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Microbubble-laden homogeneous and isotropic turbulent flow is investigated by using
direct numerical simulation of the three-dimensional Navier–Stokes equations and
computing the bubble trajectories with Lagrangian tracking. The bubble motion is
calculated by taking into account the effect of fluid acceleration plus added mass, drag,
gravity, and in particular the lift force, which had been neglected in many previous
simulations. By comparing the results from simulations with and without lift, we
find the effect of the lift force to be crucial: for passive bubbles, i.e. bubbles without
backreaction on the flow (one-way coupling), the lift enhances the accumulation of
bubbles on the downward flow side of vortices, resulting in a considerably reduced
rise velocity of bubbles in turbulent flow, compared to still water. This also has
consequences for the active bubble case, i.e. for bubbles with backreaction on the flow
(two-way coupling): the energy spectrum of the turbulence is modified non-uniformly.
Because of the combined effect of preferential bubble clustering in downflow zones
and the local buoyant transfer, which reduces the vertical fluid velocity fluctuations,
large-scale motions (small wavenumbers k) are suppressed. In contrast, small-scale
motions (large wavenumbers k) are enhanced due to the local bubble forcing. The
net effect turns out to be a reduction of the energy dissipation rate.

1. Introduction
With their ubiquitous occurrence in a multitude of fluid systems bubbles occupy a

very important place in contemporary science and technology. One can readily cite
many examples: the chemical industry (where gas–liquid reactors rely on bubbles
to increase the contact area between the phases), the oceans (where breaking-wave-
generated bubbles are important sinks for atmospheric CO2), the production and
transport of oil (where bubbles are purposely injected to help to lift thick heavy oil
to the surface, or arise due to the exsolution of dissolved gases), energy generation
(where boiling is the key process in producing the steam to drive turbines), and many
others.

In many of these situations we have to deal with turbulent bubbly flow. The two
basic questions for this type of flow are: (i) How do bubbles move within the turbulent
flow? and (ii) How do they affect the turbulence?

Though it is very difficult to address these questions experimentally, much progress
has been achieved since the early measurements of Snyder & Lumley (1971) and
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Serizawa, Kataoka & Michiyoshi (1975a, b, c), see e.g. Michiyoshi & Serizawa (1986),
Mudde, Groen & van den Akker (1997), Kumar, Moslemian & Dudukovic (1997),
Mudde & Saito (2001) and Poorte & Biesheuvel (2002).

Different regimes are assessed in the experiments with low or high values of the
particle/bubble Reynolds number, defined as Re = 2a|v − u|/ν, with a the particle
radius, u − v the relative particle-to-fluid velocity and ν the fluid viscosity. Low
Re indicates laminar flow whereas at high Re the flow surrounding the particles is
turbulent and turbulent wakes eventually develop at their rear side.

In this paper we will focus mainly on three types of observables:
(i) The bubble distribution in the fluid: Bubbles are found to accumulate in low-

pressure regions of the flow, i.e. in vortex filaments, and have even been used to
characterize them and to measure their statistics, see e.g. Cadot, Douady & Couder
(1995) and La Porta et al. (2000). Sridhar & Katz (1999) studied the interaction of
bubbles at intermediate Re with vortex rings, and Rightley & Lasheras (2000) the
dispersion and coupling of microbubbles with a free-shear flow. Both experiments
indicate that, even at low void fractions, the effect of bubbles on the flow is significant,
owing to the high level of clustering reached in low-pressure flow zones.

(ii) Spectral information: One of the effects of bubbles is to modify the energy
spectrum of the turbulent flow. However, how the spectra are changed is very
controversial. Lance & Bataille (1991) found that, at high bubble Reynolds number,
for increasing gas fraction α, the Kolmogorov energy spectrum exponent −5/3 is
progressively substituted by −8/3. It is argued that the steeper spectrum originates
from the energy production within the bubble wakes. Figure 15 in their paper also
suggests that for bubbly flow there is more spectral energy in the small-scale eddies
and less in the large-scale eddies. The Taylor–Reynolds number in this experiment
is Reλ = 35. In contrast to Lance & Bataille (1991), Mudde et al. (1997) found the
classical −5/3 power law in a bubble column even for a gas volume fraction of
25%, yet at high bubble Reynolds numbers. On the analytical side, L’vov, Ooms &
Pomyalov (2003) have recently proposed a derivation that accounts for the spectral
modulation in particle flows.

(iii) The average bubble rise velocity: Whereas particles are known from numerical
simulations to (on average) sink faster in turbulent flow than in still water (Wang
& Maxey 1993b; Yang & Lei 1998), Poorte & Biesheuvel (2002) recently measured
experimentally that the mean rise velocity of large bubbles is significantly reduced
(up to 35%) in turbulence compared to still water. On the other hand, either larger
or smaller rise speeds have been experimentally found by Friedman & Katz (2002),
for droplets slightly lighter than the fluid, depending on three parameters: turbulence
intensity, droplet dimension and response time.

How to explain these observations? An efficient way is to follow a numerical
approach.

For particle-laden turbulence, a large number of investigations is available in the
literature, see e.g. Squires & Eaton (1990), Elghobashi & Truesdell (1993), Hunt,
Perkins & Fung (1997), Boivin, Simonin & Squires (1998), Druzhinin & Elghobashi
(1999), Druzhinin (2001), Marchioli & Soldati (2002) and Ooms et al. (2002), most
of them assuming a point-particle approximation. The relevant forces on small,
heavy particles are the Stokes drag and gravity. It is generally observed that initially
uniformly distributed particles rapidly collect in low-vorticity regions (Squires & Eaton
1990). The clustering is more intense when tuning the particle parameters to the flow
Kolmogorov scales. The backreaction of the particles on the fluid qualitatively depends
on the ratio τp/τk , where τp is the particle response time and τk the Kolmogorov time
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scale. When τp/τk ∼ O(1), particles dissipate turbulent kinetic energy (Boivin et al.
1998; Sundaram & Collins 1999), whereas microparticles with τp/τk � 1 are able
to enhance the turbulence levels (Druzhinin & Elghobashi 1999; Druzhinin 2001;
Ferrante & Elghobashi 2003).

For bubble-laden turbulence, the situation is even more complicated than for
particle flow because of the free interface. Ideally, the Navier–Stokes equation should
be solved, with the bubble–water interface treated as a free surface. However, within
such an approach only about 100 bubbles can be included, see e.g. Bunner &
Tryggvason (1999). Therefore, in order to numerically model turbulent multiphase
flow with many bubbles, it is – just as for particle flow – common to employ a
point-like approximation. It obviously works best for microbubbles, i.e. for bubbles
smaller than all length scales of the turbulent flow, or, correspondingly, with a bubble
Reynolds number of less than one.

The key question which arises is: What forces act on such a microbubble? This
issue has been addressed both analytically (Maxey & Riley 1983; Thomas et al. 1984;
Auton 1987; Auton, Hunt & Prud’Homme 1988) and numerically (Mei, Lawrence
& Adrian 1991; Chang & Maxey 1994, 1995; Magnaudet, Rivero & Fabre 1995;
Legendre & Magnaudet 1998). An excellent recent review on this subject can be
found in Magnaudet & Eames (2000).

While some forces on bubbles are trivial, such as the buoyant force, other are highly
controversial. This in particular holds for the lift force: commonly, it is modelled as
(see e.g. Magnaudet & Eames 2000)

FL = CLρf Vb (u − ẋb) × (∇ × u) , (1.1)

where ρf is the fluid density, Vb the volume of the bubble at position xb, and u(x, t)
the fluid velocity. It is moreover assumed that the lift force coefficient is CL = 1/2
for bubble Reynolds numbers larger than one, as numerically found by Legendre
& Magnaudet (1998) and Magnaudet & Eames (2000). Note that experiments by
Sridhar & Katz (1995), performed at 20 < Re < 80, suggest larger values for CL and
a fourth-root dependence on the local vorticity. This finding may be due to bubble
contamination, strong shear, or other effects, but slightly different lift forces will only
slightly change our results qualitatively. Moreover, Rensen et al. (2001) and Lohse &
Prosperetti (2003) presented experimental results which show that CL = 1/2 is not
unreasonable.

In any case, if the lift force is relevant for bubbly flow, the microscopic lift force
model for the bubble reflects in the macroscopic observables, such as the above-
mentioned bubble distribution, the energy spectra, or the average bubble rise velocity.

However, most numerical simulations in the literature have completely neglected the
effect of the lift force in bubbly turbulence. For example, for the analysis of decaying
bubble-laden turbulence (Druzhinin & Elghobashi 1998) and for that of the effect of
microbubbles on a spatially developing mixing layer (Druzhinin & Elghobashi 2001)
only fluid acceleration, added mass, drag, and gravity force are considered, not lift.
The strong point of those simulations however is that two-way coupling had been
included, i.e. the backreaction of the bubbles on the flow. Indeed, in Druzhinin
& Elghobashi (1998) the turbulence decay is found to be affected by the bubbles,
namely either enhanced or reduced, depending on the initial bubble distribution. In
Druzhinin & Elghobashi (2001), again under specific conditions on the inflow bubble
profile, a reduction of the turbulence fluctuations across the mixing layer is measured.
Other examples of two-way coupling simulations are Climent (1996) and Climent &
Magnaudet (1997). In its method, the simulation of Climent & Magnaudet (1999) is
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closest to ours, though a very different question is analysed, namely how a swarm of
rising bubbles induces a flow in still water. It is two-dimensional and includes the lift
force.

Older numerical simulations mainly employ one-way coupling, i.e. they neglect
the backreaction of the bubbles on the flow and focus on clustering effects. These
simulations revealed that the effect of the flow on the bubbles and the bubble
accumulation in high-vorticity regions are strongest when (i) the typical bubble rise
velocity vT is comparable to the Kolmogorov velocity scale vk and (ii) the typical
bubble response time τb is comparable to the Kolmogorov time scale τk (see e.g. Wang
& Maxey 1993a; Maxey, Chang & Wang 1994).

The kinematic simulation of Spelt & Biesheuvel (1997) also falls into the class
of one-way coupling simulations. Here the fluid flow is not given by the Navier–
Stokes equation, but by a sum of Fourier modes with random phases and amplitudes
determined according to some given spectrum. However, what distinguishes this
simulation is that it is one of the few which explicitly includes lift. The interesting
finding is that the bubble rise velocity is considerably decreased in turbulence due to
the lift force. In the limit of large bubble rise velocity this result can also be derived
analytically.

In Mazzitelli, Lohse & Toschi (2003) we have further studied the effect of the
lift force in bubbly turbulence, at low bubble Reynolds numbers, but now within a
full Navier–Stokes simulation of homogeneous isotropic turbulence, either with one-
way coupling or including two-way coupling. We employed the Eulerian–Lagrangian
approach. The forces acting on bubbles are fluid acceleration plus added mass effects,
drag, gravity, and in particular lift.

Indeed, in that paper we found that the lift force plays a prominent role in the
bubble accumulation on the downflow side of vortices, leading to a reduced average
bubble rise velocity. (Note that, however, the balance of drag force, gravity, and fluid
acceleration preferentially occurs in downflow regions, so the bubble distribution with
respect to the gravity direction was found slightly asymmetric also in simulations
without lift forces.) Once the reaction of the bubbles on the carrier flow is included,
an attenuation of the turbulence on large scales and an extra forcing on small scales
is found.

In this present paper we will give a complete and quantitative description of our
numerical simulation, focusing on the two-way coupling case. We will demonstrate
that the lift force has a very crucial effect on all of the three above-mentioned
observables, namely the bubble distribution in the flow, the energy spectrum, and
the average bubble rise velocity. The relevance of the lift force is highlightened by
comparing the results for those observables with analogous simulations without lift:
for those simulations the average bubble rise velocity in turbulence is not reduced,
which is in clear conflict with the experimental observations by Poorte & Biesheuvel
(2002). Moreover, without lift no kinetic energy reduction on large scales is found,
which is in contrast to the experimental results by Lance & Bataille (1991). Both
findings highlight the crucial role of lift in bubbly turbulence.

Although the Lance & Bataille experiments were mainly performed with large
bubbles, we believe that the spectral modifications will have qualitatively similar
characteristics and in particular the same physical origin as for microbubbles. Larger
bubbles rise much faster through the flow structures, with much less interaction. In
the Lance & Bataille experiment the ratio β = u0/vT between the r.m.s. fluid velocity
fluctuations and the bubble rise velocity is always smaller than 0.1, so that no trapping
of the bubbles in vortices can be expected, in contrast to microbubbles which are
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trapped. Furthermore, owing to the large bubble Reynolds number, turbulent wakes
develop at the rear of the bubbles to which a part of the energy induced by the
bubbles is associated.

The paper is organized as follows. In § 2 the bubble–fluid equations are presented
and the numerical method is described and justified. Section 3 deals with the bubble
distribution in the one-way coupling case. In § 4 we study the consequences of two-way
coupling on the energy spectra and the bubble rise velocity. Next, we compare the
results of simulations with and without lift (§ 5). In § 6 we analytically calculate the
modification of the energy spectrum for randomly distributed bubbles. The result is a
reduction for all wavevectors. This is also found in numerical simulations in which we
fix the bubbles at the random initial positions, but still let them force the flow. This
exercise therefore demonstrates that it is the interplay between bubble clustering and
the lift force which leads to the spectral modifications observed in the full simulations.
Section 7 contains conclusions.

2. Method of the numerical simulation
From a technical point of view, the two-phase system equations can be numerically

implemented in two different ways. In the first way, which we will follow in this paper,
each particle trajectory is individually tracked whilst the fluid Navier–Stokes equations
are time advanced (Lagrangian–Eulerian approach, e.g. see Squires & Eaton (1990),
Elghobashi & Truesdell (1993) and Boivin et al. (1998)). In the second method both
the fluid and the disperse phase are treated as a ‘continuum’, thus space-averaged
equations are specified for the particles/bubbles also (Eulerian–Eulerian or two-fluid
approach, e.g. see Druzhinin & Elghobashi (1998, 2001)).

2.1. Simulation of the fluid phase

The fluid phase is governed by the incompressible Navier–Stokes equations:

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −∇p + ν�u(x, t) + f L(x, t) + f b(x, t), (2.1)

where u(x, t) is the fluid velocity, p the kinematic pressure, ν the kinematic viscosity,
f L(x, t) the large-scale forcing, and f b(x, t) the forcing due to the transfer of
momentum between the fluid and the bubble phase. This bubble forcing will be
derived in § 2.2. Equation (2.1) is converted into an equation for the vector potential
b(x, t), defined according to u(x, t) = ∇ × b(x, t),

∂b(x, t)

∂t
− �−1[∇ × (u(x, t) · ∇u(x, t))] = ν�b(x, t) − �−1[∇ × ( f L(x, t) + f b(x, t))]

(2.2)

and solved by full three-dimensional direct numerical simulation. The vector b(x, t)
is expanded in discrete Fourier series in each direction on an equispaced grid and its
equations are solved by means of the pseudo-spectral method. They are advanced in
time by the second-order Adams–Bashforth scheme. The solution domain is a cube
of side L0 = 2π, subjected to periodic boundary conditions. It consists of N3 = 1283

grid points. The nonlinear term of (2.1) is evaluated in real space and, in order to
control aliasing errors, the largest wavenumber represented is kmax = 2N/3, i.e. all k

such that k = |k| > kmax are set to zero. The turbulence scales, as well as their ratios
with respect to the characteristic bubble scales, are fixed in time by forcing the flow
on small wavenumbers and thus sustaining a statistically stationary state. The forcing
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ε ν η τk vk Lxx τ0 u0 λ Reλ

1.0 0.007 0.024 0.084 0.29 0.5 2.2 1.2 0.37 62

Table 1. Fluid parameters. The energy input rate, ε, the viscosity, ν, and the dimension of
the computational domain, L0 = 2π, are fixed. All the other parameters follow.

applied on the k mode of the velocity field is (Grossmann & Lohse 1992):

f L(k, t) = ε
u(k, t)∑

k∈Kin

|u(k, t)|2 , k ∈ Kin, (2.3)

and f L(k, t) = 0 otherwise. Here Kin = {k | (L0/2π)k = ±(−1, 2, 2), ±(2, −1, −1) +
Permutations} and ε is the energy input rate (which equals the energy dissipation
rate for statistically stationary turbulence). The Kolmogorov length, time and velocity
scales can be evaluated from the energy dissipation rate ε and the fluid kinematic
viscosity ν according to η = (ν3/ε)1/4, τk = (ν/ε)1/2 and vk = (εν)1/4, respectively.
Other relevant quantities are the large-scale r.m.s. velocity u0, the large-eddy turnover
time τ0, the Taylor scale λ, and the Taylor–Reynolds number Reλ,

u2
0 =

1

3
〈uiui〉, τ0 =

3
2
u2

0

ε
, λ =

〈
u2

x

〉1/2

〈(∂xux)2〉1/2
, Reλ =

u0λ

ν
,

where ui , with i = x, y, z, is the ith component of the fluid velocity, and repeated
indices are considered summed. The brackets 〈 · 〉 indicate averages on time and space.
A summary of the fluid parameters can be found in table 1.

It is necessary to fulfil some conditions for the simulation to correctly resolve both
the large- and the small-scale motions. First, the solution domain has to be large
enough to represent the energy-containing eddies. This is assured by the large ratio
between the cube width, L0, and the integral length scale,

Lxx =
1〈
u2

x

〉 N/2∑
rx=0

〈ux(0)ux(rx)〉�rx.

In our simulation L0/Lxx � 12. Second, the dissipative scales have to be sufficiently
resolved. We have kmaxη � 1.024. Finally, the accuracy of the solution in time is
guaranteed by the small Courant number 1/30.

The code is fully parallelized, both for the fluid and the bubble evolution, and
simulations are run on SGI Origin2000 on 16 processors. Communications between
different processors are held by MPI (Message Passing Interface) subroutines. We use
MPI parallelized FFTW and the sustained performance on the machine is about 40
Mflops per processor.

2.2. Bubble equation of motion

The motion of a particle or bubble in a turbulent flow is determined by both body
and surface forces, whose form depends on the regime analysed. In the present work
we focus on spherical undeformable particles of density ρp and radius a smaller than
all the fluid length scales, at low values of the particle Reynolds number

Re =
2a|v − u|

ν
,
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where v is the particle/bubble velocity and v − u its relative velocity with respect to
the flow. The equation of motion is given by Newton’s second law, which for particles
or bubbles is (see e.g. Thomas et al. 1984; Climent 1996; Spelt & Biesheuvel 1997)

ρpVp

dv

dt
= (ρp − ρf )Vp g − CD

πa2

2
ρf |v − u|(v − u)

+ ρf Vp

(
CM

Du
Dt

− dv

dt

)
+ ρf Vp

Du

Dt
− CLρf Vp(v − u) × ω. (2.4)

Here Vp = 4πa3/3 is the particle volume, ρf the fluid density, u the fluid velocity, and
ω = ∇ × u the vorticity. The forces on the right-hand side of (2.4) are gravity, drag,
added mass, fluid acceleration and lift, and CD , CM and CL are the corresponding
coefficients. We assume, in our reference frame, that gravity is directed along the
negative z-axis. When Re is smaller than 1 the drag coefficient is fixed by the relation
(Hadamard 1911; Ribczynski 1911)

CD =
16

Re

(
1 + (3µp)/(2µf )

1 + µp/µf

)
. (2.5)

The added mass coefficient for a sphere is CM = 1/2 (Taylor 1928; Batchelor 1967),
independent of the Reynolds number and of non-uniformities of the flow (Auton
et al. 1988; Rivero, Magnaudet & Fabre 1991; Chang & Maxey 1995; Magnaudet
et al. 1995).

Note that for heavy particles (ρp/ρf � 1) at low Reynolds number (Re � 1), the
relevant forces in (2.4) reduce to drag and gravity, whereas for bubbles of nearly
negligible density (ρp/ρf � 0) the fluid inertia forces are also significant.

The analysis of a surfactant-free bubble, with zero-shear-stress boundary condition
at the interface, is carried out by inserting ρp = 0 into (2.4). In this case, from (2.5),
one finds CD = 16/Re for very small Re, whereas at intermediate Reynolds numbers
(1 < Re < 60) corrective expressions have been found through direct numerical
simulation (Mei, Klausner & Lawrence 1994; Magnaudet et al. 1995).

The behaviour at low to moderate Reynolds number of the lift coefficient CL is
shown in figure 17 of Legendre & Magnaudet (1998). Except of the regime Re � 1,
where it displays a steep decrease as a function of Re, the high-Reynolds-number
value CL = 1/2 (Auton 1987) seems to be a reasonable approximation, even when
Re ∼ O(1) (see the discussion below (1.1)).

We restrict ourselves to Reynolds number order of one and neglect all finite
Reynolds number corrections, i.e. we take CD = 16/Re and CL = CM = 1/2. The
resulting bubble motion equation is then

dv

dt
= 3

Du
Dt

− 1

τb

(v − u) − 2g − (v − u) × ω. (2.6)

Here

τb =
a2

6ν

is the bubble time scale; the corresponding rise speed in still fluid is

vT = 2gτb =
ga2

3ν
.

Bubble–bubble direct interactions are neglected as we consider only low void fractions.
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The trajectory x(t) of each bubble is computed using Lagrangian tracking. The
bubble’s velocity is advanced in time by an explicit forward Euler scheme,

vi(t + dt) = vi(t) +
dvi(t)

dt
dt,

xi(t + dt) = xi(t) + vi(t) dt +
1

2

dvi(t)

dt
dt2, i = x, y, z.

The same time step dt as for the integration of the Navier–Stokes equations is applied.
It fulfils the constraint dt � τb. In general, the bubble’s instantaneous location does
not coincide with a grid point. Therefore the fluid velocity and the forces, which are
required to integrate (2.6), are estimated between the grid points by third-order Taylor
series interpolation with 13 points (Yeung & Pope 1988). This scheme is preferred
to simple linear interpolation because it gives a better description of the velocity
fluctuations at high wavenumbers, to which bubble motion is rather sensitive, see
Maxey et al. (1994) and Appendix A.

The bubbles are released with initial velocity equal to the local flow velocity at
random positions which are uniformly distributed over the whole domain. Then the
code is run for several large-eddy turnover times in order to achieve a statistically
stationary state. Finally, the statistics is accumulated for around 15 large-eddy
turnover times τ0.

2.3. Bubble’s action on the flow in a point-force approximation

A small bubble rising in a fluid can be viewed as a point-like source of momentum
that may either enhance or reduce the kinetic energy of the flow. This modulation
is due to a mechanism, whose action is confined to the bubble’s nearest region, that
supplies the momentum conservation of the overall two-phase system. A δ-forcing
is suitable to represent it in the Navier–Stokes equations when the particles are
small with respect to all flow scales. As found by Saffman (1973), the effect of small
particles on a viscous flow can be taken into account by a multipole distribution
of forces. If we now focus on a single sinking particle, the induced velocity in an
otherwise still fluid contains two terms: the first decreasing as 1/r and the second as
1/r3. If the particle is smaller than the Kolmogorov scale, the second contribution is
negligible, because the small-scale interactions are dissipated by viscosity. The only
effective term that is O(1/r) originates from the δ-forcing in the multipole expansion:
therefore the single-particle action can be included in the fluid equation by a δ-forcing
approximation. This approximation is retained for many bodies, providing that the
system is dilute enough. For our two-way coupling simulations, this is the case, see
Appendix C.

We report here the main steps that lead to the expression of the coupling term,
closely following the procedure of Climent (1996) (see also Maxey et al. 1994; Sridhar
& Katz 1999; Rightley & Lasheras 2000). We consider a domain V filled by a fluid
of volume Vf and containing a spherical particle or bubble of volume Vp , thus
V = Vf + Vp . The flow is bounded by the external surface Se and the particle
surface Sp , see figure 1.

The momentum equation for the fluid in volume Vf is∫
Vf

ρf

Du
Dt

dV =

∫
Se

σ · n dS +

∫
Sp

σ · n dS +

∫
Vf

ρf g dV. (2.7)
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n

n

�p,Sp

�f ,Se

V

Figure 1. A particle of volume Vp and surface Sp is embedded in a fluid of volume Vf and
external surface Se . The directions of the outward normals of Vf are also shown.

Here σ is the stress tensor and n is the outward surface normal. The particle
equation of motion is

ρpVp

dv

dt
= −

∫
Sp

σ · n dS + ρpVp g. (2.8)

The integral of the fluid stress tensor over the particle surface leads to the additional
forces of (2.4). Assuming that the flow gradients are constant on the particle volume
and using V = Vf + Vp , by manipulating (2.7) and (2.8) we obtain∫

V
ρf

Du
Dt

dV =

∫
V

(∇ · σ + ρf g) dV

+

∫
V

[
ρf

(
Du
Dt

− g
)

+ ρp

(
g − dv

dt

)]
Vpδ(x − y(t)) dV, (2.9)

where y(t) is the particle’s instantaneous location. The equation indicates that the
particle’s action on the fluid can be represented in the Navier–Stokes equations by
the δ-forcing

ρf f b(x, t) =

[
ρf

(
Du
Dt

− g
)

+ ρp

(
g − dv

dt

)]
Vpδ(x − y(t)). (2.10)

Inserting (2.4) we can also write

ρf f b(x, t) =

[
CD

πa2

2
ρf |v − u|(v − u) − ρf VpCM

(
Du
Dt

− dv

dt

)

+ CLVpρf (v − u) × ω

]
δ(x − y(t)). (2.11)

Note that in the case of a bubble of small density ρp � ρf the second term on the
right-hand side of (2.10) is negligible compared to the first. Thus the δ-forcing of a
single bubble is

f b(x, t) = Vp

(
Du
Dt

− g
)

δ(x − y(t)). (2.12)

The way to implement this forcing on the grid is as follows. It is linearly projected on
the eight nearest nodes to the bubble’s location, and the total forcing on each node
is obtained by summing the contributions of all bubbles according to

V f b(x, t) =
∑
i inV

f i
b(1 − �xi)(1 − �yi)(1 − �zi).
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Here V = (2π/N)3 is the grid cell volume, N = 128 is the number of grid points
in each direction, �xi, �yi, �zi are the distances, normalized by the mesh size, of
bubble i, placed between the grid points at yi(t), from the node x, and the index i

counts the bubbles in V . In this method only the closest grid points to the particle
position are taken into account. Another way of including the two-way interactions
through the distribution of the backreaction on a larger envelope centred at the
particle position is discussed in Maxey et al. (1997).

For turbulent flow the point-force approach is appropriate if the particle dimension
is much smaller than the Kolmogorov scale η, i.e. a/η < 1 (see e.g. Maxey & Riley
1983). The largest radii we use in our simulations are of the order of η. On first sight
this may seem dangerously close to the borderline of applicability of the point-force
approximation. However, the transition from the viscous subrange to the inertial
subrange only occurs at a scale 10η (see e.g. Monin & Yaglom 1975). Therefore, the
bubbles in our scheme do not see any turbulent fluctuation around them up to a scale
10 times as large as their radius, and with a point-force approximation one is on the
safe side. This is also demonstrated by the following estimate. When a is becoming
larger than η, Faxén terms should be taken into account (see Maxey & Riley 1983).
If we estimate for instance the error incurred by neglecting Faxén corrections on the
drag force: (−1/τb)(v − u − 1

6
a2∇2u| y(t)) within our code, we measure relative errors

of the order of 1%, which is tolerable.
We remark that the implementation of two-way coupling leads to some restrictions

on the bubble regimes achievable through numerical calculations. The fluid velocity
u required in the integration of (2.6) is ‘un-perturbed’, i.e. it is the velocity of the
flow unmodified by the bubble. According to Saffman (1973) the error incurred in
the approximation of this velocity by the perturbed one is the Stokeslet centred
at the particle’s position, and is of order a/�x, where �x is the grid space. The
constraint is therefore: a � �x. The error is reduced when: (i) the number of
bubbles in the simulation is larger, because in that way the relative influence of
each bubble forcing on a grid node is smaller; (ii) a higher-order interpolation
scheme for the fluid velocity at the position of the bubble is employed, because
nodes further away are involved and the perturbation of the bubble itself is partially
filtered.

The quality of the point-force approximation in the forcing is checked in Appendix B
by comparing the dynamics of active and passive bubbles.

3. One-way coupling approximation
3.1. Bubble accumulation in vortices

In this section we restrict ourselves to one-way coupling, i.e. the bubble backreaction
on the flow is neglected. This type of simulations correctly reflects the experimentally
observed bubble accumulation in vortices, see e.g. Wang & Maxey (1993a), Maxey
et al. (1994) and Sene, Hunt & Thomas (1994). In table 1 of Mazzitelli et al. (2003)
we quantified the bubble accumulation for the present simulation, by comparing the
mean enstrophy at the bubble position with the total mean enstrophy. This ratio is
between 1.6 and 2.2, depending on the bubble size. Once the lift force is turned off, it
further increases, indicating that with lift present the bubbles on average do not sit
close to the very centres of the vortices. In fact, we could confirm the speculation of
Spelt & Biesheuvel (1997) that the lift force strongly contributes to push them to the
downflow side of the vortices.
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Eddy Shear Streaming Convergence
Fluid zone (%) (%) (%) (%)

W & H DNS 13 6 25 4
Present DNS (1-way) 11 6 26 6
Present DNS (2-way) 10 7 25 3

Table 2. Volume fractions occupied by eddy, shear, streaming and convergence zones, in Wray
& Hunt (1990) (first row), in the present simulation (second row), and in the present simulation
with two-way coupling (third row). For our simulation vT = 2vk and τb = τk/10, and the lift
force is included.

The dimensionless parameter characterizing the interaction of a bubble with a
vortex is

β =
u0

vT

=
3u0ν

ga2
. (3.1)

It gives an indication of which structures can trap the bubble (Sene et al. 1994). When
β � 1 (i.e. a small bubble) trapping occurs in all structures, including the smallest
ones, whereas β � 1 (i.e. large bubble) indicates that the bubble moves fast through
the flow, essentially without any interaction. We will extensively use the parameter β

throughout this paper.

3.2. Bubble distribution between different flow zones

How to further characterize the zones in the flow where the bubbles go? Flow regions
with distinct characteristics can be classified according to Wray & Hunt (1990)
who define four types of structures: eddies, where the vorticity is high and the flow
displays a circulating pattern; shear zones, with yet higher vorticity but no rotation;
convergence zones, in which the velocity lines converge or diverge; and streaming
zones, corresponding to high-velocity regions without particular strain or rotation.
The four different zones can be distinguished by measuring three quantities: the fluid
velocity u, the shear stress Π , defined as Π = (∂ui/∂xj )(∂uj/∂xi) and the flow pressure
p, that is connected to the shear stress by the Poisson equation �p = −Π . The local
values are then compared with their r.m.s. values: Πrms , prms , and u0. This procedure
leads to the following classification:

(a) eddy zones: Π < −Πrms/2 and p < −prms/2,

(b) shear zones: Π < −Πrms/2 and −prms/2 < p < prms,

(c) streaming zones: |Π | < Πrms/2 and |u| > u0,

(d) convergence zones: Π > Πrms and p > prms .
Note that different regions do not overlap and that there are regions in the
computational domain which are in none of these zones. In table 2 the volume
percentage occupied by the various zones obtained from DNS by Wray & Hunt
(1990) is compared to the percentage in the present simulation. The agreement is
extremely good. The last line of the table shows results in the two-way coupling
case.

We now investigate how bubbles are distributed in these fluid regions. In figure 2
the fraction of bubbles located in the four zones, normalized by the region volume
fraction (see table 2), is plotted as a function of τb/τk . The rise velocity is fixed:
vT = vk . The ratios are evaluated by averaging over 2 large-eddy turnover times.

The results show that there is clustering in high-vorticity regions and preferentially
in eddies compared to shear zones. The strongest effect occurs when τb � τk with
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0

1

2

3

0.1 0.4 0.7 1.0
τb/τk

ni

vi

Figure 2. Fraction of the number of bubbles located in a particular zone of fluid ni ,
normalized by the volume fraction of this zone vi , as a function of the ratio τb/τk , for
fixed vT = vk . The various symbols refer to zones: eddy (circles), shear (squares), streaming
(diamonds) and convergence (triangles).

three times larger concentration in eddy zones than would be measured in the case of
a uniform bubble distribution. The phenomenon monotonically decreases for smaller
τb, but it is still present even for the smallest time ratio analysed (τb/τk = 1/10).
Note that this result is important in view of simulations with two-way coupling
that we carry out in this regime. The other ratios presented in figure 2 show less
dependence on the bubble response time. We observe that convergence zones are
devoid of bubbles.

These results on the bubble distribution in the flow can be compared to the
analysis of Spelt & Biesheuvel (1997), who study bubble motion in homogeneous
and isotropic turbulence obtained by kinematic simulations, rather than by full
Navier–Stokes dynamics. Nevertheless, the results agree pretty well, both from a
qualitative and a quantitative point of view.

4. Two-way coupling
In this section we analyse how the bubbles modify the turbulent flow (two-way

coupling). Therefore, the coupling f b of microbubbles to the flow in (2.1) is no longer
neglected. The void fraction is α = 1.6% and the bubble response time τb = τk/10,
thus the bubble radius a =

√
6ντb is kept constant. We scan different bubble regimes

by varying the rise velocity in quiescent fluid vT = 2gτb. The ratio of the bubble radius
to the Kolmogorov scale is a/η ∼ 0.8. Moreover, bubble–bubble direct interactions
are neglected, as we consider low void fractions. Quantitative information on the
bubble clustering encountered in our simulation is given in Appendix C.

The range of parameters analysed throughout the numerical simulations presented
here corresponds to microbubbles of diameter d ∼ 120–250 µm in clean water (ν =
10−2 cm2 s−1 and g = 981 cm s−2). The rise velocity vT = gd2/(12ν) of such bubbles is
1 − 5 cm s−1, which agrees with the experimental observations, see figure 7.3 of Clift,
Grace & Weber (1978).
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4.1. Modification of the energy spectrum

The effect of bubbles on turbulence has been taken into account by adding an extra
forcing-like term to the Navier–Stokes equations (2.1). When transforming to the
wavenumber space and, in particular, to the spectral form of the energy transfer
equation, we obtain the following expression:

∂

∂t
E(k) = T (k) − 2νk2E(k) + FL(k) + Fb(k). (4.1)

Here FL(k) is the production due to the large-scale forcing and Fb(k) the forcing
contribution of the bubbles. E(k) is the energy spectrum

E(k) =
1

2

∑
k<|k|<k+dk

u∗
i (k)ui(k), i = x, y, z, (4.2)

i.e. it is the energy contained in a shell of radius k and thickness dk. Multiplying E(k)
with 2νk2, we obtain the so-called dissipation spectrum

D(k) = 2νk2E(k). (4.3)

T (k) is the energy transfer to wavenumber k:

T (k) =
∑

k<|k|<k+dk

T (k), (4.4)

where

T (k) = Im

(
kju

∗
l (k)

∑
k′

uj (k − k′)ul(k′)

)
. (4.5)

After summing on all k, taking into account that∑
k

T (k) = 0, (4.6)

and defining

ε =
∑

k

D(k), FL =
∑

k

FL(k), Fb =
∑

k

Fb(k), (4.7)

one has

−ε + FL + Fb = 0 (4.8)

in the stationary state. We can establish whether the bubbles enhance or reduce the
turbulent energy by computing the fluid viscous dissipation in wavenumber space
D(k) = 2νk2E(k) and its integrated value ε. If the fluid dissipation ε is smaller than
FL, which equals 1 by definition, see equation (2.3) and table 1, the bubbles attenuate
the energy supplied at large scales (Fb < 0), otherwise, if ε > FL, the bubbles force the
flow (Fb > 0), so that extra viscous dissipation is necessary to maintain a stationary
state.

We have carried out such analysis in Mazzitelli et al. (2003), with the help of the
numerical simulation described here. The simulations show that the bubble forcing
leads to an energy enhancement at small scales, but an energy reduction at large
length scales, see figure 3. The overall effect is a reduction of the total energy
dissipation, see figure 4. The origin of this effect lies in the lift force which makes
bubbles cluster in downflow regions. These bubble clouds locally transfer momentum
upwards, thus attenuating the vertical fluid velocity fluctuations. Similar effects have
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Figure 3. Dissipative spectrum for one-phase flow (solid line) and for two cases of active
bubbles coupled to the turbulence: vT = 2vk (dashed line), and vT = 4vk (long dashed line).
In both cases τb = τk/10. The inset shows the difference between the two-phase spectrum and
the one-phase spectrum.

1.15

0.5 1.5 3.52.5
β

1.10

1.05

1.00

0.95

ε

Figure 4. Total flow dissipation in simulations with active bubbles as a function of the ratio
β = u0/vT . The bubble response time is in all cases τb = τk/10. The filled symbols (diamonds)
indicate simulations with lift force, whereas the open symbols (circles) refer to simulations
without lift. The straight line indicates the one-phase flow value: ε = 1.

been experimentally found by Sridhar & Katz (1999), when analysing microbubble
distortion of vortex rings.

The reduction of the total energy dissipation in turbulent flow is indeed remarkable.
In flow which is initially at rest (Reλ = 0, ε = 0) and then driven only by bubbles (i.e.
f L = 0, ‘pseudoturbulence’, see e.g. van Wijngaarden 1998; Climent & Magnaudet
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Figure 5. (a) Structure functions S6(R) vs. R, for single- (solid line) and two-phase flow
(dot-dashed line) with vT =2vk , τb = τk/10. In the inset the relative difference (S

2way
6 (R) −

S
1way
6 (R))/S

1way
6 (R) is presented. The plot shows that the intensity modulation is not uniform

on all scales as we have already found when looking at the spectral energy dissipation, see
figure 3. (b) Structure functions Sn(R) vs. R, on logarithmic scale for n= 2 (dot-dashed line),
n = 3 (dashed line), and n= 6 (solid line). All plots refer to the two-way coupling regime. Due
to the low flow Reynolds number no scaling in R is detectable.

1999), one of course has an increase of the energy dissipation to ε = Fb, and also Reλ
will become larger than zero. Note that in between that case with initially Reλ = 0
(leading to an enhancement of ε) and the case studied here with initially Reλ = 62
(leading to a reduction of ε) there must be some Taylor–Reynolds number for which
the energy dissipation rate ε remains unmodified.

4.2. Modification of the velocity structure functions

In this subsection we study how the two-way coupling modifies the scaling properties
of the turbulence in r-space. To this end we plot longitudinal velocity structure
functions:

Sn(R) = 〈|(u(x + R) − u(x)) · R̂|n〉 (4.9)

(where R is the distance vector, R = |R|) of various order n and compare the
behaviour with that for the single-phase flow case. From our results on the spectra in
the previous subsection one would expect that in the two-way coupling case (i) large
scales L > r > 10η have less energy than in the one-way coupling case and (ii) small
scales r ≈ η have more energy. (iii) In addition, at least for the second-order structure
function which behaves like S2(R) = εR2/(15ν) for r � η, for very small scales there
should be less intensity in the two-phase coupling case, as the total energy dissipation
rate ε is less for two-way coupling.

In figure 5(a) the structure functions S6(R) are plotted, both for single- and two-
phase flow. The graphs, on a linear scale, show the modulation in the intensity due to
the two-way coupling. The modification is consistent with above expectations (i)–(iii).
However, here we must caution that other structure functions show different features.
In particular, this holds for the second-order structure function which is connected
to the energy spectrum through a Fourier-transformation. We suspect that deviations
from expectations (i)–(iii) originate from finite size effects. Indeed, for the limited
Taylor–Reynolds numbers in our numerical simulations the scaling regime is very
small and as shown in Lohse & Müller-Groeling (1995, 1996), finite size effects in the
relation between the structure function and the energy spectrum can be considerable.
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Figure 6. (a) ESS plot of S6(R) vs. S3(R), for one-way coupling and for two-way coupling,
with vT = 2vk , τb = τk/10, including the lift force (solid line). The two curves overlap on the
logarithmic scale. The straight dash-dotted line indicates the scaling behaviour in homogeneous
and isotropic turbulence. (b) Compensated ESS plot, presenting S6(R)/S2

3 (R) vs. S3(R), for
one-way coupling (dashed) and two-way coupling, with vT = 2vk, τb = τk/10, including the lift
force (solid). Through the compensation the deviations from the non-intermittent case (slope
0 instead of slope −0.21 as here) become particularly visible (Grossmann et al. 1997).

Note also that, in terms of the scale-dependent time scale, the effect on the statistics
on the very large scales is greatest.

Also, owing to the low flow Reynolds number, the structure functions do not
display any power law when plotted versus the scale R (see figure 5(b)). However,
very often these structure functions still show scaling when plotted against each other.
This feature is called extended self-similarity (ESS, Benzi et al. 1993).

In figure 6(a), we present the ESS plots of S6(R) versus S3(R), again for single-
and two-phase flow, and scaling is indeed recovered. However, this type of plot is
not precise enough to show a possible difference in scaling between the one-way
and two-way coupling cases. Therefore we also plot the so-called compensated ESS
plot (Grossmann, Lohse & Reeh 1997b) see figure 6(b). We detect good agreement
of the two-way coupling structure function scaling with the scaling displayed by
structure functions in homogeneous and isotropic turbulence. Therefore we infer
that the two-way coupling does not modify the ESS scaling exponents within our
numerical accuracy, i.e. bubbly turbulence displays the same amount of intermittency
as standard turbulence. This result resembles the findings of Benzi et al. (1996) in
which a remarkable universality of the ESS scaling exponents for various types of flow
(three-dimensional homogeneous turbulence, thermal convection, MHD turbulence)
has been found. Apparently, bubbly turbulence belongs to the same universality
class.

4.3. Modification of global quantities

We now report the results of our two-way coupling simulations for several global
quantities in order to further clarify how the bubble forcing modifies the turbulence.

We recall that a/η � 0.8. Small bubble dimensions with respect to all flow scales are
required for the application of the point-force approximation (see § 2.3). The value of
the bubble rise velocity vT = 2gτb is changed in different runs by varying the intensity
of the gravity force, from 0 to 40vk/τk . The total number of bubbles is Ntot = 144 000.

Various physical observables are shown in table 3. The brackets 〈 · 〉 indicate
temporal averages. 〈Ω〉b/Ω is the time-averaged enstrophy at the bubble location
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τb = τk/10 vT = 0 vT = vk vT = 2vk vT = 3vk vT = 4vk vT = 5vk vT = 6vk vT = 7vk vT = 8vk

radius (µm) – 62 78 89 98 106 112 118 124

β = u0/vT ∞ 4.1 2.05 1.35 1.02 0.82 0.68 0.58 0.52

ε 0.99 ± 0.02 0.98 ± 0.04 0.975 ± 0.03 0.96 ± 0.04 0.96 ± 0.03 0.965 ± 0.03 0.975 ± 0.03 0.98 ± 0.02 0.995 ± 0.03

3u2
0/2 2.09 ± 0.04 2.14 ± 0.045 2.11 ± 0.05 2.07 ± 0.05 2.09 ± 0.05 2.12 ± 0.05 2.01 ± 0.045 2.09 ± 0.06 2.14 ± 0.05

〈Ω〉b/Ω 1.68 ± 0.04 1.57 ± 0.05 1.39 ± 0.05 1.29 ± 0.04 1.22 ± 0.03 1.165 ± 0.02 1.12 ± 0.02 1.10 ± 0.015 1.09 ± 0.01

(〈vz〉 − vT )/vT 0 −0.065 −0.04 −0.04 −0.028 −0.02 −0.009 −0.0075 −0.004

N−/Ntot 0.5 ± 9 × 10−3 0.503 ± 7 × 10−3 0.513 ± 9 × 10−3 0.513 ± 7 × 10−3 0.511 ± 8 × 10−3 0.511 ± 7 × 10−3 0.504 ± 0.01 0.500 ± 0.01 0.504 ± 8 × 10−3

Reλ 61 ± 2 63 ± 3 62 ± 2 62 ± 3 62 ± 2 64 ± 3 63 ± 3 62 ± 2 63 ± 3

Rex
λ 59 ± 6 66 ± 6 63 ± 5 63 ± 7 62 ± 5 65 ± 6 66 ± 6 65 ± 5 69 ± 5

Re
y
λ 63 ± 4 65 ± 6 68 ± 5 65 ± 6 67 ± 4 66 ± 8 67 ± 7 62 ± 6 66 ± 5

Rez
λ 62 ± 5 58 ± 4 56 ± 3 57 ± 5 56 ± 5 59 ± 5 54 ± 3 58 ± 6 56 ± 4

〈u2
x〉 1.23 ± 0.09 1.38 ± 0.08 1.29 ± 0.09 1.3 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.35 ± 0.1 1.3 ± 0.1 1.4 ± 0.07

〈u2
y〉 1.30 ± 0.08 1.3 ± 0.1 1.39 ± 0.08 1.3 ± 0.1 1.36 ± 0.07 1.35 ± 0.1 1.35 ± 0.1 1.3 ± 0.1 1.36 ± 0.09

〈u2
z〉 1.29 ± 0.08 1.21 ± 0.09 1.17 ± 0.05 1.17 ± 0.08 1.17 ± 0.09 1.19 ± 0.09 1.13 ± 0.07 1.2 ± 0.1 1.17 ± 0.08

Table 3. Bubble and fluid observables in simulations with two-way coupling.
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β

Figure 7. Taylor–Reynolds number as a function of β = u0/vT in the three directions: x
(diamonds), y (circles), and z (squares). The straight line indicates the one-phase flow value
Reλ = 62.

normalized with respect to the average fluid enstrophy and N−/Ntot is the fraction of
bubbles sampling downflow zones. The Taylor–Reynolds number in the ith direction
is computed according to

Rei
λ =

√ 〈
u2

i

〉〈
(∂iui)2

〉
√〈

u2
i

〉
ν

(no sum over i).

The β-dependences of these unidimensional Taylor–Reynolds numbers are plotted
in figure 7. Like the values of the fluid r.m.s. velocity fluctuations in table 3, the figure
demonstrates that the bubbles act anisotropically, i.e. they preferentially attenuate
the vertical (z) velocity fluctuation. Indeed, Rez

λ is smaller than in the single-phase
flow case (where Reλ = 62), thus revealing a slightly lower turbulence intensity in
this direction. On the other hand, the Taylor–Reynolds numbers in the x- and y-
directions are slightly enhanced when compared to the one-phase flow. This is due to
the fluid incompressibility. Anisotropy is also detected in the fluid velocity gradients
〈(∂iui)

2〉 (not reported in the table), which are larger in the z-direction than in the
other two. However, the total Taylor–Reynolds number is always consistent, within
statistical fluctuations, with the single-phase Reynolds number Reλ = 62 and shows
no pronounced β-dependence.

The result is very different for the mean enstrophy at the bubble position compared
to the total mean enstrophy and the bubble rise velocity, see figures 8 and 9. In the
large-β case, corresponding to a small bubble velocity scale vT (small bubbles or
small gravity; note that an increase of β can also be achieved by increasing u0, i.e.
stronger turbulence), the trapping of the bubbles in the vortices is more pronounced,
leading to a relatively large 〈Ω〉b /Ω and a reduction of the bubble rise velocity in
the turbulence. On the other hand, in the small-β case (large vT , a, or g, or small u0),
the bubbles hardly feel the vortices: correspondingly, they are hardly trapped by the
vortices and their rise velocity in the turbulent flow is basically the same as in still
water.
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1.65

�Ω�b

Ω

Figure 8. Enstrophy at the bubble location normalized by the average flow enstrophy, given
as a function of β = u0/vT .
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–0.04
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 v
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v T

Figure 9. Relative reduction of the bubble rise velocity in turbulence compared to the rise
velocity vT for still water, (〈vz〉 − vT )/vT . The filled symbols correspond to our two-way
coupling simulation with lift (§ 4), the open symbols to a simulation in which the lift force had
artificially been set to zero in order to demonstrate its importance (§ 5).

For two-way coupling the consequence of the bubble trapping in the vortices is
the smoothing of the velocity fluctuations. Since bubbles are caught by structures
with velocity of the order of vT , the maximum attenuation of kinetic energy occurs
when vT � u0, or, in other words, β � 1. It is precisely in this regime that bubbles
suppress the large-scale eddies in which most of the flow energy is contained, see
figure 4.
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τb = τk/10 vT = vk vT = 3vk vT = 6vk

radius (µm) 62 89 112
β = u0/vT 4.1 1.37 0.69

ε 0.98 ± 0.03 1.01 ± 0.03 1.14 ± 0.035
3u2

0/2 2.11 ± 0.04 2.11 ± 0.06 2.13 ± 0.05
〈Ω〉b/Ω 1.57 ± 0.04 1.25 ± 0.03 1.12 ± 0.02

(〈vz〉 − vT )/vT 0 +0.01 +0.045
N−/Ntot 0.495 ± 7 × 10−3 0.483 ± 7 × 10−3 0.467 ± 8 × 10−3

Reλ 62 ± 2 61 ± 3 60 ± 2

Rex
λ 59 ± 5 59 ± 6 62 ± 7

Rey

λ 62 ± 4 65 ± 6 61 ± 5

Rez
λ 63 ± 4 60 ± 7 56 ± 4

〈u2
x〉 1.23 ± 0.09 1.2 ± 0.1 1.3 ± 0.1

〈u2
y〉 1.3 ± 0.07 1.35 ± 0.1 1.3 ± 0.1

〈u2
z〉 1.32 ± 0.07 1.2 ± 0.1 1.25 ± 0.07

Table 4. Bubble and fluid observables in simulations with two-way coupling and without lift
force in the bubble equation of motion.

5. Flow modification in the absence of the lift
The best way to highlight the importance of the lift force on the dynamics of

turbulent bubbly flow is to turn off this force in the numerical simulations. Therefore,
we perform numerical simulations by calculating the bubble trajectories without the
lift force in (2.6). The same bubble–flow quantities as in § 4 are measured and shown
in table 4. Note that two-way coupling is still applied. The result is that many
observables become qualitatively different in this simulation, mainly because now
fewer bubbles are pushed into the downflow region as the lift is set to zero.

First we comment on the quantities that describe the dispersed phase. The average
enstrophy at the bubble locations normalized by the mean flow enstrophy, 〈Ω〉b/Ω ,
reaches the same values as in the corresponding simulations with lift force, thus
indicating that bubbles are accumulating in vortex structures of equal intensity. In
Mazzitelli et al. (2003) we measured lower ratios in the case with lift force than in
the case without, for simulations with only one-way coupling. We infer that in the
two-way coupling case the bubble forcing introduces velocity gradients that enhance
the local vorticity.

Sridhar & Katz (1999) discuss the effect of bubble buoyancy and of the pressure
gradient terms (see (2.12)) on vortex rings. The gravity on the bubble acts to displace
the vortex core, whereas pressure gradient reduces the area of the vortex and therefore
increases the local vorticity. It is reasonable to expect a similar effect in the numerical
simulations, where bubbles smooth the vertical fluid velocity because of the buoyant
force, but, at the same time, force the flow through the pressure gradient term (fluid
acceleration term in (2.12)), which points towards the vortex centres. The pressure
gradient term is larger in simulations where lift force is included, because bubbles
are located further from the vortex cores than when lift forces are not considered.
The result is that the increase of the local vorticity is larger when including lift forces
than when excluding them and this effect apparently compensates for the enstrophy
difference that we had measured in one-way coupling runs.

The ratio N−/Ntot < 0.5 shows that most bubbles are now sampling fluid regions
in which the flow velocity is opposite to gravity. As a consequence a small increase
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Figure 10. Dissipation spectra in two regimes: (a) vT = 3vk and (b) vT = 6vk . The curves
represent the flow with one-way coupling (solid line), two-way coupling with lift effect (dotted
line) and without lift (dashed line). The insets show the difference between the two-way and
the one-way coupling spectrum, in a simulation with lift (dotted line) and without (dashed
line).

of the average rise velocity 〈vz〉 compared to the terminal speed vT is detected. We
explain this phenomenon by considering the indirect bubble–bubble interactions, that
occur via the underlying flow (remember that direct interactions are neglected). In
fact, without lift force the clustering in downflow zones is reduced (see table 1 of
Mazzitelli et al. 2003). Thus, the bubble local momentum transfer is more likely
to produce vertical fluid velocity fluctuations in the positive z-direction, which are
experienced by nearby bubbles.

Second, we focus on the flow modification. Even though the bubble forcing is
anisotropic, the Taylor–Reynolds numbers and the fluid velocity fluctuations are the
same in all directions x, y, and z. This is in strong contrast to the simulation with lift
(previous section and in particular figure 7). The reason again is that without lift the
bubbles are no longer preferentially in downflow regions.

The most relevant feature of the two-way coupling simulation without lift is
the increase of the energy dissipation in comparison with one-phase turbulence, see
figure 4 (open symbols). This increase means a qualitative difference to the simulations
with lift: the bubbles are now acting as a source of turbulent energy, cf. (4.8).

The modification of the dissipative spectrum by the bubble forcing is shown in
figure 10. We compare the spectra in simulations with and without lift force, and the
single-phase flow spectrum. The bubble rise velocities considered are vT = 3vk and
vT = 6vk . On increasing the rise speed the attenuation of the large-scale energy with
respect to one-phase turbulence is smaller and the effect of bubbles mimics an energy
source at almost all scales.

In conclusion, the comparison of these simulations and those of § 4 clearly
demonstrates the importance of including all forces in the equation for the bubble
dynamics, including the lift: neglecting some of the forces may lead to erroneous and
even qualitatively different results.

6. Importance of clustering on two-way interactions
In this section we will demonstrate the crucial role of bubble clustering for the

observed spectral modification. Again, the best way to demonstrate the importance is
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to turn off the clustering effect. We do so by fixing the bubbles at random positions
in space. Note that the bubbles still force the flow (two-way coupling).

6.1. Comparison between bubble-laden and heavy-particle-laden turbulence

For dispersed multiphase flow with heavy particles in the dispersed phase the energy
dissipation reduction can reach rather high values, up to the 60% compared to
the single-phase spectrum (e.g. see Boivin et al. 1998). In the bubble-laden case the
maximum attenuation of the fluid energy we find is of the order of 4% (for a void
fraction α � 1.6%). The main difference between bubble-laden and particle-laden
turbulence is that bubbles have negligible density. Then all the system inertia is
carried by the fluid phase. Particles, on the other hand, may possess much more
inertia than the flow, so that the fluid has to supply kinetic energy in order to
accelerate them. Accordingly, the mechanism of energy attenuation is substantially
different in the case of particle flow than bubbly flow. In dispersed particle flow it
is linked to the work done by the fluid to impose acceleration, whereas in dispersed
bubbly flow it is connected to the bubble tendency to accumulate in particular flow
regions and to their local action in these zones.

6.2. Comparison between bubble-laden and small-particle-laden turbulence

For particles of small inertia, τp = d2(ρp/ρf )/(18ν) � τk , yet heavier than the fluid
(ρp � ρf ), the situation is again different. As pointed out by Saffman (1962) and
Druzhinin (2001), the main effect of the particles now is to increase the fluid density
and, therefore, to reduce the effective kinematic viscosity. As a consequence the
turbulence is enhanced by two-way coupling.

Further insight is gained by considering the particle–fluid coupling equation (2.10).
This expression has two terms on the right-hand side and, depending on the density
ratio ρp/ρf , one may be more relevant than the other. As already stressed, for
bubbles the first term is dominant, whereas for particles of high density it is the
second. Moreover, in the latter case, when adding the condition τp/τk � 1, the time
evolution is dominated by the Stokes drag force and the gravity. It follows that, at zero
order in the ratio τp/τk , the particle acceleration is equal to the local fluid acceleration,
i.e. dv/dt � DU/Dt . Therefore, from (2.10) we establish that bubbles and particles
have opposite action on the flow, and this result holds also for non-gravity terms.

For the microparticle (τp � τk) regime Druzhinin (2001) derived an analytical
expression for the microparticle forcing term, assuming uniform particle concentration.
It is found that, in a first approximation, particles behave as a source of turbulent
energy.

6.3. Analytical estimate of spectral modification

We can carry out the analogous calculation of Druzhinin (2001) in the case
of microbubbles. The starting point is the Navier–Stokes equation with two-way
coupling, which we rewrite as

Du
Dt

= −∇p + ν�u + α(x, t)

(
Du
Dt

− g
)

, (6.1)

neglecting the large-scale forcing. Here α(x, t) is the local bubble concentration and
it contains all the information on the bubble evolution. We now assume uniform
and constant bubble distribution, i.e. α(x, t) = α, independent of x and t . As a
consequence, the two-way coupling term (2.12) loses the details of the bubble motion.
Therefore it is not necessary to specify the bubble equation of motion and in particular
whether the lift force is switched on or off.
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After transforming to wavenumber space, (6.1) becomes

(1 − α)
Duj (k)

Dt
= −ikjP (k) − νk2uj (k) − αgδjzδ|k|,0, j = x, y, z. (6.2)

Here Duj (k)/Dt is the Fourier transform of the total material derivative of u and
P (k) is the Fourier transform of the pressure, p(x). Our goal is to compute the bubble
term Fb(k) of the energy transfer equation (4.1), defined according to (see (4.4))

Fb(k) =
∑

k<|k|<k+dk

Fb(k),

where Fb(k) now is

Fb(k) = α Re

{
u∗

j (k)

(
Duj (k)

Dt
− gδjzδ|k|0

)}
. (6.3)

We now substitute the fluid velocity derivative from (6.2) and obtain

Fb(k) =

(
α

1 − α

)
Re

{
u∗

j (k)
(

− ikjP (k) − νk2uj (k)

− αgδjzδ|k|0 − gδjzδ|k|0 + αgδjzδ|k|0
)}

. (6.4)

Exploiting the fluid incompressibility, kjuj (k) = 0, and the definition of the energy
dissipation D(k) at scale k, from (4.3), we obtain

Fb(k) = − α

1 − α
D(k). (6.5)

Therefore, an energy reduction through the bubbles is expected at all scales.
Note that, according to Einstein’s relation (Landau & Lifshitz 1987, section 22), the

viscosity of a suspension of spheres is higher than the viscosity of the original flow:

η = η0

(
1 + 5

2
nVb

)
,

where η0 is the unperturbed viscosity, n is the number of spheres per unit volume
and Vb is the volume of one sphere. On the other hand, in the case of uniformly
distributed bubbles, the density decrease is given by

ρ = ρ0(1 − nVb).

Thus the ratio ν = η/ρ increases compared to ν0 = η0/ρ0. In view of this derivation
we can translate Saffman’s argument on microparticles to bubbles as follows: small
bubbles (if equidistributed) reduce the fluid density and increase the effective kinematic
viscosity, and thus dissipate turbulent energy. We remark that in the case of heavy
particles the increase of η with respect to η0 is generally negligible compared to the
density change.

6.4. Numerical demonstration of the importance of bubble clustering

We tested (6.5) by seeding the flow with Nb = 288 000 bubbles (τb = τk/10 and
vT = vk) at random positions. The bubbles are actively coupled to the flow, but they
are not allowed to move from their initial position, in order to simulate a uniform
bubble distribution. The void fraction is α � 3.2%, therefore we expect a uniform
reduction of the dissipation of the order of 0.03D(k) at all wavenumbers. The results
for the spectrum of dissipation are shown in figure 11. We detect a relative reduction
on all scales, except the large ones where the external forcing acts, that is in fairly
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Figure 11. Dissipation spectra for one-phase turbulence, D(k) (solid line), and two-phase
turbulence with random uniform bubble distribution, Db(k) (dotted line). The inset shows the
relative reduction of the dissipation, scale by scale, with respect to single-phase flow.

good agreement with the theoretical prediction. For the total dissipation the measured
value is εb � 0.98 ± 0.04, again consistent with the expected one.

The outcome of the test demonstrates the relevance of bubble accumulation. In
fact, the energy dissipation reduction that we measure in two-way coupled flow (see
§ 4 and in particular figure 3) is higher than could be justified by considering a
uniform bubble distribution (with α � 1.6%). Moreover, the modulation is selective
in wavenumbers, and not uniform, as would be the case if (6.5) held. This is yet
another indication of the importance of local bubble clustering.

7. Conclusions
The local distribution and the two-way interactions of microbubbles in

homogeneous and isotropic turbulence have been investigated by direct numerical
simulation. The Lagrangian–Eulerian approach has been employed. The analysis has
been restricted to low void fractions, so that direct bubble–bubble interactions have
not been considered. The forces acting on bubbles are fluid acceleration plus added
mass effects, drag, gravity, and lift.

First we have addressed the one-way coupling regime in which bubbles do not
transfer momentum to the flow. The bubble rise velocity in still water, vT , has been
kept constant and equal to the Kolmogorov velocity, vk , and the response time, τb,
has been changed according to 0.1τk � τb � τk . We have measured intense clustering
in high-enstrophy regions, and preferentially in eddy zones, with the strongest effect
occurring when τb = τk . As we had already found in Mazzitelli et al. (2003), the
bubble distribution is not symmetric with respect to the direction of gravity, but a
larger number of bubbles is found in downflow regions. The main reason is the action
of the lift force on rising bubbles.

Second, the two-way coupling regime has been investigated. In this case the bubble
response time has been fixed, τb = τk/10, and the rise velocity varied, vk � vT � 8vk .
Under the (erroneous) assumption of a random uniform bubble distribution we
could analytically derive that the action of microbubbles on the spectrum should be
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dissipative and uniform at all wavenumbers, see (6.5). This result was confirmed by
numerical simulation where we artificially fixed the bubbles in space, but let them
still force the flow. In contrast, our full numerical simulation with bubbles moving
according to their dynamical equation (2.6) shows that the modulation is selective in
k-space: the small wavenumbers are attenuated and the large ones are enhanced. The
spectral selective modification is due to the bubble clustering in downflow regions.

After summing on all wavenumbers, we had already established in Mazzitelli
et al. (2003) that bubbles reduce the overall energy dissipation rate ε. The proposed
physical explanation of the phenomenon again is that bubbles collect in downflow
zones, owing to the lift force, and transfer momentum upwards, owing to buoyancy.
As a result they smooth the vertical fluid velocity fluctuations and dissipate kinetic
energy. Confirmations of this interpretation have been given by reporting several fluid
observables and by performing simulations with two-way coupling with and without
lift force. In the latter analyses clusters in downflow regions as well as dissipative
bubble action on turbulence were no longer detected.

All these findings have a direct or indirect bearing on the three types of observables
on which we have focused in the introduction: the bubble distribution, the spectral
information, and the bubble rise velocity.

(i) The use of bubbles as passive tracers to select low-pressure regions has to
be made with caution for the following reasons. (i) Microbubbles with diameter
much smaller than the Kolmogorov scale cluster in high-vorticity regions, but not
necessarily in low-pressure regions. In fact, from figure 2, we conclude that the bubble
probability of sampling eddy and shear zones is the same. (ii) The effect on the flow
is not negligible because of clustering. Moreover, the isotropy of the turbulence is
affected by the asymmetric distribution of bubbles within the vortices.

(ii) Our finding that the large scales are energetically reduced whereas the small
scales are enhanced is consistent with the experimental results of Lance & Bataille
(1991). However that result was obtained for larger bubbles for which there may be
an additional effect due the wake behind the bubble. That effect may also lead to the
E(k) ∼ k−8/3 spectrum seen in those data. We do not have any indication for such
scaling in our simulation with point-particles. The energy spectrum and its dependence
on the bubble void fraction and bubble size has to be further tested experimentally.
The modulation in wavenumber of the spectrum will give an indication of the action
of the lift force. We are carrying out experimental work in order to clarify this issue.

(iii) The third observable that we focused on is the bubble rise velocity in turbulence.
In qualitative agreement with the experiment by Poorte & Biesheuvel (2002), we find
that it is reduced, an effect which can only be accounted for by including the lift in
the model.

The authors thank E. Climent, A. Prosperetti, and L. van Wijngaarden for
discussions and TIM for the CPU time. The work is part of the research program of
FOM, which is financially supported by NWO. We also acknowledge support from
the European Union (EU) through the European Research Network on “Nonideal
Turbulence” (contract HPRN-CT-200000162).

Appendix A. Velocity interpolation at the position of the bubble
In general, the bubbles are not located on the grid points where the flow velocity is

known. Therefore, an interpolation scheme is required, as pointed out in § 2.2. In this
Appendix we demonstrate that the 13-point third-order Taylor series interpolation
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Figure 12. Energy spectrum computed on the grid (−) and on two staggered grids by linear
(dashed) and 13-point (dot-dashed) interpolation.

employed (Yeung & Pope 1988) correctly represents the kinetic energy of the flow,
including at large wavevectors.

In figure 12 the fluid energy spectrum

E(k) =
1

2

∑
k<|k|<k+dk

u∗
i (k)ui(k)

is compared to the spectrum calculated on a staggered grid translated in each direction
by half a mesh size. The velocity on this grid is computed by linear interpolation. A
third grid is also considered and the velocity is interpolated on it by the third-order
Taylor series based scheme. Several choices for the spacing of the third grid with
respect to the original one have been taken into account and all of them lead to
results analogous to the ones that we present. The plot shows that in the latter case
most of the high-wavenumber energy is maintained, whereas in the former one it is
not.

Appendix B. Quality of the point-force approximation
We can estimate whether the spurious effects on the fluid velocity, due to the

point-force approximation introduced in § 2.3, modify the results by performing the
following test. We consider a flow with N1 passive bubbles, and, at the same time,
N2 = N1 active bubbles. Bubble trajectories are tracked and the absolute diffusions
〈|x(t) − x0|2〉 are computed, separately for the two sets. Here x(t) is the position
of the bubble at time t that was at x0 at time t = 0, and 〈 · 〉 is the average over
the sample. The motion of each bubble is advanced according to (2.6). The fluid
velocity u in that equation depends, theoretically, on the fluctuations generated in
the turbulent flow by all the bubbles, except the bubble’s own perturbation. On the
other hand, computationally, this specific fluctuation cannot be filtered from the
underlying velocity field. The consequence is that the diffusion of the first set of
bubbles (with one-way coupling) is correct, within our model, whereas the other
diffusion (of bubbles with two-way coupling) is approximate. This can be used in
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Figure 13. Diffusion in the z (upper curves) and average in the x, y-directions (lower
curves), with error bars. The error bars are estimated starting from the relative error:
ε = |(Db

xx(t) − Db
yy(t))/(D

b
xx(t) + Db

yy(t))|. The diffusion is shown for both sets of bubbles,
with one- (open circles) and two-way (solid line) coupling.

order to measure how well the ‘perturbed’ equation (with the ‘dirty’ fluid velocity at
the bubble location) resembles the one that we wish to integrate (with the velocity
‘cleaned up’ from the perturbation of the bubble itself). If we remove (or estimate as
negligible) the bubble’s own perturbation on the velocity, all bubbles, either active or
passive, move in the same flow field and respond to the same equation of motion.
Therefore their diffusions have to be consistent.

We now check whether this is the case to validate the approximation of u in (2.6)
by the full velocity field. We define the diffusion tensor as

Db
ij (t) = 〈(xi(t) − xi0)(xj (t) − xj0)〉, i, j = x, y, z.

In figure 13 the bubble diffusion in the (x, y)-plane and in the z (gravity) direction
are presented. The error bars are estimated by the difference between results in the
x- and y-directions, which, for symmetry reasons, are the same. The relative error is

ε =

∣∣∣∣Db
xx(t) − Db

yy(t)

Db
xx(t) + Db

yy(t)

∣∣∣∣.
The parameters of the simulations are τb = τk/10 and vT = 8vk . The number of
bubbles is N1 = N2 = 144 000. The value of the rise velocity vT and thus the
strength of the forcing through the bubbles is the highest of all simulations presented
throughout this work. In the case of successful validation, all cases with smaller
forcing strength are therefore automatically included.

The result of the validation is that indeed Db
ii(t) is the same for the active and passive

case (within the error), see figure 13. We conclude that the point-force approximation
does not modify the bubble behaviour, within our numerical accuracy.
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Figure 14. Probability that more than nb bubbles are found inside the same computational
cell, as a linear plot (a) and as a double-logarithmic plot (b). P (n(x) > 0) = 1 by definition.
The probability is estimated by the number of computational cells in which there are more
than nb bubbles normalized by the total number of cells occupied by the bubbles. Note that
fractional values of nb are due to the linear projection of each bubble (that is in general located
between the grid points) to the eight nearest grid points.

Appendix C. Comment on neglecting direct bubble–bubble interactions
The turbulence modification is linked to bubble clustering in particular flow regions.

Figure 2 shows that, for τb = τk/10, the ratio of the fraction of the total number of
bubbles in eddy zones to the fraction of the total volume filled by eddies is order
2. However, within eddies, a very high local concentration can be achieved. In this
Appendix we quantify this effect.

Up to 20 bubbles can be found in one computational cell in the two-way coupling
case (for τb = τk/10 and vT = vk). These events, however, are extremely rare. Figure 14
shows a plot of the relative probability of finding more than nb bubbles within the
same computational cell. The ratio of grid cells with more than one bubble to all grid
cells with any bubble contribution at all (which can be smaller than 1 as the weight
of the bubbles is distributed over neighbouring cells) is about 0.02, and therefore we
consider direct interactions negligible. Similar results also hold for the other runs with
two-way coupling.

We finally note that clustering is strongly enhanced for τb → τk . Indeed, our choice
of a small bubble response time τb = τk/10 � τk is also driven by the need to reduce
local bubble accumulation.
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