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Abstract

In this paper we consider a diffusive stochastic predator–prey model with a nonlinear
functional response and the randomness is assumed to be of Gaussian nature. A large
deviation principle is established for solution processes of the considered model by
implementing the weak convergence technique.
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1. Introduction

It is significant to study the qualitative properties of biological models so as to have an insight
into the persistence, structure, and dynamics of biological communities comprising of a number
of species. The analysis of species models mainly contributes to the population dynamics and
also to develop strategies for controlling epidemics of infectious diseases. The interactions
among the species and their dependence with each other have to be permitted in the modeling
process. The pioneering model for the predator–prey interactions was developed by Lotka
and Volterra in the 1920s and since then several models have been proposed by considering
the possible factors affecting the predator–prey populations, and the qualitative properties have
been investigated. For instance, the existence of solutions for a predator–prey model with mixed
boundary conditions was established by Shangerganesh and Balachandran [27]. Sambath and
Balachandran [24] analyzed the spatiotemporal dynamics of a ratio-dependent predator–prey
model with cross diffusion by taking into account the proportion of prey refuge. The stability
and bifurcation analyses of diffusive models with different functional responses have also been
studied by many authors; see, for example, [25] and [28].

Population models are commonly formed in the deterministic sense, but it is more appropriate
to consider the natural stochastic behavior of the system leading to stochastic differential
equations (SDEs). Indeed, it can be observed that the predator and prey populations admit
a fascinating interplay between the nonlinear dynamical behavior of the evolutionary forces
affecting the population dynamics and the stochastic nature of the interactions. The effect of
random perturbations on the system is often measured by means of the approximations of the
central limit theorem. At instances where the normal approximations using the central limit
theorem are not appropriate, large deviation approximations assert to be good as in the case of
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DNA sequencing and in the observation of clusters of mildly similar proteins; see [2] and the
references therein.

Large deviation theory is the study of events with extremely small chances of occurrence.
Those highly improbable events may have a huge impact during their occurrence and so the
study of their qualitative and quantitative properties is indeed essential. A concise introductory
study of large deviations and their applications can be found in [10] and [31]. The study of large
deviations for distributions of SDEs is of interest to many researchers. The theory is mainly
concentrated in estimating the rate at which the occurrence probability becomes negligible. The
study of the large deviation principle (LDP) to SDEs was initiated byVaradhan [31] for diffusion
processes and it was carried over to a general class of diffusion processes by Freidlin [13].
Because of the different nature of nonlinearities affecting the system, each equation has to be
studied individually for the LDP. Considerable work has been carried out concerning the LDP
for differential equations and advancements have also been made with delay type equations;
see, for example, [21]. In [6], Budhiraja and Dupuis established a variational representation for
positive functionals of Brownian motion applicable to the study of large deviations for a variety
of differential equations. It is consequential to exert the variational representation technique
to study the large deviations for solution processes of SDEs (see [26] and [30]) and indeed the
main result to be established in this paper relies on this technique.

The theory of large deviations enables us to quantify the deviation of the SDE from its
corresponding deterministic equation. The theory has been successfully applied to problems
from many areas ranging from physics to biology. Florens-Landais and Pham [12] established
large deviations for an Ornstein–Uhlenbeck model. A moderate deviation principle for the
stochastic Lotka–Volterra model was established by Klebaner et al. [16]. The studies on large
deviations help to describe the phenomena in the rare occurrence of events as in the case
of interacting particle models [3] and protein folding [32]. Large deviations for stochastic
hybrid systems have been established by Bressloff and Newby [5] using the path-integral
representation. The theory can also be applied to a vast range of problems to analyze the
asymptotic behavior of solutions, for instance, to find the time at which the solution vanishes or
reaches a desired state. In the case of population models, the theory helps in predicting the likely
path of extinction of a certain species subject to random disturbances; see, for example, [15],
[17], and [22]. Also the long time behavior of the epidemic processes can be predicted and
the time at which an epidemic becomes extinct can be estimated. Recently, Kratz et al. [18]
analyzed the time of exit from the domain of attraction of a stable equilibrium for an SIR
epidemic model.

In this paper we study the large deviation problem for the predator–prey model considered
by Li [19] with Gaussian random behavior. The problem is studied in its abstract setting and,
hence, enables us to implement the result to a wide range of problems having the same abstract
structure. The Gaussian randomness is considered in the abstract framework and it is to be
mentioned here that the abstract space-valued Brownian motions, Gaussian randomness, or
Wiener processes were first introduced by Gross as a tool to investigate the Dirichlet problems;
see [14]. To establish the LDP for the considered abstract problem, we use the weak convergence
approach by implementing the conclusions of Budhiraja and Dupuis [6]. This method involves
the verification of a sequence of solutions of the associated control equation for its compactness
and the corresponding perturbed equation for a weak convergence result.
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2. Problem formulation

Let O ⊂ R
2 be a two dimensional bounded domain on which the prey and predator

interactions are modeled as a differential equation and the densities of the two populations
are analyzed within the time interval [0, T ] for finite T . We consider the stochastic predator–
prey model which can be written in the abstract formulation on a suitable function space as

du + Au dt = f (u) dt + σ(t, u) dW(t), (1)

with the initial condition u(0) = u0 and Neumann boundary condition ∂u/∂ν = 0, where ν

denotes the outward normal unit vector emanating from the boundary ∂O. Physically inter-
preting, the Neumann conditions mean that the predator or prey populations do not migrate
outside the bounded domain O. In (1), u is a vector representing the predator–prey population
densities, A is the spatial diffusion operator, and f (·) a nonlinear functional response. The
probabilistic or random factors are approximated to be of Gaussian nature and W(·) represents
the Wiener process with its random noise coefficient denoted by σ(t, ·). The study of qualitative
properties in the abstract setting enables us to bring a variety of problems under one shell.
Indeed, in our case it is possible to apply the result to problems with functional responses of
similar characteristics.

Throughout the paper, we intend to work with the Lebesgue and Sobolev spaces—a pre-
cise introduction and significance of these spaces can be gained from [1]. For the Sobolev
space H

1(O), it follows, from Poincare’s inequality and the boundedness of O, that the norm
(
∫
O |∇u(x)|2 dx)1/2 is equivalent to the predefined H

1(O) norm. We make use of this norm
equivalence in all the proceeding analysis.

Let (�, F , P) be a probability space with an increasing family {Ft }0≤t≤T of sub-sigma
fields of F satisfying the right continuity and probability completeness with respect to P. Let
us take

W(t) =
(

W1(t)

W2(t)

)
,

where W1(t) and W2(t) are independent L
2(O)-space-valued Wiener processes. For more

details on stochastic space settings, Hilbert space-valued Wiener processes, and their integrals,
we refer the reader to [8] and [9]; for instance, see [8, Section 3.2] for details on building SDEs
on abstract Hilbert spaces. Let the random coefficient be of the form

σ(t, u) =
(

σ1(t, u1, u2)

σ2(t, u1, u2)

)
,

where u1 and u2 denote the prey and predator populations respectively.
Let Q be the covariance operator of the Wiener process W(t) with the assumption that it

is strictly positive, symmetric, and a trace class operator on L
2(O). Define the space H0 =

Q1/2
L

2(O). Then H0 is a Hilbert space with the inner product

(u, v)0 = (Q−1/2u, Q−1/2v) for all u, v ∈ H0.

The norm in the H0 space will be ‖u‖2
0 = (u, u)0. Since Q is trace class, the identity mapping

from H0 to L
2(O) is a Hilbert–Schmidt operator. In the proof of our main result on the LDP,

the Hilbert–Schmidt embedding H0 in L
2(O) has a major consequence in that it turns weakly

converging sequences in H0 to strong convergence; see [6, Section 2]. In addition, it is to be
remarked that the space H0 is closely associated to the so called Cameron–Martin space (for
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details, see [4] and the references therein). Let L(L2(O); L
2(O)) denote the space of all linear

bounded operators from L
2(O) to L

2(O) and let LQ denote the space of linear operators S such
that SQ1/2 is a Hilbert–Schmidt operator from L

2(O) to L
2(O).

The predator–prey model considered by Li [19] in the nondimensional form with spatial
diffusion and nonlinear Holling type III functional response is given by

∂u1

∂t
− η1�u1 = u1(α − u1) − βu2

1u2

1 + u2
1

, (2)

∂u2

∂t
− η2�u2 = γ u2

1u2

1 + u2
1

− δu2, (3)

where the initial populations of prey and predator are denoted by u1,0 and u2,0, and it is
assumed that the two populations satisfy the Neumann boundary conditions. Also η1 and η2
are positive coefficients describing the spatial diffusion of prey and predator respectively; α

is the carrying capacity of the prey. The positive parameters β, γ , and δ are obtained in the
nondimensionalizing process of the system and are representations of products and ratios of
the intrinsic growth rate and carrying capacity of prey, number of newly born predators for
each captured prey, and death rate of the predators; see [19]. The model is featured in the
sense that the absence of predator permits the prey population to grow at a positive rate but
with the restriction imposed by its carrying capacity. In order to improve the accuracy of the
mathematical analysis, the factors of probabilistic occurrence ought to be involved in the model.
If we define

u =
(

u1
u2

)
, A =

(−η1� − α 0
0 −η2� + δ

)
, (4)

f (u) =

⎛
⎜⎜⎜⎝

−u2
1 − βu2

1u2

1 + u2
1

γ u2
1u2

1 + u2
1

⎞
⎟⎟⎟⎠ , u(0) =

(
u1,0
u2,0

)
= u0, (5)

then the SDE corresponding to the predator–prey system in (2) and (3) can be framed in its
abstract formulation as (1) with initial and Neumann boundary conditions. Let uε denote the
solution of (1) with the noise coefficient perturbed by a small parameter ε > 0 as

duε + Auε dt = f (uε) dt + √
εσ (t, uε) dW(t). (6)

We shall consider the abstract equation (6) with A and f (·) defined as in (4) and (5), and study
the LDP for the corresponding solution process uε. Let us impose the following assumptions
on the multiplicative noise coefficient σ : [0, T ] × H

1(O) → L(L2(O); L
2(O)).

(H1) The function σ ∈ C([0, T ] × H
1(O); LQ(H0; L

2(O))).

(H2) For all t ∈ (0, T ), there exists a positive constant C1 such that, for all u, v ∈ H
1,

‖σ(t, u) − σ(t, v)‖LQ
≤ C1‖∇(u − v)‖L2 . (7)

(H3) For all t ∈ (0, T ) and u ∈ H
1, the following linear growth condition holds:

‖σ(t, u)‖2
LQ

≤ C2(1 + ‖∇u‖2
L2), (8)

where C2 is a positive constant.
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Under the above assumptions, there exists a strong positive solution for the system (6); see [8].
Let H

1(O; R
2+) be the Sobolev space H

1(O) of all R
2+-valued functions, where R

2+ denotes
the first quadrant of R

2. We need the following preliminary lemmas stating the coercivity and
Lipschitz continuity of the linear operator A and nonlinear functional response f (·).
Lemma 1. The following coercive inequality holds for all u = (u1, u2) ∈ H

1(O; R
2+) :

(Au, u) ≥ η‖∇u‖2
L2 − α‖u1‖2

L2 , (9)

where η = η1 ∧ η2 (that is, η = min{η1, η2}).
Proof. The proof follows at once from the definition of the linear operator A. �

Lemma 2. For u, v ∈ H
1(O; R

2+), where u = (u1, u2), v = (v1, v2), the following hold.

(i) Boundedness:

(f (u), u) ≤ β

2
‖u1‖2

L2 +
(

β

2
+ γ

)
‖u2‖2

L2 . (10)

(ii) Lipschitz continuity: when z = (z1, z2) := u − v,

2(f (u) − f (v), z) ≤ η‖∇z‖2
L2 + 4

η
‖z1‖2

L2(1 + β2)(‖u‖2
L2 + ‖v‖2

L2) + 2β2C2

η
‖z‖2

L2

+ γ 2

η
‖z‖2

L2(‖u2‖2
L2 + ‖v2‖2

L2) + 8γ 2Ca

η
‖z2‖2

L2 , (11)

where Ca is a constant taking the value of (area(O))1/2.

Proof. The proof can be found in Appendix A. �

3. The LDP

We implement the theory developed by Budhiraja and Dupuis [6] to establish the Laplace
principle for the family of solutions {uε : ε > 0}of (6). Indeed the Laplace principle and the LDP
are equivalent when the underlying space is Polish; see Theorems 1.2.1 and 1.2.3 in [11]. Let Z
denote the space C([0, T ]; L

2(O)) ∩ L
2((0, T ); H

1(O)). Then Z is complete and a separable
metric space and, hence, Polish; see [1]. The solution uε of the stochastic predator–prey model
in (6) can be written as Gε(W(·)) for a Borel measurable function Gε : C([0, T ]; H0) → Z;
see [20], [30], and the references therein. We are interested in the LDP for the family uε =
Gε(W(·)).

Let A denote the class of H0-valued {Ft }-predictable processes φ which satisfy
∫ T

0
‖φ(s)‖2

0 ds < ∞ almost surely.

Also let SM = {k ∈ L
2((0, T ); H0) :

∫ T

0 ‖k(s)‖2
0 ds ≤ M}. Then SM endowed with the weak

topology is a compact Polish space. Define AM = {� ∈ A : �(ω) ∈ SM, almost surely}. The
proof of our main result on large deviations relies upon the following theorem formulated by
Budhiraja and Dupuis [6, Theorem 4.4].

Theorem 1. Suppose that there exists a measurable map G0 : C([0, T ]; H0) → Z such that
the following two conditions hold.
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(i) Let {kε : ε > 0} ⊂ AM for some M < ∞. If kε converges to k in distribution as
SM -valued random elements, then

Gε

(
W(·) + 1√

ε

∫ ·

0
kε(s) ds

)
→ G0

(∫ ·

0
k(s) ds

)
in distribution as ε → 0.

(ii) For each M < ∞, the set KM = {G0(
∫ ·

0k(s) ds) : k ∈ SM} is a compact subset of Z.

Then the family {uε, ε > 0} satisfies the Laplace principle in Z with the rate function I given
by

I (g) = inf

{
1

2

∫ T

0
‖k(t)‖2 dt; uk = g and k ∈ L2((0, T ); H0)

}

for each g ∈ Z with the convention that the infimum of an empty set is ∞.

Hence, establishing a Laplace principle is now simplified to that of satisfying assumptions (i)
and (ii) for our system. The main theorem of this paper is as follows.

Theorem 2. Let {uε(·) : ε > 0} denote the strong solution of the stochastic system (6). Then
with the assumptions (H1)–(H3) on σ , the family {uε} satisfies the LDP in Z = C([0, T ];
L

2(O)) ∩ L
2((0, T ); H

1(O)) with a good rate function

I (g) = inf
{k∈L2((0,T ); H0) : g=G0(

∫ ·
0 k(s) ds)}

{
1

2

∫ T

0
‖k(s)‖2

0 ds

}
,

where the infimum over an empty set is taken as ∞ and G0(
∫ ·

0k(s) ds) denotes the solution uk

of the system
duk + Auk dt = f (uk) dt + σ(t, uk)k dt, (12)

with uk(0) = u0 and k ∈ AM for some M < ∞.

For the controlled equation (12), the existence of a nonnegative solution uk = (u1,k, u2,k) ∈
Z can be attained using results similar to the ones obtained by Chen and Jungel [7]. The
uniqueness of the solution is assured by the Lipschitz continuity of the noise coefficient σ(t, ·)
and the nonlinearity f (·). Indeed, if there were two solutions, say uk and ũk , for (12) with the
same initial condition, then taking wk = uk − ũk results in

dwk + Awk dt = (f (uk) − f (ũk)) dt + (σ (t, u) − σ(t, ũ))k dt,

with wk(0) = 0. Taking the inner product of the above equation with wk and then integrating
and simplifying further using the Lipschitz continuity of the noise coefficient σ(t, ·) given
by (7) and that of the nonlinearity f (·) given by (11), we finally obtain

sup
0≤t≤T

‖wk(t)‖2
L2 + η

∫ T

0
‖∇wk(s)‖2

L2 ds ≤ C

∫ T

0
‖wk(s)‖2

L2 ds

for some positive constant C < ∞. Applying Gronwall’s inequality yields the desired unique-
ness result. Let us now consider the following controlled stochastic equation associated with (6)
with control kε ∈ AM, ε > 0:

duε
kε + Auε

kε dt = f (uε
kε ) dt + σ(t, uε

kε )k
ε dt + √

εσ (t, uε
kε ) dW(t). (13)
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The existence of a unique strong solution to the above equation follows at once from the
existence of a solution to (6) by implementing the Girsanov’s theorem; see [29] and [30] for a
proof of a similar kind.

Lemma 3. For kε ∈ AM, 0 < M < ∞, and ε > 0, there exists a unique strong solution to
the stochastic controlled equation (13) with uε

kε (0) = u0.

Proof. Since kε ∈ AM, 0 < M < ∞, and ε > 0, by virtue of Girsanov’s theorem (see [9]),
W̃ (·) := W(·) + (1/

√
ε)

∫ ·
0k

ε(s) ds is also a Wiener process with covariance operator Q under
the probability measure

dP̃
ε
kε := exp

{
− 1√

ε

∫ T

0
kε(s) dW(s) − 1

2ε

∫ T

0
‖kε(s)‖2

0 ds

}
dP

and so there exists a solution to (6) with W replaced by W̃ . This, in turn, implies the existence of
solutions to the stochastic controlled system (13) under the probability measure dP. Likewise,
the uniqueness of a solution to (13) also follows by making use of the same Girsanov argument.
This completes the proof. �

Hence, the solution to (13) can be written as Gε(W(·)+(1/
√

ε)
∫ ·

0k
ε(s) ds). Before proceed-

ing to the verification of assumptions (i) and (ii) of Theorem 1, we first put forth the following
preliminary lemma which will aid in estimating the solution processes.

Lemma 4. For the solution process uε
kε = (uε

1,kε , u
ε
2,kε ) of the perturbed stochastic equation

(13) with 0 < ε < η/C2 ∧1/8C2
2 ∧η2/8C2

2 (C2 being the constant in (8) of (H3)), the following
energy estimate holds:

E

{
sup

0≤t≤T

‖uε
kε (t)‖2

L2

}
+ ηE

∫ T

0
‖∇uε

kε (s)‖2
L2 ds ≤ K, (14)

where K is a positive constant defined by

K = C

{
‖u0‖2

L2 + 3ηT

2

}
exp

(
C̃T + 2C2

η

∫ T

0
‖k(s)‖2

L2 ds

)
(15)

and is independent of ε.

Proof. Applying Itô’s formula (see [9]) to the function |uε
kε (t)|2 and integrating over time

from 0 to t , we obtain

‖uε
kε (t)‖2

L2 + 2
∫ t

0
(Auε

kε (s), u
ε
kε (s)) ds

= ‖u0‖2
L2 + 2

∫ t

0
(f (uε

kε (s)), u
ε
kε (s)) ds + 2

∫ t

0
(σ (s, uε

kε (s))k(s), uε
kε (s)) ds

+ ε

∫ t

0
tr(σ (s, uε

kε (s))Qσ ∗(s, uε
kε (s))) ds + 2

√
ε

∫ t

0
(uε

kε (s), σ (s, uε
kε (s)) dW(s)),

where σ ∗ denotes the conjugate of the noise coefficient σ , that is, (σu, v) = (u, σ ∗v) for
u, v ∈ L

2(O). Define the stopping time τN = inf{t : ‖uε
kε (t)‖2

L2 + ∫ t

0 ‖uε
kε (s)‖2

L2 ds > N}.
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Using (9), (10), the Cauchy–Schwarz and Young inequalities, taking the supremum on both
sides, and then taking the expectation, we obtain

E

{
sup

0≤t≤T ∧τN

‖uε
kε (t)‖2

L2

}
+ 2ηE

∫ T ∧τN

0
‖∇uε

kε (s)‖2
L2 ds

≤ ‖u0‖2
L2 + C̃E

∫ T ∧τN

0
‖uε

kε (s)‖2
L2 ds

+ η

2

∫ T ∧τN

0
(1 + ‖∇uε

kε (s)‖2
L2) ds + 2C2

η

∫ T ∧τN

0
‖k(s)‖2

L2‖uε
kε (s)‖2

L2 ds

+ εE

∫ T ∧τN

0
tr(σ (s, uε

kε (s))Qσ ∗(s, uε
kε (s))) ds

+ 2
√

εE

{
sup

0≤t≤T ∧τN

∣∣∣∣
∫ t

0
(uε

kε (s), σ (s, uε
kε (s)) dW(s))

∣∣∣∣
}
, (16)

where C̃ = max{2α, γ } + β/2. Applying the Burkholder–Davis–Gundy inequality (see [23])
for the stochastic integral term on the right-hand side, we obtain

2
√

εE

{
sup

0≤t≤T ∧τN

∣∣∣∣
∫ t

0
(uε

kε (s), σ (s, uε
kε (s)) dW(s))

∣∣∣∣
}

≤ 2
√

2εC2E

{(∫ T ∧τN

0
‖uε

kε (s)‖2
L2(1 + ‖∇uε

kε (s)‖2
L2) ds

)1/2}

≤ √
2εC2

(
E

{
sup

0≤t≤T ∧τN

‖uε
kε (t)‖2

L2

}
+ E

∫ T ∧τN

0
‖∇uε

kε (s)‖2
L2 ds + T

)
,

where we have also made use of the linear growth property of σ(t, ·) given by (8) and Young’s
inequality. Using this in (16) and choosing ε < η/2C2 ∧ 1/8C2

2 ∧ η2/8C2
2 , we end up with the

estimate

E

{
sup

0≤t≤T ∧τN

‖uε
kε (t)‖2

L2

}
+ ηE

∫ T ∧τN

0
‖∇uε

kε (s)‖2
L2 ds

≤ 2

{
‖u0‖2

L2 + C̃E

∫ T ∧τN

0
‖uε

kε (s)‖2
L2 ds

+ 2C2

η

∫ T ∧τN

0
‖k(s)‖2

L2‖uε
kε (s)‖2

L2 ds + 3ηT

2

}
.

Finally, an application of Gronwall’s inequality yields

E

{
sup

0≤t≤T ∧τN

‖uε
kε (t)‖2

L2

}
+ ηE

∫ T ∧τN

0
‖∇uε

kε (s)‖2
L2 ds

≤ C

{
‖u0‖2

L2 + 3ηT

2

}
exp

(
C̃T + 2C2

η

∫ T

0
‖k(s)‖2

L2 ds

)
.

From this estimate, we observe that, as N → ∞, T ∧ τN increases to T and, hence, we finally
obtain the required estimate (14) with K as in (15). �
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Similar to the estimate attained in Lemma 4, it can be established that the following energy
estimate holds for the solution uk of (12):

sup
0≤t≤T

‖uk(t)‖2
L2 + η

∫ T

0
‖∇uk(s)‖2

L2 ds ≤ K̃ (17)

for some positive constant K̃ > 0. The compactness argument (assumption (ii) in Theorem 1)
is established by the following proposition.

Proposition 1. (Compactness) Let M be any finite fixed positive number. Let KM :=
{G0(

∫ ·
0k(s) ds) : k ∈ SM}, where G0(

∫ ·
0k(s) ds) denotes the unique solution uk in Z of the

controlled equation (12) with uk(0) = u0 ∈ L
2(O). Then KM is compact in Z.

Proof. Let {ukn} ∈ KM denote the solution of (12) with the control k replaced by kn ∈
SM, n ∈ N. Since SM is weakly compact, there exists a subsequence of {kn} (still denoted by
{kn}) which converges to a limit k weakly in L

2((0, T ); H0). Take wn = ukn − uk . Then

dwn + Awn dt = [f (ukn) − f (uk)] dt + [σ(t, ukn)kn − σ(t, uk)k] dt. (18)

Integrating and taking the inner product of (18) with wn, we obtain

‖wn(t)‖2
L2 + 2

∫ t

0
(Awn(s), wn(s)) ds

= 2
∫ t

0
(f (ukn(s)) − f (uk(s)), wn(s)) ds

+ 2
∫ t

0
(σ (s, ukn(s))kn(s) − σ(s, uk(s))k(s), wn(s)) ds. (19)

Here, the integrand

2(σ (s, ukn)kn − σ(s, uk)k, wn)

= 2((σ (s, ukn) − σ(s, uk))kn, wn) + 2(σ (s, uk)(kn − k), wn)

≤ 2‖σ(s, ukn) − σ(s, uk)‖LQ
‖kn‖0‖wn‖L2 + 2‖σ(s, uk)(kn − k)‖L2‖wn‖L2

≤ η

2
‖∇wn‖2

L2 + 2C1

η
‖kn‖2

0‖wn‖2
L2 + ‖σ(s, uk)(kn − k)‖2

L2 + ‖wn‖2
L2 .

Using this inequality in (19) along with the coercivity of the linear operator A given by (9) and
the Lipschitz continuity of the nonlinear functional response f (·) given by (11), we have, after
simplification,

‖wn(t)‖2
L2 + η

2

∫ t

0
‖∇wn(s)‖2

L2 ds

≤ K1

∫ t

0
‖wn(s)‖2

L2 ds + K2

∫ t

0
‖wn(s)‖2

L2(‖ukn(s)‖2
L2 + ‖uk(s)‖2

L2) ds

+ 2C1

η

∫ t

0
‖kn(s)‖2

0‖wn(s)‖2
L2 ds +

∫ t

0
‖σ(s, uk(s))(kn(s) − k(s))‖2

L2 ds,
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where K1 = max{2α, 8γ 2C2/η} + 2β2C2/η + 1 and K2 = 4(1 + β2)/η + γ 2/η. Finally, an
application of Gronwall’s inequality results in

‖wn(t)‖2
L2 + η

2

∫ t

0
‖∇wn(s)‖2

L2 ds

≤ C

∫ t

0
‖σ(s, uk(s))(kn(s) − k(s))‖2

L2 ds

× exp

(
K1T + K2

∫ T

0
(‖ukn(s)‖2

L2 + ‖uk(s)‖2
L2) ds + 2C1

η

∫ T

0
‖kn(s)‖2

0 ds

)
,

where C is an arbitrary positive constant. The exponential term is bounded by virtue of (17)
as k and kn are controls from SM . Also, since kn → k weakly in L

2((0, T ); H0) as n → ∞
and σ is a Hilbert–Schmidt operator and, hence, compact, we have σkn → σk strongly in
L

2((0, T ); L
2(O)) and so wn = ukn − uk → 0 in Z. �

Proposition 2. (Weak convergence.) Let {kε : ε > 0} ⊂ AM converge in distribution to k with
respect to the weak topology on L

2((0, T ); H0). Then Gε(W(·)+(1/
√

ε)
∫ ·

0k
ε(s) ds) converges

in distribution to G0(
∫ ·

0k(s) ds) in Z as ε → 0.

Proof. Let kε converge to k in distribution as random elements taking values in SM , where
SM is equipped with the weak topology. Let wε = uε

kε − uk, where uk and uε
kε are solutions of

(12) and (13), respectively. Then wε corresponds to the solution of the SDE

dwε + Awε dt = [f (uε
kε ) − f (uk)] dt + [σ(t, uε

kε )k
ε − σ(t, uk)k] dt + √

εσ (t, uε
kε ) dW(t).

An application of Itô’s formula [9] yields

‖wε(t)‖2
L2 + 2

∫ t

0
(Awε(s), wε(s)) ds

= 2
∫ t

0
(f (uε

kε (s)) − f (uk(s)), w
ε(s)) ds

+ 2
∫ t

0
(σ (s, uε

kε (s))k
ε(s) − σ(s, k(s))k(s), wε(s)) ds

+ ε

∫ t

0
tr(σ (s, uε

kε (s))Qσ ∗(s, uε
kε (s))) ds + 2

√
ε

∫ t

0
(wε(s), σ (s, uε

kε (s)) dW(s)).

Using the coercivity of the diffusion operator A and the Lipschitz continuity of f given by (9)
and (11), the above equation simplifies to

‖wε(t)‖2
L2 + η

∫ t

0
‖∇wε(s)‖2

L2 ds

≤ 2α

∫ t

0
‖wε

1(s)‖2
L2 ds

+ 4(1 + β2) + γ 2

η

∫ t

0
‖wε(s)‖2

L2(‖uε
kε (s)‖2

L2 + ‖uk(s)‖2
L2) ds

+ 2β2C2

η

∫ t

0
‖wε(s)‖2

L2 ds + 8γ 2C2

η

∫ t

0
‖wε

2(s)‖2
L2 ds
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+ 2
∫ t

0
((σ (s, uε

kε (s)) − σ(s, uk(s)))k
ε(s), wε(s)) ds

+ 2
∫ t

0
(σ (s, uk(s))(k

ε(s) − k(s)), wε(s)) ds

+ εC2

∫ t

0
(1 + ‖∇uε

kε (s)‖2
L2) ds + 2

√
ε

∣∣∣∣
∫ t

0
(wε(s), σ (s, uε

kε (s)) dW(s))

∣∣∣∣.
As in the proof of compactness, applying the Cauchy–Schwarz and Young inequalities yields

‖wε(t)‖2
L2 + η

∫ t

0
‖∇wε(s)‖2

L2 ds

≤ 2α

∫ t

0
‖wε

1(s)‖2
L2 ds + 2β2C2

η

∫ t

0
‖wε(s)‖2

L2 ds

+ 4(1 + β2) + γ 2

η

∫ t

0
‖wε(s)‖2

L2(‖uε
kε (s)‖2

L2 + ‖uk(s)‖2
L2) ds

+ 8γ 2C2

η

∫ t

0
‖wε

2(s)‖2
L2 ds

+ η

2

∫ t

0
‖∇wε(s)‖2

L2 ds + 2C2
1

η

∫ t

0
‖kε(s)‖2

0‖wε(s)‖2
L2 ds

+
∫ t

0
‖σ(s, uk(s))(k

ε(s) − k(s))‖2
L2 ds +

∫ t

0
‖wε(s)‖2

L2 ds

+ εC2

∫ t

0
(1 + ‖∇uε

kε (s)‖2
L2) ds + 2

√
ε

∣∣∣∣
∫ t

0
(wε(s), σ (s, uε

kε (s)) dW(s))

∣∣∣∣. (20)

Then taking the supremum in (20) over the interval 0 to T , taking the expectation, and using
Lemma 4 given by (14), we obtain

E

[
sup

0≤t≤T

‖wε(t)‖2
L2

]
+ η

2
E

∫ T

0
‖∇wε(s)‖2

L2 ds

≤ 2αE

∫ T

0
‖wε

1(s)‖2
L2 ds

+ 4(1 + β2) + γ 2

η
E

∫ T

0
‖wε(s)‖2

L2(‖uε
kε (s)‖2

L2 + ‖uk(s)‖2
L2) ds

+ 2β2C2

η
E

∫ T

0
‖wε(s)‖2

L2 ds + 8γ 2C2

η
E

∫ T

0
‖wε

2(s)
2
L2 ds

+ 2C2
1

η
E

∫ T

0
‖kε(s)‖2

0‖wε(s)‖2
L2 ds + E

∫ T

0
‖wε(s)‖2

L2 ds

+ E

∫ T

0
‖σ(s, uk(s))(k

ε(s) − k(s))‖2
L2 ds + εC2(T + K)

+ 2
√

εE

{
sup

0≤t≤T

∣∣∣∣
∫ t

0
(wε(s), σ (s, uε

kε (s)) dW(s))

∣∣∣∣
}
. (21)
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Making use of Burkholder–Davis–Gundy inequality for the stochastic integral term on the
right-hand side, we obtain

2
√

εE

{
sup

0≤t≤T

∣∣∣∣
∫ t

0
(wε(s), σ (s, uε

kε (s)) dW(s))

∣∣∣∣
}

≤ 1

2
E

{
sup

0≤t≤T

‖wε(t)‖2
L2

}
+ 4εC2

2 (T + K).

Using the above estimate in (21) and finally applying Gronwall’s inequality, we end up with

E

[
sup

0≤t≤T

‖wε(t)‖2
L2

]
+ η

2
E

∫ T

0
‖∇wε(s)‖2

L2 ds

≤ C

{
E

∫ T

0
‖σ(s, uk(s))(k

ε(s) − k(s))‖2
L2 ds + εC2(T + K) + 4εC2

2 (T + K)

}

× exp

(
K1T + 2K2K + 2C2

1

η
M

)
, (22)

where K1, K2, and C are appropriate positive constants. Also, note that, as ε → 0, the
right-hand side of (22) converges to 0 resulting in

E

[
sup

0≤t≤T

‖wε(t)‖2
L2

]
+ η

2
E

∫ T

0
‖∇wε(s)‖2

L2 ds → 0.

Since convergence in expectation always implies convergence in probability, we have wε → 0
in probability in the space L

2(�; C([0, T ]; L
2(O)) ∩ L

2((0, T ); H
1(O))). �

Hence, the large deviation result is established with Proposition 1 and Proposition 2.

Appendix A. Proof of Lemma 2

Let us fix the time t since we deal here only with spatial inner products and norms. Consider

(f (u), u) = −(u2
1, u1) −

(
βu2

1u2

1 + u2
1

, u1

)
+

(
γ u2

1u2

1 + u2
1

, u2

)
.

Since (u1, u2) is a positive solution to the system (6), we have −(u2
1, u1) ≤ 0. Using the Holder

and Young inequalities, the second and third inner products can be estimated as

(
βu2

1u2

1 + u2
1

, u1

)
≤ β

∫
O

u2
1(x, t)

1 + u2
1(x, t)

|u1(x, t)||u2(x, t)| dx

≤ β‖u1‖L2‖u2‖L2

≤ β

2
‖u1‖2

L2 + β

2
‖u2‖2

L2

and, similarly, (
γ u2

1u2

1 + u2
1

, u2

)
≤ γ ‖u2‖2

L2 .
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Combining the above three estimates, we obtain (10). In order to prove the Lipschitz continuity
of f (·), let us first consider

2(f (u) − f (v), z)

= −2(u2
1 − v2

1, z1) − 2β

(
u2

1u2

1 + u2
1

− v2
1v2

1 + v2
1

, z1

)
+ 2γ

(
u2

1u2

1 + u2
1

− v2
1v2

1 + v2
1

, z2

)

= IP1 + IP2 + IP3. (23)

The first inner product (IP1) on the right-hand side can be estimated by means of applying the
Holder inequality followed by the Ladyzhenskaya and Young inequalities as

IP1 ≤ 2‖u1 − v1‖L4‖u1 + v1‖L2‖z1‖L2

= 2‖z1‖2
L4‖u1 + v1‖L2

≤ √
2‖z1‖L2‖∇z1‖L2‖u1 + v1‖L2

≤ η

4
‖∇z1‖2

L2 + 4

η
‖z1‖2

L2(‖u1‖2
L2 + ‖v1‖2

L2). (24)

To evaluate the second and third inner products in (23), first consider

∣∣∣∣ u2
1u2

1 + u2
1

− v2
1v2

1 + v2
1

∣∣∣∣ =
∣∣∣∣u

2
1u2 − v2

1v2 + u2
1v

2
1(u2 − v2)

(1 + u2
1)(1 + v2

1)

∣∣∣∣ ≤ |F1| + |F2|.

For the term F1, utilizing the algebraic identity a2b − c2d = (a − c)(ab + cd) + ac(b − d),

the boundedness could be assured as

|F1| =
∣∣∣∣ (u1 − v1)(u1u2 + v1v2) + u1v1(u2 − v2)

(1 + u2
1)(1 + v2

1)

∣∣∣∣ ≤ |u1 − v1|(|u2| + |v2|) + |u2 − v2|.

Also, for the term F2, we obtain
|F2| ≤ |u2 − v2|.

Thus, IP2 can be estimated similar to IP1, in addition using the imbedding result on general L
p

spaces for bounded domains as

IP2 ≤ 2β‖|z1|(|u2| + |v2|) + 2|z2|‖L4/3‖z1‖L4

≤ 2β[‖z1‖L4(‖u2‖L2 + ‖v2‖L2) + 2(area(O))1/4‖z2‖L2 ]‖z1‖L4

≤ η

4
‖∇z1‖2

L2 + 4β2

η
‖z1‖2

L2(‖u2‖2
L2 + ‖v2‖2

L2) + η

4
‖∇z‖2

L2 + 2β2Ca

η
‖z‖2

L2 , (25)

where the constant Ca = (area(O))1/2. Likewise, the third inner product (IP3) can be evaluated
to be

IP3 ≤ η

4
‖∇z‖2

L2 + γ 2

η
‖z‖2

L2(‖u2‖2
L2 + ‖v2‖2

L2) + η

4
‖∇z2‖2

L2 + 8γ 2Ca

η
‖z2‖2

L2 . (26)

The required estimate (11) follows from the estimates (24)–(26).
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