewriting it in a more convenient form,∫

Q2

(∇x̃u(1)(x) + 〈r̃(x,y)〉y3) · ∇ỹh(ỹ) dµ̃1 = 0, (C 4)

where µ̃1 := dỹ|F̃1∩Q2
. Taking into account (C 3), we obtain

∇uε(x) ⇀

(∫
Q2

(
∇x̃u(1)(x) + 〈r̃(x,y)〉y3

)
dµ̃1, f1u

(1)
,3 (x) +

∫
Q2

〈r3(x,y)〉y3 dµ̃1

)
.

But 〈r3(x,y)〉y3 = 0, due to the fact that r(x,y) ∈ L2(T , Vpot(Q,dµ1)) and there-
fore the spaces Vpot(Q,dµ1) and Vpot(Q,dµ̃1 × dy3) coincide. Hence,

∇uε(x) ⇀

(∫
Q2

(∇x̃u(1)(x) + 〈r̃(x,y)〉y3

)
dµ̃1, f1u

(1)
,3 (x))

= (Ahom
2D ∇x̃u(1)(x), f1u

(1)
,3 (x)), (C 5)

where the matrix Ahom
2D is given by the formula (2.7). The last equality in (C 5) is

due to (C 4).
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