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Thermocapillary patterning, namely, the formation of micro/nano patterns in a liquid film
by surface deformation induced by an imposed thermal gradient, has enjoyed widespread
applications in engineering. In this paper, we present the development of analytical and
numerical models and model analyses to predict the equilibrium states of a deformed liquid
polymer film under the action of thermocapillary forces. The deformation is found to be
dependent on a non-dimensional parameter � ≡ Ma Ca, with Ma denoting the Marangoni
number and Ca the capillary number. Model analyses show that a hysteresis phenomenon
is associated with the thermocapillary deformation of the film with increasing and then
decreasing �. When � is increased above a critical value �c,1, significant deformation
occurs in the film until the polymer touches the top solid template. Then, if � is allowed
to decrease, the polymer film would not detach from the template until � is decreased
below another critical value �c,2 (usually �c,2 < �c,1). With � ∈ [�c,2, �c,1], there exist
multiple (three at the maximum) equilibrium states. The Lyapunov energy analysis of these

† Email address for correspondence: fengxu@mail.xjtu.edu.cn

© The Author(s), 2021. Published by Cambridge University Press 919 A29-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:fengxu@mail.xjtu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.407&domain=pdf
https://doi.org/10.1017/jfm.2021.407


Q. Yang, B.Q. Li, X. Lv, F. Song, Y. Liu and F. Xu

states reveals that one equilibrium state is stable, another is metastable and the third one is
unstable.

Key words: Marangoni convection, Capillary flows, thin films

1. Introduction

Micro/nano patterning has been widely used in the manufacturing of integrated circuits,
optical devices and biomedical sensors (Bonn et al. 2009; Li et al. 2012, 2016; Lind
et al. 2017). Among the many techniques for the fabrication of patterned micro/nano
structures is thermocapillary patterning (Schäffer et al. 2003; Trice et al. 2008;
Rodríguez-Hernández 2015; Singer 2017). By this method, an initially flat polymer/air film
is sandwiched between a hot substrate and a cold topographic template (figure 1a). This
configuration allows a transverse thermal gradient to be generated along the polymer/air
interface. Driven by the thermal gradient, the polymer flows towards the protrusion part,
thereby resulting in the deformation of the film that conforms with the template. Periodic
micro/nano structures are obtained upon the solidification of the deformed polymer film.

While early study attributes the above deformation to radiation pressure caused by
coherent reflections of acoustic phonons (Schäffer et al. 2003), recent theoretical and
experimental studies indicate that the thermocapillary force rather than the radiation
pressure is responsible for the pattern formation (Dietzel & Troian 2009; McLeod, Liu
& Troian 2011). The mechanism was confirmed by Saprykin et al. (2007), who have
studied the thin film flows over a uniformly heated topography. The temperature along
the polymer/air interface is non-uniform due to the modulation of the structured template
(top plate). The surface tension depends on the temperature and is thus also non-uniform.
Driving by the non-uniform surface tension, tangential flow occurs and leads to the
deformation of the polymer film. The final micro/nano structures conform with the
template, thus thermocapillary patterning can be considered as a replication technique.
Different structures, such as periodic strips and prisms, have been obtained in experiments
with thermocapillary patterning, by tuning the topology of the template, film thickness
and other process parameters (Schäffer et al. 2003).

If the top template is also flat, then the perturbations on the polymer/air interface
may lead to instability, which is usually referred to as thermocapillary instability. In
this case, perturbations with a proper wavelength would be enlarged and result in the
formation of micro/nano structures in the polymer film (Dietzel & Troian 2009, 2010;
Nazaripoor et al. 2018). With the thermocapillary instability, the film usually evolves into
periodic micro-pillars. To predict the distance between two adjacent micro-pillars, linear
stability analysis can be employed (Dietzel & Troian 2009; Nazaripoor et al. 2018). By this
approach, a perturbation with a small amplitude and a given wavelength is imposed upon
the initially flat polymer/air interface. The amplitude of perturbation is assumed to increase
exponentially with time and the most unstable wavelength is calculated and treated as the
distance between two adjacent micro-pillars. A distinctive advantage of patterning with
the thermocapillary instability is that the flat template, compared with a topographical
template, can be fabricated with ease. However, the periodicity of microstructures under
a flat template is sensitive to the various parameters, e.g. temperature difference, film
thickness and viscosity, making process control a rather challenging task. Consequently,
in practice, a topographical template rather than a flat one is often used. The periodicity
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Figure 1. Thermocapillary patterning: (a) schematic representation of the system configuration and
(b) computational domain for equilibrium deformation of the polymer film.

of microstructures can be well controlled by changing the topological configuration of the
template.

So far, studies on thermocapillary patterning have been focused on the dynamic process
of film flow and height evolution (Mukherjee & Sharma 2015; Fiedler & Troian 2016).
In these studies, the fluid flow is usually approximated as one-dimensional flow and a
tangential stress (i.e. the Marangoni stress) is imposed on the polymer/air interface to
generate the flow. Moreover, a long-wave approximation (or the lubrication approximation)
is employed to further simplify the calculation of the fluid flow and the thermal field. The
final equations governing the evolution of interfacial morphology are solved with a proper
numerical scheme (Nazaripoor et al. 2018).

To the best of our knowledge, there appears to have been no equilibrium study (i.e.
steady state) on thermocapillary patterning. In this paper, we present analytical and
numerical models to investigate the equilibrium deformation of a polymer film under
a transverse thermal gradient. The equilibrium state represents the deformation that the
polymer film eventually evolves into and is of critical importance to fully appreciate
the fundamentals governing the thermocapillary pattern formation process. A novel
hysteresis phenomenon associated with the steady state thermocapillary patterning has
not yet been discussed in dynamic processes. Moreover, a major difficulty in developing
a steady state analysis of thermocapillary patterning is associated with the treatment of
the polymer–template interface, (that is, where the polymer meets the template) where a
common continuum mechanics approach breaks down because of a singularity associated
with a jump condition inherent in the continuum mechanics description of a liquid–solid
interface. Our analysis below will address this issue by introducing a molecular force
remedy.

2. Problem statement

Let us now consider a typical system configuration of thermocapillary patterning as
illustrated in figure 1(a), where the polymer/air film is spin coated on a hot substrate and
a cold topographic template is placed above the film. This allows a spatially non-uniform
temperature distribution to be produced along the polymer/air interface. If surface tension
is temperature dependent, the resultant surface force will drive a tangential flow (i.e. the
Marangoni flow) (Davis 1987; Dietzel & Troian 2010; Arshad et al. 2014). To be specific,
in the present configuration, the surface tension is larger under the protrusions because
of a lower temperature there, while it is smaller in other areas. Hence, the portion of the
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polymer surface with a larger surface tension rises up, whereas that with a smaller surface
tension trends downward, leading to a patterned deformation in the polymer film. As the
deformation continues, the tangential flow starts to be impeded by the Laplace pressure
gradient, and eventually the deformation process ceases because of the force balance on
the polymer–air interface. In what follows, the governing equations for heat transfer and
polymer film deformation are established and analyses are presented. For simplification,
only one periodic structure is studied in this paper (figure 1b).

To obtain the temperature distribution along the film/air interface, some assumptions are
made for the involved heat transfer process. The fluid flow in the film is of low Reynolds
number, therefore the convection and transient terms in the heat transfer equations may be
neglected (Ruyer-Quil et al. 2005; Scheid et al. 2005). The governing equation for heat
transfer thus simplifies to a Laplace equation (i.e. the equation for steady conduction),
∇2T = 0, where T represents the temperature. Moreover, with a lubrication approximation
(i.e. the periodic length is much larger than the film thickness, l0 � h0) applied, the
temperature distribution along the interface is obtained with the result,

T(x) = Th − H
(1 − kr)H + krD

�T, (2.1)

where H = h(x)/h0 and D = d(x)/h0 denote the normalized height of polymer/air
interface and the surface topology of template, respectively; kr = kp/ka is the relative
thermal conductivity of polymer and air; and �T = Th − Tc stands for the temperature
difference. Due to the modulation of the template, the temperature along the polymer/air
interface is non-uniform. As suggested by (2.1), the thermal field is one-dimensional
and steady state. This is a direct result of the lubrication approximation (i.e. long-wave
approximation). It is noteworthy that the approximation will be invalid if the film thickness
is on the same scale as the periodic length.

The surface tension γ is assumed to be a linear function of temperature, γ = γ0 −
α[T − (Th + Tc)/2], where γ 0 represents the surface tension at the reference temperature
T0 = (Th + Tc)/2, and α is a constant and represents the thermocapillary coefficient. In
general, surface tension decreases with an increase in temperature and thus α is positive.
The hydrostatic pressure inside the polymer film can be approximated as p = p0 − γ∇2h,
with p0 being the pressure of the air. Liquid motion can be considered as one-dimensional
film flow and the polymer behaves as a Newtonian fluid with a constant viscosity μ. Also,
the gravitational force is neglected in a micro/nano film. With these simplifications, the
governing equations for the thin film flow can be written as

0 = −∂p
∂x

+ μ
∂2u
∂y2 ,

0 = −∂p
∂y

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2a,b)

with the following boundary conditions,

u = 0 at y = 0,

μ
∂u
∂y

= ∂γ

∂x
at y = h.

⎫⎬
⎭ (2.3a,b)

Integrating twice, one obtains the horizontal velocity u (Nazaripoor et al. 2018; Fiedler,
McLeod & Troian 2019),

u = 1
2μ

∂p
∂x

y2 − 1
μ

∂p
∂x

hy + 1
μ

∂γ

∂x
y, (2.4)

919 A29-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.407


Mathematical modelling of thermocapillary patterning

that is, the velocity profile in the y-direction is described by a parabolic function. For the
film flow, conservation of mass requires that

∂h
∂t

= − ∂

∂x

(∫ h

0
u dy

)
. (2.5)

Substituting u, γ , p and T into (2.5) and rearranging, one obtains the
non-dimensionalized equation for the spatial-temporal evolution of the interface,

∂H
∂τ

+ ∇‖ ·
{

Ca−1 H3

3
∇3

‖H + Ma
H2

2
kr(D∇‖H − H∇‖D)

[(1 − kr)H + krD]2

}
= 0, (2.6)

where τ = uct/l0 is the normalized time, uc = h0γ0/l0μ is the characteristic velocity, the
capillary number Ca = μucl30/γ0h3

0, and the Marangoni number Ma = h0α�T/l0μuc. In
this paper, we focus on the equilibrium state of the film deformation. At equilibrium,
the interface stops evolving, namely ∂H/∂τ = 0. With this substituted into (2.6) and
with allowance for a two-dimensional analysis, one has the following nonlinear equation
governing the deformation of the interface,

H3

3
d3H
dX3 + �H2

2

kr

(
D

dH
dX

− H
dD
dX

)

[(1 − kr)H + krD]2 = C1, (2.7)

where the non-dimensional parameter � ≡ Ma Ca = α�Tl20/γ0h2
0, and C1 is a constant.

With X = x/l0 being the normalized coordinate, H(X) and D(X) are symmetric at X = 0
and X = 1, and thus dH/dX = 0, dD/dX = 0 and d3H/dX3 = 0 at these two points. These
constraints led to C1 = 0.

3. Linear model

We first consider a linearized model for the equilibrium deformation of the liquid film. For
linear analysis, D(X) and H(X) are decomposed into a Fourier series. All the high-order
terms are neglected and only the first-order terms are retained, H(X) ≈ 1 − H1 cos(2πX),
D(X) ≈ D0 + 2/π�D cos(2πX). Substituting these linear terms into (2.7), the amplitude
of the deformed polymer film H1 can be obtained. In this paper, we use the structure
height, �H = 2H1, to characterize the deformation of the polymer film. For a given set of
parameters (�D, D0, kr and �), the structure height �H is obtained, from (2.7), as,

�H = 12�Dkr

8π3(1 − kr + krD0)
2�−1 − 3πkrD0

. (3.1)

For all analyses presented below, unless explicitly noted otherwise, the following
parameters are fixed: ka = 0.036 W (m °C)−1, kp = 0.144 W (m °C)−1, h0 = 100 nm,
d0 = 250 nm, �d = 100 nm, l0 = 2 μm, γ 0 = 31.53 mN m−1, T0 = 150 °C, α = 88.5 μN
(m °C)−1. For these values, the corresponding non-dimensional parameters are �D = 1,
D0 = 2.5, kr = 4.

Figure 2(a) depicts the dependence of structure height �H on �. For � > 0, �H is
positive, indicating that the deformation in the thin polymer film has a phase difference
with the template structure (or positive replication). For � < 0, the polymer film has
the same phase as the template (or negative replication). This is consistent with the
experimental observations by Schäffer et al. (2003). In the case of � < 0, either the surface
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Figure 2. Film deformation predicted by the linear model. (a) Dependence of structure height �H on the
non-dimensional number �. (b) Normalized velocity U = u/uc at non-equilibrium state and equilibrium state.

tension of the polymer film increases with the temperature (α < 0), or the temperature
difference is reversed (�T < 0). Under these circumstances, the deformation in the
polymer film is small. For the limiting case of � decreasing to minus infinity, � → −∞,
the structure height �H approaches the limit −4�D/πD0 ≈ −0.5. This means that the
maximum structure height is |�H| = 0.5 for a negative �.

In practical experiments, the surface tension of a polymer film decreases with an
increase in temperature (α > 0) and the temperature difference is kept positive (�T > 0).
Therefore, � is larger than zero. Under this condition, the structure height �H increases
with increasing �, as illustrated in figure 2(a). In the range of 0 < � < 50, the film is
slightly deformed. With a further increase of �, the film deformation becomes more
pronounced. The structure height goes to infinity when the denominator in (3.1) equals
zero. At this limit, � is given by,

�c = 8π2

3
(1 − kr + krD0)

2

krD0
. (3.2)

This value can be considered as the critical value of �. As � approaches this critical
value �c, the film experiences a drastic deformation. This suggests that if a micro-pattern
with a large deformation is to be obtained, the imposed � should be equal to or larger
than this critical value. For the parameter values given in this section, the critical value is
�c = 128.96, the corresponding �T = 115 °C (the other parameters are the default values).

For the equilibrium states of thermocapillary patterning, a question naturally arises: Is
there any flow inside the polymer film, or in other words, is the fluid static? To answer
this question, we calculated the velocity profile u by (2.4) and the results are plotted in
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figure 2(b), where U = u/uc is the normalized velocity. A positive value of the velocity
indicates the flow is rightward and a negative value indicates it is leftward. Examination of
(2.4) reveals that the flow field can be considered as a combination of Poiseuille flow (the
first two terms) and Couette flow (the last term). For a pressure driven Poiseuille flow, the
velocity profile follows a parabolic function (1/2μ)(∂p/∂x)y2 − (1/μ)(∂p/∂x)hy (Cengel
2010). For a Couette flow, the velocity profile takes a linear function (u0/h)y, where u0
is the velocity at the interface and h is the thickness of the film. By the force balance at
the interface (∂γ /∂x) = μ(u0/h), thus (u0/h)y = (1/μ)(∂γ /∂x)y. Therefore, the flow in
(2.4) can be decomposed into a Poiseuille flow and a Couette flow.

For the present case, the Couette flow essentially is induced by the transverse
temperature gradient. The polymer film below the template protrusion has a lower
temperature (and hence a larger surface tension) than the recess. The corresponding
thermocapillary force drives the tangential flow and the moving interface drags the film
towards the middle position of the protrusion. Polymer is accumulated at this position,
thereby resulting in the deformation in the film. With the bulging up of the film, the
hydrostatic pressure increases due to the pressure jump across the interface (i.e. the
Laplace pressure). This pressure tends to push back the polymer and generates the reverse
Poiseuille flow (back flow). When �H = 0, the Laplace pressure is negligibly small
and the corresponding Poiseuille flow is zero. The flow is dominated by the Couette
flow, and the velocity takes a linear profile. The film flows towards the centre (i.e.
the position underneath the template protrusion). With the increase of deformation, the
Laplace pressure at the centre increases and starts to impede the Couette flow driven by
the thermocapillary force. At equilibrium state, the Couette flow is counterbalanced by
the Poiseuille flow and the net flux is zero. The polymer near the interface tends to flow
towards the centre point under the protrusion, and the polymer near the substrate flows
away from the centre point (Saenz et al. 2013). The height of polymer film, however,
ceases to evolve when the equilibrium is reached.

4. Nonlinear numerical model

In experiments, the deformation of the polymer film, rather than going to infinity, would
be stopped by the template (or substrate) due to the geometric constraint. In the above
linear model, the case of a polymer film contacting a template (or substrate) cannot be
predicted. To describe the interaction of the film with the template, we developed an
enhanced nonlinear numerical model by introducing the van der Waals molecular force
between the polymer film and the top template (or bottom substrate), p = p0 − γ∇2h +
A(d − h)−3 − Ah−3, where A denotes the Hamaker constant (Wu, Pease & Russel 2005;
Wu & Russel 2005; Yang, Li & Ding 2013). Physically, there are two repulsive molecular
forces, one is between the polymer film and the top template, and other is between the
polymer film and the bottom substrate. These repulsive forces essentially ensure that the
polymer film is confined between the template and substrate. Theoretically, the van der
Waals molecular force includes two components: the attractive (conjoining) force and
repulsive (disjoining) force. Whether the attractive or repulsive component dominates
the molecular force depends on the materials and substrate. In this paper, we ignore the
attractive force and retain only the repulsive force. There are two reasons for this choice.
First, in practical applications, the template is usually coated with a hydrophobic layer, e.g.
Teflon or carbon tetrafluoride. The coating is to ease the removal of the template from the
solidified polymer film. This coating layer has a low surface energy and tends to reduce
the attractive force (and hence to increase the repulsive force) between the polymer film
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and the template. Second, the repulsive force helps to model the case when the polymer
film starts to have contact with the plates. If the force is attractive, the polymer film
would ‘penetrate’ into the template. It is worth noting that the repulsive molecular forces
in similar forms are commonly adopted for modelling the deformation of polymer films
(Wu et al. 2005; Wu & Russel 2006; Wu, Kavousanakis & Russel 2010; Nazaripoor et al.
2016, 2018; Nazaripoor, Koch & Sadrzadeh 2017). The criterion for choosing the Hamaker
constant (and hence the molecular force) is that the force is much smaller than other forces
when the film is far away from the top and bottom plates. Thus, its presence will have no
influence on the film deformation there. When the film approaches the top or bottom plate,
the molecular force should be significant and large enough to prevent the ‘penetration’ of
the liquid into the solid. For convenience, the two repulsive molecular forces (the one
between polymer film and top template, and the one between polymer film and bottom
substrate) are assumed to be the same. The governing equation at the equilibrium state,
taking into account the presence of molecular forces, then becomes

H3

3
d3H
dX3 + �H2

2

kr

(
D

dH
dX

− H
dD
dX

)

[(1 − kr)H + krD]2 − Ā
3

d
dx

[
1

(D − H)3 − 1
H3

]
= C2, (4.1)

where Ā = Al20/γ0h4
0 is a non-dimensional parameter which denotes the ratio between the

repulsive molecular force and surface tension, and C2 is a constant. In the results presented
below, Ā = 10−4 is used. The presence of the molecular forces does not alter the symmetry
conditions on H(X) and D(X) and thus we have C2 = 0.

In the numerical model, nonlinear terms for D(X) and H(X) are considered. The template
is represented by D(X) = D0 + �D[1/2 + ε(X − 3/4) − ε(X − 1/4)], where ε(X) is the
step function. The above governing equation together with mass conservation equation,∫ 1

0 H(X) dX = 1, is solved by the finite difference method. For a set of given parameters
(kr, D0, �D, � and Ā), the shape of the polymer film H(X) is obtained. As reported
previously, the deformation of a liquid film under an external force could exhibit multiple
equilibrium states (Yang et al. 2016; Liu et al. 2019). Thus, we enhance the numerical
model by the arc-length continuation method to trace the turning points associated with
nonlinear phenomena (Thiele et al. 2001, 2002, 2003; Merkt et al. 2005; Yang et al. 2016).

The nonlinear numerical results are illustrated in figure 3(a). When the deformation
is small, the results are consistent with the linear analyses. For a large deformation, the
nonlinear effects come into play and the discrepancy between the linear and nonlinear
models becomes pronounced. Compared with the nonlinear results, the linear model tends
to underpredict the deformation. One intriguing phenomenon of the nonlinear result is
that the structure height �H does not monotonically increase with �. The � ∼ �H curve
takes an ‘S’ shape, and there exist two turning points B and D on the curve. When the
deformation is at point B (� = 70.9, �H = 1.32), a slightly increase of � will lead to a
significant increase in �H. It jumps from point B to C (� = 70.9, �H = 1.96). At this
instance, the polymer film is in contact with the top template (figure 3b). The film cannot
penetrate the template due to the presence of the repulsive molecular force between the
film and the template. The value, �c,1 = 70.9, is referred to as the first critical value in
our analysis. Thus, if microstructures with a large deformation in the polymer film are to
be obtained, then the patterning process parameters must be chosen such that � exceeds
this critical value. If � is further increased above �c,1, the polymer film spreads along
the surface of the template, forming the topological feature of the template. Meanwhile
the residual film on the substrate is reduced in thickness and the structure height �H is
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Figure 3. Film deformation predicted by the nonlinear numerical model. (a) The dependence of structure
height �H on the non-dimensional number �. (b) Some representative results of film deformation. When
increasing or decreasing �, the polymer film may undergo different deformations.

increased slightly. The maximum structure height is D0 − �D/2 = 2, and the polymer
film, at this point, bridges the template and substrate.

At this point when the polymer film is in touch with the top template, the value of � is
gradually reduced. The polymer film remains attached to the template until � decreases to
the second critical value �c,2 = 67.4. With � further decreased, the system would jump
from point D (� = 67.4, �H = 1.86) to A (� = 67.4, �H = 0.86), and the polymer film
detaches from the template there after (figure 3b). Since �c,1 /=�c,2, one can see that there
appears to be a hysteresis phenomenon in the liquid film deformation. In essence, a large
� is required to obtain microstructures with a large deformation and a relatively smaller �
is sufficient to retain the deformation. In passing, we note that the hysteresis phenomenon
is frequently encountered in nonlinear systems. Hysteresis deformation of droplets in an
electric and/or magnetic field (Sherwood 1988; Song et al. 2019) and in moving droplets
(Savva & Kalliadasis 2009, 2011) are some of the reported studies.

The system parameters, e.g. Ā, kr and D0, may also affect the deformation of the polymer
film. As indicated in figure 4(a), if the Hamaker constant is zero (Ā = 0), i.e. in the
absence of van der Waals molecular force, a steady state cannot be obtained for � > �c.
The molecular force is short range in nature, and thus has little influence on the fluid
behaviour away from the liquid–solid interface. This is confirmed by the result that the
� ∼ �H curves coincide when the film is far away from the template (the deformation is
small) for different values of Ā. However, the value of Ā would significantly affect the film
deformation near the template. In this paper, the value Ā = 10−4 was used. If a smaller Ā
were to be used, more computing time would be required to obtain converged results. It is
found that a further decrease of the value of Ā does not affect the film deformation much,
thus Ā = 10−4 was chosen for the present studies.

Figure 4(b) illustrates the effect of kr on the �H ∼ � deformation curve. With � kept
the same, a larger kr results in a smaller structure height. This is because a larger kr
corresponds to a higher thermal conductivity of the polymer. For the present case, the
polymer film is coated onto a flat substrate with a constant temperature, and a larger kr
allows heat transfer through the film to proceed more quickly, therefore the temperature
distribution along the polymer/air interface becomes more uniform. As discussed before,
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Figure 4. Effect of parameters on the film deformation. (a) The effect of Ā on the structure height. (b) The
effect of kr on the structure height. (c) The effect of D0 on the structure height. (d) The highest and lowest
points for different D0. (e) Dependence of �c,1 and �c,2 on kr and D0.

the deformation in the polymer film is essentially caused by the non-uniform temperature
along the interface. Therefore, a larger kr leads to a smaller deformation. As to the
effect of template–substrate distance D0, a smaller D0 indicates that template is closer
to the polymer/air interface, and thus results in a stronger modulation on the temperature
(figure 4c). The highest and lowest points are depicted as a function of D0 in figure 4(d).
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For D0 = 2.5, the polymer film is still in contact with the bottom substrate when it reaches
the top template. For D0 = 2, the film reaches the template before it contacts the substrate.
As to the cases of D0 = 3 and D0 = 3.5, the film contacts the substrate first. With a further
increase of �, the highest point of polymer film continues increasing.

By changing D0, it is found that the hysteresis phenomenon may disappear for small D0.
For most cases, there exist two critical values of �, and �c,1 /=�c,2. In some instances, the
structure height �H monotonically increases with an increase of � (i.e. no hysteresis). To
further understand the influence of D0 and kr on the hysteresis phenomenon, the values of
�c,1 and �c,2 are monitored and plotted as a function of D0 in figure 4(e). Clearly, with
D0 decreasing, �c,1 and �c,2 collapse to the same value, and the hysteresis phenomenon
would therefore disappear. By comparing the results of different kr in figure 4(e), one can
see that the hysteresis disappears at a larger D0 for kr = 1, and it disappears at a smaller D0
for kr = 8.

5. Lyapunov functional

The evolution of polymer film topology may be explained from the viewpoint of the energy
in the deformation system (Thiele et al. 2001, 2002, 2003; Merkt et al. 2005; Dietzel &
Troian 2009, 2010; Yang et al. 2016). For the system under study, its governing equation,
i.e. (2.6), is essentially a generalized Cahn–Hilliard-type equation. Consequently, we can
construct a Lyapunov free energy functional (Dietzel & Troian 2009, 2010),

F =
∫ 1

0
(∇H)2 − 3�

krD

[
H ln

(
krDH

krD + (1 − kr)H

)
+ ln

(
1 + 1 − kr

krD

)]

+ Ā
[

1
H2 + 1

(D − H)2

]
dX. (5.1)

The first term on the right-hand side of the above equation characterizes the energy density
associated with interfacial curvature, and its effect is to flatten the film and prevent the
deformation. The second term accounts for the Marangoni effect, which tends to drive
the initially flat film into ‘two phases’: a thicker film and a thinner film. The third term
represents the energy density associated with the molecular forces. The third term becomes
significant when the polymer/air interface is in close proximity to the template or substrate.
If we drop the third term (i.e. molecular force) and treat D as a constant, (5.1) would
simplify to the form given by Dietzel & Troian (2009, 2010).

The process of thermocapillary patterning is to minimize the Lyapunov free energy, and
the equilibrium state corresponds to the minimum of the functional. For a set of given
parameters (D(X), kr, � and Ā), the free energy F is a function of H(X). For � < �c,2, the
free energy first decreases and then increases, with the film deformation �H increasing
(figure 5a). There appears one minimum of free energy (point P) which corresponds to
the equilibrium state. For �c,2 ≤ � ≤ �c,1, the free energy F takes the form of a double
well function (figures 5b and 5c). In this case, there are two local minima (points P and
Q) and one maximum (point O) of free energy, which correspond to three equilibrium
states. From figure 3(a), one can see that, for a given � ∈ [�c,2, �c,1], there are three
equilibrium states. One state lies in the segment A–B, another in B–D and the third in
D–C. Each equilibrium state corresponds to the point P, O or Q on the free energy curve,
respectively. The solution in segment B–D corresponds to the local maximum of free
energy. This state is unstable and thus physically impossible to realize in experiments.
As for the two equilibrium states in segments A–B and D–C, one of them is stable and the
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Figure 5. Lyapunov free energy F(�, �H), given by (5.1) with the following parameters �D = 1, D0 = 2.5,
kr = 4 and Ā = 10−4; (a) � < �c,2, (b,c) �c,2 ≤ � ≤ �c,1, (d) � > �c,1. Points O, P, Q represent the local
maximum or minimum free energy associated with thermocapillary deformation.

other is metastable, depending on which state has the lower free energy. For � > �c,1, only
one equilibrium state is observed (point P in figure 5d). The corresponding deformation
�H ≈ 2 indicates that the polymer/air interface ‘bridges’ the template and substrate.

6. Discussion

In experiments, usually micro/nano patterning with a large deformation is favourable. Thus
� should be larger than �c,1. The numerical results computed with the model presented
here may be compared with the experiments performed by Schäffer et al. (2003). In their
experiments, liquid polystyrene with an average molecular weight 108 kg mol−1 was used
as the polymer film, and the process parameters were set as h0 = 106 nm, Th = 171 °C
and Tc = 133 °C. The thermophysical properties used are: the reference surface
tension γ 0 = 31.53 mN m−1, thermocapillary coefficient α = 88.5 μN (°C)−1, thermal
conductivity ka = 0.036 W (m °C)−1 and kp = 0.13 W (m °C)−1 (Mark 2009; Fiedler
et al. 2019). The structure height of the template was not measured in the experiments,
and we assume it equals the film thickness d = h0. In their first experiment, d = 160
nm, l0 = 2 μm and � = 37.97 (experiment); with these parameters �c,1 = 31.18 was
calculated using our numerical model. In the second experiment, d = 190 nm, l0 = 4 μm
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and � = 151.88 (experiment); �c,1 = 95.93. In the third experiment, d = 220 nm,
l0 = 6 μm and � = 341.74 (experiment);�c,1 = 104.95. Thus the imposed � values in
the three experiments all exceeded the critical �c,1 and ensured the large deformation in
polymer film.

In this paper, we assumed the polymer behaves as a Newtonian fluid with a constant
viscosity. However, the results are also applicable to a non-Newtonian fluid. At equilibrium
state, the deformation is governed by (2.7) (linear model) or (4.1) (nonlinear model). The
viscosity does not come into play in the governing equations. The value of viscosity has
no influence on the equilibrium deformation. What the viscosity affects is the time scale,
i.e. how long it takes for the film to achieve its equilibrium state of deformation. However,
the viscosity would affect the fluid flow, as indicated by (2.4). Thus the velocity profiles
in figure 2(b) would be different if the viscosity is considered as a variable of temperature
and shear stress.

In a previous study (Yang et al. 2016), we have investigated the equilibrium deformation
of electrohydrodynamic patterning. A polymer/air film is sandwiched between a flat plate
and a topological plate, with an external electric field imposed between the two plates.
A similar hysteresis deformation is also observed in electrohydrodynamic patterning.
However, there are some critical differences between electrohydrodynamic patterning
and thermocapillary patterning. First, the driving force is different, one is electrical
whereas the other is the thermocapillary force. The direction of electrical force is
applied normally to the polymer/air interface (for perfect dielectric materials) while the
Marangoni force is tangential to the polymer/air interface. Second, there is no fluid
flow in electrohydrodynamic patterning when deformation reaches an equilibrium state.
In contrast, for thermocapillary patterning, fluid flow exists inside the polymer film at
equilibrium state (see figure 2b).

7. Concluding remarks

In this paper, we developed linear and numerical nonlinear models to study the
equilibrium states of thermocapillary patterning. From the theoretical analysis and
numerical simulations, the following conclusions are obtained.

Both linear and nonlinear results indicate that equilibrium deformation exists during
thermocapillary patterning of liquid films. At an equilibrium state, the structure height
ceases evolving, and yet there is fluid flow inside the film. Near the film/air interface,
the film flows towards the side with a large surface tension, and the flow is reversed
near the bottom substrate, with a zero net flow rate. The model analyses reveal that
the deformation of a polymer film is dependent on the non-dimensional parameter � ≡
Ma · Ca. There exists a critical value of �, above which the polymer film experiences a
drastic deformation.

The nonlinear model uncovers a hysteresis in thermocapillary deformation of liquid
films. When � approaches the first critical value �c,1, the structure height increases
drastically until the film touches the top template. Once in contact, a relatively smaller
� is sufficient to maintain the deformation of the polymer film. The polymer film does
not detach itself from template until � decreases to the second critical value �c,2 (usually
�c,1 > �c,2).

According to the nonlinear model, there is only one equilibrium deformation state for
either � < �c,2 or � > �c,1. However, three equilibrium states are possible for �c,2 ≤ � ≤
�c,1. By studying the Lyapunov free energy of the thermocapillary patterning, it is found
that, of the three equilibrium states, one is stable, the other is metastable and the third is
unstable.
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