Mathematical Structures in Computer Science (2020), 30, pp. 33-43 CAMBRIDGE
d0i:10.1017/S0960129519000112 UNIVERSITY PRESS

PAPER

Primitive recursion in the abstract

Daniel Leivant' and Jean-Yves Marion?

ndiana University and Université Paris-Diderot and 2Université de Lorraine, CNRS and LORIA

*Corresponding author. Email: leivant@indiana.edu

(Received 18 November 2018; accepted 14 April 2019; first published online 21 January 2020)

Abstract

Recurrence can be used as a function definition schema for any nontrivial free algebra, yielding the same
computational complexity in all cases. We show that primitive-recursive computing is in fact indepen-
dent of free algebras altogether, and can be characterized by a generic programming principle, namely the
control of iteration by the depletion of finite components of the underlying structure.

Keywords: Program termination; implicit computational complexity; primitive recursion; program variants; finite structures;
structure transformation

1. Introduction
1.1 Abstract delineation of PR
Recall that the schema of recurrence over N consists of the following two equations:

£(0,%) = g(x)
f(sn, X) = g.(n, %, f(n, X))

More generally, given a free algebra A = A(C) generated from a finite set C of constructors, the
schema of recurrence over A has one equation per constructor c:

f(C(Zh Y Zk): 55) = gc(Z ;Crfla ce rfk) (2)

where f; =f(z;,X) and k is the arity of c.

The recurrence schema for N originates with Dedekind’s interest in formalizing arithmetic,
articulated by Skolem (1923), and studied extensively (see, e.g., Peter (1951)). The set primitive-
recursive PR(A) of primitive-recursive functions over A is generated from the constructors of A
by recurrence over A and explicit definitions.!

We show here that primitive-recursive computing is independent from free algebras altogether
and is rooted instead in fundamental programming constructs alone. Namely, PR is the set of
mappings between structured (finite) data-objects that are computed by imperative programs
whose loops are governed by the depletion of the structure’s functions, dubbed here “variants.”
To show that a program terminates using time and space resources primitive-recursive in the
inputs size, it therefore suffices to identify for each loop a variant, which is usually germane to the
algorithm. This characterization also encompasses in one fell swoop various variations of primi-
tive recursion. Moreover, the fact that variants are second-order entities makes them amenable to
methods of implicit computational complexity, as we show elsewhere.

(1)

© Cambridge University Press 2019

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112
mailto:leivant@indiana.edu
https://doi.org/10.1017/S0960129519000112

34 D. Leivant and J.-Y. Marion

1.2 Inductive data-objects as finite structures

We identify data-objects, such as elements of a free algebra, with finite partial-structures. For
example, binary strings are finite partial-structure over the vocabulary with a constant e and unary
function identifiers 0 and 1. Thus, the string 011 is taken to be the following partial-structure with
four atoms, and where the partial-function denoted by 0 is defined for only one of the four:

0 1 1
e o—> 00— 0 —>o0

A function over A can thus be construed as a mapping between such finite structures.
Computation by recurrence on A terminates because the recurrence argument is being
depleted. A more generic form of depletion, adapted to loops of imperative programs, is obtained
by assigning to each loop a set of finite partial-functions, which we dub the loop’s variant, and
requiring that each pass through the loop contracts the variant. Our variants are analogous to the
variants used in Hoare-style program verification (Dijkstra 1976; Gries 1981; Winskel 1993), but
whereas the latter decrease along a prescribed well ordering, our variants are depleted by function-
contractions, that is, reassigning a defined value of a function to undefined. The distinction
between positive and negative forms of assignment is thus fundamental in our approach.

1.3 Main results

We refer to a basic imperative programming language STV for the transformation of structures.
We focus on finite partial-structures, following the approach of Leivant (2018) and the imperative
language ST defined there. ST, which is a variant of Gurevich’s abstract state machines (ASMs)
(Borger 2002; Gurevich 1993, 2001), focuses on finite structures, and also supports computing
over infinite data-structures, such as free algebras, once their elements are construed as finite
structures. ST is Turing complete and is therefore a suitable framework for identifying syntactic
conditions that characterize complexity classes.

The programming language STV defined here differs from ST only in having loop variants,
which convey in a generic and abstract sense the resource depletion implicit in recurrence. Our
main technical result is that STV characterizes an abstract notion of primitive recursion, in the
strongest possible sense. On one hand, all STV-programs run in time and space that are primitive-
recursive in the size of their input structure (Theorem 2). For the converse, we show that for each
free algebra A the functions in PR(A) are computable by STV-programs (Theorem 4). Moreover,
recurrence is embedded directly in STV, using no extraneous concepts or coding schemes.

The equivalence above is extensional, in the sense that it refers to computability, and not to
particular algorithms. However, if we take ST as our reference Turing-complete computation
model, then every ST-program that runs in PR time can be augmented with variants to become
an equivalent STV-program.

We caution against confounding our approach with unrelated prior research addressing
seemingly related themes. Recurrence and recursion over finite structures have been shown
to characterize logarithmic space and polynomial time queries, respectively (Hartmanis 1972;
Sazonov 1980), but the programs in question do not allow inception of new structure elements,
and so remain confined to linear space complexity, and are inadequate for the broad approach we
seek. On the other hand, unbounded recurrence over arbitrary structures has been considered by
a number of authors (Andary et al. 2005, 2011; Strahm and Zucker 2008), but always in the tra-
ditional sense of computing within an infinite structure. Also, while the meta-finite structures of
(Grédel and Gurevich, 1995) merge finite and infinite components, both of those are considered
in the traditional framework, whereas we deal with purely finite structures, referring to infin-
ity only in relation to collections of such structures. Finally, the functions we consider are from
structures to structures (as in Sazonov (1980)), and are thus unrelated to the global functions of
Gurevich (1988) and Ebbinghaus and Flum (1995), which are (isomorphism-invariant) mappings
that assign to each structure a function over it.

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

Mathematical Structures in Computer Science 35

As for generalizations of primitive recursion to computing over abstract structures, Bournez
et al. (2003) refer to the computation model of Blum et al. (1989), which incorporates primi-
tive recursion from the outset, and therefore does not examine the abstract contents of PR as we
do here.

This paper is sectioned along the outline above: Section 2 defines the programming language
STV, and Section 3 gives examples of programs, most of which we use in the sequel. In Section
4, we prove that STV characterizes primitive recursion, and that it includes, modulo augmenting
loops with variants, all ST-programs that terminate in PR time.

2. STV:Programs with Loop Variants

The imperative programming language ST we defined in Leivant (2018) is designed to be a Turing-
complete language for the transformation of finite partial-structures, whose building blocks are
as fundamental as possible. It is a variation of Gurevich’s ASMs (Borger 2002; Gurevich 1993,
2001), one that focuses on finite structures, distinguishes between constructive and destructive
assignments, and treats iteration as a core concept. (ASMs strive to generalize directly hardware
models and consequently refer to a single loop iterating an entire program.)

The imperative programming language STV proposed here refines ST programs with a restric-
tive condition on loops which guarantees termination, foregoing in the act Turing completeness.
We refer the reader to Leivant (2018) for a broader discussion of ST.

2.1 Finite partial-structures
The programs of STV operate over a single data-type, namely finite partial-structures, defined
as follows. We posit a fixed denumerable set A of atoms. An A-function is a finite k-ary partial-
function over A, where k > 0; thus, the nullary A-functions are the atoms. To accommodate the
non-denoting terms, we extend A to a flat domain A | , which has, in addition to the atoms, a fresh
object L, the “undefined." The atoms are the standard elements of A . We identify a k-ary A-
function F with the strict total function F: A’i — A thatforinputa returns F(a) if it is defined,
and L otherwise. An entry of an A-function F is a tuple (a; . .. ai, b), where b=F(ay, . . ., ax) #
L. The scope of F is the set of atoms occurring in its entries. The range of F is the set of atoms
obtained as values of F. The size of F is the number |F| of entries in it.

Function partiality provides a natural representation of finite relations over A by partial-
functions, without recourse to Booleans: we identify a finite k-ary relation R over A (k > 0) with
the partial-function

&rlay,...,a;) = ifR(ay,...,ar) thena; else L
Conversely, any partial k-ary function F over A determines the k-ary relation
Rp = {(d) € A*| F(a)is defined)

A vocabulary is a finite list V of function-identifiers, with each f in V assigned an arity
t(f) > 0. We superscript an identifier with its arity when convenient, and refer to nullary function-
identifiers as tokens and to the ones of arity > 0 as pointers. This distinction is fundamental,
because a pointer is potentially an unbounded memory, whereas a token is not. The order of
identifiers in V will matter here, but we nonetheless use the membership notation f € V.

A Vstructure is a mapping o that to each £¥ € V, assigns a k-ary A-function o (£), said to be a
component of . The scope of o is the union of the scopes of its components, and the size |o| of &
is the sum of the sizes of its components. Note that if (@, b) occurs as entry of multiple functions,
then those occurrences are counted separately in |o|.

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

36 D. Leivant and J.-Y. Marion

If o is a V-structure, and t a W-structure where W 2 V, then we say that t is an expansion of
o (to W), if o (f) is identical to 7(f) for every f € V. Note that the scope of 7 may be strictly larger
than that of o, due to the identifiers in W—V. We say that a V-structure o is an under-structure
of a V-structure 7 if for every f € V, o (f) C v(f); that is, every entry of o (f) is an entry of 7 (f).

If o; is a Vj-structure (i=1...k), where the V;s are disjoint and the scopes of the o’s
are disjoint, then the list (o'1,...,0) can be identified with the single structure U;o;, for the
concatenated vocabulary Vi % - - - % V.

Fix a reserved identifier @, intended to denote _L. Given a vocabulary V, the set Tmy of V-terms
is generated by € Tmy; and iff*e V,andt,, ..., t; € Tmy,thenft; - - - t; € Tmy. Terms with-
out w are standard. Note that we write function application in formal terms without parentheses
and commas. We implicitly posit that the arity of a function matches the number of arguments dis-
played. Given a V-structure o the value of a V-term tin o, denoted o (t), is obtained by recurrence
ont o(w)=_L1and, forfke V,o(ft; - -) =o()(o(ty),..., o(ty)).

An atom a € A is V-accessible in o if a = o (t) for some t € Tmy. A V-structure o is accessible
if every atom in the scope of o is V-accessible. The accessible under-structure of a structure o
consists of the entries (a; . . . ai, b) where a; . . . ag, b are all accessible.

If every atom in the scope of an accessible V-structure o is the value of a unique V-term we
say that o is free. For example, every element of a free algebra is a free structure, as is any tuple of
such elements.

2.2 Structure revisions

We define the following three basic transformations of V-structures. In each case we indicate how
an input structure o is transformed by the operation into a structure ¢’ that differs from o only
as indicated.

(1) An extension is a phrase ft) - - - t; | q, where the t;’s and q are all standard terms. The intent
is that o’ is identical to o, except thatif o (ft; - - - t;) = L, then o/(ft; - - - t) = o'(q). Thus,
o' isidentical to o if o (ft; - - - t;) is defined.

(2) A contraction, the dual of an extension, is a phrase of the form ft;---t;1.
The intent is that o/(f)(o(t;),...,0(ty)) = L. Note that this removes the entry
(o(ty),...,0(ty),o(ft) - - - tg)) (if defined) from o (f), but not from o (g) for other iden-
tifiers g.

(3) An inception is a phrase of the form c |}, where c is a token. A common alternative notation
is ¢ := new. The intent is that o’ is identical to o, except that if o (c) = L, then ¢/(¢) is an
atom not in the scope of 0.

We have no atom-removal operation dual to inception, since atoms can be removed from
the scope of a structure by repeated contractions.

We refer to extensions, contractions, and inceptions as revisions. An extension or inception is
executed if it adds an entry. That is, fﬂ,b is executed when ff = 1, and similarly for an inception.
The identifiers ¢ and f in the templates above are the revision’s eigen-identifier.

A more general form of inception, with a fresh atom assigned to an arbitrary term t, is obtained
as the composition

b{; tib; by

where b is a fresh token.
An extension and a contraction can be combined into an assignment, that is, a phrase of the
form ft := q. This can be viewed as an abbreviation, with b a fresh token, of the composition

blg ft1; ftlb; bt

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

Mathematical Structures in Computer Science 37

The atom o(q) is memorized here by b, in case q becomes inaccessible through the contrac-
tion ft .

Although assignments are common and useful, we take the revisions above as our basic con-
structs, because they are truly elemental, and the contrast between extensions and contractions is
central to our characterization of complexity classes.

2.3 STV programs

Fix a vocabulary V. A V-equation is a phrase t > q where t and q are V-terms, intended to state
that t and q are equal in A, (i.e., both undefined or both defined and equal). A V-guard is a
Boolean combination of V-equations. We write ! t for the guard t % .2

A V-variant is a finite set T of identifiers in V, to which we refer as T’s components. Our intent
is to bound iteration via variant depletion. This can be achieved simply by requiring that the total
size of the variant is reduced with each iteration cycle, much like the traditional function-variants
(Dijkstra 1976; Gries 1981; Winskel 1993). However, we seek syntactic conditions that guarantee
such a behavior, or at least semantic conditions that can be easily enforced by syntactic flags. We
consider separately the non-increase of a variant, and its decrease. Non-increase of a variant T can
be enforced by prohibiting extensions of T°s components within the loop bodys; this is a syntactic
condition that applies to the body as a whole. We enforce variant depletion by halting iteration if
variant depletion does not occur; this is a semantic condition that applies locally.

Formally, the programs of STV are generated by:

1) A revision is a program.

2) If Pand Q are STV-programs, then so is P; Q.

3) If Gisaguard and P, Q are STV-programs, then so is if [G] {P} {Q} .

4) If G is a guard, T a variant, and Q an STV-program with no extension whose eigen-
identifier is in T, then do [G] [T] {Q} is an STV-program.

(
(
(
(

The semantics of STV is defined as a binary yield relation = p between V-structures by recur-
rence on the syntax of the program P. The definition is obvious, except for iteration, which
proceeds unless the guard fails, or the variant fails to be depleted, in the following sense. If P is
do [G] [T]{Q}, letus write & = &' [respectively & = &'] for the conjunctionof £ =G,
& =q&’, and the condition that & = &’ executes [respectively, fails to execute] a contraction
of T. Then o =p 7 if for some k > 0 one of the following holds.

()0 =09 =01 =+ =>0r=1, wheret}£G; or
(Z)GZUoﬁﬁlﬁ"‘§Gk$Gk+1=T

Thus, do [G] [T] {Q} is entered if G is true in the current V-structure, and is re-entered if G is
true in the current V-structure, and the previous pass executes at least one contraction for some
component of the variant T. As do [G][T] {Q} is executed, T is not extended, by the syntax of
looping, and is subject to at least one contraction at least once for each iteration, save the last, by
the semantic condition on loop execution.

Remarks
(1) The depletion condition we impose on loops can be conveyed syntactically, as follows. For
each loop L present, say an instance of the program P = do[G][T]Q, let ¢y, be a reserved

token, to serve as a toggle for the depletion of L’s variant.
- Precede Lbycy .

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

38 D. Leivant and J.-Y. Marion

- Conjunct the test ! ¢z to G.
- Precede Qbycr 1.
- Replace each contraction ft+ inQ wherefe T, by «cp LI fE 1.
(2) All structure revisions refer only to accessible structure nodes. It follows that non-accessible
atoms play no role in the computational behavior of STV-programs.

We shall focus mostly on programs as transducers. Let @ : € — ¢ be a partial-mapping from
a class € of V-structures to a class € of V’-structures. A W-program P computes ® if for every
o€ oW =p O for some W-expansion Q of ®(¢’). Note that the vocabulary V' of the output
structure need not be related to the input vocabulary V.3

3. Examples of STV-Programs

3.1 String duplication

The following program duplicates a structure o representing a binary string; that is, the output
structure has the same scope as the input, but with functions appearing in duplicate. The algo-
rithm has two phases: a first loop, whose variant consists of all pointers in V, creates two new
copies of the string, while depleting the input functions. A second loop restores one of the two
copies to the original identifiers, thereby allowing the duplication to be useful within a larger
program that refers to those original identifiers.

a:=e;
do [!0a Vv !1a] [0,1] % 0/1 copied to 0/1 and 0/1
{bla; % while being consumed (via b) as variant
if [10a]

{0(a) | 0a;0(a) | Oa;a | 0a; 0b 4 }
{1(a) | 1a;1(a) | 1a;a | 1a;1b 1}
|5
a:=e; % 0/1 restored to 0/1
do[!0aVv!ia][0,1]
{if [10a]
{0al0a;0at;a | 0a;}
{1a}la;1at;a | 1a;)

3.2 Generating large output

Let V = {z°, s'} be the vocabulary for the natural number structures, that is, the free structures for
the terms s™z. The addition of V-structures (zo, so) and (z1, s1), representing natural numbers
ng, 11, is computed by an STV program that duplicates the second input, and uses one of the two
copies as a loop variant for splicing the other copy over the first input.

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

Mathematical Structures in Computer Science 39

A program for multiplication is obtained by duplicating the second input, initializing the out-
put to z, and then using the first input as variant of a loop whose body splices the second argument
on the output-so-far.

A program for exponentiation, transforming each structure sz to the structure sz, is con-
structed similar to the multiplication program above, except that the output is initialized to the
structure for sz, and the loop’s body duplicates the output-so-far and adds up the two copies.

2

3.3 Enumerators

Let o be a V-structure. A pair (g, e), with a € A, and e a partial unary function over A, is an
enumerator for o if for some n the sequence a, e(a), e(e(a)), ..., el"l(a) consists of all accessible
atoms of o, and el"1(g) = L.

The following program L builds, in each V-structure o taken as input, an enumerator (g, e)
for o. That is, for some fresh identifiers a’, e!, the output 7 of L for input o is an expansion t
of o with an enumerator (t(a), (e)) for o (whence for t as well). L initializes e to a list of the
atoms denoted by V'’s tokens. L’s main loop, with body C, collects new accessible elements into
an auxiliary unary pointer p, used as a cache and re-initialized to empty at the start of C. For
each f¥ € Vin turn, C creates k new copies of p. Using the set of these copies as a variant, C then
cycles through k-tuples a of elements in p (using auxiliary tokens) and appends o (£)a to p if it is
not already in p. When this process is completed for all f € V, C concatenates p to e. The loop is
exited by variant depletion, when the cache p remains empty at the end of C, that is, when no new
atom has been found.

Clearly, if the input structure o is free, then the construction above yields an enumerator e that
is monotone, in the following sense: for each term q = f*t; - - - t; the enumerator lists t; before q.

3.4 Duplicating the accessible under-structure

The program above for string duplication implicitly relies on the presence of a trivial enumerator
for the string-structure. Using the program L above for constructing an enumerator for all V-
structures, we can now outline a program that duplicates the accessible under-structure of any
V-structure.

We first define, for m > 0, a program D, that yields for each pointer £ € V m copies£; ... £, of
f (over the same atoms as f). To begin, D,, constructs an enumerator (a, e) for the input structure.
Recall that the identifiers £ ... £, for the duplicates to be created are all initially empty, by our
semantic conventions.

For each of the (finitely many) identifiers £ k'€ V in turn, D,y then creates k copies of eand uses
them to cycle through all k-tuples a of accessible atoms in o, extending each f; with the entry
(a,0(f)a). The k copies of e are also used collectively as the loop’s variant. The loop is exited
when the variant is depleted, leaving no unchecked tuple a. Note that the original enumerator e is
left alone during the process, remaining available for the program segment dealing with the next
pointer in V.

3.5 Quasi-inverses

In inductive data the constructors are injective, and therefore have inverses. A lax form of
function-inversion, namely quasi-inversion, can be defined for arbitrary functions, as follows.*
For a relation RC A x B and a € A, define R'a=4¢{b € B|aRb}.> Say that a partial-function
f: A— B is a choice-function for R if f CR and f(a) is defined whenever R'a # (. A partial-
function g: A — B is a quasi-inverse of f if it is a choice function for the relation f~!. When f
is r-ary, that is, A = x]_, A;, g can be construed as an r-tuple of partial-functions (g; ... g,). We
write f ' for g;. Evidently, if a unary function f is injective, then its (unique) quasi-inverse is the

usual inverse L.
https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

40 D. Leivant and J.-Y. Marion

Let V be a vocabulary. We construct an STV-program J that for each V-structure o as input
yields an expansion of o with quasi-inverses for the accessible portion of each non-nullary o (f),
fe V.] is similar to the program D above for duplicating the accessible portion of all functions.
However, whereas D examines all entries (4, o (£)a), and extends £, . . ., £, whenever that entry
is defined, J extends, fori=1. . .k, the function £~ with the entry (o (f)a, a;).

For a vocabulary V we can now easily define, using quasi-inverses, a program Sub over V that
maps any free accessible structure o, and atom y = o't in the scope of o, to the restriction of o to
atoms denoted by sub-terms of t.

4. Soundness and Completeness of STV for PR
4.1 Soundness of STV-programs for PR

Recall (Section 2.1) that the size |o| of a structure o is the sum of sizes of its components. In fact
this is in tune with our use of variants, which are consumed by eliminating function entries, not
atoms. Moreover, the size of functions seems to be an appropriate measure in general, since it
conveys the information contents of a structure more faithfully than the number of atoms.

Note that for word-structures, that is, o(w) for w € £* (¥ an alphabet) the total size of the
structure’s functions is precisely the length of w, so in this important case our measure is identical
to the count of atoms.

We say that a program P runs within time t : N— N if for all structures o, the number of config-
urations in the execution trace of P on input o is finite and < #(|o’|). P runs within space s : N—N
if for all o, all configurations in the execution trace of P on input o are of size < s(|o|). We say
that P runs in PR if it runs within time ¢, for some PR function ¢t. This is trivially equivalent to
P running in PR space, since s cannot exceed t, t cannot exceed 2°¢), and PR is closed under
exponentiation.

We assign to each STV-program P a primitive-recursive function bp : N—N as follows.

o If P is an extension, then bp(n) = 1; if P is a contraction or an inception, then bp(n) = 0.
o If Pis S; Q, then bp(n) = bo(bs(n))
o If Pisif[G]{S}{Q}, then bp(n) = max [bs(n), bo(n)].

« If Pis do[G][T]{Q}, then bp(n) = by (n).

Lemma 1. If P is an STV-program computing a mapping ®p between structures, then for every
structure o

|®p(o)| < bp(lo])
Proof. Structural induction on P.

o If P is a revision, then the claim is immediate by the definition of bp.
o If Pis S; Q, then

|®p(0)| = [P(Ps(0))]
< bo(|Ps(o)]) (IH for Q)
< bo(bs(lo])) (IH for S, bq is non-decreasing)
= bp(lo|)

o The case for P = if[G]{S}{Q} is immediate.

)
)

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

Mathematical Structures in Computer Science 41

o If Pis do[G][T]{Q)}, then ®p(0) is d>[Qm] (o) for some m. By the definition of variants, and the
semantics of looping, m is bounded by the size of T, which is bounded by |o|. So

|®p(0)| = |q>gn](0)| for some m < |o|
< b[Qm](IOI) IH, bq is non-decreasing

< b[Qn (jo]) where n=|o| by the comment above,

since bq is non-decreasing

= bp(lo|) by the dfn of bp

From Lemma 1 we obtain the soundness of STV-programs for PR:

Theorem 2. Every STV-program runs in PR space, and therefore in PR time.

4.2 Completeness of STV-programs for PR

Turning to the completeness of STV for primitive recursion, we could prove that STV is complete
for PR(N), and invoke the numeric coding of any free algebra. This, however, would fail to estab-
lish a direct representation of generic recurrence by STV-programs, which is one of the raisons
d’étre of STV. Consequently, we show for any free algebra Athat every f € PR(A) is computed by
an STV-program that conveys directly the PR definition of f.

For a free algebra A = A(C), and an element a € A, let o, be a given as a C-structure.

Lemma 3. For each free algebra A = A(C) and each instance of the A-recurrence schema (2), the
following holds. Given STV-programs for the functions g., there is an STV-program P that, for each
Vs X1s -+ o> Xm € A, maps the structure (0, 0y, ..., 0x,) to o, wheret =f(y, x1,.. ., Xm).

Proof. Assume that g in (2) is computed by an STV-program P, for each c € C.

Since y € A, each atom in o, is the root of o, for some sub-term z of y. Our program P builds
up a unary pointer r that maps each such z to the structure for f(z, x1, . . ., Xp).

P starts by invoking programs L and] above to expand o, with an enumerator e and quasi-
inverses for each c € C. Since o, is free, each such quasi-inverse is an inverse, and e lists any
sub-term w of z before z.

P’s main loop examines the atoms listed by e, using e itself as variant (after saving a copy). For
each z listed, the constructor-inverses are used to identify the main constructor of z, say c of arity
k, as well as the the immediate sub-terms of z, namely w; = c 'z, ... w = c~*z. P then invokes
P. for the structure

(s «vvs Owps Oxps - Oxps T(W), oo, (W)

as input, and sets r(z) to be the root of P.’s output. By our definition of the enumerator, its last
entry is the recurrence argument y itself, and by the definition of P, r(y) is the root of o;.
The last phase of P uses contractions to eliminate all atoms and entries other than o. O

Theorem 4. For each free algebra A, the collection of STV-programs is complete for PR(A).

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

42 D. Leivant and J.-Y. Marion

Proof. Let f € PR(A). We show that f is computable in STV by discourse-level induction on the
definition of f as a PR function over A. The cases where f is a constructor are trivial. For explicit
definitions, and more particularly composition, the duplication program of Section 3.4 takes care
of structure duplication. Finally, the case of recurrence is treated in Lemma 3. O

4.3 Completeness of STV for PR-bounded ST-programs

Theorem 4 establishes for any free algebra A a simple and direct mapping from definitions in
PR(A) to STV-programs. If we take the ST-programs of (Leivant, 2018) as the Turing-complete
computation model of reference, the question remains as to whether every ST-program P running
within primitive-recursive resources is directly mapped to an equivalent STV-program Q. Indeed,
it suffices to take Q of the form E; B; P’, where:

(1) E expands o with an enumerator for o.

(2) Binvokes Theorem 4 for A = N, using E as input, to compute the function f, that is, further
expanding o with (b°, t!) representing a chain of length f(n), where 7 is the size of 0.

(3) P’ is P with each loop preceded with duplicating t, and using the copy as variant for
the loop.

5. Conclusion

We have followed here Leivant (2018), where we introduced programming over finite partial-
structures as an approach for the analysis and certification of resources in an abstract setting
(Heijenoort, 1967). The key insight is that inductive data-objects, such as natural numbers, strings,
and lists, can be construed as finite partial-structures, and as such are amenable to programming
for the transformation of finite partial-structures.

Here we presented a variation STV of ST, which requires each loop to be assigned a “variant"
in the guise of a set of the structure’s components, with each pass through the loop consuming
at least one variant’s entry. We showed that this generic construct yields an abstract delineation
of primitive-recursive computing: On the one hand, recurrence over any free algebra is captured
directly in STV, and, on the other hand, any function computed by STV programs is primitive-
recursively bounded, and is therefore primitive-recursive.

Notes

1 The phrase “primitive recursion” was triggered by Ackermann’s and Sudan’s discoveries of computable (“recursive") func-
tions that are not in PR(N). Given present-day usage of “recursion” for a broader notion of recursive procedures, it seems
preferable to refer to the schemas above as “recurrence" rather than “recursion.”

2 The notations 2~ and ! are due to Kleene (1969).

3 Of course, if € is a proper class (in the sense of Godel-Bernays set theory), then the mapping defined by P is a proper class.
4 Quasi-inverses are often defined algebraically: g is a quasi-inverse of f when fogo f =f.

5 We use infix notation for binary relations.

References

Andary, P., Patrou, B. and Valarcher, P. (2005). About implementation of primitive recursive algorithms. In: Beauquier, D.,
Borger, E. and Slissenko, A. (eds.) Proceedings of the 12th International Workshop on Abstract State Machines, 77-90.

Andary, P., Patrou, B. and Valarcher, P. (2011). A representation theorem for primitive recursive algorithms. Fundamenta
Informaticae 107 (4) 313-330.

Blum, L., Shub, M. and Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-completeness,
recursive functions and universal machines. Bulletin of the American Mathematical Society 21 1-46.

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112

Mathematical Structures in Computer Science 43

Borger, E. (2002). The origins and the development of the ASM method for high level system design and analysis. Journal of
UCS 8 (1) 2-74.

Bournez, O., Cucker, F., de Naurois, P. J. and Marion, J.-Y. (2003). Computability over an arbitrary structure. Sequential and
parallel polynomial time. In: Foundations of Software Science and Computational Structures, 185-199.

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.

Ebbinghaus, H.-D. and Flum, J. (1995). Finite Model Theory. Springer-Verlag.

Grédel, E. and Gurevich, Y. (1995). Metafinite model theory. In: Leivant, D. (ed.) Logic and Computational Complexity,
Lecture Notes in Computer Science, vol. 960, Springer, 313-366.

Gries, D. (1981). The Science of Programming, Texts and Monographs in Computer Science. Springer.

Gurevich, Y. (1988). Logic in computer science column. Bulletin of the EATCS 35 71-81.

Gurevich, Y. (1993). Evolving algebras: An attempt to discover semantics. In: Rozenberg, G. and Salomaa, A. (eds.) Current
Trends in Theoretical Computer Science, vol. 40, World Scientific, 266-292.

Gurevich, Y. (2001). The sequential ASM thesis. In: Current Trends in Theoretical Computer Science, World Scientific,
363-392.

Hartmanis, J. (1972). On non-determinancy in simple computing devices. Acta Informatica 1 336-344.

van Heijenoort, J. (1967). From Frege to Gidel, A Source Book in Mathematical Logic, 1879-1931. Harvard University Press.

Kleene, S. C. (1969). Formalized Recursive Functionals and Formalized Realizability. Memoirs of the AMS. American
Mathematical Society.

Leivant, D. (2018). A theory of finite structures. CoRR, abs/1808.04949.

Peter, R. (1951). Rekursive Funktionen. Akadémia Kiadé.

Sazonov, V. Y. (1980). Polynomial computability and recursivity in finite domains. Elektronische Informationsverarbeitung
und Kybernetik 16 (7) 319-323.

Skolem, T. (1923). Einige bemerkungen zur axiomatischen begriindung der mengenlehre. In Matematikerkongressen in
Helsingfors Den femte skandinaviske matematikerkongressen, 1922 Heijenoort (1967), 217-232. English translation in
(Heijenoort, 1967).

Strahm, T. and Zucker, J. I. (2008). Primitive recursive selection functions for existential assertions over abstract algebras.
Journal of Logical and Algebraic Methods 76 (2) 175-197.

Winskel, G. (1993). The Formal Semantics of Programming Languages: An Introduction. MIT Press.

Cite this article: Leivant D and Marion J-Y (2020). Primitive recursion in the abstract. Mathematical Structures in Computer
Science 30, 33-43. https://doi.org/10.1017/50960129519000112

https://doi.org/10.1017/50960129519000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129519000112
https://doi.org/10.1017/S0960129519000112

	Primitive recursion in the abstract
	Introduction
	Abstract delineation of PR
	Inductive data-objects as finite structures
	Main results

	STV: Programs with Loop Variants
	Finite partial-structures
	Structure revisions
	STV programs

	Examples of STV-Programs
	String duplication
	Generating large output
	Enumerators
	Duplicating the accessible under-structure
	Quasi-inverses

	Soundness and Completeness of STV for PR
	Soundness of STV-programs for PR
	Completeness of STV-programs for PR
	Completeness of STV for PR-bounded ST-programs

	Conclusion

