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COMPUTING MINIMAL SIGNATURE OF COHERENT SYSTEMS
THROUGH MATRIX-GEOMETRIC DISTRIBUTIONS
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Abstract

Signatures are useful in analyzing and evaluating coherent systems. However, their com-
putation is a challenging problem, especially for complex coherent structures. In most
cases the reliability of a binary coherent system can be linked to a tail probability asso-
ciated with a properly defined waiting time random variable in a sequence of binary
trials. In this paper we present a method for computing the minimal signature of a
binary coherent system. Our method is based on matrix-geometric distributions. First,
a proper matrix-geometric random variable corresponding to the system structure is
found. Second, its probability generating function is obtained. Finally, the companion
representation for the distribution of matrix-geometric distribution is used to obtain a
matrix-based expression for the minimal signature of the coherent system. The results
are also extended to a system with two types of components.
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1. Introduction

The concept of signature is a powerful and useful tool for reliability evaluation of coherent
systems. It has been effectively used in various problem setups. Progress in signature-based
reliability research appears in two specific dimensions. One is related to calculation of the sig-
nature, which is often challenging, and the other is concerned with its use in performance
evaluation, including the assessment of ageing characteristics and stochastic comparison.
Various types of signatures have been defined after the well-known Samaniego signature,
which is defined as an n-dimensional vector whose ith coordinate is the probability that the
ith failure of components causes the system to fail (see e.g. [18]). As is well known, the reli-
ability of a coherent system can be written as a mixture using the signature vector when the
system has exchangeable components.

Navarro and Rubio [15] obtained an algorithm to compute all the coherent systems with
n components and their signatures. Using this algorithm it has been shown that there exist
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622 S. ERYILMAZ AND F. TANK

180 coherent systems with five components, and they computed their signatures. Gertsbakh,
Shpungin, and Spizzichino [11] provided an efficient method to compute the signature of a
coherent system by reducing the complexity of the large system via series, parallel and recur-
rent structures. Da, Xia, and Hu [4] derived basic formulae for computing the signature of
a system which can be decomposed into two disjoint modules. Eryilmaz [6] considered the
problem studied in [4] and developed a method that is based on combinatorial arguments.
Marichal [12] provided conversion formulae between the signature and the reliability function.
Marichal, Mathonet, and Spizzichino [13] represented the signature of a system in terms of
the signature of its disjoint modules. Franko and Yalcin [10] computed the signatures of series
and parallel systems consisting of non-disjoint modules. Da, Chan, and Xu [3] proposed a
novel approach to computing the signature of a system consisting of subsystems with shared
components. Yi and Cui [21] proposed a Markov-process-based method to compute the signa-
ture. Da, Xu, and Chan [5] developed an algorithm to compute the signature of a system with
exchangeable components. The algorithm relies only on the information of minimal cut sets or
minimal path sets. The signatures of particular coherent systems were computed using various
techniques in Triantafyllou and Koutras [19], Eryilmaz and Zuo [8], Triantafyllou and Koutras
[20], Eryilmaz and Tuncel [7], and Navarro and Spizzichino [16].

For a coherent system consisting of n independent and identical components with common
reliability r, its reliability can be written as

R =
n∑

i=1

ωir
i,

where the vector of coefficients ω= (ω1, . . . , ωn) satisfying
∑n

i=1 ωi = 1 is called the mini-
mal signature. For a coherent system with lifetime T and exchangeable component lifetimes
T1, . . . , Tn, the survival function can also be written as

P{T > t} =
n∑

i=1

ωi P{T1:i> t},

where T1:i = min (T1, . . . , Ti), i ≥ 1 (see e.g. [17]).
In this paper we present a method to compute the minimal signature of a coherent system.

Our method is based on the probability generating function (p.g.f.) of the waiting time random
variable that is concerned with the failure of the system. Let us consider the series system as a
starting point. If the lifetimes have a continuous distribution, then the series system fails upon
the failure of one of its components. Thus the waiting time random variable can be defined as
the number of trials until the first failure in a sequence of Bernoulli trials with two possible
outcomes as either success or failure. If the waiting time random variable is denoted by ξ , then
its p.g.f. is

E(zξ ) = (1 − r)z

1 − zr
,

where r is the component reliability. That is, the random variable ξ has a geometric distribution
with mean 1/(1 − r). The reliability of the series system with n components is represented
by P{ξ > n}. In the general case when we have an arbitrary coherent system to hand, the cor-
responding waiting time random variable may be defined by a matrix-geometric distribution
which has a rational p.g.f. Our approach is as follows. First, a proper matrix-geometric random
variable corresponding to the system structure is found. Second, its probability generating
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function is obtained. Finally, the companion representation for the distribution of matrix-
geometric distribution is used to obtain a matrix-based expression for the minimal signature
of the coherent system. Our method is efficient, especially when the p.g.f. corresponding to
the system failure is available. As will be illustrated, for some systems it is more practical to
obtain the p.g.f. for the system failure.

The remainder of this paper is structured as follows. In Section 2 the notation and defini-
tions are presented. Section 3 presents the main result on computing the minimal signature.
In Section 4 we provide a method to compute the minimal signature of the series system that
consists of two disjoint modules based on the minimal signatures of the modules. Section 5
contains results on systems with two types of components. Section 6 concludes the paper with
some remarks. Proofs and computational details are presented in the Appendix.

2. Preliminaries

If the random variable ξ has a matrix-geometric distribution, then it has a rational p.g.f.
which is given by

ψ(z) =E(zξ ) = c1z + · · · + cmzm

1 + d1z + · · · + dmzm
. (2.1)

Using (2.1), the probability mass function (p.m.f.) and survival function of ξ can be
represented as

P{ξ = l} = aQl−1u′

and
P{ξ > l} = aQl(I − Q)−1u′,

where a = (1, 0, . . . , 0) and

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d1 0 0 · · · 0 1

−dm 0 0 · · · 0 0

−dm−1 1 0 · · · 0 0

−dm−2 0 1 0 0

...
...

...
. . .

...
...

−d2 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

cm

cm−1

cm−2

...

c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(see e.g. [2]).
Consider a coherent system with structure function φ(x1, . . . , xn) such that φ(x1, . . . , xn) =

1 if the system works and φ(x1, . . . , xn) = 0 if the system has failed, where xi denotes the state
of the ith component with xi = 1 if the ith component works and xi = 0 if it has failed. Let
r = P{Xi = 1} be the common reliability of its components, i = 1, 2, . . . , n. Assume that the
reliability of the system can be represented by the probability

P{φ(X1, . . . , Xn) = 1} = P{ξ > n}, (2.2)

where ξ ∼ MG(a,Qr,ur). Currently we do not know if a random variable ξ satisfying (2.2)
and having the distribution MG(a,Qr,ur) exists for any coherent system. However, as will be
illustrated throughout the paper, there are many well-known and less-known coherent system
models following the assumption.
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The random variable ξ actually represents the waiting time for the occurrence of the system
failure. More explicitly, it is the total number of trials until the occurrence of a specific event
in a sequence of binary trials with possible outcomes as either 0 (failure) or 1 (working). Note
that all or some of the coefficients c1, . . . , cm and d1, . . . , dm depend on component reliability
r. That is, the probability (2.2) depends on r through the matrix Qr and the vector ur. Therefore
Qr and ur depend on r.

For an illustration, below we give examples for well-known coherent structures.

Example 2.1. Let φ(x1, . . . , xn) = min (x1, . . . , xn), i.e. the system has a series structure. Then
ψ(z) corresponds to the p.g.f. of the random variable ξ that denotes the number of trials until
the first failure in a sequence of independent and identical binary trials. Clearly

ψ(z) = (1 − r)z

1 − zr
.

Therefore ξ ∼ MG(1,r,1 − r).

Example 2.2. Let the system have k-out-of-n:F structure. Because the system fails as soon as
k failures occur, the random variable ξ denotes the waiting time for a total of k failures in a
binary sequence of two possible outcomes as either 0 (failure) or 1 (working). Thus the random
variable ξ is the sum of k independent geometric variables, and

ψ(z) =
[

(1 − r)z

1 − zr

]k

= (1 − r)kzk

1 + ∑k
i=1 ( − 1)i

(k
i

)
rizi

.

Therefore ξ ∼ MG(a,Qr,ur) with a = (1, 0, . . . , 0) and

Qr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kr 0 0 · · · 0 1

( − 1)k+1rk 0 0 · · · 0 0

( − 1)k
( k

k−1

)
rk−1 1 0 · · · 0 0

( − 1)k−1
( k

k−2

)
rk−2 0 1 0 0

...
...

...
. . .

...
...

−(k
2

)
r2 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u′

r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(1 − r)k

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3. Computing the minimal signature

In this section we develop a method for computing the minimal signature of a coherent
system by utilizing matrix-geometric distributions that were mentioned in the previous section.

Theorem 3.1. Let φ(x1, . . . , xn) be the structure function of a binary coherent system and let
r be the common reliability of its components. Suppose that the reliability of the system is
represented by P{ξ > n}, where ξ is a discrete random variable having a matrix-geometric
distribution with p.g.f.

ψ(z) = c1z + · · · + cmzm

1 + d1z + · · · + dmzm
.

Then the minimal signature of the system with structure function φ can be computed from

ω= A−1b,
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where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1

2

1

22
· · · 1

2n
...

. . .

1

2n−1

1

22(n−1) · · · 1

2n(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

and

b =

⎡
⎢⎢⎢⎢⎢⎣

1

a�n
1(I −�1)−1d′

1

...

a�n
n−1(I −�n−1)−1d′

n−1

⎤
⎥⎥⎥⎥⎥⎦,

where �t and dt are obtained by replacing r in Qr and ur with 1/2t, t = 1, 2, . . . , n − 1.

Proof. Because the minimal signature only depends on the system structure, without loss
of generality, assume that the system with lifetime T = φ(T1, . . . , Tn) consists of independent
and identically distributed components with common lifetime distribution F(t) = 1 − (1 − p)t,
t = 1, 2, . . . , n. That is, the lifetimes of components follow a geometric distribution with mean
1/p. Then

p(t) = P{T > t} =
n∑

i=1

ωi[(1 − p)t]i =ω1(1 − p)t +ω2(1 − p)2t + · · · +ωn(1 − p)nt.

Clearly

p(0) = 1,

p(1) =ω1(1 − p) +ω2(1 − p)2 + · · · +ωn(1 − p)n

...

p(n − 1) =ω1(1 − p)n−1 +ω2(1 − p)2(n−1) + · · · +ωn(1 − p)n(n−1).

Thus the minimal signature (ω1, ω2, . . . , ωn) is obtained from⎡
⎢⎢⎢⎢⎢⎣

ω1

ω2

...

ωn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

(1 − p) (1 − p)2 · · · (1 − p)n

...
. . .

(1 − p)n−1 (1 − p)2(n−1) · · · (1 − p)n(n−1)

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣

1

p(1)

...

p(n − 1)

⎤
⎥⎥⎥⎥⎥⎦.

Because r = F̄(t), from equation (2.2) we have

p(t) = P{T > t} = aQn
F̄(t)

(I − QF̄(t))
−1u′̄

F(t) = a�n
t (I − �t)−1d′

t,

where �t and dt are obtained by replacing r in Qr and ur with F̄(t) = (1 − p)t, t =
1, 2, . . . , n − 1. The result now follows upon choosing p = 1

2 . �
Remark 3.1. Theorem 3.1 incorporates an instrumental geometric random variable for mod-
eling lifetimes of components. This is done to obtain simple terms in the matrix A and the
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vector b. Any other lifetime distribution can also be used since A−1b is independent of the
component lifetime distribution.

As is clear from Theorem 3.1, the computation of the minimal signature vector requires the
p.g.f. of the random variable ξ corresponding to the system structure. For some systems, the
derivation of the p.g.f. for the occurrence of the system failure is simpler than obtaining an
expression for the system reliability. Consider the following examples.

Example 3.1. The (n,f ,k) system consists of n components ordered in a line, and it fails if and
only if there exist at least f failed components or at least k consecutive failed components.
The p.g.f. of the waiting time for the occurrence of the (n,f ,2) system failure can be obtained
from Proposition 1 of Triantafyllou and Koutras [20]. Note that [20, Proposition 1] includes
the p.g.f. for the reliability function defined by

R(z;r) =
∞∑

n=0

zn
P{ξ > n}.

The p.g.f. for the waiting time for the occurrence of the system failure can be obtained from
ψ(z) = 1 − R(z;r)(1 − z) (see Appendix A) and is given by

ψ(z) = 1 − (1 − rz)f − ((1 − r)z)2[
∑f −3

i=0 (r(1 − r)z2)i(1 − rz)f −i−1 + (r(1 − r)z2)f −2]

(1 − rz)f
.

If in particular f = 3, then

ψ(z) = (1 − r)2z2 − 2r(1 − r)2z3 + r(1 − r)2z4

1 − 3rz + 3r2z2 − r3z3 .

Thus ξ ∼ MG(a,Qr,ur) with a = (1, 0, 0, 0) and

Qr =

⎡
⎢⎢⎢⎢⎣

3r 0 0 1

0 0 0 0

r3 1 0 0

−3r2 0 1 0

⎤
⎥⎥⎥⎥⎦ , u′

r =

⎡
⎢⎢⎢⎢⎣

0

r(1 − r)2

−2r(1 − r)2

(1 − r)2

⎤
⎥⎥⎥⎥⎦.

Using Theorem 3.1, the minimal signature of the (n,3,2) system can be computed from

⎡
⎢⎢⎢⎢⎢⎣

ω1

ω2

...

ωn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1

2

1

22 · · · 1

2n

...
. . .

1

2n−1

1

22(n−1)
· · · 1

2n(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣

1

p(1)

...

p(n − 1)

⎤
⎥⎥⎥⎥⎥⎦,
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TABLE 1. Minimal signature of the (n,3,2) system.

n ω

5 (0, 0, 6,−7, 2)
6 (0, 0, 0, 10,−14, 5)
7 (0, 0, 0, 0, 15,−23, 9)
8 (0, 0, 0, 0, 0, 21,−34, 14)
9 (0, 0, 0, 0, 0, 0, 28,−47, 20)
10 (0, 0, 0, 0, 0, 0, 0, 36,−62, 27)

where

p(t) = (1, 0, 0, 0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1

2t
0 0 1

0 0 0 0(
1

2t

)3

1 0 0

−3

(
1

2t

)2

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1

2t
0 0 1

0 0 0 0(
1

2t

)3

1 0 0

−3

(
1

2t

)2

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2t

(
1 − 1

2t

)2

−2
1

2t

(
1 − 1

2t

)2

(
1 − 1

2t

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for t = 1, 2, . . . , n − 1. In Table 1 we present ω= (ω1, . . . , ωn) for the (n, 3, 2) system for
selected values of n.

Example 3.2. A consecutive-k-out-of-n:F system with sparse d is a system that consists of
n linearly ordered components such that the system fails if and only if there exist at least k
consecutive failed components with sparse d, i.e. there must be k or more failures and sparse d
or less if the system fails [22]. The p.g.f. of the waiting time for the occurrence of the system
failure has been obtained as [14]

ψ(z) = ((1 − r)z)k(1 − (rz)d+1)k−1(1 − z + (1 − r)z(rz)d+1)

(1 − rz)((1 − z)(1 − rz)k−1 + ((1 − r)z)k(rz)d+1(1 − (rz)d+1)k−1)
.

Let k = 2 and d = 1. Then

ψ(z) = c1z + · · · + c7z7

1 + d1z + · · · + d7z7 ,
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where

c1 = 0, c2 = (1 − r)2, c3 = −(1 − r)2, c4 = −r2(1 − r)2,

c5 = r2(1 − r)2(2 − r), c6 = 0, c7 = −r4(1 − r)3,

d1 = −(1 + 2r), d2 = r(r + 2), d3 = −r2, d4 = r2(1 − r)2,

d5 = −r3(1 − r)2, d6 = −r4(1 − r)2, d7 = r5(1 − r)2.

If, for example, n = 5, then using Theorem 3.1, the minimal signature of the consecutive-2-
out-of-5:F system with sparse d = 1 is obtained as (0, 0, 3,−1,−1).

4. Minimal signature of a series system with two modules

Consider a coherent system consisting of n + m components with the index set of compo-
nents C = {1, . . . , n + m}. Suppose that the system with the component index set C consists of
two disjoint modules with respective component index sets {1, . . . , n} and {n + 1, . . . , n + m}
and structure functions φ1 and φ2. If the overall system has a series structure, i.e. the disjoint
modules are serially connected, then the system’s reliability is represented as

P{φ1(X1, . . . , Xn) = 1, φ2(Xn+1, . . . , Xn+m) = 1} = P{ξ1 > n} P{ξ2 >m},
where ξi ∼ MG(a(i),Q(i)

r ,u(i)
r ), i = 1, 2. The problem is to compute the minimal signature of

the series system with structure function min (φ1(x1, . . . , xn), φ2(xn+1, . . . , xn+m)) based
on the minimal signatures of the systems with structure functions φ1(x1, . . . , xn) and
φ2(xn+1, . . . , xn+m). This problem has been considered in the literature by using a different
approach that is based on the number of path sets of the structures (see e.g. [6] and [4]).

Let α= (α1, α2, . . . , αn) and β = (β1, β2, . . . , βm), respectively, denote the minimal sig-
natures of the systems with structure functions φ1 and φ2. Then the reliability of the system
with structure function min (φ1(x1, . . . , xn), φ2(xn+1, . . . , xn+m)) can be written as

P{ξs > n + m} =
n∑

i=1

αir
i

m∑
j=1

βjr
j = (α⊗ β)(r′

1 ⊗ r′
2) =

n+m∑
i=1

ωir
i,

where ⊗ denotes the Kronecker product and r1 = [r, r2, . . . , rn], r2 = [r, r2, . . . , rm].
For given α and β, the minimal signature (ω1, ω2, . . . , ωn+m) can be computed by collect-

ing the coefficients of the terms ri in the expansion of (α⊗ β)(r′
1 ⊗ r′

2). This can be done using
the computer code presented in Appendix B.

Example 4.1. Let φ1 and φ2 be the structure functions of 2-out-of-3:F and 3-out-of-4:F sys-
tems, respectively. Then, from Example 2.2 and Theorem 3.1, the minimal signatures are
obtained as α = (0, 3,−2) and β = (0, 0, 4,−3). Then

α⊗ β = (0, 0, 0, 0, 0, 0, 12,−9, 0, 0,−8, 6)

and
r1 ⊗ r2 = (r2, r3, r4, r5, r3, r4, r5, r6, r4, r5, r6, r7).

Using the algorithm presented in Appendix B, the minimal signature of the system which is a
series connection of 2-out-of-3:F and 3-out-of-4:F systems is obtained as

ω= (0, 0, 0, 0, 12,−17, 6).
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5. Systems with two types of components

Consider a coherent system that consists of two types of components. Let ni denote
the number of components of type i, i = 1, 2. Then the reliability of the system can be
represented by

P{ξ > n} =
n1∑

m1=0

n2∑
m2=0

ωm1,m2rm1
1 rm2

2 ,

where ri denotes the reliability of components of type i, i = 1, 2 and ξ ∼ MG(a,Qr1,r2
,ur1,r2

).
The matrix Qr1,r2

and the vector ur1,r2 are constructed with the help of the coefficients in the
probability generating function of ξ . The vector

ω= (ω0,0, ω0,1, . . . , ω0,n2, . . . , ωn1,0, ωn1,1, . . . , ωn1,n2 )

of (n1 + 1) × (n2 + 1) elements represents the minimal signature of the system (see e.g. [9]).
Using the method presented in Theorem 3.1, the minimal signature of the system can be
computed from

ω= A−1b

for i = 1, 2, . . . , (n1 + 1) × (n2 + 1), and the (i,j)th element of the matrix A is

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p2)(j−1)(i−1) if j = 1, 2, . . . , n2 + 1,

(1 − p1)i−1(1 − p2)(j−(n2+2))(i−1) if j = n2 + 2, . . . , 2n2 + 2,

(1 − p1)2(i−1)(1 − p2)(j−(2n2+3))(i−1) if j = 2n2 + 3, . . . , 3n2 + 3,

...

(1 − p1)n1(i−1)(1 − p2)(j−(n1n2+n1+1))(i−1) if j = n1n2 + n1 + 1, . . . , n1n2 + n1 + n2 + 1.

The vector b is given by

b =

⎡
⎢⎢⎢⎢⎢⎣

1

p(1)

...

p(n1n2 + n1 + n2)

⎤
⎥⎥⎥⎥⎥⎦,

where
p(t) = a�n

t (I − �t)
−1d′

t,

and �t and dt are obtained by replacing r1 and r2 in Qr1,r2
and ur1,r2 with (1 − p1)t and

(1 − p2)t, t = 1, 2, . . . , n1n2 + n1 + n2.

Example 5.1. For a 2-out-of-n:F system consisting of n1 components of type 1 and n − n1
components of type 2, the p.g.f. of the waiting time for the system failure is (see Appendix C
for the derivation)

ψ(z) = (1 − r1)2[r1z2 − n1rn1
1 zn1+1 + (n1 − 1)rn1+1

1 zn1+2]

r1(1 − zr1)2

+ n1rn1−1
1 (1 − r1)(1 − r2)zn1+1

1 − zr2
+ rn1

1 (1 − r2)2zn1+2

(1 − zr2)2
. (5.1)
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Note that if n1 = 0 and r1 = r2 = r in (5.1), then

ψ(z) =
[

(1 − r)z

1 − zr

]2

,

which is the p.g.f. corresponding to the 2-out-of-n:F system with a single type of components.

Example 5.2. For a 2-out-of-3:F system, let n1 = 1. Then, from (5.1), we have

ψ(z) = (1 − r1)(1 − r2)z2 + (1 − r2)(r1 − r2)z3

1 − 2r2z + r2
2z2

.

Thus ξ ∼ MG(a,Qr1,r2
,ur1,r2

) with a = (1, 0, 0) and

Qr1,r2
=

⎡
⎢⎣

2r2 0 1

0 0 0

−r2
2 1 0

⎤
⎥⎦ , u′

r1,r2
=

⎡
⎢⎣

0

(1 − r2)(r1 − r2)

(1 − r1)(1 − r2)

⎤
⎥⎦.

Using the method, the minimal signature of the 2-out-of-3:F system consisting of n1 = 1
component of type 1 and n − n1 = 2 components of type 2 is obtained as

ω= (ω0,0, ω0,1, ω0,2, ω1,0, ω1,1, ω1,2) = (0, 0, 1, 0, 2,−2).

Example 5.3. A consecutive-2-out-of-n:F system is a system that consists of n linearly ordered
components, and fails if and only if there exist at least two consecutive failed components.
Assume that the first n1 components have common reliability r1 and the remaining n − n1
components have common reliability r2. Then the p.g.f. of the random variable ξ which denotes
the waiting time until two consecutive failures is given by the following equations when n1 = 1,
n1 = 2, and n1 = 3 (see Appendix D for the proofs):

ψ(z) = (1 − r1)(1 − r2)z2 + (1 − r2)(r1 − r2)z3

1 − r2z + r2(r2 − 1)z2 for n1 = 1, (5.2)

ψ(z) = (1 − r1)2z2 + (1 − r1)(r1 − r2)z3 + (1 − r2)(r1 − r2)z4

1 − r2z + r2(r2 − 1)z2 for n1 = 2, (5.3)

and for n1 = 3

ψ(z) = 1

1 − r2z + r2(r2 − 1)z2 [(1 − r1)2z2 + (1 − r1)2(r1 − r2)z3

+ (1 − r1)(r1 − r2)(1 − r2(1 − r1))z4

+ (r1(r1 − r2)(r1 − 2)(r2 − 1))z5] (5.4)

The following result is useful for obtaining the p.g.f. corresponding to a series system of
two or more modules.

Proposition 5.1. The p.g.f. of the waiting time for the failure of the two-component series sys-
tem, when one component is of type 1 with reliability r1 and the other component is of type 2
with reliability r2, is

ψ(z) = (1 − r1)z + (r1 − r2)z2

1 − zr2
. (5.5)
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Proof. The result is immediate from

ψ(z) = z(1 − r1) + zr1ϕ(z),

where ϕ(z) denotes the p.g.f. of the geometric distribution with probability of success 1 − r2,
that is,

ϕ(z) = z(1 − r2)

1 − zr2
.

�
Example 5.4. Consider the system with structure function

φ(x1, x2, x3, x4) = min (x1,max (x2, x3, x4)). (5.6)

Assume that component 1 has reliability p1 and components 2, 3, and 4 have common relia-
bility p2. Taking r1 = p1 and r2 = 1 − (1 − p2)3 in (5.5), the p.g.f. of the waiting time for the
failure of the system with structure function (5.6) is obtained as

ψ(z) = (1 − p1)z + (p1 − 1 + (1 − p2)3)z2

1 − z(1 − (1 − p2)3)
.

As illustrated by Example 5.4, the result presented in Proposition 5.2 is useful for obtaining
the p.g.f. of a series system consisting of disjoint modules. There are coherent systems which
can be written as a series system of two or more systems which may contain common com-
ponents. In the following, we obtain the p.g.f. of the waiting time for the failure of the series
system consisting of two modules that have one common component. The representation of
a coherent system as a series system of two modules considerably reduces the complexity in
computing the signature.

Proposition 5.2. Let φ1 and φ2 be the structure functions of two coherent systems of sizes n
and m, respectively. Suppose that component i is a common component of both systems. If
n + m components have common reliability value p, then the p.g.f. corresponding to the failure
of the series system of the two systems φ1 and φ2 is given by

ψ(z) = c1z + c2z2 + c3z3

1 + d1z + d2z2 + d3z3 ,

where

c1 = 1 − pr1 − (1 − p)r∗
1,

c2 = pr∗
2(r1 − 1) + p(r1 − r2) + (1 − p)[r∗

1 − r∗
2 + r2(r∗

1 − 1)],

c3 = pr∗
2(r2 − r1) + (1 − p)r2(r∗

2 − r∗
1),

d1 = −(r2 + r∗
2),

d2 = r2r∗
2,

d3 = 0

for r∗
1, r∗

2 > 0, where rj (r∗
j ) denotes the reliability of the system φj when the component i works

(fails), j = 1, 2.

Proof. Manifestly

ψ(z) =E(zξ | Xi = 1) P{Xi = 1} +E(zξ | Xi = 0) P{Xi = 0} = pψ1(z) + (1 − p)ψ2(z),

where ψ1(z) =E(zξ | Xi = 1) and ψ2(z) =E(zξ | Xi = 0). When the state of the component i is
fixed, the entire system becomes a series system with two disjoint modules such that the first
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module has reliability r1 (r∗
1) and the second module has reliability r2 (r∗

2) when the component
is working (has failed). Thus, from Proposition 5.1,

ψ1(z) =
⎧⎨
⎩

1 if r1 = 1 and r2 = 1,
(1 − r1)z + (r1 − r2)z2

1 − zr2
otherwise,

and

ψ2(z) = (1 − r∗
1)z + (r∗

1 − r∗
2)z2

1 − zr∗
2

.

Thus the proof is complete. �
Corollary 5.1. Let ξ denote the waiting time for the failure of the series system of two coherent
systems φ1 and φ2. If component i is a common component of systems φ1 and φ2, then ξ ∼
MG(a,Q,u) with a = (1, 0, 0) and

Q =
⎡
⎢⎣

(r2 + r∗
2) 0 1

0 0 0

−r2r∗
2 1 0

⎤
⎥⎦ , u′ =

⎡
⎢⎣

c1

c3

c2

⎤
⎥⎦,

where c1, c2, and c3 are given by Proposition 5.2.

Example 5.5. Consider the system with structure function

φ(x1, x2, x3) = min (max (x1, x2),max (x2, x3)).

In this case φ1(x1, x2) = max (x1, x2) and φ2(x2, x3) = max (x2, x3), and component 2 is com-
mon to both systems. Assume that the components have common reliability p. Clearly r1 =
r2 = 1 and r∗

1 = r∗
2 = p. Thus, from Corollary 5.1, the p.g.f. of the system is obtained as

ψ(z) = p + z(1 − p)

1 − zp
(1 − p) = p + z(1 − 2p)

1 − zp
.

Example 5.6. Consider the system with structure function

φ(x1, x2, x3, x4) = min (max (x1, x2),max (min (x2, x3), x4)).

In this case φ1(x1, x2) = max (x1, x2) and φ2(x2, x3, x4) = max (min (x2, x3), x4), and compo-
nent 2 is shared by two systems. Assume that the components have common reliability p.
Clearly r1 = 1, r2 = 2p − p2, and r∗

1 = r∗
2 = p. Thus, from Corollary 5.1, the p.g.f. of the system

is obtained as

ψ(z) = c1z + c2z2 + c3z3

1 + d1z + d2z2 + d3z3 ,

where

c1 = (1 − p)2, c2 = −p(1 − p)3, c3 = −p2(1 − p)2,

d1 = p2 − 3p, d2 = p(2p − p2), d3 = 0.

Example 5.7. Consider the system with structure function

φ(x1, x2, x3, x4, x5) = min (min(x1,max (x2, x3)),max (min (x2, x4), x5)).
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In this case φ1(x1, x2, x3) = min (x1,max (x2, x3)) and φ2(x2, x4, x5) = max (min (x2, x4),
x5), and component 2 is common to both systems. Assume that the components have common
reliability p. Manifestly r1 = p, r2 = 2p − p2, and r∗

1 = p2, r∗
2 = p. Thus, from Corollary 5.1,

the p.g.f. of the system is found to be

ψ(z) = c1z + c2z2 + c3z3

1 + d1z + d2z2 + d3z3 ,

where

c1 = 1 − 2p2 + p3, c2 = p(p4 − 3p3 + 2p2 + 3p − 3), c3 = p2(2 − 4p + 3p2 − p3),

d1 = p2 − 3p, d2 = p(2p − p2), d3 = 0.

6. Summary and conclusions

In this paper we have developed a method for computing the minimal signature of a coherent
system by using matrix-geometric distributions. The method is mainly based on using the p.g.f.
of a properly defined waiting time random variable in a sequence of binary trials. If the p.g.f. is
rational, then the minimal signature is computed using distributional properties of the matrix-
geometric distributions. In some setups (especially if the system is not defined in terms of
its structure function), derivation of the probability generating function corresponding to the
system failure is easier than obtaining the reliability function directly (see e.g. Examples 3.1
and 3.2). Indeed, the construction of the minimal path sets representation for the systems given
in Examples 3.1 and 3.2 is quite a difficult task because of the complexity of the structures.

The proposed method has been modified to calculate the minimal signature of a system with
two types of components. Moreover, in Proposition 5.1 and 5.2, respectively, we obtained the
p.g.f. of a series system consisting of disjoint models and the p.g.f. of a series system of two
modules containing a common component. As has been illustrated by several examples, the
method is useful not only for a system with a single type of components but also for a system
consisting of two (and possibly more) types of components.

The modification of the method for multi-state systems will be among our future research
problems.

Appendix A

Manifestly

ψ(z) =
∞∑

n=1

zn
P{ξ = n}

=
∞∑

n=1

zn[P{ξ > n − 1} − P{ξ > n}]

= z
∞∑

n=1

zn−1
P{ξ > n − 1} −

[ ∞∑
n=0

zn
P{ξ > n} − 1

]

= zR(z;r) − R(z;r) + 1

= 1 − R(z;r)(1 − z).
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Appendix B

Inputs
n,m, α, β

Process
γ = (α⊗ β)
r1 = [r, r2, . . . , rn]
r2 = [r, r2, . . . , rm]
d = r1 ⊗ r2
for j = 2: n + m
ω( j) = 0
for i = 1: nm

if d(i) = rj

ω( j) =ω( j) + 1
end

end
end

Output
ω

Appendix C

Proof of (5.1). For the 2-out-of-n:F system, equation (5.1) corresponds to the probability
generating function of the waiting time for two failed components. That is,ψ(z) = E(zξ ), where
ξ is the number of trials until two zeros (failures) in a sequence of binary trials with two
possible outcomes as either 0 (failure) or 1 (working). If the two failures appear in the n1th
trial or before, then we have a sequence in the form

. . . 0︸︷︷︸
i trials

,

where the first i − 1 trials include exactly one failure, i = 2, 3, . . . , n1. The contribution of
such a sequence to the p.g.f. is

z(1 − r1)z(1 − r1)
n∑

i=2

(i − 1)zi−2ri−2
1 . (C.1)

On the other hand, if the two failures occur after the n1th trial, then the contribution to the
p.g.f. is

n1z(1 − r1)(zr1)n1−1
[

z(1 − r2)

1 − zr2

]
+ (zr1)n1

[
z(1 − r2)

1 − zr2

]2

, (C.2)

where the first term is associated with the case when the first n1 trials include only one failure,
and the second term corresponds to the case when the first n1 trials do not include any failure.
Equation (5.1) is now obtained by taking the sums of (C.1) and (C.2). �

https://doi.org/10.1017/jpr.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.5


Computing minimal signature 635

Appendix D

Proofs of (5.2)–(5.4). For the consecutive-2-out-of-n:F system, the random variable ξ repre-
sents the number of trials until the occurrence of two consecutive failures (zeros) in a sequence
of binary trials. For example, if the outcomes are 10110100, then ξ = 8.

For a consecutive-2-out-of-n:F system consisting of n1 = 1 components of type 1 with com-
mon reliability r1 and n − 1 components of type 2 with common reliability r2, the typical
sequences for the waiting time ξ until failure of the system are

00, 01 . . . 00︸ ︷︷ ︸
type 2

, 1. . . 00︸ ︷︷ ︸
type 2

.

The contributions of these sequences to the p.g.f. of ξ are z(1 − r1)z(1 − r2), z(1 − r1)zr2λ(z),
and zr1λ(z), where λ(z) is the p.g.f. of the waiting time until two consecutive failures of type
2. Here λ(z) is actually the p.g.f. of the geometric distribution of order 2, and is given by (see
e.g. [1])

λ(z) = ((1 − r2)z)2 − ((1 − r2)z)3

1 − z + r2(1 − r2)2z3 .

Thus, if n1 = 1, then

ψ(z) = z(1 − r1)z(1 − r2) + z(1 − r1)zr2λ(z) + zr1λ(z),

which gives (5.2). Similarly, if n1 = 2, then the typical sequences for the waiting time ξ until
failure of the system are

00, 100, 01. . . 00︸ ︷︷ ︸
type 2

, 101. . . 00︸ ︷︷ ︸
type 2

, 11. . . 00︸ ︷︷ ︸
type 2

.

Considering each sequence of binary trials, we obtain

ψ(z) = z2(1 − r1)2 + z3r1(1 − r1)(1 − r2) + z2r1(1 − r1)λ(z) + z3r1(1 − r1)r2λ(z) + z2r2
1λ(z),

which gives (5.3) after some simple manipulations. Equation (5.4) can be obtained similarly
by considering different sequences that correspond to system failure. �
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