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A model is derived for long peristaltic waves propagating steadily down a fluid-filled,
axisymmetric tube. The waves are driven by imposing a radial force of prescribed
form on the tube. The resulting deformation of the tube wall is modelled using
linear elasticity and the internal flow using the lubrication approximation. Numerical
solutions for periodic wave trains and solitary waves are presented, along with
asymptotic solutions at both small and large forcing amplitudes. Large-amplitude
periodic waves are characterized by narrow blisters adjoining long occluded sections
of the tube, whereas a solitary wave of strong contraction produces a long inflated
bow wave that propels a large quantity of fluid. A measure of pumping efficacy is
given by the ratio of the net fluid displacement to the power input, and is highest for
a large-amplitude solitary wave.
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1. Introduction
Many biological ducts, including the digestive system (Brasseur 1987) and the

ureter (Yin & Fung 1971), convey their fluid contents by peristalsis – the propulsion
of internal fluid by propagating waves of muscular contraction in the surrounding
tube wall. Peristaltic pumps operate on the same principle, except that protuberances
are usually driven into the tube wall to create waves of fixed wall displacement. The
dynamics of fluid flow near undulating boundaries is also fundamental to numerous
styles of biological locomotion, including the swimming of micro-organisms (Taylor
1951; Katz 1974; Argentina, Skotheim & Mahadevan 2007; Balmforth, Coombs &
Pachman 2010) and the crawling of worms (Keller & Falkovitz 1983) and snails
(Chan, Balmforth & Hosoi 2005).

The first models of peristalsis focused on predicting internal fluid motions driven
by a given displacement of the confining tube wall (as in the peristaltic pump).
To further simplify the fluid mechanics, the models assumed either low-amplitude
waves or adopted lubrication theory, which is relevant when the fluid flow has low
Reynolds number and the peristaltic waves are relatively long (Fung & Yih 1968;
Shapiro, Jaffrin & Weinberg 1969; Lykoudis & Roos 1970). These theories were later
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Peristaltic pumping of viscous fluid in an elastic tube 197

extended to non-slender geometries and higher Reynolds numbers (e.g. Pozrikidis
1987; Takabatake, Ayukawa & Mori 1988), with the latest developments directed
at, for example, systematic exploration of the effect of the wave profile (Walker &
Shelley 2010).

Nevertheless, models of biological ducts demand an inclusion of the solid mechanics
of the tube wall, and specifically the muscle action forcing deformation and any
material stiffness. A key difficulty with the addition of the tube mechanics is that
the shape of the deformable boundary must be determined as part of the solution,
rendering the exercise a free-boundary problem. The existing literature treating this
version of the problem is much more sparse, and focused largely on the dynamics
of the ureter (Fung 1971; Griffiths 1987, 1989; Carew & Pedley 1997) or tailored to
other specific biological applications (Miftakhov & Wingate 1994; Szeri et al. 2008).
In the current article, we approach this problem from a more general perspective, and
construct a relatively simple mathematical model that incorporates the solid mechanics
of the tube wall. We are thereby able to make analytical inroads into the problem,
offering a fairly complete description of the dependence on physical parameters and
formulating a number of asymptotic solutions in various limits, as outlined presently.
The article by Tang & Rankin (1993) is most closely related to our current effort;
they provide some lubrication solutions for a tube modelled as a stretched membrane
in which the tension is spatially varied in order to drive peristaltic motion, along with
complementary numerical solutions of the corresponding Stokes flow problem. Our
model also provides a foundation for a companion paper (Takagi & Balmforth 2011)
which explores a particular generalization of the theory in which we include a rigid
slender object suspended in the fluid.

In § 2, our model is formulated by stating the underlying assumptions and deriving
the governing equations. In § 3, solutions are obtained either analytically for small-
amplitude waves or numerically for moderate-amplitude waves. Asymptotic solutions
in the limit of large forcing amplitude are presented in § 4, and we conclude in § 5.
Appendices A and B construct more asymptotic solutions in the limits of small and
large bending stiffness, respectively, and Appendix C describes some additional details
of the structure of the large-amplitude solutions.

2. Mathematical formulation
2.1. Dimensional equations

Consider steady peristaltic waves running down an axisymmetric tube of radius, â(ẑ, t),
described by a cylindrical polar coordinate system, (r̂ , ẑ), at time t , and filled with an
incompressible, viscous fluid of density, ρ, dynamic viscosity, µ, and pressure, p̂(r̂ , ẑ, t)
(as sketched in figure 1). A radial force per unit area, F (ẑ − ct) = η̂f [(ẑ − ct)/L], is
applied on the tube wall, where f is a dimensionless function that characterizes the
spatial structure of the forcing, the overall amplitude is η̂, the propagation speed is
c, and L is the characteristic axial length scale. Without the forcing, the tube has
constant radius, R, and the internal pressure is p0.

Invoking the lubrication approximation for the velocity field, (û, ŵ), of the induced
fluid flow (applying when R � L, and the Reynolds number, ρcR/µ, is order one or
smaller), conservation of mass and momentum demand that

1

r̂

∂

∂r̂
(r̂ û) +

∂ŵ

∂ẑ
= 0,

∂p̂

∂r̂
= 0,

∂p̂

∂ẑ
=

1

r̂

∂

∂r̂

(
r̂µ

∂ŵ

∂r̂

)
. (2.1)
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198 D. Takagi and N. J. Balmforth

Tube wall

Viscous fluid

Inward radial force
F( ẑ – ct)

r̂

ẑ

â( ẑ – ct)

Figure 1. A sketch of the geometry, showing the axisymmetric tube and the cylindrical polar
coordinate system used to describe it.

For boundary conditions, we impose regularity along the centreline of the tube, r̂ =0,
and allow no slip between the fluid and the tube wall. Since the tube is slender, the
fluid resistance is chiefly provided by the normal pressure force; the fluid traction
remains much smaller. Consequently, the tube deforms almost radially and

∂â

∂t
≡ −c

∂â

∂ẑ
= u and ŵ = 0 for r̂ = â (2.2)

(e.g. Skotheim & Mahadevan 2005). For the axial boundary conditions, we consider
either periodic domains or an infinitely long tube with any flow disturbances decaying
as ẑ → ±∞ (see Li & Brasseur 1993, for a discussion of end effects with different
boundary conditions on a finitely long tube).

For simplicity, we model the cylindrical tube as a linearly elastic material. However,
even with this assumption, there is still considerable freedom in choosing a particular
model, as the tube could be reinforced in some fashion on the outside or possess a
layered structure. If the tube has no reinforcing and is isotropic and sufficiently thin,
the classical theory of shells suggests that the force resisting deformation, FE , is given
by

FE =
h3E

12(1 − ν2)

∂4

∂ẑ4
(â − R) +

Eh

R2
(â − R), (2.3)

where h is the shell thickness, E is Young’s modulus and ν is the Poisson ratio
(Timoshenko & Woinowsky-Krieger 1959). Alternatively, if the tube is reinforced and
behaves more like an elastic foundation, then the resistance might be modelled by

FE =
E(â − R)

h(1 − ν2)
− Eh

3(1 − ν2)

∂2

∂ẑ2
(â − R) (2.4)

(the ‘Pasternak’ foundation, e.g. Kerr 1984). Both (2.3) and (2.4) have the form

FE = D̂

[
(1 − α) + α(−1)n/2Ln ∂n

∂ẑn

]
(â − R), (2.5)

where D̂ is a stiffness parameter proportional to Young’s modulus, n= 2 or 4, and
α is a geometrical factor built from ratios of the length scales R, L and h. In many
physical situations, the geometrical factor α is small, leaving D̂(a−R) as the dominant
resistive force, which is also the form expected for a slender cylindrical hole in an
infinite linear elastic solid. Though potentially less physical, the model (2.5) with
α = 1 allows us to study how a higher-order resisting force like axial bending stiffness
(n= 4) may change the dynamics. Thus, for practical examples, we choose n= α = 0
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Peristaltic pumping of viscous fluid in an elastic tube 199

or (n, α) = (4, 1), referring to these as the n= 0 or n= 4 cases, respectively. Thence,
FE → D̂Ln∂n(â − R)/∂ẑn. By considering both cases, we gain a better impression of
the effect of solid mechanics. However, we have also verified that the results presented
below are qualitatively insensitive to the choice of α and other values of n (indeed,
without much further effort, many of the analytical results presented below can be
generalized to the full form of (2.5)), with the one major exception described in § 5.
The force balance on the elastic tube can now be written as

p̂(â, ẑ, t) − p0 = D̂Ln ∂n

∂ẑn
(â − R) + F. (2.6)

Note that some of the solutions we present later possess significant elastic
displacements, calling into question the validity of linear elasticity; to retain a degree
of model simplicity, however, we do not include any effect of nonlinear elasticity.

2.2. Dimensionless formulation

We remove the dimensions by transforming to the frame of reference moving with
the wave of forcing and defining new coordinates,

z =
ẑ − ct

L
, r =

r̂

R
, (2.7)

the scaled variables,

[u(r, z), w(r, z)] =
1

c
(û, ŵ − c), a(z) =

â

R
, p(r, z) =

(p̂ − p0)R
2

µcL
, (2.8)

and dimensionless parameters,

D =
D̂R3

µcL
, η =

η̂R

µc
, (2.9)

representing measures of tube stiffness and forcing strength, respectively, compared
to viscous drag in the fluid. We next integrate the dimensionless versions of (2.1) with
respect to r and impose the boundary conditions in (2.2) to arrive at the axial velocity
in the wave frame,

w =
1

4

dp

dz
(r2 − a2) − 1, (2.10)

where the fluid pressure is independent of r and satisfies

p = D
dn

dzn
(a − 1) + ηf (z). (2.11)

Finally, the integral form of mass conservation is

d

dz

∫ a

0

wr dr = 0, (2.12)

implying

q = 1 − a2 − 1

8

dp

dz
a4, (2.13)

where the constant, q , is proportional to the time-averaged volumetric flow rate in
the laboratory frame, π(1 + 2

∫ a

0
wr dr).
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200 D. Takagi and N. J. Balmforth

2.3. Periodic waves

In axially periodic settings, 0 � z � 2π, we substitute (2.11) into (2.13), to find

q = 1 − a2 − 1

8
a4

[
D

d1+na

dz1+n
+ ηf ′(z)

]
. (2.14)

The constant, q , is determined as an eigenvalue of (2.14) on imposing the constraint,

1 = 〈a2〉 ≡ 1

2π

∫ 2π

0

a2 dz, (2.15)

which reflects mass conservation and our choice of the undisturbed tube radius as
the radial length scale. The constraint further implies

q = −1

8

〈
a4 dp

dz

〉
= −1

8

〈
a4

(
D

d1+na

dz1+n
+ ηf ′

)〉
. (2.16)

By way of illustration of periodic waves, we impose a sinusoidal force with

f (z) = sin z. (2.17)

2.4. Solitary waves

We also consider solitary waves propagating down an infinite duct induced by a
spatially localized forcing (i.e. f → 0 for |z| 	 1). In this case, the far-field boundary
conditions become a → 1 as z → ±∞, which further imply that q = 0. The solitary-wave
problem is therefore

0 = 1 − a2 − 1

8
a4

[
D

d1+na

dz1+n
+ ηf ′(z)

]
. (2.18)

In practice, we solve (2.18) on a finite domain that is sufficiently long for the solution
to converge to the far-field level a =1 well before the boundaries of the computational
domain.

To replace q as a measure of peristalsis, we define

∆ ≡
∫ ∞

−∞
dz

∫ a

0

2(w + 1)r dr = −1

8

∫ ∞

−∞
a4 dp

dz
dz, (2.19)

which provides an estimate of the net transport due to the passage of the solitary
wave in the laboratory frame. Equivalently (cf. (2.13)),

∆ =

∫ ∞

−∞
(a2 − 1) dz = −1

8

∫ ∞

−∞
a4

(
D

d1+na

dz1+n
+ ηf ′

)
dz. (2.20)

For purposes of illustration, we choose a Gaussian profile for the solitary-wave
forcing:

f (z) = exp
(
− 1

2
z2

)
. (2.21)

2.5. Pumping efficacy

Taking the dot product of the dimensionless versions of the momentum equations in
(2.1) with the velocity in the lab frame, (u, w + 1), leads to the energy relation,

1

r

∂

∂r

{
r

[
up − (w + 1)

∂w

∂r

]}
+

∂

∂z
[(w + 1)p] = −

(
∂w

∂r

)2

, (2.22)
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where the left-hand side represents the divergence of the energy flux and the right-
hand side is the local dissipation rate, to leading order in the aspect ratio R/L.
Therefore, in the lubrication limit, the total dimensionless rate of energy dissipation
in the fluid is

ε = 2π

∫
D

∫ a

0

(
∂w

∂r

)2

r dr dz, (2.23)

where the symbol D represents the relevant integration limits for either the periodic
or infinite axial domain. For our steady peristaltic waves, there is no net pressure
drop along the tube, and the dissipation rate is balanced by the power input by the
pressure force on the tube wall:

ε = −2π

∫
D

ap[u(r, z)]r=a dz ≡ 8π

∫
D

(1 − q − a2)2

a4
dz. (2.24)

This also means that the mechanical efficiency defined by Shapiro et al. (1969),
proportional to the rate at which useful energy is stored in the fluid, is identically
zero, and so we require an alternative means to estimate the efficacy of the peristaltic
waves. Instead, we define pumping efficacy by 2π2q/ε or π∆/ε, for periodic and
solitary waves, respectively which measure the fluid transport per unit input power.

3. Small to moderate forcing amplitudes
3.1. The small-amplitude limit

For small amplitude forcing, η � 1, the equations can be solved using a regular
perturbation expansion: a = 1 + ηa1 + η2a2 + · · · and q = η2q2 + · · · . for periodic
waves, or ∆ = η2∆2 + · · · for solitary waves. The leading-order perturbation in tube
radius satisfies the linear ODE,

D
d1+na1

dz1+n
+ 16a1 = −f ′(z). (3.1)

The degree of transport is given by

q2 = −1

2
〈a1f

′〉 or ∆2 =

∫ ∞

−∞
a2

1 dz = −1

2

∫ ∞

−∞
a1f

′ dz. (3.2)

With sinusoidal forcing, f = sin z, because the homogeneous solutions to (3.1) are
non-periodic and n= 0 or 4, the low-amplitude periodic waves are given by

a ∼ 1 − η
(16 cos z + D sin z)

(162 + D2)
, (3.3)

and

q ∼ 4η2

162 + D2
. (3.4)

It follows that the dissipation rate is

ε ∼ 32π2η2

162 + D2
, (3.5)

leading to a pumping efficacy of 2π2q/ε ∼ 1/4. Note that the solution in (3.3)
corresponds to the low-amplitude limit of the earlier models developed by prescribing
wall displacements of sinusoidal form (Fung & Yih 1968; Shapiro et al. 1969).
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Figure 2. Periodic wave profiles with increasing forcing amplitude for (a) n= 0 and η =
1, 2, . . . , 5, and (b) n= 4 and η = 2, 4, . . . , 10, with D = 1. The insets show the flux q against
η, with the dashed curves showing the low-amplitude prediction in (3.4). In the main figures,
the dots show the low-amplitude solutions (3.3) with either η = 1 or η = 2. The arrows in (b)
show the magnitude and direction of the applied radial force (as given by −f (z) = −sin z).

Nevertheless, for most of the other solutions that we present, the deformation of the
tube wall is a complicated nonlinear function of the forcing.

For the solitary waves with Gaussian forcing, the solution to (3.1) can be reduced to
a quadrature that is most compactly written in terms of the inverse Fourier transform,

a1 =
i

2π

∫ ∞

−∞

keikzf̄ (k) dk

(ik)1+nD − 16
, (3.6)

where f̄ (k) ≡
∫ ∞

−∞ f (z)e−ikz dz denotes the Fourier transform of f (z). The transport
coefficient ∆2 can then be computed numerically from (3.2), and further quadratures
furnish the proportionality constant in the limiting dissipation rate, ε ∝ η2.

3.2. Numerical solutions with moderate forcing

The equations for a, (2.14) and (2.18), can be solved numerically using a relaxation
scheme (in practice, we use MATLAB’S BVP4C verifying that the error tolerance
assumed has no effect on the solutions computed). A representative set of periodic
wave solutions for different forcing amplitudes η is plotted in figures 2(a) and 2(b)
for the two types of elastic tubes, n= 0 and n= 4, respectively. The insets in the
figure display how the eigenvalue q varies as η sweeps through the values used in the
main figures and beyond. As η increases, the tube becomes increasingly deformed and
the amount of transport increases. The periodic deformations remain qualitatively
similar for both n= 0 and n= 4; the tube develops a substantial bulge near z = 3π/2,
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Figure 3. Solitary wave profiles for (a) n= 0 and η = 1, 2, . . . , 4, and (b) n= 4 and η =
1, 2, . . . , 5, with D = 1. The insets show the transport ∆ against η, with the dashed curves
showing the low-amplitude prediction, ∆2η

2, computed using (3.2). In (a), the plot of the
transport also includes the large-amplitude predictions (η2/40 and π1/2η2; § 4), and the second
inset shows wave profiles for η = −1, −2, −3 and −4. The arrows show the magnitude and
direction of the applied force (as given by f (z) and the sign of η).

where the outward imposed force is highest, and becomes constricted over the longer
sections elsewhere.

Figure 3 shows analogous results for solitary-wave profiles. Once more, the results
for n= 0 and n= 4 are similar, at least for the forcing amplitudes shown. With
f = exp(−z2/2), there are two possible forcing protocols depending on whether η is
taken positive or negative; η > 0 corresponds to a squeezing action, whereas η < 0
describes how a forced expansion conveys fluid. For a low forcing amplitude, the two
protocols generate identical amounts of transport (since ∆ ∝ η2 for η � 1); both cases
are shown in figure 3(a) for n= 0. At higher forcing amplitudes, the two protocols
generate different results, with the forced expansion transporting less fluid than the
wave of contraction.

Dissipation rates are plotted against forcing amplitude in figure 4 for n= 0 and
both periodic and solitary waves. For periodic waves, the maximum dissipation is
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Figure 4. Dimensionless dissipation rates versus η with n= 0 and D = 1 for (a) periodic
and (b) solitary waves. The small- and large-amplitude limits are indicated (given by (3.5)
for η � 1 and ε ∼ 4π(2π − 4) for η 	 1 in (a), and ε ∼ 0.11η2 for η � 1, and ε ∼ η3/3D2 or
ε ∼ 16

√
2 log(−η/D) for |η| 	 1 in (b); see §§ 3.1 and 4).

attained at a moderate forcing amplitude and ε decays towards a constant in the
large-amplitude limit. For solitary waves, the dissipation rate continues to grow with
η, with the waves of contraction requiring a far higher power input than the waves
of expansion.

When D → 0, the tube becomes infinitely flexible and the resistance to the imposed
force is provided purely by the fluid lubrication pressure. In this case, the forcing
immediately sets the pressure, and (2.14) and (2.18) become analytically solvable
algebraic problems for the tube radius. However, these problems admit discontinuous
solutions at larger forcing amplitudes, a feature connected to the fact that the time-
dependent version of our model (2.12) becomes hyperbolic in this limit (cf. Cowley
1982 and Balmforth et al. 2010; see also, for example, Lister 1992 and Ashmore,
Hosoi & Stone 2003, for related thin-film problems). The discontinuous shocks
become regularized by adding a small amount of stiffness, as outlined in Appendix A,
which summarizes the main features of the D � 1 solutions.

Another analytically tractable limit is that of large bending stiffness, D 	 1. In
this situation, the tube wall can be significantly deformed only by introducing a
correspondingly large forcing amplitude: η ∼ D 	 1. The main force balance in (2.11)
then omits the fluid pressure, implying that the forcing should set the tube deformation
independently of the flow dynamics, as in models prescribing the wall displacement
(Fung & Yih 1968; Shapiro et al. 1969). As described in Appendix B, however, the
lubrication pressure can only be safely ignored provided the tube does not become
overly constricted, and a different solution strategy is required to deal with any
occlusions.

3.3. Flow patterns

The steady flow patterns underneath the peristaltic waves are given by contours of
the constant stream function,

ψ = − 1

16
r2(2a2 − r2)

dp

dz
− 1

2
r2, (3.7)

obtained by integrating w = r−1∂ψ/∂r . Examples for periodic waves with n= 0 and
forcing amplitudes of η = 2 and η = 3 are shown in figure 5. The geometry of
the streamlines changes qualitatively between these two cases, with a recirculation
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Figure 5. Streamlines for (a) η = 2 and (b) η = 3, with D = 1 and n= 0. Shown by the darker
curves are 10 equally spaced contour levels; the lighter curves show additional contours near
the tube centre. The lightly shaded region indicates the surrounding solid.
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Figure 6. Critical wave amplitudes for the creation of recirculating fluid beneath (a) periodic
waves and (b) solitary waves. In (a), critical amplitudes for both n= 0 and n= 4 are shown,
along with the expected limits for D → 0 and D 	 1 derived in Appendices A and B.
(b) Critical amplitudes for n= 0 with both η > 0 and η < 0, along with the D → 0 and D 	 1

limits (for the latter, ηc ∼ D
√

2 or ηc ∼ − (
√

2 − 1)D; see Appendix B).

cell appearing underneath the wave at an intermediate forcing strength (as found
previously for fixed wall displacements, Shapiro et al. 1969). The critical forcing
amplitude, η = ηc, at which a recirculation cell appears is determined by searching for
flow speed reversals along the tube axis, which occur first when the maximum value
of a2 increases beyond 2(1−q) somewhere along the tube. Figure 6 illustrates how the
critical amplitude (detected by monitoring a2 − 2(1 − q) for the numerical solutions)
varies with the stiffness of the wall (D), the type of forcing (periodic or solitary) and
the choice of elastic solid (n= 0 or 4). At larger forcing amplitudes, the recirculation
zones become extensive, with most of the fluid in the tube being conveyed along with
the wave; figure 7 illustrates the flow patterns for some larger-amplitude waves.

4. Large-amplitude solutions
When |η| 	 1, the properties of the large-amplitude peristaltic waves for all of

the various cases can be constructed using asymptotic methods. Matched expansions
are required for this task because different asymptotic solutions emerge over distinct
sections of the tube, each reflecting different balances of the competing forces. Below,
we give the leading-order form of these solutions, although we avoid a full description
of the mathematical details in order to keep the discussion concise; Appendix C
provides additional commentary on the matched asymptotics for n= 0 periodic waves.
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Figure 7. Streamlines for (a) a periodic wave with n= 0 and η = 20, (b) a periodic wave
with n= 4 and η = 30 and (c) a solitary wave with n= 0 and η = 12 (all with D = 1). Shown
are 10 equally spaced contour levels highlighting the recirculation zone. The darker shaded
region shows the fluid outside the recirculating core. The lightly shaded region indicates the
surrounding solid.
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Figure 8. (a) A large-amplitude periodic wave for n= 0, D =1 and η = 50; magnifications of
the occluded and blistered regions are shown in (b) and (c), where they are compared to the
asymptotic solutions (4.2) for a±(z) (dashed and dotted lines in (b)), and the large-amplitude
solution in (4.6) and (4.7) (dashed line in (c)). (d, e) The maximum wave amplitude and
1 − q against η; the dotted and dashed lines show the low-amplitude and large-amplitude
predictions, respectively (as given by a → 1 + ηa1 with (3.3) and q → 0 for η � 1 and (4.3) and
(4.11) for η 	 1).

4.1. Periodic waves for n= 0

For large-amplitude (η 	 1) periodic waves, q → 1 (corresponding to complete
transport of fluid with the wave) and two qualitatively distinct regions develop
in the wave profile. As illustrated by the sample solution in figure 8, a narrow, inflated
blister appears near z = 3π/2, with the remainder of the tube becoming substantially
occluded. These features arise for both n= 0 and n= 4; we first deal with the former.

4.1.1. The occlusion

Because the tube radius is small in the occluded region, but the spatial scale is
of order one, the dominant contribution to the pressure p in (2.11) arises from the
forcing ηf (z). Equation (2.13) then reduces to the algebraic problem,

8(1 − q) − 8a2 − ηa4 cos z ≈ 0, (4.1)
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which is independent of the stiffness of the tube, D (provided that parameter remains
of order one), and reflects how the primary balance in the occlusion is between the
forcing and the fluid lubrication pressure. Thus,

a ≈ a±(z) =

[
4

η cos z

(
−1 ±

√
1 +

η

2
(1 − q) cos z

)]1/2

. (4.2)

As shown in figure 8, neither of the possibilities, a±(z), correspond fully to the occluded
solution. Instead, a(z) traces out the curve, a+(z), for z < π, but then switches to follow
a−(z) in z > π. Crucially, in order that a(z) remain continuous and smooth at z = π, a
connection between the a±(z) curves is required there, which, given (4.2), can only be
possible if

q ≈ 1 − 2η−1. (4.3)

Substituting (4.3) into (4.2), and bearing in mind the specific progression of the
solution along the two curves, then gives the solution for the tube radius in the
occluded region −π/2 < z < 3π/2,

a ≈ 2
√

η

(
1 +

√
2 cos

z

2

)−1/2

. (4.4)

4.1.2. The blister

For the blister, a becomes large over a relatively narrow region surrounding 3π/2,
allowing the stiffness term in (2.11) to compete with the forcing, and leading to

pz ≈ Daz + η
(
z − 3

2
π
)
. (4.5)

Moreover, because the tube is occluded elsewhere, the blister must contain most
of the fluid and therefore dominates the mass conservation constraint (2.15). Taken
together, these details determine the characteristic width and amplitude of the blister,
which we translate into the rescalings,

ζ = η2/5

(
z − 3π

2

)
, a = η1/5A(ζ ). (4.6)

Hence, to leading order, (2.13) can be reduced to 0 ≈ (A4/8)(D dA/dz + ζ ), which
furnishes

A ≈ Amax − ζ 2

2D
, (4.7)

where Amax is the maximum rescaled tube radius. Returning to (2.11), we then discover
the pressure is almost uniform in the blister:

p ≈ −η − η1/5DAmax. (4.8)

In other words, there is a balance between tube stiffness, the forcing and a constant
inflation pressure over the blister, with fluid flow playing no role.

As we describe in more detail in Appendix C, the blister solution must be matched
to that for the occlusion through intervening boundary layers at z ∼ 3π/2 ± η−2/5δ or
ζ = ±δ. In order to complete the determination of the leading-order blister solution,
however, the detailed structure of the boundary layers is not needed, and one is
required only to force A(ζ ) to vanish at ζ = ± δ in order to ensure a successful match
with the occlusion. Thus,

δ =
√

2DAmax. (4.9)
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Finally, the leading-order version of the constraint (2.15) is∫ δ

−δ

A2 dζ ≈ 2π, (4.10)

which indicates that

Max(a) = η1/5Amax ≈
(

152π2η

23D

)1/5

. (4.11)

The solution in (4.7) and (4.11) is compared with the numerical results in figure 8.
Note that, although most of the fluid is carried along by the blister, the dissipation

occurs primarily in the occlusion. By substituting (4.4) into (2.24), we obtain
ε → 4π(2π − 4), implying that the increased dissipation occurring over the occlusion
as the forcing strength is raised is countered by the additional constriction of that
region. Simultaneously, the pumping efficacy, 2π2q/ε, approaches π/(4π − 8), which
is enhanced by a factor of more than two over the value at low amplitude (1/4).

4.2. Periodic waves with n= 4

For n= 4, the construction of large-amplitude wave profiles proceeds along similar
lines, although the characteristic scalings are different for the occlusion and blister,
which reflects a slightly different character to the dynamics of the occlusions and
boundary layers. In particular, although the small radius of the occlusion still ensures
that the pressure is dictated largely by the forcing, p ≈ η sin z, it turns out that
1 − q 	 a4|dp/dz|/8, and so (2.13) reduces to a2 ≈ 1 − q over the occluded region.
That is, the occlusion is too narrow to allow variations in fluid pressure to generate
appreciable lubrication pressure or fluid flow. Thus, (2.13) reduces to an expression
of constant mass transport due to the rigid translation of the cylindrical occlusion in
the wave frame. However, although this exposes the main physical balances and the
relation, a ≈

√
1 − q , it does not determine the characteristic scalings of either a or

1 − q with η.
For the blister, the combination of (2.14) and (2.15) implies the rescalings,

ζ = η2/13

(
z − 3π

2

)
, a = η1/13A(ζ ). (4.12)

We then solve the reduced version of (2.14), namely

D
d5A

dζ 5
≈ −ζ, (4.13)

subject to the requirement that the solution match the low-amplitude, flat
occluded solution outside the blister. The match now amounts to demanding that
A= dA/dζ = d2A/dζ 2 = 0 at the edges, ζ = ±δ. In tandem with the leading-order
version of the constraint (2.15), i.e. (4.10), we find

A ≈ 1

6! D
(δ2 − ζ 2)3, (4.14)

with

δ = π1/13(6! D)2/13

(
11

3
− 20

7
− 6

11
+

1

13

)−1/13

. (4.15)

Note that the pressure within the blister is again predicted to be almost uniform:
p ∼ − η + η9/13δ2/10. The asymptotic solution is compared with numerical results in
figure 9, along with the prediction for the maximal radius, η1/13δ6/6!D.
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Figure 9. (a) A large-amplitude periodic wave for n= 4, D =1 and η = 200; the asymptotic
solutions for the peak and occluded regions are indicated by the dashed and dotted lines
(a ∼ η1/13A with (4.14), and a ∼

√
1 − q), respectively. (b, c) The maximum wave amplitude and

1−q against η; the dotted and dashed lines show the low-amplitude and large-amplitude limits
(Max(a) ∼ 1+η Max(a1), with (3.6), for η � 1, and Max(a) ∼ η1/13δ6/6!D and 1−q ∼ 2.9η−35/26,
with (4.15), for η 	 1), respectively.
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Figure 10. (a) Large-amplitude solitary-wave profiles for n= 0, D =1 and η = −5, −10, −15
and −20. (b) Comparison of the η = −50 profile with the two pieces of the asymptotic solution,
a ∼ 1 and a ∼ |η|f (z)/D.

Unlike the n= 0 case, the transport correction, 1 − q , can only be found by a
full matching of the solutions across the boundary layers intervening between the
occluded and peak regions. Although we omit any detailed calculations here (which
are rather more involved than those outlined in Appendix C), a scaling analysis of
(2.14) and (4.14) shows that the boundary layers have thickness of order η−21/52 and
1 − q = O(η−35/26). This scaling agrees with the best fit to the numerical solutions,
(1 − q) ∼ 2.9η−35/26, shown in figure 9 for D = 1. The physical interpretation of this
result is that the boundary layers now act like bottlenecks in the flow, with the motion
of the blister accomplished by a transference of fluid between those obstacles.

4.3. Large-amplitude solitary waves for n= 0

Sample solitary-wave solutions with |η| 	 1 are shown in figures 10 and 11. For
η < 0, illustrated in figure 10, another localized blister builds up as |η| increases.
Unlike the periodic waves, however, which must conserve mass according to the
constraint (2.15), the remainder of the tube does not become occluded. Instead, the
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Figure 11. Large-amplitude solitary-wave profiles for n= 0, D = 1 and (a) η =5, 7.5 and 10,
and (b)–(d ) η =12. (b)–(d ) Comparison of the wave profile with the three sections of the
asymptotic solution: in (b), a ∼ [4/(ηf ′)(

√
1 + ηf ′/2 − 1)]1/2, in (c), a ∼ η(1 − f ) and in (d ),

a ∼ (η3 − 24z/D)1/3.

large-amplitude blister must be matched to an undeformed tube, a ≈ 1, through the
narrow intervening boundary layers. The dominant balance over the blister (arising
from equating the forcing with the tube stiffness) is D da/dz ∼ ηf ′ in (2.18), giving
the profile, a ∼ |η|f (z)/D + constant . The integration constant, and the position and
thickness of the boundary layers, must be found by matching. Detailed calculations
show that the integration constant is of order one, so that two boundary layers must
occur where ηf ′(z) also becomes order one, or equivalently near z = ±

√
2 log |η|.

The downstream boundary layer is found to have a thickness of O(1/
√

2 log |η|), and
further matching calculations over that region eventually furnish

a ∼ |η|f (z)

D
+ 1 + O

(
(2 log |η|)−1/2

)
. (4.16)

The transport is dominated by the blister, and to leading order we find ∆ ∼ η2
√

π/D2

(as shown earlier in figure 3).
The picture is rather different for waves of contraction (figure 11). For η 	 1, the

squeezing action of the forcing is partly countered by lubrication pressure, upsetting
the balance D da/dz ∼ ηf ′ in (2.18). In fact, three characteristic regions emerge in
the solution, as illustrated in figure 11(a–d ), each of which corresponds to a different
balance of terms in (2.18). Ahead of the forcing, a long bow wave builds up that is
controlled by fluid lubrication pressures and tube stiffness and is given by

D
da

dz
∼ − 8

a4
(a2 − 1) (4.17)

(as f (z) is exponentially small there). To leading order, since a is large, a ∼ (a3
max −

24z/D)1/3 (see figure 11d ), which is similar to Griffiths’ (1987, 1989) model of a bolus
in the ureter.

An occluded region near the point of maximal contraction is maintained by a
combination of lubrication pressure and the forcing,

ηf ′(z) ∼ − 8

a4
(a2 − 1), (4.18)

which can again be solved algebraically, this time with a unique, unambiguous choice
for the solution (the analogue of a+ in (4.2); see figure 11b). The solution of (4.18) is
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of order η−1/4, where f ′(z) is of order one, but a → 1 further to the left, where f ′(z)
becomes exponentially small. Although the stiffness term can no longer be neglected
in (4.18) for this latter stage, there is no significant change to a ≈ 1.

The profile increases from the O(η−1/4) trailing wave to the O(amax) bow wave over
a central core in which the main balance omits the lubrication pressure, D da/dz ∼
− ηf ′(z). Since a must match to the low-amplitude trailing solution in (4.18), we find
a ∼ η[1−f (z)]/D (see figure 11c). The match to the precursor bow wave then implies
amax = η/D. Thus, the bow wave extends a distance η3/24D2 ahead of the forcing.
Finally, the transport, which is dominated by the bow wave, can be estimated to be
∆ ∼ η5/40D5 (see figure 3).

For the large-amplitude solitary waves, the dissipation takes place mostly in the
inflated regions of the tube (the bow wave for η > 0 or the large-amplitude blister
for η < 0), implying ε in (2.24) is simply given by 8π multiplied by the length of
those inflations. For the wave of contraction, the bow wave provides ε ∼ η3/3D2.
For the expansion wave, on the other hand, the dissipation rate takes a logarithmic
dependence on forcing amplitude: ε ∼ 16

√
2 log(−η/D). Although large-amplitude

solitary waves require a large input of power, they perform better than periodic
waves due to the larger quantities of transported fluid: the solitary-wave pumping
efficacy is either ∆/ε ∼ η2

√
π/2/(16D2

√
log |η|/D) for η < 0, or ∆/ε ∼ 3η2/40D3 for

η > 0.

5. Discussion
In this article, we have presented a lubrication theory for nonlinear peristaltic

waves driven by a force acting on the elastic tube wall. We have built small- and
large-amplitude solutions asymptotically, and spanned the gap between those limits
with numerical solutions. In the appendices, we give further discussion of the limits of
small and large tube stiffness, which offer further analytical inroads to the problem.
We close by generalizing some of the results, focusing on the high-amplitude limit, as
low-amplitude waves have received more attention in existing literature.

For periodic waves, the conservation of fluid volume imposes a significant constraint
on the nonlinear solutions: as the forcing amplitude increases, narrow inflated blisters
form on the tube, drawing in and transporting most of the fluid; the remainder of
the duct becomes severely occluded in order to accommodate the rearrangement of
fluid. The blister arises where the outward force is maximized; provided the force is
locally parabolic in the axial coordinate (z), our asymptotic scalings imply

amax ∼ η1/(2n+5), and δ ∼ η−2/(2n+5), (5.1)

for the maximum radius of the blister and its characteristic length, given the forcing
amplitude, η, and the largest axial derivative, n, in the force law for the elastic wall.
This result relies on the linearity of the elastic model for the tube, and emerges
from the combination of global mass conservation and the force balance, which is
dominated by the imposed forcing, the elastic resistance and a constant pressure in
the fluid bubble underneath the blister. To arrive at the scalings in (5.1), we first note
that (2.11) implies p ∼ ηf (zmax) and dp/dz ∼ Ddn+1a/dzn+1 + ηf ′′(zmax)(z − zmax) ∼ 0,
where zmax is the position of the maximum inward force. One then estimates that
Amax ∼ ηδ2+n. Finally, the mass conservation constraint implies the further scaling
δA2

max ∼ O(1), leading to (5.1).
For solitary waves, we focused on just one elastic model (n= 0). Waves of

compression are very different from those of expansion (except at low amplitude)
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Figure 12. The main figure shows the transport ∆ against η of numerical solutions for solitary
waves with the resistance law (2.5), n= 4 and D = 1. Shown are data for α = 1/2 and 3/4,
together with α = 1 (our earlier ‘n= 4 case’) and α = 0 (the ‘n= 0 case’ above). The large-η
limit, ∆ ∼ [η/(1−α)D]5, is shown by dashed lines. The insets show two sample large-amplitude
solutions. The example for α = 1 also includes an approximating quartic polynomial (dashed
curve).

although both are able to transport fluid. The solitary wave of expansion creates a
translating, inflated blister with radius a ∼ η/D, which transports most of the fluid
(giving ∆ =

∫
(a2 − 1) dz ∼ η2/D2). The compressive solitary wave, on the other hand,

cannot squeeze the tube to small radii without building up lubrication pressures;
the elevated pressures underneath the forcing then drive a long bow wave which
transports a much larger amount of fluid (∆ ∼ η5/D5) even though the maximum
radius remains of the order of η/D. The bow wave represents a balance between the
trail off in fluid pressure and the elastic forces, and therefore depends on the detailed
solid mechanics.

Our focus on solitary waves with n= 0 was in part because the n= 4 solutions could
not be extended to high amplitude; as illustrated in figure 12, the solution branch
corresponding to these waves reaches a finite maximum value of η and then turns
around to proceed back to smaller forcing amplitude, with the tube deformations
increasing all the while. The solution appears to diverge as η approaches a value
near two, developing a long bow wave with a relatively simple spatial structure (see
figure 12). A similar singular behaviour also occurs for waves of expansion.

The turnaround in figure 12 and the absence of peristaltic waves at higher forcing
amplitude is critically dependent on the n= 4 elastic force law. More specifically,
returning to the more general resistance model in (2.5), we observe that a re-
introduction of the first term with α �= 1 changes the picture entirely: for α < 1,
the first turn-around is followed by a second one, with the branch then resuming its
progression to large forcing amplitude. This leads to solutions that follow the low-
amplitude (n, α) = (4, 1) solution branch at smaller η, but then converge for η 	 1 to a
high-amplitude (n, α) = (0, 0) branch with a modified stiffness parameter of (1 − α)D.
Similar bifurcation curves were found by Kriegsmann, Miksis & Vanden-Broeck
(1998) in a somewhat similar thin-film problem.

Note that the spatial structure of the forcing has played little role in establishing
many of the salient details of our solutions, and so we do not regard our choices of
sinusoidal or Gaussian forcings as significant. By contrast, the dynamics is sensitive
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to the solid mechanics and it is difficult to say how many of the results apply to
general tube models, especially when nonlinear deformations are taken into account
in the large-amplitude limit. Other limitations of our model include the restriction to
Stokes flow and long peristaltic waves (i.e. the lubrication approximation, which may
fail for the relatively steep, large-amplitude solutions that we have presented), and
the fact that the stresses on the wall might cause the structure to rupture or buckle,
further limiting the driving stresses.

Finally, in many biological ducts, peristalsis is required to transport more varied
contents than a viscous fluid. In some situations, the fluid suspends solid particles or is
non-Newtonian. In the companion paper (Takagi & Balmforth 2011) we continue our
exploration by exploring the peristaltic transport of a fluid containing a rigid object.
Although the pumping of viscoelastic liquids has already received some attention
(e.g. Bohme & Friedrich 1983), fluids that act like solids until a critical stress is
reached (i.e. viscoplastic fluids) have received far less attention (although Vajravelu,
Sreenadh & Ramesh Babu 2005 have generalized the fixed-displacement, peristaltic
lubrication models to Herschel–Bulkley fluids). One of our goals in future work is to
generalize the current model to accommodate fluid viscoplasticity; our initial work in
this direction is summarized by Takagi (2009).

This research began at the 2009 Geophysical Fluid Dynamics Summer Program,
Woods Hole Oceanographic Institution, which is supported by the National Science
Foundation and the Office of Naval Research. We thank the participants for
discussions, especially W. R. Young and J. B. Keller.

Appendix A. The limit of vanishing stiffness
With D =0, the parameter n is irrelevant and (2.13) reduces to

q = 1 − a2 − 1

8
ηa4f ′(z), (A 1)

with solution,

a2 = a2
±(z) =

4

ηf ′(z)

[
−1 ±

√
1 +

1

2
(1 − q)ηf ′

]
. (A 2)

Provided η <ηs =2/[(1 − q) Min(f ′)], the selection a = a+(z) provides the correct
solution; the alternative, a = a−(z), is unphysical and provides a real solution only
where f ′ < 0. This is illustrated in figure 13, which shows periodic numerical solutions
for small but finite D (D = 0.02) and n= 0, and which match up with a = a+(z)
provided η <ηs ≈ 2.244.

At η = ηs , the solutions develop a corner corresponding to a connection arising
between a+ and a− at z = π, and for higher forcing amplitudes the solutions become
discontinuous. The slightly stiff numerical solutions for η >ηs continue to trace out
the a = a+(z) curve for part of the domain. However, they also pass onto the a−(z)
curve on proceeding through z = π, remaining close to that curve until abruptly
jumping back down to the a+(z) curve in a regularized shock. The passage of the
regularized solution through the intersection of the a+(z) and a−(z) curves at z = π
demands that

q = 1 − 2

η
(A 3)

(cf. the inset to figure 13a).
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Figure 13. Periodic wave profiles for D = 0.02 and n= 0. (a) Profiles with η = 1, 1.5, 2, 2.25,
2.35 and 2.5; the dots show the low-amplitude prediction (3.3) with η =1, and the vertical
dotted lines indicate the expected shock positions for η = 2.35 and 2.5. The inset shows the
flux q , along with the limits (3.4) and (A 3). (b, c) Comparison of the wave profiles (for η = 2
and 2.25, and η = 2.5, respectively) with the D = 0 solutions in (A 2). (d ) The shock position
against η.

The shock position, z = zs , for D → 0 can be determined by applying the constraint,
〈a2〉 =1, to the limiting solution,

a ∼ 2
√

η

(
1 +

√
2 cos

z

2

)−1/2

, (A 4)

in the domain zs − 2π <z <zs . Thence, we arrive at the implicit equation,

1

2
πη =

∫ zs

zs−2π

(
1 +

√
2 cos

z

2

)−1

dz (A 5)

(the integrals can be performed analytically though the result is not particularly
transparent). Setting zs → π and evaluating the integral leads to the critical value,

ηs =
8

π
ln(

√
2 + 1) ≈ 2.244. (A 6)

For solitary waves, the construction of the solutions is rather different. Because
q = 0, we discover immediately that |ηs | =2e1/2 ≈ 3.297 for our Gaussian forcing.
Moreover, for |η| > |ηs |, neither of the D = 0 solutions remain physical as they both
become complex over a range of z surrounding z = 1. The slightly stiff numerical
solutions find their way past this conundrum by quickly adopting a form like the
large-amplitude solitary-wave solutions of the main text (see figure 14). In other words,
there is no D = 0 limit for solitary waves; the wave amplitudes increase without limit
for D → 0.
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Figure 14. Solitary-wave profiles for η = 4, n= 0 and varying D (0.6, 0.5, 0.4 and 0.3). The
dots show a±(z) from (A2), which merge and become complex over a range surrounding z = 1.

Note that the criterion for recirculation in the limit D → 0 becomes equivalent to
that for the formation of the shock: w(0, z) = −1 − a2pz/4 → − 1 − ηa2f ′/4, which
cannot vanish if a = a+(z) and that curve does not meet a−(z) at the minimum of
f ′(z).

Appendix B. Large stiffness
For D 	 1 and |η|/D = O(1),

D
d1+na

dz1+n
∼ ηf ′(z), (B 1)

and we find the periodic wave solution,

a ∼
√

1 − η2

2D2
− η

D
sin z (B 2)

and

q = 1 − 〈a−2〉
〈a−4〉 ∼ η2(16D2 − 9η2)

4D2(η2 + D2)
. (B 3)

This solution only makes sense provided η <D
√

2/3, as otherwise the solution for the
radius does not remain positive over the whole domain. Instead, the tube is prevented
from becoming too constricted by the lubrication pressure; for η >D

√
2/3, the wave

profiles develop flat minima with a � 1 but bear many similarities to the large-
amplitude solutions in the main text. The criterion for the appearance of recirculation
beneath the wave (arising for η <D

√
2/3) is w(0, z) < 0, or 2(1 − q) <a2, which

occurs first for z = π/2 and 2(1 − q) = [(η/D) +
√

1 − (η2/2D2)]. Thus, ηc ≈ 0.2512D

(cf. figure 6).
In the infinite domain, and considering the case n= 0, the large-stiffness solution

is a ∼ 1 − ηf (z)/D, provided η <D. Waves of expansion (η < 0) converge without
difficulty to this solution (figure 15), and the criterion for recirculation, a2 > 2, reduces
to |η| � ηc = (

√
2 − 1)D. On the other hand, for waves of contraction, the solution

a ∼ 1 − ηf (z)/D predicts negative radii if η >D. Such regions are prevented by
increased lubrication pressures, and a constriction develops within the forced region;
see figure 15. A pressure jump forms across the constriction such that a ∼ 1−ηf/D to
the left, and a ∼ 1+ (P − ηf )/D to the right, where P denotes the pressure jump. The
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Figure 15. Solitary-wave profiles for n= 0, D =103 and (a) η = 1200 and (b) η = − 1200. The
dashed curve shows 1 − ηf (z)/D, and the dotted curve in (a) shows 1.67 − ηf (z)/D. The inset
of (a) shows the full, spatially extended wave profile.

elevated pressures upstream of the constriction are relieved within a long bow wave,
as in the large-amplitude solutions considered in the main text. The constriction itself
is controlled by a balance between lubrication pressures and the forcing, leading to
a ∼ (8/ηf ′)1/4. The balance can only be maintained for f ′ > 0, or z < 0, and coupled
with the need to match to the solutions outside the constriction, it follows that the
constriction occupies the region, −

√
2 log(η/D) <z < 0, and P ≡ η − D (the solution

in figure 15 has not yet converged to the limiting pressure jump). The tube therefore
bulges out to a radius η/D, and the bow wave is given implicitly by

8z

D
=

1

2
log

(a + 1)(η − D)

(a − 1)(η + D)
− a − a3

3
+

η

D
+

η3

3D3
. (B 4)

The recirculation condition is η >ηc = D
√

2.

Appendix C. Matched asymptotics and boundary layers for periodic,
n=0 waves

For our n= 0 periodic waves, the governing equation can be reduced to

1

8
a4

(
D

da

dz
+ η cos z

)
+ a2 = 1 − q. (C 1)

For the occlusion, the amplitude is small, z is order one and 1 	 (1 − q). The bending
term, D da/dz, is therefore small in comparison to the forcing, η cos z, and demanding
that a2 and 1 − q are of the same order as the forcing guides us to the asymptotic
sequences,

a = η−1/2a1/2 + . . . , q = 1 − η−1q1 + . . . , (C 2)

which are implicit in (4.1).
The blister is narrow, |z − 3π/2| � 1, and has a large amplitude, a 	 1, indicating

that it dominates the constraint, 〈a2〉 =1 (which relates the width and amplitude
scalings). The left-hand side of (C 1) now dominates the right, and after estimating
the size of its three constituent terms (and thereby neglecting the final one), we arrive
at the scalings in (4.6) and

D
dA

dζ
+ ζ = O(η−1), (C 3)

with solution (4.7). Reconstruction of the leading-order pressure then furnishes (4.8).
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The transition layers between the occluded portions of the tube and the blister are
centred at z = 3π/2 ± η−2/5δ. Here, ηf ′ ∼ ± η3/5δ, and to leading order (C 1) reduces
to

D
da

dz
∼ 1

a4

(
16

η
− 8a2 ∓ η3/5δa4

)
. (C 4)

This first-order equation has a fixed point given by the right-hand side which is
connected by (C 4) to a diverging, a 	 1, solution dictated by D da/dz → ∓η3/5δ. The
fixed point corresponds to the limit of the occluded solution in the transition layers,
whereas the large-amplitude solution corresponds to the limit of the blister solution.

For z ∼ 3π/2 − η−2/5δ (the left edge of the blister), the fixed point is given by
neglecting the first term on the right of (C 4), which furnishes the correct match
with the limit of the occluded solution in (4.4), namely a ∼ 2η−3/10

√
2/δ. Balancing all

the remaining terms in (C 4) then implies that the transition layer at the left edge of
the blister has a characteristic thickness of order η−9/10. For z ∼ 3π/2 + η−2/5δ, on the
other hand, the fixed point that matches the limit of (4.4) is given by a ∼

√
2/η, which

requires us to neglect the final term on the right of (C 4). Balancing all the remaining
terms then indicates that the transition layer at the right edge of the blister has a
thickness of order η−3/2.

Equation (C 4) can be tackled with asymptotic methods to complete a formal
matched expansion. Alternatively, (C 4) can be integrated directly to furnish an
implicit solution for a, or solved graphically for the qualitative form of the solution.
For the present purposes, we emphasize only that this solution smoothly connects the
occluded and peak solutions. The main ramification of this connection is to demand
that the leading-order peak solution, η1/5A(ζ ), vanish at the edges of the blister,
leading to (4.9). (In other words, the matching across the boundary layers can be
effected by ‘patching’ the blister to the occlusion at the blister’s edges.)
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