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Abstract

We show that in general for a given group the structure of a maximal hyperbolic tower
over a free group is not canonical: we construct examples of groups having hyperbolic tower
structures over free subgroups which have arbitrarily large ratios between their ranks. These
groups have the same first order theory as non-abelian free groups and we use them to study
the weight of types in this theory.
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1. Introduction

Around 1945, Tarski asked the question whether all non-abelian free groups share the
same first order theory. The affirmative was given independently by Kharlampovich and
Myasnikov ([KM06]) and Sela ([Sel06]). However, being a free group is not a first order
property. This means that in addition to the free groups, there are also non-standard models
of their theory T f g (also called elementary free groups), i.e. groups that share the same theory
as free groups but are not free themselves. Sela gave a geometric description of all finitely
generated models of T f g by introducing the notion of a hyperbolic tower. He showed that
the following is true (see [Sel06, Theorem 6] and the comments on it in [LPS13]):

Fact 1·1. Let G be a finitely generated group. Then G is a model of T f g if and only if G is
non-abelian and admits a hyperbolic tower structure over the trivial subgroup.

Furthermore and more surprisingly, Sela showed in [Sel13] that the common theory T f g

of non-abelian free groups is stable. This provided a new and rich example of a group that
is, on the one hand, a classical and complex structure but, on the other hand, tame enough in
the model theoretic sense to allow the application of the various tools developed in stability
theory. Conversely, the study of free groups in algebra and topology has brought forth many
geometric methods that can now be used to refine stability-theoretic analysis.

This is the context in which this paper is set. Motivated by model theoretic ideas, we seek
to gain a better understanding of hyperbolic towers by applying geometric tools that include
Whitehead graphs, Bass–Serre theory, and covering spaces.

If G is a non-abelian, finitely generated group, we call a free subgroup H ≤ G a maximal
free ground floor, if G admits a hyperbolic tower structure over H , but not over any other
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free subgroup in which H is a free factor. From the perspective of model theory, a basis of
H now plays a similar role for the group G that a basis plays for an arbitrary free group,
meaning that both such sets have the same type and are maximal independent with respect
to forking independence over ∅. This is clear if G is a free group itself, but much more
interesting if G is a non-standard model of T f g where we have a priori no notion of a basis.
Our main result in the first part of this paper is:

THEOREM A. For each n ∈N, there is a finitely generated group that has one hyper-
bolic tower structure over a maximal free ground floor of basis length 2 and another tower
structure over a maximal free ground floor of basis length n + 2.

We explicitely construct these different tower structures, building on ideas of Louder,
Perin and Sklinos (see [LPS13]).

Closely related to this is the weight of the type p0 of a primitive element in a free group.
Pillay showed in [Pil08] that p0 is the unique generic type over the empty set in T f g. In
general, if a type p has finite weight, its weight bounds the ratio of the sizes of maximal
independent sets of realisations of p. Hence, Theorem A can also be seen as an alternative
proof for the infinite weight of p0, a fact already proven by Pillay ([Pil09]) and Sklinos
([Skl11]).

In the last section of this paper, We extend Sklinos’ techniques in order to generalise this
result as follows:

THEOREM B. In T f g, every non-algebraic (1-)type over the empty set that is realised in
a free group has infinite weight.

The organisation of the paper is as follows: we start in Section 2 with a short account of
Bass–Serre theory and surface groups before presenting the definition of a hyperbolic tower.
In Section 3, we give some model-theoretic basics. Afterwards, we present a criterion for a
subgroup to be a maximal free ground floor in Section 4 and use this to prove Theorem A in
Section 5. Finally, Section 6 contains more details about weight and introduces Whitehead
graphs in order to prove Theorem B.

2. Bass–Serre theory and hyperbolic towers

In this section, we collect some notions from geometric group theory needed for this
article, define hyperbolic towers and give the results about them that we will use later. It
follows [LPS13, section 3].

2·1. Bass–Serre theory

We begin with Bass–Serre theory and will only give the ideas and most important
definitions. For more details, the reader is referred to [Ser03].

A graph of groups is a connected graph �, together with two collections of groups,
{Gv}v∈V (�) (the vertex groups) and {Ge}e∈E(�) (the edge groups), and, for each edge e ∈ E(�)
that has endpoints v1 and v2, two embeddings αe : Ge ↪→ Gv1 and ωe : Ge ↪→ Gv2 . We denote
such a graph of groups by (G, �). To a graph of groups we can associate its fundamental
group π1(G, �). It is defined by

π1(G, �) :=
〈

Gv : v ∈ V (�), t−1
e αe(g)te =ωe(g) : e ∈ E(�), g ∈ Ge,

te : e ∈ E(�) te = 1 : e ∈ E(�0)

〉
,
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where �0 ⊆ � is a maximal tree in �. So this fundamental group consists of the elements
of the vertex groups of (G, �), together with new so-called Bass–Serre elements te which
are introduced for each edge e of �. The relations inside the vertex groups stay as before.
Relations between elements of different vertex groups are defined by identifying images of
the given embeddings up to conjugation with the corresponding te. Furthermore, whenever
e takes part of a fixed maximal tree �0, the corresponding element te is made trivial. The
remaining non-trivial Bass–Serre elements are called Bass–Serre generators. This means
that π1(G, �) is derived from the vertex groups by a series of amalgamated products or
HNN-extensions where the stable letter is the corresponding Bass–Serre generator. One can
show that the isomorphism class of this fundamental group does not dependent on the choice
of �0. However, taking another maximal subtree changes the presentation of π1(G, �) and
the choice of Bass–Serre generators.

Whenever we have a graph of groups decomposition (or splitting) of a group G (i.e. a
graph of groups with fundamental group G), we can find a canonical action of G on a sim-
plicial tree T whose quotient G\T is isomorphic to �. On the other hand, whenever G acts
on a simplicial tree T without inversions, we get a graph of groups decomposition of G with
underlying graph isomorphic to G\T . In both cases we know that vertex (respectively edge)
groups of the graph of groups are conjugate to the stabilisers of the vertices (respectively
edges) of the action on T . In this situation, an element or a subgroup of G fixing a point in
T is called elliptic.

The easiest example of this is the case where G = H ∗ R is the free product of subgroups
H and R. In this case, the corresponding graph of groups has one edge connecting two
vertices, one with vertex group H , the other with vertex group R. The edge group is trivial.
If we take the same setting with a non-trivial edge group, we get an amalgamated product of
H and R.

Given an action on a tree, there are several different corresponding graph of groups
decompositions corresponding to a choice of “presentation” that is defined as follows:

DEFINITION 2·1. Let G be a group acting on a tree T without inversions, denote by
(G, �) the associated graph of groups and by p the quotient map p : T → �. A Bass–Serre
presentation for (G, �) is a pair (T 1, T 0) consisting of:

(i) a subtree T 1 of T which contains exactly one edge of p−1(e) for each edge e of �;
(ii) a subtree T 0 of T 1 which is mapped injectively by p onto a maximal subtree �0 of �.

2·2. Surface groups

In the whole text, we assume all surfaces to be connected and compact.
It is a standard fact from the classification of surfaces that every surface � is determined

up to homeomorphism by its orientability, its Euler characteristic χ(�) and the number of
its boundary components b(�). The sphere has Euler characteristic 2, the torus has charac-
teristic 0. Puncturing a surface decreases its Euler characteristic by 1. If we decompose a
surface � into two surfaces �1 and �2, we have χ(�)= χ(�1)+ χ(�2).

If � is a surface with non-empty boundary, each of its boundary components has a cyclic
fundamental group, which gives rise to a conjugacy class of cyclic subgroups in π1(�). They
are called maximal boundary subgroups. A boundary subgroup of π1(�) is a non-trivial
subgroup of a maximal boundary subgroup.
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Let � be an orientable surface with r boundary components. Then π1(�) has a
presentation of the form

〈y1, . . . , y2m, s1, . . . , sr |[y1, y2] . . . [y2m−1, y2m] = s1 . . . sr 〉
where χ(�)= −(2m − 2 + r) and s1, . . . , sr are generators of non-conjugate maximal
boundary subgroups. In particular, if � has non-empty boundary, we can apply a Tietze
transformation by removing one of the si ’s and the relation and thus get another presentation
of π1(�)which shows that it is a free group of rank 1 − χ(�). This is true for non-orientable
surfaces as well.

Let � be a surface with non-empty boundary and P := π1(�) its fundamental group. Let
C be a set of 2-sided disjoint simple closed curves on� that allows a collection {Tc|c ∈ C} of
disjoint open neighbourhoods of the curves in C with homeomorphisms c × (−1, 1)→ Tc

sending c × {0} onto c. Assume in addition that no component of �\ ∪ C has trivial funda-
mental group. Then we get a splitting of the group P that we call the decomposition of P
dual to C. It is defined as follows: For each connected component�k of�\ ⋃

c∈C Tc we get a
vertex whose vertex group is π1(�k). For each curve in C separating the components�k and
�k ′ , we get an edge ec with infinite cyclic edge group between the vertices corresponding to
�k and �k ′ (we allow k = k ′). Using functoriality of π1, the inclusion maps c ↪→�k induces
the embeddings of the edge groups. Such a decomposition is called the decomposition of P
dual to C. Note that here, all boundary subgroups are elliptic and edge groups are infinite
cyclic. The following lemma gives a converse for this. Originally being [MS84, Theorem
III·2·6.], this version is a slight variation given in [LPS13, Lemma 3·2].

LEMMA 2·2. Let � be a surface with non-empty boundary and P := π1(�) be its funda-
mental group. Suppose that P admits a graph of groups decomposition (G, �) in which edge
groups are cyclic and boundary subgroups are elliptic. Then there exists a set C of disjoint
simple closed curves on � such that (G, �) is the graph of groups decomposition dual to it.

2·3. Hyperbolic floors and towers

DEFINITION 2·3. A graph of groups with surfaces is a graph of groups (G, �) together
with a subset VS of the vertex set V (�), such that any vertex v in VS satisfies:

(i) there exists a surface � with non-empty boundary, such that the vertex group Gv is the
fundamental group π1(�) of �;

(ii) for each edge e that has endpoint v, the embedding Ge ↪→ Gv maps Ge onto a maximal
boundary subgroup of π1(�);

(iii) this induces a bijection between the set of edges adjacent to v and the set of conjugacy
classes of maximal boundary subgroups in π1(�).

The vertices of VS are called surface (type) vertices and, with a slight abuse of language,
the vertex groups associated to surface type vertices are called surface (type) groups. The
surfaces associated to the vertices of VS are called the surfaces of (G, �).

DEFINITION 2·4. Let (G,G ′, r) be a triple consisting of a group G, a subgroup G ′ ≤ G
and a retraction r from G onto G ′ (i.e. r is a morphism G → G ′ which restricts to the
identity on G ′). We say that (G,G ′, r) is a hyperbolic floor, if there exists a graph of groups
with surfaces (G, �) with associated fundamental group π1(G, �)= G and a Bass–Serre
presentation (T 1, T 0) of (G, �) such that:
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Fig. 1. A hyperbolic tower over H consisting of two floors.

(i) all the surfaces of (G, �) are either once punctured tori or have Euler characteristic
at most −2;

(ii) G ′ is the free product of the stabilisers of the non-surface type vertices of T 0;
(iii) every edge of � joins a surface type vertex to a non-surface type vertex;
(iv) either the retraction r sends surface type vertex groups of (G, �) to non-abelian

images, or the subgroup G ′ is cyclic and there exists a retraction r ′ : G ∗Z→
G ′ ∗Z that does this.

DEFINITION 2·5. Let G be a non-cyclic group and H ≤ G a subgroup. We say that G
is a hyperbolic tower over H (or admits a hyperbolic tower structure over H ), if there is a
sequence of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gm ≥ H satisfying the following conditions:

(i) for each 0 ≤ i ≤ m − 1, there exists a retraction ri : Gi → Gi+1 such that the triple
(Gi ,Gi+1, ri ) is a hyperbolic floor and H is contained in one of the non-surface type
vertex groups of the corresponding graph of groups decomposition;

(ii) Gm = H ∗ F ∗ S1 ∗ . . . ∗ Sp where F is a (possibly trivial) free group, p ≥ 0 and each
Si is the fundamental group of a closed surface of Euler characteristic at most −2.

It is helpful to have in mind the following image of hyperbolic towers: If G admits a
hyperbolic tower structure over H , we can see G as the fundamental group of a topological
space X0 that is derived from a space X H having fundamental group H in several steps.
We start with a space Xm that is the disjoint union of X H , a graph X F and closed sur-
faces �1, . . . , �p of Euler characteristic at most −2. When Xi+1 is constructed, we get Xi

by gluing surfaces along their boundary components to Xi+1 such that there exist suitable
retractions at the level of fundamental groups.

An example of this is shown in Figure 1. The nested boxes mark the sequence of
subgroups of G. Note that although a surface represents a surface type vertex in the cor-
responding graph of groups, we did not mark the non-surface type vertices. The ends of the
edges starting at the punctured surfaces represent the (here unspecified) points to which their
boundary components are glued.

As mentioned in the introduction, hyperbolic towers gain importance for the study of T f g

by Fact 1·1 which we restate here in the following way:

Fact 2·6. Let G be a finitely generated group. Then G is a model of T f g if and only if G is
non-abelian and admits a hyperbolic tower structure over a free subgroup.
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Here again, we consider the trivial group to be a free group as well. That this is equivalent
to the formulation given above follows immediately from the definitions.

3. Model-theoretic basics

In this section, we will give some model theoretic basics. This will be done very briefly
because although those model theoretic ideas motivate the constructions given later on, they
are not needed to understand them as the definition of hyperbolic towers translates those
model theoretic problems in the language of geometric group theory. For a general intro-
duction to model theory, see for example [TZ12], for details about stability theory, see
[Pil96].

As already mentioned, we know that the common first order theory T f g of non-abelian free
groups is stable. Stable theories enjoy a model theoretic notion of independence between
elements in a given model which is called forking independence. It can be seen as a general-
isation of linear independence in vector spaces and algebraic independence in algebraically
closed fields, which are also basic examples for this. From now on, whenever we talk about
independence, we mean forking independence. If two elements are not forking independent,
we say that they “fork” with each other. By the results of Sela, we now can ask whether a
set of elements in a free group or another model of T f g is independent or not.

Recall that an m-type over a set A of a first order theory T is a maximal consistent set of
formulas with parameters in A and at most m free variables. If G is a model of T and a ∈ G,
then the type of a over A, denoted by tp(a/A), is the set of all formulas with parameters
in A satisfied by the element a. An important property in stable theories is the existence of
generic types over any set of parameters. A definable set X of a stable group G is said to be
generic, if finitely many left- (or equally right-) translates of X cover G. A formula ψ(x) is
called generic, if it defines a generic set. Finally we say that a type is generic, if it contains
only generic formulas. Hence we can imagine a generic type to be a type with a “big” set
of realisations. By results of Poizat, we know that in the theory of free groups, there is a
unique generic (1-)type p0 ∈ S1(T f g) over the empty set (see [Pil08]), namely the type of a
primitive element in a free group.

This type is especially interesting because of the following Fact:

Fact 3·1 ([Pil08]). In a finitely generated, non-abelian free group F , a set is a maximal
independent set of realisations of p0 if and only if it forms a basis of F .

This means that at first glance, maximal independent sets of realisations of p0 in non-
standard models of T f g could be seen as analogues to bases in free groups. This is due to
the fact that they look the same from the perspective of first order logic, meaning that both
such sets satisfy exactly the same first order formulas and both are maximal independent
with respect to forking independence. However, those sets do not necessarily generate the
groups that they are taken from. Furthermore, there is no fixed size of such a ”basis“ in a
non-standard model, as we will show by proving Theorem A.

4. Towers with maximal ground floors

In this section, we will define maximal free ground floors and give an instruction on how
to attain such floors by proving Theorem 4·5. Afterwards, we will provide a model-theoretic
approach to these maximal tower structures.
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4·1. Maximal free ground floors

DEFINITION 4·1. Let G be a finitely generated model of T f g. A subgroup H ≤ G is
called a maximal free ground floor (in G) if H is free and G admits a hyperbolic tower
structure over H but not over any other free subgroup K ≤ G in which H is a free factor
K = H ∗ H ′.

Bearing in mind Fact 2·6, the fact that G admits a tower structure over H already implies
that it is a model of T f g.

For the proof of Theorem 4·5, we begin by collecting some lemmas about graphs
of groups. The following is part of the statement of [MS84, Theorem III·2·6.] and the
comments after it.

LEMMA 4·2. Let � be a surface, possibly with boundary, such that P := π1(�) acts on
a tree T in a way that all edge stabilisers are cyclic and boundary subgroups act elliptically.
Then there is a subtree T0 of T that is invariant under the action of P such that all edge
stabilisers of the action of P on T0 are non-trivial, thus infinite cyclic.

Using this, we deduce:

LEMMA 4·3. Let A1, · · · , Ak be any groups and let P ≤ A1 ∗ · · · ∗ Ak be a subgroup
of their free product. Assume in addition that P is the fundamental group of a surface with
boundary. If every boundary subgroup of P can be conjugated into some Ai , the group P can
be conjugated into one of those factors as well. If we know in addition that P ∩ A j �= {1},
we get P ≤ A j .

Proof. In this situation, we know that P acts on T , the tree associated to the free product
A1 ∗ · · · ∗ Ak , in a way that all boundary subgroups act elliptically and all edge stabilisers
are trivial. So all conditions of the preceding lemma are fulfilled and we know that there is
a subtree T0 which is invariant under the action. If P cannot be conjugated into one of the
factors, this subtree cannot be trivial, so it contains at least one edge of T . Furthermore, the
stabiliser of this edge has to be infinite cyclic which is a contradiction. Hence we know that
P ≤ Ax

i for some x ∈ A1 ∗ · · · ∗ Ak . The second part is an immediate consequence of the
free product structure.

LEMMA 4·4. Let (G,�) be a graph of groups with surfaces decomposition of a group G
that comes from a hyperbolic floor structure (G,G ′, r) and let T be the corresponding tree.
Then the canonical action of G on T is 1-acylindrical around surface type vertices. That is,
no element g ∈ G\{1} fixes more than one non-surface type vertex.

Proof. If we have g ∈ G that fixes two non-surface type vertices, it also fixes the shortest
path between them. Since every edge of T joins a surface type vertex to a non-surface type
vertex, this means that g fixes a segment of the tree consisting of a surface type vertex and
two different edges adjacent to it. Suppose this surface type vertex is given by the coset h P of
the surface type vertex group P . With this notation, the element g′ := h−1gh fixes the vertex
(1·)P and two different edges adjacent to it. Inspecting the structure of T , one can see that
this implies that g′ ∈ C pe

e ∩ C pe′
e′ where e, e′ ∈ E(�) are edges in � which are adjacent to the

vertex corresponding to P . The groups Ce,Ce′ ≤ P are the maximal boundary subgroups
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corresponding to those edges and pe, pe′ ∈ P are elements of the surface group P . Since
g′ �= 1, this means that

C
pe p−1

e′
e ∩ Ce′ �= {1}.

Now there are two possibilities to consider: If e = e′, we have C p
e ∩ Ce �= {1} for maximal

cyclic subgroups Ce and an element p of P . As P is a free group and maximal cyclic
subgroups of free groups are malnormal, this implies that C p

e = Ce. This contradicts the
assumption that the two edges in T that are fixed by g are distinct.

If on the other hand e �= e′, we can conclude that the maximal boundary subgroups Ce and
Ce′ are conjugate in P . This is a contradiction, as the definition of a graph of groups with
surfaces demands that different edges correspond to different conjugacy classes of maximal
boundary subgroups.

With this we can prove the following theorem which we want to use to construct examples
of maximal free ground floors in Section 5. We denote by Fn the free group in n generators.

THEOREM 4·5. Suppose that a finitely generated group G admits a hyperbolic tower struc-
ture over H ∼= Fn with the associated sequence of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gm = H
subject to the following conditions:

(i) the graph of groups corresponding to the floor (Gi ,Gi+1, ri) consists of two vertices.
One of them has vertex group Gi+1, the other one is a surface type vertex with vertex
group Pi := π1(�i);

(ii) for all i , the surface �i is either a once punctured torus, a four times punctured
sphere or a thrice punctured projective plane.

Then H is a maximal free ground floor in G.

Proof. Suppose that G admits a second tower structure over a free subgroup K = H ∗ H ′

and take the associated sequence of subgroups to be G = G ′
0 ≥ G ′

1 ≥ . . .≥ G ′
l ≥ K . After

dividing the graph of groups decompositions of this tower structure, we may assume that for
each hyperbolic floor in this structure, the associated graph of groups has only one surface
type vertex. We denote by T ′

j the associated tree of the graph of groups decomposition
corresponding to the floor (G ′

j ,G ′
j+1, r ′

j ).
First look at the top floor (G ′

0 = G,G ′
1, r ′

0). As Pm−1, the surface group that comes with
the ground floor of the first tower, is a subgroup of G, it acts on T ′

0. Every maximal boundary
subgroup of Pm−1 can be conjugated into H ≤ G ′

1 by its corresponding Bass–Serre ele-
ment and thus acts elliptically. Therefore, this action induces a splitting of Pm−1 that is by
Lemma 2·2 dual to a set C of disjoint simple closed curves on �m−1. We can assume this set
of curves to be essential, i.e. no component of �m−1\ ∪ C is homeomorphic to a disc with
one or no puncture. This means that �m−1 is decomposed into subsurfaces (�′′

k )k whose
fundamental groups all act elliptically on T ′

0.
Assume that for all k, the fundamental group π1(�

′′
k ) stabilises a non-surface type vertex

of T ′
0. Whenever�′′

k1
and�′′

k2
are adjacent pieces of�′′, the intersection of their fundamental

groups is non-trivial. Each element contained in this intersection stabilises both the non-
surface type vertex stabilised by π1(�

′′
k1
) and the one stabilised by π1(�

′′
k2
). Because of

acylindricity (Lemma 4·4), these vertices have to coincide. As the surface �′′ is connected,
this shows that in fact, all the π1(�

′′
k ) stabilise the same non-surface type vertex and hence,
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Pm−1 is conjugate to a subgroup of G ′
1. However, at least one boundary subgroup of Pm−1

is identified with a subgroup of H ≤ G ′
1, so using acylindricity again, one has Pm−1 ≤ G ′

1.
Thus, it acts on the next floor (G ′

1,G ′
2, r ′

1). Furthermore, if Pm−1 ≤ G ′
j and t is a Bass–Serre

generator arising in the graph of groups associated to the hyperbolic floor (Gm−1,Gm, rm−1),
we claim that t ∈ G ′

j as well. Indeed, if the claim is not true, there is some k ≤ j such
that t ∈ G ′

k−1\G ′
k but Pm−1 ≤ G ′

j ≤ G ′
k . Since the maximal boundary subgroups of Pm−1

are glued to H , we know that for some maximal boundary subgroup C of Pm−1, we have
Ct ≤ Gm ≤ G ′

k . Consequently, any non-trivial element of C fixes both vertices (1·)G ′
k and

tG ′
k in the tree corresponding to the floor (G ′

k−1,G ′
k, r ′

k−1). This contradicts acylindricity.
Iterating this process we see that either Pm−1 ≤ G ′

l , or for some 0 ≤ j < l and a subsurface
�′′ of �m−1, the fundamental group π1(�

′′) is not included in G ′
j+1 and thus fixes a surface

type vertex of T ′
j .

Assume Pm−1 ≤ G ′
l . As the second tower structure of G is over K , we know that G ′

l =
H ∗ F ∗ S1 ∗ · · · ∗ Sp for a free group F and surface groups Si . All boundary subgroups
of Pm−1 can be conjugated into subgroups of Gm = H by their corresponding Bass–Serre
element. As all those Bass–Serre elements take part of G ′

l as well, Lemma 4·3 now implies
Pm−1 ≤ H which is impossible.

So we know that for some j < l, the group π1(�
′′) fixes a surface type vertex of T ′

j .
As �m−1 is a once punctured torus, a four times punctured sphere or a thrice punctured
projective plane and the curves dividing �m−1 are essential, we can choose �′′ such that it
contains a boundary component of �m−1. Now using acylindricity and changing the Bass–
Serre presentation of T ′

j , we can assume that π1(�
′′)≤ P ′

j where P ′
j = π1(�

′
j ) is the surface

group arising in the graph of groups decomposition of the floor (G ′
j ,G ′

j+1, r ′
j ).

If π1(�
′′) is an infinite index subgroup of P ′

j , we know by [Per11, Lemma 3·10] that
π1(�

′′)= C1 ∗ · · · ∗ Cm ∗ F where F is a (possibly trivial) free group, each C j is a boundary
subgroup of P ′

j and any boundary element of P ′
j contained in π1(�

′′) can be conjugated into
one of the groups C j by an element of π1(�

′′). Because the subsurface �′′ ⊆�m−1 comes
from the graph of groups decomposition corresponding to the action of Pm−1 on the tree T ′

j ,
we know that π1(�

′′) embeds into P ′
j as a surface group with boundaries. I.e. the boundary

subgroups of π1(�
′′) are given by the boundary subgroups of P ′

j that lie in π1(�
′′). By

Lemma 4·3, this implies that π1(�
′′) has to be included completely in a boundary subgroup

of P ′
j which is a contradiction.

Hence, the index n := [P ′
j : π1(�

′′)] is finite. Now, by the study of covering spaces from
topology, we know that there is a covering map p :�′′ →�′

j of degree n such that χ(�′′)=
n · χ(�′

j ). As �′′ is a subsurface of a once punctured torus, a four times punctured sphere
or a thrice punctured projective plane, it has Euler-characteristic −2 or −1, so the index n is
either 1 or 2.

Assume that n = 2. This can only be true if �′′ has Euler characteristic χ(�′′)= −2 and
�′

j has Euler characteristic χ(�′
j )= −1. Since we assumed that the set of curves dividing

�m−1 is essential, one can deduce that in this case, �′′ =�m−1 is no proper subsurface. The
only surface with Euler characteristic −1 allowed in a hyperbolic tower structure is a once
punctured torus, so we know that �′

j has exactly one boundary component. On the other
hand, it quickly follows from the definition of a covering map that

1 = b(�′
j )≤ b(�m−1)≤ n · b(�′

j )= 2.

As we know that b(�m−1) ∈ {3, 4}, this is a contradiction.
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Thus we know that n = 1, which implies that �′
j
∼=�m−1 and P ′

j = Pm−1 seen as sub-
groups of G. Reordering the floors of the second tower, we may assume that j = l − 1 which
means that G ′

l−1 is derived from G ′
l by gluing �′

j =�m−1 to H ≤ G ′
l in the same way as in

the first tower.
Continuing with the action of Pm−2 on the second tower, we can apply almost the same

arguments. The only thing that one needs to think about is why Pm−2 ≤ G ′
l−1 is impossible.

However, in the last paragraph, we assumed that G ′
l−1 = Gm−1 ∗ F ∗ S1 ∗ · · · ∗ Sp. As all

boundary subgroups of Pm−2 can be conjugated into subgroups of Gm−1, we can again apply
Lemma 4·3 to get a contradiction.

In the end of this induction process, we see that

G = G ′
0 = G0 ∗ F ∗ S1 ∗ · · · ∗ Sp = G ∗ F ∗ S1 ∗ · · · ∗ Sp,

so in particular, F is trivial and we have shown the maximality.

Remark 4·6. In fact, the proof shows that the second tower can be changed into the first one
by permuting floors and dividing floors with several surface vertices into floors with only
one surface vertex each. So up to those changes, there is only one hyperbolic tower structure
of G over H .

4·2. Model theoretic formulation

The motivation to look at maximal free ground floors comes from the next statement:

Fact 4·7 ([PS12, Theorem 7·1]). Let G be a non-abelian finitely generated group. Then
k elements u1, . . . , uk of G form an independent set of realisations of p0 if and only if
H := 〈u1, . . . , uk〉 ≤ G is free of rank k and G admits a hyperbolic tower structure over H .

This immediately implies the following corollary:

COROLLARY 4·8. A subgroup H ∼= Fn of a finitely generated group G is a maximal free
ground floor in G if and only if each basis of H is a maximal independent set of realisations
of p0.

So the generators of maximal free ground floors are exactly the analogues to bases men-
tioned at the end of Section 3. However, in contrast to free groups, not all such “bases” of a
fixed non-standard model of T f g have the same cardinality. The fact that the ratios between
the basis lengths of two such subgroups can even get arbitrarily large is what we will prove
in the next section.

5. Constructing such towers

In this section, we give examples of models of T f g that each contain maximal free ground
floors of different basis lengths.

The ideas of this are taken from [LPS13, proposition 5·1] which now can be seen as the
special case n = 1 of Theorem 5·3.

5·1. A special case with pictures

To start with and in order to explain the idea, we will construct a group that contains
one maximal free ground floor of basis length 2 and one of basis length 5. Doing this, we
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will emphasise the geometric motivation and give a more technical proof in the general case
afterwards.

At first, we look at two hyperbolic floors that we will use during the construction. Let H be
any non-abelian group, � a four times punctured sphere and �′ a once punctured torus. We
describe the hyperbolic floors by their decompositions as graphs of groups with surfaces. In
both cases, we have one non-surface type vertex with vertex group H and one surface type
vertex with vertex group π1(�) (respectively π1(�

′)). As required by the definitions, the
edge groups of these graphs of groups with surfaces are identified with maximal boundary
subgroups.

5·1·1. Gluing � to H
We know that there is a presentation

π1(�)= 〈s1, s2, s3, s4|s1s2s3s4 = 1〉 ,
where the si ’s are generators of non-conjugate maximal boundary subgroups of π1(�). As
there are four conjugacy classes of maximal boundary subgroups, the two vertices of the
graph of groups we describe are connected by four edges. Thus, we get three Bass-Serre
generators t1, t2, t3. The embeddings of the edge groups into H are given by identifying

t−1
1 s1t1 =w1, t−1

2 s2t2 =w−1
1 , t−1

3 s3t3 =w2, s4 =w−1
2

for any two non-commuting elements w1, w2 ∈ H . The result is the group

G := 〈
H, t1, t2, t3|t1w1t−1

1 t2w
−1
1 t−1

2 = [w2, t3]
〉
.

If one looks at the retraction given by

r : G −→ H

t1, t2, t3 �−→ 1,

π1(�) is sent to 〈w1, w2〉 ≤ H . Thus, the tuple (G, H, r) is a hyperbolic floor.

5·1·2. Gluing �′ to H
Writing

π1(�
′)= 〈y1, y2, s|[y1, y2] = s〉,

the element s is a generator of a maximal boundary subgroup. Identifying s with the
commutator [w1, w2] for any non-commuting elements w1, w2 ∈ H , we get the group

G ′ := 〈H, y1, y2|[y1, y2] = [w1, w2]〉 .
By adding the retraction

r ′ : G ′ −→ H

y1 �−→ w1

y2 �−→ w2,

we get a hyperbolic floor (G ′, H, r ′).
We now use these two kinds of floors to construct a group with different maximal tower

structures.
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Fig. 2. The tower structures of G and G ′; on the left the basepoint 
 matching the isomorphism
f : G → G ′ is marked.

THEOREM 5·1. The group

G :=
〈a1, a2, t1, t2, t3, t1a1t−1

1 t2a−1
1 t−1

2 = [a2, t3],
t4, t5, t6, t4a2t−1

4 t5a−1
2 t−1

5 = [t−1
1 , t6],

t7, t8, t9 t7t−1
1 t−1

7 t8t1t−1
8 = [t−1

4 , t9]

〉

is a model of T f g and contains maximal free ground floors of basis lengths 2 and 5.

Proof. By Fact 2·6, the fact that G contains some maximal free ground floor already implies
that G has the same theory as a free group, so it suffices to describe such tower structures
of G.

We begin by observing that G has a hyperbolic tower structure over 〈a1, a2〉 ∼= F2 consist-
ing of three floors of the form G = G0 ≥ G1 ≥ G2 ≥ G3 = 〈a1, a2〉. It is illustrated on the left
of Figure 2. In all of the three floors, the corresponding graph of groups decomposition of
Gi consists of two vertices: one vertex with vertex group Gi+1 and one surface type vertex
where the surface �i that is added is a four times punctured sphere which is glued along
its boundary to Gi+1 as described in Section 5·1·1. Firstly, G2 = 〈a1, a2, t1, t2, t3〉 is derived
from G3 by gluing the boundary components of �2 to a1, a−1

1 , a2 and a−1
2 (i.e. choosing

w1 = a1 and w2 = a2) and adding Bass–Serre generators t1, t2 and t3 for the first three glu-
ings. From this, G1 = 〈a1, a2, t1, . . . , t6〉 is derived by gluing the boundary components of
�1 to a2, a−1

2 , t−1
1 and t1. Here, the Bass–Serre generators t4, t5 and t6 are added. Lastly, we

obtain G = G0 from G1 by gluing �0 to G1, identifying the sphere’s maximal boundary
subgroups with the groups generated by t−1

1 , t1, t−1
4 and t4 and adding Bass–Serre generators

t7, t8 and t9. So the sequence of subgroups is given by the different lines in the presentation
above. Although here, it is quite easy to believe that in all floors, the “gluing points” do not
commute, this will be less obvious in the general case, so we check it now to explain how
one can verify this. For the first floor G2 ≥ G3, it is clear that a1 and a2 do not commute as
they form a basis of G3. We will show later that the other floors fulfil this condition as well.

Clearly, the conditions of Theorem 4·5 are satisfied. Thus, we know that {a1, a2} is a
maximal independent set of realisations of p0. To get such sets of other sizes, we will step
by step change the geometric interpretation of the hyperbolic floors.

At first, we observe that the first floor G2 ≥ G3 can be interpreted as a decomposition
of a double torus with one arc. We imagine the handles of this double torus to be cut such
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Fig. 3. The reinterpreted tower structure of G ′ and the one of G ′′.

that G3 can be seen as the fundamental group of two loops connected by the arc and G2 is
derived from this by gluing the rest of the double torus (a four times punctured sphere) to it
(see Figure 2 on the left). On the other hand, there is another decomposition of this object
that can be interpreted as a hyperbolic floor G ′

2 ≥ G ′
3: Here we cut the double torus between

the two handles such that we gain a once punctured torus with an arc whose fundamental
group is G ′

3. What remains is another once punctured torus whose fundamental group is the
surface type vertex group in this hyperbolic floor (as shown on the right of Figure 2). This
implies that G admits as well a presentation G ′ of the following form:

G ′ :=
〈b1, b2, b3, y1, y2, [y1, y2] = [b1, b3],

t4, t5, t6, t4b1t−1
4 t5b−1

1 t−1
5 = [b2, t6],

t7, t8, t9 t7b2t−1
7 t8b−1

2 t−1
8 = [t−1

4 , t9]

〉
.

The isomorphism f : G → G ′ is given by

f : G −→ G ′

a1 �−→ b2 y1b−1
2

a2 �−→ b1

t1 �−→ b−1
2

t2 �−→ y2b−1
2

t3 �−→ b3

and the identity on the other generators. This isomorphism f sends the images of our gluing
points for �1 in the original tower structure of G to f (a2)= b1 and f (t−1

1 )= b2. As b1 and
b2 take part of a basis of G ′

3, we see that a2 and t−1
1 do not commute in G.

Now we change the geometric interpretation of G ′
3 = 〈b1, b2, b3〉 and see it as the funda-

mental group of two loops which are connected by an arc and have corresponding generators
b1 and b2 together with a third loop represented by b3 (see Figure 3 on the left). Since the
four times punctured sphere of the floor G ′

1 ≥ G ′
2 is now, similar to the case above, glued to

the first two loops, we can apply the same procedure to get an isomorphism f ′ : G ′ → G ′′

onto the group

G ′′ :=
〈 c1, c2, c3, c4, y1, y2, [y1, y2] = [c2 y3c−1

2 , c3],
y3, y4, [y3, y4] = [c1, c4],

t7, t8, t9 t7c1t−1
7 t8c−1

1 t−1
8 = [c2, t9]

〉

https://doi.org/10.1017/S0305004119000483 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000483


492 BENJAMIN BRÜCK

(see Figure 3). The images of the gluing points for�0 are f ′( f (t−1
1 ))= c1 and f ′( f (t−1

4 ))=
c2. So we see that t−1

1 and t−1
4 do not commute in G.

Doing the same reinterpretation process a third time, we see that G is isomorphic to

G ′′′ :=
〈d1, d2, d3, d4, d5, y1, y2, [y1, y2] = [d1 y3d−1

1 , d3],
y3, y4, [y3, y4] = [d2 y5d−1

2 , d4],
y5, y6 [y5, y6] = [d1, d5]

〉
.

G ′′′ now has a hyperbolic tower structure G ′′′ = G ′′′
0 ≥ G ′′′

1 ≥ G ′′′
2 ≥ G ′′′

3 = 〈d1, . . . d5, 〉 with

G ′′′
1 = 〈d1, . . . , d5, y3, y4, y5, y6〉 ≤ G ′′′, G ′′′

2 = 〈d1, . . . , d5, y5, y6〉 ≤ G ′′′.

Here, for all i , the corresponding graph of groups decomposition of G ′′′
i consists of two

vertices, one with vertex group G ′′′
i+1 and one surface type vertex where the surface is a once

punctured torus. All those tori are glued to the floor below as described in Section 5·1·2,
their gluing points are

[d1 y3d−1
1 , d3] ∈ G ′′′

1 , [d2 y5d−1
2 , d4] ∈ G ′′′

2 and [d1, d5] ∈ G ′′′
3 .

The only thing that one has to check is whether all those commutators are non-trivial. But
this can be shown in the same way as it was done for the gluing points of the four times
punctured spheres.

Hence, Theorem 4·5 tells us that 〈d1, . . . , d5〉 is a maximal free ground floor in G ′′′ and
taking its preimage, we find such a subgroup in G, too.

5·2. The general case

Now, we generalise the result of the last subsection to arbitrarily large ratios between the
basis lengths of the ground floors. We start with the following technical proposition:

PROPOSITION 5·2. The group

Gn :=

〈
a1, a2, t1, t2, t3, t1w1t−1

1 t2w
−1
1 t−1

2 = [w2, t3],
t4, t5, t6, t4w3t−1

4 t5w
−1
3 t−1

5 = [w4, t6],
...

...

t3n−2, t3n−1, t3n t3n−2w2n−1t−1
3n−2t3n−1w

−1
2n−1t−1

3n−1 = [w2n, t3n]

〉
with

w1 := a1, w2 =w3 := a2,

w2i+2 =w2i+3 := t−1
3i−2 for i ≥ 1,

admits a presentation of the form

G̃n =

〈
e1, . . . , en+2, y1, y2, [y1, y2] = [w′

1, w
′
2],

y3, y4, [y3, y4] = [w′
3, w

′
4],

...
...

y2n−1, y2n [y2n−1, y2n] = [w′
2n−1, w

′
2n]

〉
,

where for all 1 ≤ j ≤ n, the words w′
2 j−1 and w′

2 j are elements in the subgroup generated by
e1, . . . , en+2, y2 j+1, . . . , y2n.
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Proof. We give a sequence of isomorphisms ( f (i) : G(i) → G(i+1))0≤i≤n−1 where G(0) = Gn ,
G(n) = G̃n and, for 0< i < n, the group G(i) is defined by the following presentation:〈a(i)1 , . . . , a(i)i+2, y1, y2, [y1, y2] = [ fi−1(w2), a(i)3 ],

y3, y4, [y3, y4] = [ fi−1(w4), a(i)4 ],
...

...

y2i−1, y2i , [y2i−1, y2i ] = [ fi−1(w2i ), a(i)i+2],
t3i+1, t3i+2, t3i+3, t3i+1a(i)1 t−1

3i+1t3i+2(a
(i)
1 )

−1t−1
3i+2 = [a(i)2 , t3i+3],

t3i+4, t3i+5, t3i+6, t3i+4a(i)2 t−1
3i+4t3i+5(a

(i)
2 )

−1t−1
3i+5 = [t−1

3i+1, t3i+6],
t3i+7, t3i+8, t3i+9, t3i+7t−1

3i+1t3i+7t3i+8t3i+1t−1
3i+8 = [t−1

3i+4, t3i+9],
...

...

t3n−2, t3n−1, t3n t3n−2w2n−1t−1
3n−2t3n−1w

−1
2n−1t−1

3n−1 = [w2n, t3n]

〉
,

where fi := f (i) ◦ f (i−1) ◦ . . . ◦ f (0) and bold letters mark some images of the w j ’s that are
important to understand this step. The isomorphisms are defined by

f (i) : G(i) −→ G(i+1)

a(i)1 �−→ a(i+1)
2 y2i+1(a

(i+1)
2 )−1

a(i)2 �−→ a(i+1)
1

a(i)3 �−→ a(i+1)
3

...

a(i)i+2 �−→ a(i+1)
i+2

t3i+1 �−→ (a(i+1)
2 )−1

t3i+2 �−→ y2i+2(a
(i+1)
2 )−1

t3i+3 �−→ a(i+1)
i+3

and the identity on the remaining generators. (In the cases i = 0 respectively i = n − 1, we
take a(0)j := a j and a(n)j := e j .) Since we find a preimage for every generator of G(i+1), the
map f (i) is surjective. We have

f (i)(t3i+1a(i)1 t−1
3i+1t3i+2(a

(i)
1 )

−1t−1
3i+2)= [y2i+1, y2i+2],

f (i)(t−1
3i+1)= (a(i+1)

2 ),

and f (i) fixes all t j with j > 3i + 3. This shows that each relation in G(i+1) corresponds
to exactly one relation in G(i), which one can use to show that f (i) is a well-defined
homomorphism and injective.

Defining

w′
2 j := fn−1(t3 j )= e j+2,

w′
2 j−1 := fn−1(w2 j ),

it follows that fn−1 = f (n−1) ◦ f (n−2) ◦ . . . ◦ f (0) is an isomorphism between Gn and G̃n .
It remains to show that w′

2 j−1 and w′
2 j lie in the subgroup generated by e1, . . . , en+2,

y2 j+1, . . . , y2n . A short computation shows that f j−1(w2 j )= a( j)
1 , so the smallest index of
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any instance of yk appearing in fn−1(w2 j ) is k = 2 j + 1. As we already know that w′
2 j =

e j+2, this finishes the proof.

Using this proposition, we can finally show the following which proves Theorem A:

THEOREM 5·3. The group Gn as defined in Proposition 5·2 is a model of T f g that contains
maximal free ground floors of basis lengths 2 and n + 2.

Proof. We will describe two hyperbolic tower structures of Gn over free subgroups. As in
the special case of Theorem 5·1, the existence of such structures immediately implies that
Gn is a model of T f g.

The first structure is over 〈a1, a2〉 ∼= F2 and consists of n floors. The associated sequence
of subgroups is given by Gn = G0 ≥ G1 ≥ . . .≥ Gn = 〈a1, a2〉 where G j is generated by
a1, a2, t1, . . . , t3(n− j). For all floors, the corresponding graph of groups decomposition of
G j consists of two vertices: one vertex with vertex group G j+1 and one surface vertex
where the surface � j added is a four times punctured sphere that is glued to G j+1 as
in Section 5·1·1. That is, the maximal boundary subgroups of π1(� j ) are identified with
w2(n− j)−1, w

−1
2(n− j)−1, w2(n− j) and w−1

2(n− j), which are all elements of G j+1. Doing so, we
have to add the Bass-Serre generators t3(n− j)−2, t3(n− j)−1 and t3(n− j). As in the proof of
Theorem 5·1, we can deduce from the proof of Proposition 5·2 that w2(n− j)−1 and w2(n− j) do
not commute. This shows that these decompositions describe hyperbolic floors that satisfy
all the conditions of Theorem 4·5. Consequently, we know that 〈a1, a2〉 is a maximal free
ground floor.

On the other hand, Proposition 5·2 tells us that Gn ∼= G̃n and G̃n admits a hyperbolic
tower structure over 〈e1, . . . , en+2〉 ∼= Fn+2. Just like the first decomposition, it consists of n
floors where each associated graph of groups has one non-surface type vertex and one sur-
face type vertex. Here, all the surfaces are once punctured tori denoted by �̃ j and they are
glued to the floors below as described in Section 5·1·2. The corresponding sequence of sub-
groups is G̃n = G̃0 ≥ G̃1 ≥ · · · ≥ G̃n = 〈e1, . . . , en+2〉 where G̃ j is the subgroup generated
by e1, . . . , en+2, y2 j+1, . . . , y2n . In the floor G̃ j ≥ G̃ j+1, a maximal boundary subgroup of
π1(�̃ j ) is identified with the commutator [w′

2 j+1, w
′
2 j+2] that takes by Proposition 5·2 part

of G̃ j+1. This tower satisfies all conditions of Theorem 4·5, so we know that 〈e1, . . . , en+2〉
is a maximal free ground floor as well.

Remark 5·4. In fact the proof of Proposition 5·2 shows that Gn even contains maximal free
ground floors of all basis lengths between 2 and n + 2 because for each 0 ≤ i ≤ n, the group
G(i) admits a hyperbolic tower over Fi+2 that fulfils the conditions of Theorem 4·5.

6. Weight and Whitehead graphs

In this last section, we want to take a closer look at the model theoretic meaning of the
results presented so far and prove Theorem B. These model theoretic questions were the
point of departure for this article.

The analogies of forking independence to classical independence notions as linear inde-
pendence or algebraic independence lead to the idea of comparing the sizes of maximal
independent sets of realisations of a fixed type. That is the motivation for introducing the
so-called weight of a type which bounds the ratio of the sizes of different such sets.
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DEFINITION 6·1. The preweight of a type p(x̄) := tp(ā/A) is the supremum of the set of
cardinals κ for which there exists a set {b̄i |i < κ} independent over A, such that ā forks with
b̄i over A for all i . It is denoted by prwt(q). The weight wt (p) of a type p is the supremum of

{prwt(q)|q a non-forking extension of p}.
In fact, for every type p in a theory T , the weight wt (p) is smaller or equal to the car-

dinality of T . In our case, where we consider the countable theory T f g of free groups, the
weight of all types is bounded by ω.

The mentioned bound to the ratio of maximal independent sets is given by the following:

Fact 6·2 (see [Mak84] and [She78, conclusion V·3·13]). Let T be a complete theory.
Suppose p is a type in T such that wt (p)≤ n for a natural number n ∈N. Then we can
find no model of T in which there exist two maximal independent sets of realisations of p,
such that one has size k while the other one has size greater than k · n.

In particular, if wt (p)= 1, we know that all such sets have the same size.
Bearing in mind that each basis of a maximal free ground floor forms a maximal indepen-

dent set of realisations of the generic type p0 (see Corollary 4·8), one can also see Theorem
5·3 as a proof that p0 has infinite weight. This is a fact that was already shown by Pillay
([Pil09]) and Sklinos ([Skl11]).

Extending the methods of Sklinos’ proof, we now want to generalise this result to arbitrary
types realised in free groups. More precisely, we show that any non-algebraic (1-)type over
the empty set which is realised in a free group has infinite weight. The condition on the types
to be non-algebraic is no great restriction as in T f g, all (1-)types over the empty set but the
one of the neutral element are non-algebraic.

For this, we will use the following strong answer to the Tarski problem given by Sela:

Fact 6·3 ([Sel06]). For any 2 ≤ m ≤ n, the natural embedding of Fm in Fn is elementary.

From now on, we will denote by Fn the free group generated by the set X := {e1, . . . , en}.
We call a word w= u1u2 . . . uk with ui ∈ X ∪ X−1 reduced, if it contains no subword of the
form uu−1. We say that w is cyclically reduced, if it cyclically contains no such subword,
that is neither w nor any cyclical permutation of its letters contain a subword uu−1. With
this notation, Fn can be seen as the set of reduced words over X with multiplication given
by concatenation of words followed by reductions.

DEFINITION 6·4. Let A ⊆ Fn be a set of elements in Fn . Then A is called separable, if
there exists a non-trivial free decomposition Fn = G ∗ H , such that each element of A can
be conjugated either into G or into H . This means that for each a ∈ A, there exists x ∈ Fn

such that xax−1 ∈ G ∪ H .

The connection between separability and independence in free groups is established by
the following result from [PS16] that characterises independence in free groups by the
possibility to find proper free decompositions.

Fact 6·5 ([PS16, Theorem 1]). Let ū, v̄ be tuples of elements in the free group with n gen-
erators and let S be a free factor of Fn . Then ū and v̄ are independent over S if and only if
Fn admits a free decomposition Fn = G ∗ S ∗ H with ū ∈ G ∗ S and v̄ ∈ S ∗ H .

For our purposes, it will suffice to look at the case in which S = {1} is trivial and u and v
are elements of Fn . Regarding Fact 6·5, we see that independence of u and v over the empty
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Fig. 4. The Whitehead graphs of b1 = e2e1e2 and bi . In both graphs, e2 and e−1
2 are the only cut vertices.

set implies that the set {u, v} is separable. So if {u, v} is not separable, we know as well that
u and v fork over the empty set.

DEFINITION 6·6. Let A be a set of words over X representing elements in the free group
Fn = 〈e1, . . . , en〉. The Whitehead graph of A, which we denote by WA, is the graph with set
of vertices V (WA)= {e1, . . . , en, e−1

1 , . . . , e−1
n }, and edges joining the vertices u and v−1 if

and only if one of the words in A cyclically contains the subword uv.

DEFINITION 6·7. Let W be a graph. A vertex u ∈ V (W ) is called a cut vertex, if removing
u and its adjacent edges leaves the graph disconnected.

Whitehead graphs occur as projections of closed paths in certain 3-dimensional manifolds
and were first introduced by Whitehead in [Whi]. Using this topological picture, Stallings
showed the following fact which is crucial for our method to show that certain elements in
free groups fork with each other.

Fact 6·8 ([Sta99, Theorem 2·4]). Let A be a set of cyclically reduced words representing
elements in Fn . If A is separable in Fn , the Whitehead graph WA has a cut vertex.

Now we have all necessary tools to construct an independent sequence that witnesses the
infinite weight of p0.

LEMMA 6·9. The following sequence is independent over the empty set:

(bi )i<ω := (e2e1e2, e3e2e1e2
2e3, . . . , ei+1ei . . . e2e1e2

2e2
3 . . . e

2
i ei+1, . . .) ,

i.e. b0 := e2e1e2 and bi := ei+2bi−1ei+1ei+2 for i ≥ 1.

Proof. One can easily see that

〈e2e1e2, e3e2e1e2
2e3, . . . , en+1en . . . e2e1e2

2e2
3 . . . e

2
nen+1, en+1〉 = Fn+1.

This suffices because as a special case of 6·5, we know that each basis of a free group forms
an independent set.

For the proof of Theorem B, we will make use of the high level of connection in the
Whitehead graphs of the elements bi (see Figure 4).

THEOREM B. In T f g, every non-algebraic (1-)type over the empty set that is realised in
a free group has infinite weight.

Proof. Let p(x) be a type over the empty set with a non-trivial realisation a ∈ F\{1} in
some free group F . Fix a basis X = {e1, e2, . . .} of F . Permuting the elements of X induces

https://doi.org/10.1017/S0305004119000483 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000483


Maximal hyperbolic towers and weight in the theory of free groups 497

Fig. 5. Edges in W ({a}).

an automorphism of F and thus does not change the type of a over the empty set. So
we may assume a ∈ Fn for some n ∈N. As conjugating with an element of F is also an
automorphism, we can as well assume that a is cyclically reduced.

Now take (bi )i<ω as defined in Lemma 6·9. Using Whitehead graphs, we show that after
leaving out the first elements of this sequence, the remaining sequence (bi)n≤i<ω witnesses
the infinite weight of p. By the last lemma, we already know that (bi)i is an independent
sequence. It remains to show that a forks with bi over the empty set for all i ≥ n. To do this,
we show that the Whitehead graph WA of the set A := {a, bi } has no cut vertex in the free
group Fi+1 = 〈e1, . . . , ei+1〉. In this situation, we can apply Fact 6·8 to see that there is no
decomposition

Fi+1 = G ∗ H

such that a ∈ G and bi ∈ H . This implies that a forks with bi in Fi+1 and thus, as the
embedding Fi+1 ↪→ F is elementary (see Fact 6·3), they fork in F as well and we are
finished.

Permuting X again, we may assume that a contains the letter e1. That means that in
WA, the vertices e1 and e−1

1 are each connected by an edge to at least one other vertex. If
the only edges starting at e±1

1 end at e∓1
1 , we have a = ek

1 for some k ∈Z. In this case, we
can easily derive the infinite weight of p from the infinite weight of p0 because by [Pil08,
corollary 2·7], we have p0 = tp(e1/∅). So without loss, at least one of the vertices e1, e−1

1 is
connected to a vertex e±1

k with 1< k ≤ n. It follows from the definition of Whitehead graphs
that in this case, they are in fact both connected to at least one other vertex. Applying another
automorphism, we may assume that a does neither contain e2 nor its inverse such that e1 is
either connected to a vertex ek or e−1

k and that e−1
1 is connected to ek ′ or e−1

k ′ where both k and
k ′ are greater than 2 (we do not assume that those vertices are distinct). So W ({a}) contains
at least the two edges shown in Figure 5.

On the other hand, we already know that the Whitehead graph W{bi } is of the form shown
in Figure 4. Since WA is the union of W{a} and W{bi }, one sees that it has no cut vertex,
because removing e±1

2 no longer disconnects e∓1
1 from the rest of the graph. This finishes the

proof.
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