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In 1987, Weidmann proved that, for a symmetric differential operator τ and a real λ,
if there exist fewer square-integrable solutions of (τ − λ)y = 0 than needed and if
there is a self-adjoint extension of τ such that λ is not its eigenvalue, then λ belongs
to the essential spectrum of τ . However, he posed an open problem of whether the
second condition is necessary and it has been conjectured that the second condition
can be removed. In this paper, we first set up a formula of the dimensions of null
spaces for a closed symmetric operator and its closed symmetric extension at a point
outside the essential spectrum. We then establish a formula of the numbers of linearly
independent square-integrable solutions on the left and the right subintervals, and on
the entire interval for nth-order differential operators. The latter formula ascertains
the above conjecture. These results are crucial in criteria of essential spectra in terms
of the numbers of square-integrable solutions for real values of the spectral parameter.

1. Introduction

In his book [9], Weidmann considered the nth-order formal symmetric differential
expression

τy = w−1
{ [n/2]∑

j=0

(−1)j(pjy
(j))(j) +

[(n−1)/2]∑
j=0

(−1)j [(qjy
(j))(j+1) − (q∗

j y(j+1))(j)]
}

(1.1)
on (a, b), where 0 < n ∈ N, −∞ � a < b � +∞, y = y(t) is a complex-valued
m-vector function, y(j) = djy/dtj , pj(t), qj(t) and w(t) are measurable m×m matri-
ces, pj(t), w(t) are Hermitian, and w(t) > 0 a.e. t ∈ (a, b).

If n is even, say n = 2k, assume further that pk is regular, and |p−1
k |, |p−1

k qk−1|,
|pk−1 − q∗

k−1p
−1
k qk−1|, |pj |, |qj | (j = 0, . . . , k − 2), and |w| are locally integrable

on (a, b). If n is odd, say n = 2k + 1, assume that qk is absolutely continuous,
q̂k := qk − q∗

k is regular on (a, b), and |q̂−1
k |, |q̂−1

k (pk + q′
k)|, |q̂−1

k qk−1|, |pj |, |qj | (j =
0, . . . , k − 1) and |w| are locally integrable on (a, b) [9, pp. 27, 31]. Under these
assumptions, it was shown in [9, theorem 3.1, p. 43] that the differential expression
τ given in (1.1) is well defined and formally symmetric.

By introducing the quasi-derivatives y{j} of y, the initial-value problem at a point
c ∈ (a, b) of (1.1) is well posed by

τy = f, y{j}(c) = yj , j = 0, 1, . . . , n − 1. (1.2)
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For details about the definition of quasi-derivatives, see [9, pp. 25–29] or the appen-
dix of this paper.

The form of (1.1) includes two important cases. For n = 2, m = 1 and q0 = 0,
(1.1) reduces to the Sturm–Liouville differential expression:

τSLy = w−1(−(p1y
′)′ + p0y). (1.3)

It is known that τSL is well defined and formally symmetric under the classical
assumption: w, p1, p0 are real-valued functions, w(t), p1(t) > 0, a.e. t ∈ (a, b), and
w, 1/p1, p0 are locally integrable on (a, b). In this case, the quasi-derivatives are
y{0} = y and y{1} = p1y

′.
For n = 1, m = 2 and q0 = J/2, where

J =
(

0 −1
1 0

)
,

equation (1.1) reduces to the one-dimensional Dirac differential expression:

τDy = w−1(Jy′ + p0y). (1.4)

If the 2 × 2 matrices w and p0 are Hermitian with w(t) > 0 and all components
of w and p0 are locally integrable on (a, b), then τD is well defined and formally
symmetric.

This paper studies the operators associated to τ in the complex Hilbert space
L2

w(a, b) of all weighted square-integrable m-vector functions on (a, b), equipped
with the inner product

〈f, g〉w =
∫ b

a

g∗(t)w(t)f(t) dt (1.5)

and the corresponding norm ‖ · ‖w. As usual, L2
w(a, b) reduces to L2(a, b) when

w = id.
In [10, p. 145], Zettl considered the spectral problem of the Sturm–Liouville

operator τSLy = λy on (a, b) and defined the endpoint a to be regular if 1/p1, p0, w ∈
L1

w(a, c) for some c ∈ (a, b). He then proved [10, theorem 2.3.1] that a is regular
if and only if the quasi-derivatives y{0}(t) = y(t) and y{1}(t) = p1(t)y′(t) of every
solution have finite limits as t → a+. Following Zettl, we will call the endpoint a
regular if the quasi-derivatives y{j}(t), j = 0, . . . , n − 1, of every solution y(t) of
τy = f have finite limits at a for every f ∈ L2

w(a, b). Otherwise, a is called singular.
The regularity and singularity of the endpoint b are defined in a similar way. In this
paper both the endpoints a and b are allowed to be singular.

Remark 1.1. We note that in much of the literature an infinite endpoint is usually
classified as a singular endpoint, but it may be regular by the above definition. In
fact, a regular infinite endpoint can be transformed into a regular finite endpoint by
means of independent variable transformation of the system. We can also deduce
that an endpoint is regular if and only if the initial-value problem (1.2) at this
endpoint is well posed and the corresponding fundamental matrix solution is well
defined and locally bounded. This fact will be used in the proof of lemma 3.2 in
this paper.
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For λ ∈ C and c ∈ (a, b), denote by γ(λ) (respectively, γa(λ), γb(λ)) the number
of linearly independent solutions of τy = λy in L2

w(a, b) (respectively, L2
w(a, c],

L2
w[c, b)). It is known that γ(λ), γa(λ) and γb(λ) are independent of λ in each of the

areas Im λ > 0 and Imλ < 0. Set γ±(τ) = γ(±i), γ±
a = γa(±i) and γ±

b = γb(±i).
The numbers γ+(τ) and γ−(τ) are called the positive and negative deficiency indices
of τ , respectively. We say τ is essentially self-adjoint if

γ+(τ) = γ−(τ) = 0. (1.6)

If τ is essentially self-adjoint, then the associated minimal operator T0 to τ has only
one self-adjoint extension, which is T̄0. If, for some λ0 ∈ R,

γb(λ0) = mn, (1.7)

then we say τ is limit-circle at b (LC at b, for short). Otherwise, τ is said to be
limit-point (LP) at b. The LC and LP cases at a are defined similarly. The limit-
circle case of an endpoint is independent of the values of λ0 (cf. [1, theorem 9.11.2,
p. 296]).

For real λ, the number γ(λ) has close relations with the essential spectrum of
τ , denoted by σe(τ), which we will elaborate in § 2. Essential spectra of operators
have been studied by many authors using various theories such as the oscillation
theory, asymptotic analysis, energy-like functions, the perturbation theory, singular
sequences and square-integrable solutions for real values of the spectral parameter.
Among these methods the last one has attracted lots of attention because it takes
advantage of using numerous tools available in the fundamental theory of differential
equations. Here we introduce two important theorems of Hartman and Wintner [3].
One of them says that λ ∈ σe(τ) if and only if there exists an f ∈ L2

w such that
(τ − λ)y = f has no any L2

w-solutions and the other is the following.

Theorem 1.2 (Hartman and Wintner [3]). Let τSL be regular at a, limit-point at
b and w(t) ≡ 1.

(i) If, for some λ ∈ R, γ(λ) = 0, then λ ∈ σe(τSL).

(ii) If γ(λ) ≡ 1 on an interval I of R, then for every self-adjoint realization
associated to τSL the continuous spectrum in I is empty and the point spectrum
is nowhere dense in I.

It was conjectured that theorem 1.2(ii) can be improved to get that every self-
adjoint realization associated to τSL has a pure point spectrum in I. This conjec-
ture was disproved by Remling in [5]. In [9, theorems 11.1 and 11.7], Weidmann
extended theorem 1.2 to cases where the order n � 2 and both the endpoints a
and b are allowed to be singular. Recently, the result of part (ii) has been extended
to higher-order differential equations with arbitrary equal deficiency indices in [6].
The following is the extension of theorem 1.2(i) in [9, section 11].

Theorem 1.3 ([9, theorem 11.1]). Assume that τ in (1.1) has equal deficiency in-
dices γ±(τ) =: γ(τ).

(i) If γa(λ) + γb(λ) < mn + γ(τ), then for every self-adjoint extension T of τ ,
λ ∈ σ(T ).

https://doi.org/10.1017/S0308210509001681 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001681


420 J. Qi and S. Chen

(ii) If in addition there exists a self-adjoint extension T of τ such that λ is not
an eigenvalue of T , then λ ∈ σe(τ).

Weidmann posed an open problem of whether the additional assumption in the-
orem 1.3(ii) can be removed. This naturally gives rise to the following conjecture.

Conjecture 1.4. Assume that τ in (1.1) has equal deficiency indices γ±(τ) =
γ(τ). If

γa(λ) + γb(λ) < mn + γ(τ), (1.8)

then λ ∈ σe(τ).

We will prove this conjecture. In some cases, for example, in the case where the
minimal operator associated to τ has no eigenvalues, the extra condition in theo-
rem 1.3(ii) naturally holds and is therefore redundant. It is because the associated
minimal operator may have eigenvalues (see examples 2.2 and 2.6) that the proof
of the conjecture is non-trivial.

We will first establish more general results for closed symmetric operators. For a
closed symmetric operator, theorem 2.1 sets up the relation between the dimension
of the null space of the adjoint operator and the deficiency indices at a real λ that
is not in the essential spectrum. Theorem 2.7 gives a formula for the dimensions
of null spaces of a closed symmetric operator and its symmetric extension. These
results are of importance in their own right. Then, for the differential expression in
(1.1), we will obtain in theorem 2.9 that

λ �∈ σe(τ) ⇒ γa(λ) + γb(λ) = mn + γ(τ). (1.9)

Clearly, the validity of conjecture 1.4 is a consequence of (1.9).
From the above we see that the basic idea in this paper is to obtain an exact

formula for numbers of square-integrable solutions so that we can determine the
essential spectrum by finding the numbers of square-integrable solutions alone, with-
out knowing any information about the extensions of the operator. Our method is
particularly useful in cases where the endpoints are both singular.

Moreover, by a consequence (corollary 2.11) of our results, if τ has non-trivial
self-adjoint extensions for mn = 2 or τ is defined on an interval with at least one
regular or LC endpoint, then Weyl’s essential spectrum has a better expression:

σe(τ) =
⋂

T∈T
σ(T ), (1.10)

where T is the set of all self-adjoint extensions of τ . This formula also implies that
a subset is contained in the essential spectrum of τ if and only if it is invariant for
self-adjoint extensions of τ .

Section 2 will introduce some notation, state the main results and give illustrative
examples. The proofs of the results are left to § 3.

2. Main results and their corollaries

In this section, we will state our main results, theorems 2.1, 2.7, 2.9 and 2.10, and
leave their proofs to § 3.
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Let T be a linear operator in a complex Hilbert space H. The domain of defi-
nition, the range and the null space of T are denoted by D(T ), R(T ) and N (T ),
respectively. If T is closed, denote the resolvent set of T by ρ(T ) and the spectrum
of T by σ(T ). There are various definitions of the essential spectrum of T in the
literature. For the purpose of this paper, we introduce only a few of them. For a
closed operator T , the essential spectrum of T is defined in [2, p. 1393] as

σe(T ) = {λ ∈ σ(T ) : R(λ − T ) �= R(λ − T )}, (2.1)

while Weyl defined the essential spectrum of T as

σe1(T ) =
⋂

K∈K
σ(T + K), (2.2)

where K is the set of all compact operators on H. Of course, σe1(T ) is invariant
under compact perturbations. If T is self-adjoint, its essential spectrum, denoted
by σe2(T ), is defined as the union of the set of all accumulation points of σ(T ) and
the set σ∞(T ) of all isolated eigenvalues of infinite multiplicity ([8, p. 202] and [9,
p. 162]). In the self-adjoint case, σe1(T ) = σe2(T ) and we know from [2, theorem 6.5,
p. 1395] that

σe2(T ) = σe(T ) ∪ σ∞(T ). (2.3)

Furthermore, if T0 is the minimal (closed) operator associated to the differential
expression τ given in (1.1), then σ∞(T0) = ∅, and hence, by (2.3), σe(T0) = σe2(T0).
Since every self-adjoint extension of T0 (if any) has the same essential spectrum
σe(T0), we will view σe(T0) as the essential spectrum of τ , denoted by σe(τ).

For a closed symmetric operator T0, set T1 = T ∗
0 . It is known that N (λ − T1) is

independent of λ in each of Im λ > 0 and Im λ < 0, so we define

N+(T0) = N (i − T1) and N−(T0) = N (−i − T1), (2.4)

the positive, negative deficiency spaces of T0, and define γ+(T0) = dimN+(T0),
γ−(T0) = dimN−(T0) the positive, negative deficiency indices of T0, respectively.

For λ ∈ C, set N0(λ − T1) = N (λ − T1) ∩ D(T0) and

γ(λ, T0) = dimN (λ − T1), γ0(λ, T0) = dimN0(λ − T1). (2.5)

If Im λ �= 0, then γ(λ, T0) = γ+(T0) for Imλ > 0, γ(λ, T0) = γ−(T0) for Imλ < 0
and N0(λ − T1) = {0}. In the case Im λ = 0, however, it is possible that γ0(λ) > 0
and we should pay much more attention.

Theorem 2.1. Let T0 be a closed symmetric operator in H and T1 = T ∗
0 . If there

exists a λ ∈ R such that λ �∈ σe(T0), then γ+(T0) = γ−(T0) =: γ(T0) and

dim N (λ − T1) = γ(T0) + dimN0(λ − T1). (2.6)

Furthermore, there exists a self-adjoint extension T of T0 such that

[N (λ − T1) � N0(λ − T1)] ∩ D(T ) = {0}. (2.7)

The following is an example where dimN0(λ − T1) > 0 for some λ ∈ R.
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Example 2.2. Consider the second-order differential expression

τy = −y′′(t) + t2y(t) on (−∞, +∞). (2.8)

It is known [2, pp. 1399–1400] that γ+(τ) = γ−(τ) = 0, i.e. τ is essentially self-
adjoint. Let τ1 and τ2 denote the restrictions of τ to functions on (−∞, 0] and
[0, +∞), respectively. By the decomposition method we know that

σe(τ) = σe(τ1) ∪ σe(τ2).

For details of the decomposition method, the reader is referred to [9, pp. 54–55].
Since t2 → ∞ as t → ±∞, one sees from [4, theorem 10.3.4] that σe(τ1) = σe(τ2) =
∅, and hence we have from theorem 2.1 that, for λ ∈ R,

γ(λ) = 0 + γ0(λ) = γ0(λ).

Choose λ = 1. Clearly, y0(t) = e−t2/2 is a solution of τy = y and y0 ∈ L2(−∞,∞),
and hence γ(λ) = γ0(λ) = 1, which means that N0(1 − T1) �= {0}. We note that
λ = 1 is an eigenvalue of T0, but not an essential spectral point of T0.

From theorem 2.1 we immediately have the following corollary.

Corollary 2.3. For a closed symmetric operator T0, if γ+(T0) �= γ−(T0), then
σe(T0) = R.

Since every self-adjoint extension of a closed symmetric operator T0 with finite
equal deficiency indices is a sum of T0 and a compact operator by the second formula
of von Neumann (lemma 3.1 of this paper), we know that the set T of all self-adjoint
extensions of T0 is contained in {T0 + K : K ∈ K}, and hence, by (2.2),

σe(T0) ⊂
⋂

T∈T
σ(T ).

This together with the last assertion of theorem 2.1 yields the following corollary.

Corollary 2.4. For a closed symmetric operator T0, if γ+(T0) = γ−(T0) < ∞
and N0(λ − T1) = {0} for all λ �∈ σe(T0), then

σe(T0) =
⋂

T∈T
σ(T ). (2.9)

Remark 2.5. The restriction N0(λ − T1) = {0} in corollary 2.4 is required to get
rid of other spectral points from

⋂
T∈T σ(T ). For this, see example 2.2 when T0

is essentially self-adjoint and see example 2.6 when T0 has non-trivial self-adjoint
extensions. Sufficient conditions for N0(λ − T1) = {0} will be given at the end of
this section.

Example 2.6. Consider the differential expression

L := τ1 ⊕ τ2 on (−∞, +∞),

where τ1 and τ2 are given by

τ1y = −y′′ + (t2 − 1)y, τ2y = et2(−y′′ + y) on (−∞, +∞).
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For λ = 0, LY = 0 has three linearly independent solutions:

Y1 =
(

e−t2/2

0

)
, Y2 =

(
0
et

)
and Y3 =

(
0

e−t

)

in L2
W (−∞, +∞) with W (t) = diag(1, e−t2). Thus, γ(0) = 3. Since γ±(τ1) = 0 and

γ±(τ2) = 2, we have
γ±(L) = γ±(τ1) + γ±(τ2) = 2.

Noting that L is the orthogonal sum of τ1 and τ2, we know that

σe(L) = σe(τ1) ∪ σe(τ2) = ∅,

and hence, from theorem 2.1,

3 = γ(0) = 2 + γ0(0) ⇒ γ0(0) = 1.

This implies that N (λ−T1)∩D(T0) �= {0} for λ = 0 and that λ = 0 is an eigenvalue,
but not an essential spectral point of T0.

The next result gives the relation between dimensions of null spaces of a closed
symmetric operator and its extension.

Theorem 2.7. Let S0 be a closed symmetric operator in H and T0 be a k-dimen-
sional closed symmetric extension of S0. Let S1 = S∗

0 and T1 = T ∗
0 . If λ ∈ R\σe(T0),

then

dim N (λ − S1) − dim N (λ − T1) = k − dim(N (λ − T1) ∩ D(T0)). (2.10)

As a consequence of theorem 2.7, we have the following corollary.

Corollary 2.8.

(i) If, in addition to the conditions in theorem 2.7, dim N (λ − S1) = k and
N (λ − T1) ∩ D(T0) = {0}, then λ is not an eigenvalue of T1.

(ii) dimN (λ − S1) = ∞ if and only if dim N (λ − T1) = ∞.

In the following results, τ is defined in (1.1), T0 and T1 = T ∗
0 are the minimal

and the maximal operators associated to τ , respectively.
Recalling the definition of γ0(λ) := γ0(λ, T0) = dimN0(λ, T1) in (2.6), we have

the following theorem.

Theorem 2.9. Let T0 be the minimal operator generated by τ given in (1.1). If
there exists a λ0 ∈ R \ σe(T0), then

γ+(T0) = γ−(T0) =: γ(τ) = γ±
a + γ±

b − mn (2.11)

and, for every λ ∈ R \ σe(T0),

γ(λ) = γ(τ) + γ0(λ) (2.12)

and
γ(τ) = γa(λ) + γb(λ) − mn. (2.13)
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It is easy to see that (2.13) ascertains conjecture 1.4.
From (2.12) we have γ(λ) � γ±(T0). Therefore, theorems 2.1 and 2.9 improve [2,

lemma 7, p. 1397] and [2, Corollary 8, p. 1398], respectively.
Now we turn to the question of under what conditions N0(λ − T1) = {0} holds.

The following result partly answers this question.

Theorem 2.10. Let τ be defined as in (1.1).

(i) If one of the endpoints a and b is regular, then N0(λ−T1) = {0} for all λ ∈ C.

(ii) If one of the endpoints a and b is limit circle, then N0(λ − T1) = {0} for all
λ �∈ σe(τ).

(iii) If mn = 2 in (1.1) and γ±(τ) > 0, then N0(λ − T1) = {0} for all λ �∈ σe(τ).

Theorem 2.10 and corollary 2.4 enable us to simplify the expression of Weyl’s
definition of essential spectrum for some special differential expressions.

Corollary 2.11. Let τ be defined as in (1.1). If one of the endpoints a and b is
regular or LC, or if mn = 2 and γ±(τ) > 0, then

σe(τ) =
⋂

T∈T
σ(T ). (2.14)

3. The proofs of the results

In this section we give the proofs of theorems 2.1, 2.7, 2.9 and 2.10. For this, we
need the following lemma.

Lemma 3.1 (the formulae of von Neumann; cf. [8, theorems 8.11–8.13]). Let T0 be
a closed symmetric operator in a complex Hilbert space. Then

D(T ∗
0 ) = D(T0) � N+ � N−, (3.1)

where N± = N±(T0) are the deficiency spaces of T0, � is the direct sum, and

(i) T is a closed symmetric extension of T0 if and only if there are closed subspaces
F+ of N+ and F− of N− and an isometric mapping V of F+ onto F− such
that

D(T ) = D(T0) � {g + V g : g ∈ F+}, (3.2)
T (f0 + g + V g) = T0f0 + ig − iV g, f0 ∈ D(T0), g ∈ F+. (3.3)

(ii) T is an m-dimensional symmetric extension of T0 if and only if F+ is m-
dimensional.

(iii) T is self-adjoint if and only if F± = N±.

Proof of theorem 2.1. We may assume that λ = 0 �∈ σe(T0), for otherwise replace
T0 with T0 − λ.

First, we construct a self-adjoint extension of T0 to prove γ+(T0) = γ−(T0). Set
N0(T1) = N (T1) ∩ D(T0). Let T be the restriction of T1 = T ∗

0 to

D(T ) = D(T0) + N (T1) = D(T0) � (N (T1) � N0(T1)). (3.4)
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The operator T is symmetric. In fact, for x, y ∈ D(T ), we have from (3.4) that

x = x0 + xN , y = y0 + yN , x0, y0 ∈ D(T0), xN , yN ∈ N (T1).

Therefore,

〈Tx, y〉 = 〈Tx0 + TxN , y〉 = 〈T0x0 + T1xN , y〉
= 〈T0x0, y〉 = 〈x0, T

∗
0 y〉 = 〈x0, T1y〉 = 〈x0, T0y0〉.

Similarly, we have 〈x, Ty〉 = 〈T0x0, y0〉, and hence the symmetry of T follows from
the symmetry of T0.

Next we claim that T ∗ = T , i.e. D(T ∗) ⊂ D(T ). Since 0 �∈ σe(T0) implies
R(T0) = R(T0) = (R(T0)⊥)⊥ and R(T0)⊥ = N (T ∗

0 ) = N (T1), we have that
R(T0) = N (T1)⊥. Now for x ∈ D(T ∗) and y ∈ N (T1), since

〈T ∗x, y〉 = 〈x, Ty〉 = 〈x, T1y〉 = 0,

we see that T ∗x ∈ N (T1)⊥ = R(T0). We can then find an x0 ∈ D(T0) such that
T ∗x = T0x0, which means T1(x0 − x) = 0, i.e. xN := x0 − x ∈ N (T1). Now,
x = x0+xN ∈ D(T ) by (3.4) and T is self-adjoint. Thus, γ+(T0) = γ−(T0) =: γ(T0).

Since every self-adjoint extension of T0 is a γ-dimensional extension of T0 by
lemma 3.1(iii), we see from (3.4) that

dim(N (T1) � N0(T1)) = γ(T0) ⇒ dim N (T1) = γ(T0) + dim(N (T1) ∩ D(T0)),

which proves (2.6).
To prove the last assertion of theorem 2.1, for the self-adjoint extension T of T0,

let V : N+ → N− be an isometric mapping in lemma 3.1 such that

D(T ) = D(T0) � (I + V )N+,

By (3.4), N (T1) � N0(T1) = (I + V )N+. Define a new isometry Ṽ : N+ → N− by

Ṽ x = −V x, x ∈ N+ (3.5)

and the self-adjoint restriction T̃ of T1 by

D(T̃ ) = D(T0) � (I + Ṽ )N+.

We claim that (N (T1)�N0(T1))∩D(T̃ ) = {0}. If x ∈ (N (T1)�N0(T1))∩D(T̃ ),
then, from (N (T1) � N0(T1)) = (I + V )N+, there exist x0 ∈ D(T0), g̃ ∈ N+ and
g ∈ N+ such that

x = x0 + (I + Ṽ )g̃ = (I + V )g,

which leads to
x0 + (g̃ − g) + (Ṽ g̃ − V g) = 0.

It follows from (3.1) that

x0 = 0, g = g̃, Ṽ g̃ − V g = 0,

and hence V g = 0 by (3.5), and x = g ∈ N+ since x = g + V g and g ∈ N+. But
N+ ∩ N (T1) = {0} implies x = 0. This proves N0(T1) ∩ D(T̃ ) = {0}.
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Proof of theorem 2.7. Since T0 is a k-dimensional extension of S0, there exists a
k-dimension subspace X of H such that

D(T0) = D(S0) � X. (3.6)

We may suppose that λ = 0 �∈ σe(T0), or consider λ − T0 instead. Set

T1 = T ∗
0 , N0 = N (T1) ∩ D(T0), X0 = X � N0. (3.7)

Then (3.6) can be written as

D(T0) = D(S0) � X0 � N0. (3.8)

Letting T0 act on both sides of (3.8), we get R(T0) = R(S0) + T0(X0) and then
claim

R(T0) = R(S0) � T0(X0). (3.9)

If x ∈ R(S0) ∩ T0(X0), then there exist x0 ∈ X0 and y0 ∈ D(S0) such that x =
T0x0 = S0y0. Since X0 ⊂ D(T0) and

S0 ⊂ T0 ⊂ T ∗
0 = T1 ⊂ S∗

0 =: S1,

we have T1(x0 − y0) = 0, and hence x0 − y0 ∈ N0, i.e. x0 − y0 ∈ (D(S0)�X0)∩N0,
which means x0 = y0 by (3.8). Therefore, we have x0 ∈ D(S0) ∩ X0 = {0}. As a
result, x = T0x0 = 0 and (3.9) is valid.

We now proceed to assertion of (2.10). Since 0 �∈ σe(T0), we know that R(T0) is
closed by the definition of essential spectrum. We will prove R(S0) is closed.

Let T̃ and S̃ be the restrictions of T0 and S0 to

D(T̃ ) = D(T0) ∩ N (T0)⊥ and D(S̃) = D(S0) ∩ N (S0)⊥,

respectively. Clearly, R(T̃ ) = R(T0) and R(S̃) = R(S0). We claim that T̃ is closed.
If xn ∈ D(T̃ ) and T̃ xn → y and xn → x, then we have x ∈ D(T0) and y = T0x
since T0 is closed. Note that xn ∈ N (T0)⊥, i.e. (xn, f) = 0 for all f ∈ N (T0).
Letting n → ∞ in (xn, f) = 0 gives (x, f) = 0 for all f ∈ N (T0). Thus, x ∈ D(T̃ )
and T̃ is closed. Since for every 0 �= x ∈ D(T̃ ), T̃ x = T0x �= 0, one sees that T̃ is
invertible. Furthermore, T̃−1 is closed since T̃ is closed, and hence the closedness
of R(T0) = R(T̃ ) implies T̃−1 is bounded by the closed graph theorem.

Similarly, we can prove that S̃ is invertible and S̃−1 is closed. Clearly, S̃ is the
restriction of T̃ to D̃(S̃). Therefore, S̃−1 is bounded in view of the boundedness
of T̃−1. Again, by the closed graph theorem, we then have that R(S̃) = R(S0) is
closed.

It follows from R(T0)⊥ = N (T1),R(S0)⊥ = N (S1) that

H = R(T0) � N (T1) = R(S0) � N (S1).

This, together with (3.9), yields that

H = R(S0) � T0(X0) � N (T1) = R(S0) � N (S1),

and hence
dim(N (S1) � N (T1)) = dimT0(X0). (3.10)
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From the definition of X0 in (3.7) we see that

dim T0(X0) = dimX0 = dimX − dim(N (T1) ∩ D(T0)). (3.11)

Clearly, (3.10) and (3.11) imply (2.10) since dimX = k.

In order to prove theorem 2.9, we need the following lemma.

Lemma 3.2. Suppose that τ in (1.1) is defined on the interval (a, b) with at least one
regular endpoint, T0 is the minimal operator and T1 = T ∗

0 is the maximal operator
generated by τ . Then T0 has no eigenvalues, namely, for all λ ∈ R, it holds that

N (λ − T1) ∩ D(T0) = {0}. (3.12)

Proof. We will prove this result in a more general formulation, that is, we will prove
the corresponding result for the Hamiltonian differential expression:

LY := JY ′ − QY = λWY on (a, b), (3.13)

acting on L2
W (a, b), the Hilbert space of equivalence classes of Lebesgue measurable

mn-vector functions F satisfying
∫ ∞
0 F ∗(s)W (s)F (s) ds < ∞ with the semi-norm

‖F‖2
W = 〈F, F 〉W =

∫ ∞

0
F ∗(s)W (s)F (s) ds.

Here in (3.13), Y = Y (t) is an mn-vector function, Q(t) and W (t) are mn × mn
Hermitian matrices on (a, b), W (t) � 0, J is the standard symplectic identity
matrix, i.e. J∗ = −J , J2 = −Imn and Imn is the mn × mn identity matrix.

By a result of Walker [7], the differential expression τy = f can be transformed
to an equivalent Hamiltonian differential expression LY = WF in the form given
by (3.13), where F = (f, 0, . . . , 0)T, W = diag(w, 0, . . . , 0).

In this case, the minimal operator T0 is the closure of the pre-minimal operator
T00, whose domain is given by

D(T00) = {Y ∈ L2
W (a, b) : suppY ⊂ (a, b), ∃F ∈ L2

W (a, b) s.t. LY = WF}

and T00Y = F if LY = WF for Y ∈ D(T00). For Y ∈ D(T0), there exists a sequence
Yk ∈ D(T00) such that, as k → ∞,

Yk → Y, T00Yk =: Fk → F in L2
W (a, b)

and Y = T0F . From remark 1.1, without loss of generality, we assume that a is
regular, a > −∞ and let Φ(t) be the fundamental matrix of Jy′(t) = Q(t)y(t) such
that Φ(a) = Imn. Since JY ′

k = QYk + WFk on [a, b) and Yk(a) = 0, the variation
formula gives

Yk(t) = Φ(t)
∫ t

a

JΦ∗(s)W (s)Fk(s) ds. (3.14)

For a fixed a1 ∈ (a, b), there is an M > 0 such that ‖Φ(t)‖2 � M on (a, a1] and
∫ a1

a

Φ∗(s)W (s)Φ(s) ds � M.
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Set Yij = Yi − Yj . We have from (3.14) and the Schwarz inequality that

|Yij(t)|2 � M

∫ t

a

Φ∗(s)W (s)Φ(s) ds

∫ t

a

F ∗
ij(s)W (s)Fij(s) ds � M2‖Fij‖2

W → 0

as i, j → ∞. Then Yk(t) uniformly converges to Y (t) on (a, a1], and hence Y (a) =
limk→∞ Yk(a) = 0 since Yk(a) = 0. Now if Y ∈ N (λ − T1) ∩ D(T0), then Y (t) is a
solution of (3.13) with the initial condition Y (a) = 0, and hence Y (t) ≡ 0 on [a, b).
This proves (3.12).

Proof of theorem 2.9. We will apply the decomposition method to the proof. Fix a
c ∈ (a, b). Define an operator S0 to be the restriction of T0 to

D(S0) = {y ∈ D(T0) : y{j}(c) = 0, j = 0, . . . , n − 1}.

It is shown in [9, theorem 4.2] that S0 is an mn-dimensional restriction of T0 and

γ±(T0) = γ±(S0) − mn = γ±
a (T0) + γ±

b (T0) − mn.

This proves (2.11) in theorem 2.9. Since S0 has no eigenvalues by the definition of
D(S0) and λ �∈ σe(S0) = σe(T0), it follows from theorem 2.1 that

dim N (λ − S∗
0 ) = γ±(S0).

Since T0 is an mn-dimensional extension of S0, from (2.10) in theorem 2.7, we
obtain

dim N (λ − T1) = dimN (λ − S∗
0 ) − mn + γ0(λ), (3.15)

where γ0(λ) = dim(N (λ − T1) ∩ D(T0)). From theorem 2.1, we see

γ(τ) = dimN (λ − T1) − γ0(λ) = dimN (λ − S∗
0 ) − mn. (3.16)

Hence, S0 is the direct sum of Sa0 and Sb0, where Sa0 = S̄a00 and Sb0 = S̄b00
and Sa00 and Sb00 are defined on D(Sa00) = {y ∈ D(T0) : supp y ⊂ (a, c)} and
D(Sb00) = {y ∈ D(T0) : supp y ⊂ (c, b)}, respectively. Then we know that

dim N (λ − S∗
0 ) = dimN (λ − S∗

a0) + dimN (λ − S∗
b0). (3.17)

Clearly, the domains of definition of S∗
a0 and S∗

b0 are given by

D(S∗
a0) = {y ∈ D(T1) : τy = T1y on (a, c]},

D(S∗
b0) = {y ∈ D(T1) : τy = T1y on [c, b)}.

Since τ is regular at c, dimN (λ−S∗
a0) (respectively, dim N (λ−S∗

b0)) is the number
of linearly independent solutions of τy = λy in L2

w(a, c) (respectively, L2
w(c, b)), we

have
dim N (λ − S∗

a0) = γa(λ), dim N (λ − S∗
b0) = γb(λ). (3.18)

Inserting (3.18) into (3.16) via (3.17) yields

γ(τ) = γa(λ) + γb(λ) − mn

and then (3.15) becomes
γ(λ) = γ(τ) + γ0(λ).

The proof of theorem 2.9 is complete.
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Proof of theorem 2.10. Evidently, (i) follows from lemma 3.2.

(ii) Without loss of generality, we suppose that τ is limit circle at a, i.e. γa(λ) = mn
for all λ ∈ C. It is clear that γ(λ) = γb(λ). By theorem 2.9, for λ �∈ σe(T0), we have

γ(λ) = γa(λ) + γb(λ) − mn + γ0(λ) = γb(λ) + γ0(λ),

and hence γ0(λ) = 0.

(iii) For λ �∈ σe(T0), it follows from theorems 2.1 and 2.9 that

γ(λ) = γ±(T0) + γ0(λ) = γa(λ) + γb(λ) − mn + γ0(λ),

and hence
γa(λ) + γb(λ) = γ±(T0) + mn.

Since mn = 2 and γ±(T0) > 0, we know that at least one of γa(λ) and γb(λ) equals
2, and hence it follows from (ii) that γ0(λ) = 0.
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Appendix A. Definition of quasi-derivatives

Case 1 (n = 2k). If k = 1, then

y{0} = y,

y{1} = p1
d
dt

y{0} − q0y
{0},

y{2} = − d
dt

y{1} − q∗
0p−1

1 y{1} + (p0 − q∗
0p−1

1 q0)y{0} = wτy.

If k � 2, then

y{j} = y(j) =
dj

dtj
y, j = 0, . . . , k − 1,

y{k} = pk
d
dt

y{k−1} − qk−1y
{k−1},

y{k+1} = − d
dt

y{k} + pk−1y
{k−1} − q∗

k−1
d
dt

y{k−1} − qk−2y
{k−2}

= − d
dt

y{k} − q∗
k−1p

−1
k y{k} + (pk−1 − q∗

k−1p
−1
k qk−1)y{k−1} − qk−2y

{k−2},

y{k+j} = − d
dt

y{k+j−1} + pk−jy
{k−j} − q∗

k−jy
{k−j+1} − qk−j−1y

{k−j−1},

j = 2, . . . , k − 1,

y{n} = y{2k} = − d
dt

y{n−1} + p0y − q∗
0y{1} = wτy.
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Case 2 (n = 2k + 1). If k = 0 (n = 1), then

y{0} = y,

y{1} = q̂0
d
dt

y{0} + (q′
0 + p0) = wτy.

If k � 1, then

y{j} = y(j) =
dj

dtj
y, j = 0, . . . , k,

y{k+1} = q̂k
d
dt

y{k} + (pk + q′
k)y{k} − qk−1y

{k−1}, q̂k := qk − q∗
k,

y{k+j} = − d
dt

y{k+j−1} − qk−jy
{k−j} + pk−j+1y

{k−j+1} − q∗
k−j+1y

{k−j+2},

j = 2, . . . , k,

y{n} = y{2k+1} = − d
dt

y{2k} + p0y − q∗
0y{1} = wτy.

One uses these quasi-derivatives to transform the differential equation (τ −λ)y =
f into a first-order system so that the initial-value problem has a concise form and
is well posed.
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