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This paper is concerned with rapid-distortion theory on transversely sheared mean
flows which (among other things) can be used to analyse the unsteady motion
resulting from the interaction of a turbulent shear flow with a solid surface. It extends
previous analyses of Goldstein et al. (J. Fluid Mech., vol. 736, 2013a, pp. 532–569;
NASA/TM-2013-217862, 2013b) which showed that the unsteady motion is completely
determined by specifying two arbitrary convected quantities. The present paper uses a
pair of previously derived conservation laws to derive upstream boundary conditions
that relate these quantities to experimentally measurable flow variables. The result
is dependent on the imposition of causality on an intermediate variable that appears
in the conservation laws. Goldstein et al. (2013a) related the convected quantities
to the physical flow variables at the location of the interaction, but the results were
not generic and hard to reconcile with experiment. That problem does not occur in
the present formulation, which leads to a much simpler and more natural result than
the one given in Goldstein et al. (2013a). We also show that the present formalism
yields better predictions of the sound radiation produced by the interaction of a
two-dimensional jet with the downstream edge of a flat plate than the Goldstein et al.
(2013a) result. The role of causality is also discussed.
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1. Introduction
Rapid-distortion theory (RDT) uses linear analysis to study the interaction of

turbulence with solid surfaces. It applies whenever the turbulence intensity is small
and the length (or time) scale over which the interaction takes place is short compared
to the length (or time) scale over which the turbulent eddies evolve (Hunt 1973;
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Goldstein 1978a, 1979a). When interpreted asymptotically, these assumptions imply,
among other things, that it is possible to identify a distance that is very (infinitely)
large on the scale of the interaction, but still small on the scale over which the
turbulent eddies evolve. The assumptions also imply that the resulting flow is inviscid
and non-heat-conducting and is, therefore, governed by the linearized Euler equations,
i.e. the Euler equations linearized about an arbitrary, usually steady, solution to the
nonlinear equations – customarily referred to as the base flow.

The simplest case occurs when the base flow is completely uniform. In his now
classical paper, Kovasznay (1953) showed that the unsteady isentropic motion on this
flow can be decomposed into the sum of a vortical disturbance that has no pressure
fluctuations and an irrotational disturbance that carries the pressure fluctuations. The
latter satisfies a second-order wave equation when the flow is compressible, and
should either decay or propagate relative to the base flow. It can, therefore, be
associated with the acoustic component of the motion on these flows. The former,
which moves downstream at the mean flow velocity, i.e. it is a purely convected
quantity, can be associated with the remaining, hydrodynamic, component of the
motion. Any convected velocity field will satisfy the linearized momentum equations
for this flow, but continuity only allows two of its components to be arbitrary.
These two quantities can then be independently specified as time-stationary boundary
conditions for unsteady surface interaction problems. This makes the Kovasznay
decomposition particularly useful for analysing problems that involve the interaction
of turbulence (which corresponds to the hydrodynamic component of the motion)
with surfaces embedded in uniform mean flows (Sears 1941), or in flows that become
uniform in the upstream region (Hunt 1973; Goldstein 1978a, 1979a). It is worth
noting, however, that the Kovasznay decomposition is not unique because there
are irrotational (homogeneous) solutions that carry no pressure fluctuations and can
therefore be associated with either the vortical component or with the irrotational
component.

There have been a number of attempts to extend these ideas to non-uniform base
flows, but the situation is considerably more complicated when the entire base flow is
non-uniform. The simplest case occurs when the base flow U is incompressible and
the mean shear is uniform, i.e.

U = γ y2, (1.1)

where γ is a constant and y1, y2, y3 are Cartesian coordinates, with y1 being in the
mean flow direction. Then the two-dimensional small-amplitude motion is determined
by the linearized incompressible vorticity equation, (∂/∂τ +U∂/∂y1)ω

′

3 = 0, where
τ denotes the time and ω′3 the two-dimensional spanwise vorticity perturbation. Orr
(1907, see also Drazin & Reid 1981, pp. 147–151) pointed out that this equation or,
equivalently, the two-dimensional Rayleigh equation

∂

∂y1

(
∂

∂τ
+U

∂

∂y1

)
ω′3 =

(
∂

∂τ
+U

∂

∂y1

)(
∂2

∂y2
1
+
∂2

∂y2
2

)
v′2 = 0, (1.2)

which determines the unsteady cross-gradient velocity perturbation v′2 (y2, τ ) can be
integrated to obtain (

∂2

∂y2
1
+
∂2

∂y2
2

)
v′2 =

∂

∂y1
ωc

(
τ −

y1

γ y2
, y2

)
, (1.3)

where the imposed spanwise vorticity perturbation ω′3, which we denote by ωc,
can be an arbitrary function of its arguments. Orr (1907) obtained an analytic
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solution to an initial value problem associated with this equation and used it to
study the development of the velocity and pressure fluctuations starting from some
initial state. But the long-time solutions to at least some initial value problems are
likely to develop internal shear layers that can no longer be considered inviscid
and are susceptible to Kelvin–Helmholtz instabilities (Brinkman & Walker 2001;
Cowley 2001; Cassel & Conlisk 2014), and are therefore not necessarily relevant
to the time-stationary turbulent flows being considered here. It does, however, seem
reasonable to use the steady state (i.e. time stationary) solutions of this equation to
represent the turbulence in these flows. The solutions will then be of the form

v′2(x, t)=
∂

∂x1

∫ T

−T

∫
g0(x, t | y, τ )ωc

(
τ −

y1

γ y2
, y2

)
dy dτ , (1.4)

where x = {x1, x2}, y = {y1, y2} denote the two-dimensional Cartesian coordinates,
T denotes a large time interval and g0 is a two-dimensional Green’s function that
satisfies the Poisson equation(

∂2

∂x2
1
+
∂2

∂x2
2

)
g0(x, t | y, τ )= δ(t− τ)δ(y− x). (1.5)

The vorticity ω′3, which is equal to the convected quantity ωc(τ − y1/U(y2), y2), can
now be specified as a boundary condition since (1.4) will satisfy (1.3) for any choice
of this quantity. The inner integral in (1.4) will be over a bounded or semibounded
region of space, with the Green’s function g0 chosen to satisfy appropriate transverse
boundary conditions when solid surfaces are present in the flow, and the integral will
be over all space and g0 can therefore be taken to be (4π)−1 ln |x− y|2δ(t− τ) when
they are not. The transverse velocity perturbation v′2(x, t) would then be given by (see
Gradshteyn & Ryshik 1965, p. 406 #3.723)

v′2(x, t)=
∫
∞

−∞

Ḡ0(x2 | y2)ωc(t− x1/γ y2) dy2, (1.6)

with
Ḡ0(x2 | y2)≡

i
2
(sgnω)(sgn y2)e−|ω||x2−y2|/γ |y2| (1.7)

when the convected vorticity ωc(t− y1/U(y2), y2) is taken to be the generic
time-harmonic function

ωc

(
t−

y1

U(y2)
, y2

)
= eiω[t−y1/U(y2)]Ω̃c(y2 :ω), (1.8)

which can be summed over frequency to represent an arbitrary-time-dependent flow.
Some typical results for the transverse velocity perturbation resulting from (1.8) with
Ω̃c(y2 :ω) taken to be

Ω̃c(y2 :ω)= e−[a(y2−y0)]
2

(1.9)

are plotted in figure 1, which shows that this quantity differs from its purely convected
counterpart on a uniform mean flow in that it now decays as x1→±∞.

Similar behaviour is also expected to occur in surface interaction problems, which
might, for example, involve placing a leading edge at y1 = 0 (see figure 2). This
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FIGURE 1. Cross-gradient velocity fluctuations produced by the convected vorticity (1.8)
for the indicated values of the parameters.

Plate
U

Eddy

FIGURE 2. Leading-edge scattering.

implies that the upstream boundary conditions cannot be imposed by simply specifying
v′2 at upstream infinity when constructing solutions to these types of problems.

But (1.3) shows that the Laplacian of the cross-gradient velocity v′2 is equal to the
streamwise derivative of the convected quantity ωc(τ − y1/U(y2), y2) and, therefore,
does not decay, which means that it can be specified infinitely far upstream on the
length scale over which the interaction takes place, which, as noted above, can be still
asymptotically small compared to the scale over which the turbulent eddies evolve.
The important point is that the arbitrary convected quantity ωc(τ − y1/U(y2), y2)
can be determined by specifying an appropriate experimentally measurable quantity
in a region of the flow that is uninfluenced by the rapid-distortion interaction. Not
surprisingly, the situation is somewhat more complex for arbitrary transversely sheared
mean flows, which is further complicated by the need to consider causality. The focus
of this paper is on extending these ideas to such flows and using the results to specify
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appropriate upstream boundary conditions for RDT problems on these more general
mean flows.

Equation (1.3) was extended to three-dimensional compressible motions on general
transversely sheared mean flows by Goldstein (1978b, 1979b) (hereafter referred to as
G78 and G79, respectively) and Goldstein, Afsar & Leib (2013a) (hereafter referred
to as GAL) – who showed how their more general results can be used to formulate
RDT problems that are relevant to aircraft-noise prediction. Their results can be
thought of as a natural generalization of the Kovasznay (1953) decomposition in that
the general formalism developed in those references, which is summarized in § 2 of
the current paper, shows that the bounded solutions to the linearized Euler equations
governing the small-amplitude motion on a transversely sheared mean flow involve
two purely convected quantities that can be arbitrarily specified as input conditions.
But these quantities must be related to physically measurable flow variables in order
to obtain solutions that can be compared with experiment. GAL obtained the required
relations by assuming that they would be the same as those that would exist at the
location of the scattering inhomogeneity in a streamwise-homogeneous flow (that
would exist in the absence of any scattering inhomogeneities in the streamwise
direction). The result was quite complicated (and ultimately had to be approximated)
and, more importantly, required that the physical variables be measured in a different
flow from the one being analysed. As noted above, a major purpose of the present
paper is to relate the convected quantities to the physical variables in a way that
does not exhibit any of these drawbacks by imposing appropriate upstream boundary
conditions in the undisturbed region of the flow being analysed – as was done in
G78 and G79. The present paper generalizes and extends these results and shows by
example that this leads to considerably improved agreement with experiment.

There are a large number of papers (e.g. Taylor 1935; Batchelor & Proudman
1954; Livescu & Madnia 2004; Sagaut & Cambon 2008; Xie, Karimi & Girimaji
2017 and references therein) that use locally homogeneous RDT (which is a kind
of local high-frequency approximation) first introduced by Moffatt (1967) to study
the unsteady motion on planar sheared flows (see Moffatt 1967). But the local
nature of this approximation obviates the need to consider the upstream boundary
condition issue, which is arguably the main focus of this paper. More general global
solutions can be obtained by using non-homogeneous RDT, which usually provides a
more realistic representation of the turbulence but requires the imposition of upstream
boundary conditions. Hunt (1973) used non-homogeneous RDT to study the distortion
of turbulence by an irrotational base flow.

Early work on RDT was restricted to incompressible flows. Goldstein (1978a)
and G79 introduced compressibility effects into the (more general non-homogeneous)
theory, which allowed the inclusion of an acoustic as well as a vortical component
of the motion (as in the Kovasznay 1953 decomposition) and not just a vortical
component. But more importantly, the inclusion of compressibility enabled the
application of RDT to the prediction of the radiated sound field produced by the flow.
GAL used the compressible theory developed in G79 to predict the sound radiation
produced by the interaction of a two-dimensional jet with the downstream edge of
a flat plate. They employed low-frequency asymptotics to obtain a relatively simple
explicit formula and used it to predict the radiated sound field. The results were
in reasonable agreement with data, but the high-frequency roll-off of the predicted
spectrum tended to be much slower than the experimental results. The present paper
shows that this deficiency can be corrected by considering the high-frequency limit.
We again obtain an explicit formula for the radiated sound field that reduces to
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the GAL result when one of its factors is set equal to unity. But this factor also
approaches unity when the appropriately scaled frequency parameter approaches zero
so that the result behaves like a uniformly valid composite solution that applies at
all frequencies. The predictions based on this formula are found to be in much better
agreement with the experiments than those given in GAL.

While GAL and the present paper use the same application to illustrate the general
formalism (i.e. the interaction of a two-dimensional jet with the downstream edge of
a flat plate) the improved relations between the theoretical convected quantities and
the measurable flow variables makes the present results applicable to a wide range
of flow–surface interaction problems. Examples include analysis of more complicated
geometries, such as deformable plates inclined to the mean flow (Chinaud et al. 2014),
which could be of interest in optimization studies for reducing edge-generated noise.

Linear theories are also used to study the shock–turbulence interaction and are
often referred to as linear interaction approximations (LIA) in this context (see for
example, Ribner (1953), Moore (1954), Woushuk et al. (2009, 2012), Huete et al.
(2011, 2012) as well as extensive discussion of the subject by Sagaut & Cambon
(2008)). Compressible RDT and LIA share some common features. Both approaches
decompose the flow into acoustic and vortical components and both use Fourier
and/or Laplace transforms to eliminate the time dependence.

The paper begins by briefly summarizing the results obtained in GAL for the
formal solution to the complete inhomogeneous RDT problem. As in G78 and
G79, the unsteady motion is determined by two convected quantities that can
be arbitrarily specified as boundary (or initial) conditions. But, as noted above,
it is necessary to link these quantities to physical (preferably measurable) flow
variables in order to relate the solution to conditions that can be controlled by
the experimentalist. Conservation laws that relate the convected quantities, physical
variables and transverse particle displacement are summarized in § 3. Section 4
discusses the implications of imposing causality on the solution and shows that the
transverse particle displacement defined in § 3 vanishes at upstream infinity when
this condition is imposed. Section 5 shows that the result for the transverse particle
displacement can be inserted into these conservation laws to obtain an appropriate
set of upstream boundary conditions that link the arbitrary convected quantities to
the physical flow variables. Section 6 shows how the Fourier transforms of these
boundary conditions can be used to relate the spectra of the convected quantities to
the spectra of the physical variables that would actually be measured in an experiment.
The results are then used to obtain a formula for the sound radiation produced by the
interaction of a two-dimensional jet with the trailing edge of a flat plate that extends
the result derived in GAL. The formula is used to obtain numerical predictions that
are compared with data taken at NASA Glenn Research Center (Zaman, Brown
& Bridges 2013; Bridges, Brown & Bozak 2014; Brown 2015) as part of a large
experimental campaign to study jet–surface interaction noise (Brown 2012; Bridges
2014). The comparisons were carried out over a broader range of parameters than
those in GAL, and the agreement is now significantly improved relative to those
results. The solution is also used to discuss the effects of imposing causality.

2. Review of basic formalism and comparison with the Orr result

As in G78, G79 and GAL the flow is assumed to be inviscid and non-heat-
conducting and the fluid is assumed to be an ideal gas so that the entropy is
proportional to ln(p/ργ ) and the squared sound speed is equal to γ p/ρ, where p
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denotes the pressure, ρ the density and γ the specific heat ratio. Then the pressure
p′ = p− p0 and mass flux

ui ≡ ρv
′

i, (2.1)

perturbations (where v′i denotes the velocity perturbation) on a transversely sheared
mean flow with pressure p0 = const., velocity U( yT) and mean sound speed squared
c2( yT), are governed by the linearized Euler equations

D0ui

Dτ
+ δ1iuj

∂U
∂yj
+

∂

∂yi
p′ = 0 (2.2)

and
D0p′

Dτ
+

∂

∂yj
c2uj = 0, (2.3)

where yT ={y2, y3}, y={y1, y2, y3}= {y1, yT} and D0/Dτ ≡ ∂/∂τ +U∂/∂y1 denotes the
convective derivative.

G79 shows that the solution to these equations can be expressed in terms of the two
arbitrary convected functions ω̃c(τ − y1/U, yT) and ϑ(τ − (y1/U), yT) and a potential
function φ that satisfies

Laφ =−ω̃c

(
τ −

y1

U
, yT

)
, (2.4)

where

La ≡
D3

0

Dτ 3
−

∂

∂yi
c2

(
∂

∂yi

D0

Dτ
+ 2

∂U
∂yi

∂

∂y1

)
(2.5)

and the physical variables p′ and ui are determined by

p′ =−
D3

0φ

Dτ 3
, (2.6)

and

ui =

(
δij

D0

Dτ
− δi1

∂U
∂yj

)
λj + εijk

1
c2

∂U
∂yj

∂

∂yk
ϑ
(
τ −

y1

U
, yT

)
, (2.7)

with δij denoting the Kronecker delta, εijk the alternating tensor and

λj ≡
∂

∂yj

D0φ

Dτ
+ 2

∂U
∂yj

∂φ

∂y1
(2.8)

denoting a kind of generalized particle displacement.
It is well known that the mass flux perturbation, ui, can be eliminated between (2.2)

and (2.3) to show that the pressure fluctuation p′ satisfies Rayleigh’s equation

Lp′ = 0, (2.9)

where

L≡
D0

Dτ

(
∂

∂yi
c2 ∂

∂yi
−

D2
o

Dτ 2

)
− 2

∂U
∂yj

∂

∂y1
c2 ∂

∂yj
(2.10)

denotes the usual Rayleigh operator, which is easily shown to be adjoint to the
operator La.
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For reasons given in the introduction, our focus here is on the steady state (i.e.
time stationary) solutions (which are assumed to exist) and we suppose that φ is a
stationary random function (Wiener 1938) and therefore that initial conditions imposed
in the distant past have all decayed out at the finite time t. A formal steady state
solution to (2.4) can then be written as

φ(x, t) = −
∫ T

−T

∫
V

g( y, τ | x, t)ω̃c

(
τ −

y1

U( yT)
, yT

)
dy dτ

+

∫ T

−T

∫
S

n̂jc2

[
g( y, τ | x, t)λj −

∂g( y, τ | x, t)
∂yj

D0φ

Dτ

]
dS(y) dτ , (2.11)

where g( y, τ | x, t) denotes the Rayleigh operator Green’s function which exhibits
incoming wave behaviour as | y|→∞ and satisfies

Lg( y, τ | x, t)= δ( y− x)δ(τ − t), (2.12)

the first two arguments of g( y, τ | x, t) denote the dependent variables and the second
two denote the source variables, T denotes a very large but finite time interval, V is
a region of space bounded by cylindrical (i.e. parallel to the mean flow) surface(s) S
that can be finite, semi-infinite or infinite in the streamwise direction and n̂= {n̂i} is
the unit outward-drawn normal to S. The upper limit +T of the τ -integration can be
replaced by t since g( y, τ | x, t) = 0 for τ > t. The lower limit −T reflects the fact
that the initial conditions must be imposed in the distant past in order to ensure that
they do not contribute to the steady state solution.

Equation (2.11) expresses the solution to (2.4) in terms of the volume source
distribution ω̃c(τ − y1/U( yT), yT) and the values of the potential φ on some arbitrary
cylindrical surfaces S (some or all of which may be at infinity). The analysis is
somewhat unconventional in that the direct Green’s function g now plays the role of
an adjoint Green’s function for the solution φ.

The surface integrals in (2.11) drop out when any of the surfaces S are at infinity
(i.e. when V represents all of space) and they can be eliminated when they are not
by requiring that the Green’s function g satisfies certain boundary conditions on these
bounding surfaces (since g is not uniquely determined by (2.12)). Equation (2.11) then
becomes

φ(x, t)=−
∫ T

−T

∫
V

g( y, τ | x, t)ω̃c

(
τ −

y1

U( yT)
, yT

)
dy dτ . (2.13)

Equations (2.6) and (2.13) show that the pressure perturbation p′ is then given by

p′(x, t)=
∫ T

−T

∫
V

D3
0g(y, τ | x, t)

Dt3
ω̃c

(
τ −

y1

U( yT)
, yT

)
dy dτ (2.14)

while (2.7) and (2.8) show that the corresponding transverse velocity perturbation,

u⊥(x, t)≡ ui(x, t)
∂U
∂xi

/
|∇U| (2.15)

is given by

u⊥ =−
∂U/∂xi

|∇U|

∫ T

−T

∫
V

gi(y, τ | x, t)ω̃c

(
τ −

y1

U( yT)
, yT

)
dy dτ , (2.16)
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where

gi(y, τ | x, t)≡
D0

Dt

(
∂

∂xi

D0

Dt
+ 2

∂U
∂xi

∂

∂x1

)
g( y, τ | x, t). (2.17)

Inserting equation (B.12) of Goldstein, Afsar & Leib (2013b) into this result, noting
that the integral over the second term vanishes and that the relevant Poisson’s equation
Green’s function is self-adjoint (i.e. g0(y, τ | x, t)= g0(x, t | y, τ )), shows that it reduces
to (1.4) for two-dimensional incompressible flows with constant mean shear when
the arbitrary convected quantity ω̃c(τ − y1/U(yT), yT) is replaced by the renormalized
convected quantity

ωc(τ − y1/U( yT)yT)≡ ω̃c(τ − y1/U( yT), yT)|∇U|/ρc2, (2.18)

which has dimensions of vorticity (based on the rescaled velocity ui). Equation
(2.16) which, like (2.14), does not depend on the second arbitrary convected quantity
ϑ(τ − y1/U, yT) is, therefore, a generalization of the Orr result (1.4). The most
significant difference is that the convected quantity ωc is no longer equal to the
spanwise vorticity.

GAL show that (2.14) will apply even when solid surfaces and accompanying
downstream wakes are present in the flow if g( y, τ | x, t) and ϑ(τ − y1/U, yT) are
required to satisfy appropriate boundary conditions on these surfaces and g( y, τ | x, t)
is required to satisfy appropriate jump conditions across the downstream wakes.
The formulae (2.14) and (2.16) for the physical variables p′ and u⊥ can then be
viewed as formal solutions to the complete non-homogeneous RDT problem (in the
usual case where the solid surfaces are aligned with the constant velocity surfaces).
They effectively reduce the RDT problem to the problem of finding the Rayleigh’s
equation Green’s function that satisfies the appropriate boundary conditions on the
bounding surfaces S. The solution p′(x, t) will then be independent of the second
convected quantity ϑ(τ − y1/U, yT) and the acoustic field will only depend on the
single convected quantity ω̃c(τ − y1/U( yT), yT).

In the absence of scattering surfaces and other external sources, the unsteady flow
(2.14)–(2.17) consists entirely of subsonically propagating disturbances when the mean
flow is purely subsonic and, therefore, cannot radiate to the far field (Goldstein 2005,
2009). This can easily be verified in any particular case by working out the relevant
far-field expansion. It is therefore appropriate to identify it with the hydrodynamic
component of the motion.

3. Conservation laws for ω̃c, ϑ , transverse particle displacement and physical
variables
This section summarizes the conservation laws derived in Goldstein et al. (2013b)

and G79 that relate the arbitrary convected quantities ω̃c(τ − y1/U, yT) and ϑ(τ − y1/
U, yT) and a quantity, which we refer to as the transverse particle displacement, to the
physical variables. The next section shows that this transverse particle displacement
vanishes when y1 → −∞ and § 5 shows how these results can be used to obtain
upstream boundary conditions that relate ω̃c(τ − y1/U, yT) and ϑ(τ − y1/U, yT) to the
physical (hopefully measurable) flow variables.

The conservation laws, which are given by (3.1) and (3.2) of Goldstein et al.
(2013b), can be written as

∂

∂y1

(
ω̃c − p′ −

∂Ni

∂yi
η⊥

)
=NkΓk,0 +

(
∂Nk

∂yi
−
∂Ni

∂yk

)
Γk,i (3.1)
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Ni

(
εijkΓk,j + εij1

∂η⊥

∂yj

)
= 0, (3.2)

where ω̃c is related to the rescaled vortical-like quantity ωc by (2.18),

Ni ≡
c2

|∇U|2
∂U
∂yi
, (3.3)

Γk,0(y, τ ) ≡ ∇2(uk − u(c)k )−
∂

∂yk
∇ · (u− u(c))=∇2(uk − u(c)k )+

∂

∂yk

(
c−2 D0p′

Dτ

)
−

∂

∂yk

[
(u− u(c)) · c2

∇

(
1
c2

)]
(3.4)

and
Γk,i ≡

∂

∂yi
(uk − u(c)k ), for i= 1, 2, 3 (3.5)

are source functions and we have used (2.3) to obtain the last member of (3.4).

u(c)k ≡ εknm
1
c2

∂U
∂yn

∂ϑ

∂ym
(3.6)

is the velocity component generated by the second convected quantity ϑ , and

η⊥(x, t)≡ (∂U/∂xi)λi =
∂U
∂yj

(
∂

∂yj

D0φ

Dτ
+ 2

∂U
∂yj

∂φ

∂y1

)
, (3.7)

is the transverse particle displacement.
Equations (2.7) and (2.15) show that η⊥ is related to u⊥ by

u⊥ =
1
|∇U|

D0

Dτ
η⊥, (3.8)

which justifies referring to it as the transverse particle displacement.
Equations (3.1) and (3.4)–(3.6) relate the arbitrary convected quantities ω̃c(τ − y1/

U(yT), yT) and ϑ(τ − y1/U(yT), yT) to the pressure p′, density-weighted velocity u and
the transverse particle displacement η⊥, while (3.2) and (3.4)–(3.6) relate the arbitrary
convected quantity ϑ(τ − y1/U(yT), yT) to the pressure p′, density-weighted velocity u
and the transverse particle displacement η⊥.

The tensor (∂Nk/∂yi − ∂Ni/∂yk) is equal to zero and u(c)k drops out of the first term
on the right-hand side of (3.4) for planar base flows, where c2 and U depend on a
single Cartesian coordinate (say y2) and (3.1) then becomes

∂

∂y1

(
ω̃c − p′ −

dN2

dy2
η⊥

)
=N2

[
∇ · [c−2

∇(c2u2)] +
∂

∂y2

(
c−2 D0p′

Dτ

)]
, (3.9)

which is independent of u(c)i and, therefore, of the second convected quantity ϑ . But
the divergence ∂Ni/∂yi is equal to zero for the constant shear-constant c2 parallel mean
flow (1.1), since Ni is a constant in that case, and it follows from (2.18) that (3.9) then
reduces to Möhring’s (1976) result

∂

∂y1

(
ρωc −

γ p′

c2

)
=∇ · [c−2

∇(c2u2)] +
∂

∂y2

(
c−2 D0p′

Dτ

)
(3.10)

and to Orr’s equation (1.3) when the flow is incompressible and two-dimensional.
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The particle displacement η⊥ which appears in equations (3.1) and (3.2) is not
actually a physical variable in the usual sense, and requires further clarification,
which is provided in the next section. However, our interest here is in obtaining a set
of upstream boundary conditions that relate ω̃c and ϑ to the physically measurable
variables at upstream infinity, which can be obtained by taking the limit as y1→−∞

of these equations. This greatly simplifies the formulae and, as will be shown below,
even allows us to obtain an explicit formula for ω̃c.

4. Particle displacement and causality

As indicated in the paragraphs above and below equations (2.11) and (2.12), our
interest is in time-stationary solutions which are assumed to exist for the physical
variables p′ and u⊥. It is therefore appropriate to work with the temporal Fourier
transforms

p̄′(x :ω)≡ lim
T→∞

1
2π

∫ T

−T
eiω tp′(x, t) dt, ū⊥(x :ω)≡ lim

T→∞

1
2π

∫ T

−T
eiω tu⊥(x, t) dt,

(4.1a,b)
where the integrals are to be interpreted in a stochastic sense and the limits are
to be taken after the statistical quantities are calculated (Wiener 1938). (Laplace
transforms would not be appropriate here.) However, the formula (2.13) for the
potential φ is still only formal in that the integrand on the right-hand side has a
non-integrable singularity at y = x. But the corresponding integrands in (2.14) and
(2.16) for the physical variables p′ and u⊥ remain finite, and these quantities are
therefore (stochastically) well defined. In fact, GAL, G78 and G79 show that they
are given by

p̄′(x :ω)= (2π)2
∫

AT

eiωx1/U( yT )Ḡ0( yT | xT :ω, ω/U( yT))Ω̄c( yT :ω) dyT, (4.2)

and

ū⊥(x :ω)=−(2π)2
∂U
∂xi

1
|∇U|

∫
AT

eiωx1/U( yT )Ḡi( yT | xT :ω, ω/U( yT))Ω̄c( yT :ω) dyT,

(4.3)
respectively, where yT is defined below (2.3), AT denotes the cross-sectional area such
that

∫
AT

∫
∞

−∞
· dyT dy1 =

∫
V · dy, Ω̄c(x :ω) is defined as the limit T→∞ of

Ω̄c( yT :ω, T)≡
1

2π

∫ T

−T
eiωzω̃c(z, yT) dz, (4.4)

Ḡ0( yT | xT :ω, ω/U( yT))≡ lim
k1→ω/U( yT )

Ḡ0(y⊥ | x⊥ :ω, k1), (4.5)

where

Ḡ0( y
⊥
| x⊥ :ω, k1) ≡

[ik1U(xT)− iω]3

(2π)2

×

∫
∞

−∞

∫
∞

−∞

ei[k1( y1−x1)+ω(t−τ)]g( y, τ | x, t) d( y1 − x1) d(t− τ) (4.6)
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satisfies the reduced inhomogeneous Rayleigh’s equation

LRḠ0 ≡
1

(2π)2
δ(xT − yT), (4.7)

with LR being the reduced Rayleigh operator

LR ≡∇T ·

{
c2∇T

[ω−U( yT)k1]
2

}
+ 1−

c2k2
1

[ω−U( yT)k1]
2

(4.8)

written in terms of the Laplacian ∇T with respect to the transverse coordinate yT .
Appendix A shows that Ḡ0( yT | xT :ω, ω/U( yT)) remains finite and is continuous at
yT = xT for two-dimensional mean flows, and a similar analysis would show that this
is true in general, but the notation becomes very tedious in that case. Appendix A
also shows that

Ḡi( yT | xT :ω, k1)≡
1

[ik1U(xT)− iω]
∂

∂xi
Ḡ0(yT | xT :ω, k1), i= 1, 2, 3 (4.9)

remains finite and continuous at yT = xT for two-dimensional mean flows. It therefore
follows from (4.3), the first line of (B 4), (B 6) and inversion of the Fourier transform
(4.1) that

ū⊥(x :ω)→
eiωx1/U(x2)

x2
1

Ū⊥(xT, ω), as x1→−∞ (4.10)

and
u⊥(x, t)→

1
x2

1
U⊥(t− x1/U(x2), xT), as x1→−∞, (4.11)

where the purely convected quantity U⊥(t− x1/U(x2), xT) is a function of the indicated
arguments and Ū⊥(xT, ω) is the Fourier transform of that quantity. The comment
below (4.8) suggests that these results, which generalize the behaviour discussed in
the introduction, are expected to apply to much more general transversely sheared
mean flows (such as those described below) even though they were derived for
two-dimensional base flows.

The Fourier transform

η̄⊥(x, ω)≡ lim
T→∞

1
2π

∫ T

−T
eiω tη⊥(x, t) dt (4.12)

of the transverse particle displacement (3.7), which formally satisfies

∂η̄⊥(x, ω)
∂x1

=−(2π)2
∂U
∂xi

∫
AT

eiωx1/U( yT )
Ḡi( yT | xT :ω, ω/U( yT))

U(xT)−U( yT)
Ω̄c( yT :ω) dyT, (4.13)

will become unbounded at y = x since, as shown in appendix A for the two-
dimensional case, Ḡi( yT | x :ω, ω/U( yT)) will usually not vanish when yT = xT .
It can be made finite in a number of ways. But there is only one possibility if
causality is also imposed. This amounts to assuming that the time-stationary solutions
will exist even when η⊥(x, t) is assumed to be identically zero in the distant past.
This can be implemented by using the Briggs (1964)–Bers (1975) procedure, which
amounts to letting ω have a small positive imaginary part, say ε, and taking the
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limit as ε→ 0 of the resulting formula. It is not possible to do this directly in the
present case, but (4.13) can represented as the limit of a sequence and this procedure
can be used to impose causality on each term of that sequence. (Details are given
in appendix C.) It could, however, be argued that η⊥ need not be causal because it
is not actually a physical variable, but the conservation laws (3.1)–(3.2) and, more
importantly, the upstream boundary conditions would then also be non-causal. Our
primary interest is in the upstream behaviour of η⊥, which will be used to derive
the upstream boundary conditions referred to in the introduction. The analysis in
appendix C shows that

∂η̄⊥(x, ω)
∂x1

→ 0, as x1→−∞ (4.14)

when causality is imposed, which implies that

∂η⊥(x, t)
∂x1

→ 0, as x1→−∞ (4.15)

in this case. Different results would be possible if causality were not imposed.

5. Upstream boundary conditions and relation of ω̃c, ϑ to the physical variables
It is useful, although not essential, to first split the dependent variables into a

hydrodynamic component, which does not directly produce any sound at subsonic
Mach numbers, and a non-hydrodynamic component, which accounts for the
remaining – including the acoustic – components of the motion, before attempting to
derive the relevant boundary conditions. We can then think of the former component
as being an upstream ‘input’ that generates a downstream ‘response’ when it interacts
with streamwise changes in the boundary conditions.

As is well known, it is impossible to unambiguously decompose the unsteady
motion on a transversely sheared mean flow into acoustic and hydrodynamic
components. We can, however, require that the hydrodynamic component not radiate
any sound at subsonic Mach numbers, with all the acoustic radiation being accounted
for by the remaining non-hydrodynamic component. Then, in order to identify the
input disturbance with the hydrodynamic component of the motion, we divide the
Rayleigh equation Green’s function g(y, τ | x, t) that appears in the time-dependent
solution (2.13)–(2.16) into two components, say

g( y, τ | x, t)= g(H)(y, τ | x, t)+ g(s)(y, τ | x, t), (5.1)

where g(H)(y, τ | x, t) denotes a particular solution of (2.12) which is defined on all
space when the bounding surfaces S are all at infinity or, more generally, satisfies
appropriate boundary conditions (given in Goldstein et al. 2013a,b) on a constant
mean velocity surface that extends from minus to plus infinity in the streamwise
direction. The corresponding solution, which is given by (2.14) and (2.16) with
g( y, τ | x, t) replaced by g(H)(y, τ | x, t), does not produce any acoustic radiation and
can, therefore, be identified with the hydrodynamic component of the unsteady motion.
The corresponding ‘scattered solution’, g(s)(y, τ | x, t), satisfies the homogeneous
Rayleigh’s equation along with appropriate inhomogeneous boundary and jump
conditions on the streamwise discontinuous surfaces S and, therefore, accounts for all
of the acoustic components of the motion.
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We now obtain the relevant upstream boundary conditions for the convected
quantities ω̃c and ϑ by taking the upstream limit of (3.1) and (3.2), but with
g(y, τ | x, t) replaced by g(H)(y, τ | x, t). This is most easily done by using the
frequency representation discussed in § 3. The reduced Rayleigh equation Green’s
function Ḡ0( yT | x :ω, k1) that appears in the frequency domain solutions (4.2), (4.3)
and (4.13) then has the decomposition

Ḡ0( yT | x :ω, k1)= Ḡ(H)( yT | x :ω, k1)+ Ḡ(s)(yT | x :ω, k1), (5.2)

where Ḡ(H)( yT | x :ω, k1) is either defined on all space when the bounding surfaces S
are all at infinity or satisfies

n̂j

[ω− k1U( yT)]
2

∂

∂yj
Ḡ(H)(yT | x :ω, k1)= 0, for yT ∈CT, (5.3)

(where CT denotes the bounding curve/curves that generate the doubly infinite
surface/surfaces S) when they are not. The streamwise-homogeneous Green’s functions
g(H)(y, τ | x, t) and Ḡ(H)( yT | x :ω, k1) will then depend on y1 and x1 only in the
combination x1 − y1 and we, therefore, write

Ḡ(H)( yT | x :ω, k1)= Ḡ(H)( yT | xT :ω, k1). (5.4)

The convected quantity ω̃c is determined by (3.1) and (3.2), whose Fourier transforms
are given by

∂

∂y1
[eiωy1/U( yT )Ω̄c( yT :ω)− p̄′(y :ω)] −

dNi

dyi

∂η̄
(H)
⊥ (y :ω)
∂y1

= eiωy1/U( yT )

[
NkΓ̄k,0( y :ω)+

(
∂Nk

∂yi
−
∂Ni

∂yk

)
Γ̄k,i(y :ω)

]
(5.5)

and

Ni

(
εijkΓ̄k,j + εij1

∂η̄
(H)
⊥

∂yj

)
= 0, (5.6)

where η̄(H)⊥ ( y :ω) is given by (4.13) with Ḡi( yT | x :ω, k1) replaced by Ḡ(H)
i ( yT | x :ω,

k1)
Ω̄c( yT :ω)≡ lim

T→∞
Ω̄c( yT :ω, T) (5.7)

and Γ̄k,i(y :ω)≡ limT→∞ Γ̄k,i(y :ω, T) for k= 0, 1, 2, 3 with

Γ̄k,i(y :ω, T)≡
1

2π

∫ T

−T
eiω[τ−y1/U( yT )]Γk,i(y, τ ) dτ , (5.8)

where Γk,i, i= 0, 1, 2, 3, are defined by (3.4) and (3.5).
Then, since we have shown that the Fourier transform η̄

(H)
⊥ ( y :ω) of the transverse

particle displacement η(H)⊥ vanishes as y1→−∞, and an argument similar to that used
to obtain (B 6) shows that p̄′(y :ω) should vanish like y−2

1 as y1→−∞, (5.5) and (5.6)
imply that

Ω̄c( yT :ω, T)→
1
iω

U( yT)

[
NkΓ̄

∞

k,0(y :ω)+
(
∂Nk

∂yi
−
∂Ni

∂yk

)
Γ̄ ∞k,i

]
, as y1→−∞ (5.9)
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and
NiεijkΓ̄

∞

k,j → 0, (5.10)

where
Γ̄ ∞k,i (y :ω, T)≡ lim

y1→−∞
Γ̄k,i(y :ω, T). (5.11)

These results provide the desired relations between the convected quantities ω̃c(τ − y1/
U( yT), yT), ϑ(τ − y1/U( yT), yT) and the upstream limit Γ̄ ∞k,i (y :ω), for i = 0, 1, 2, 3
of the physically measurable variables that enter through Γk,i(y, τ ) in an arbitrary
transversely sheared mean flow.

But the focus in the remainder of the paper will be on the two-dimensional mean
flows for which ∂Nk/∂yi − ∂Ni/∂yk = 0 and (5.9) becomes

Ω̂c(y2 :ω, k3, T)=
1
iω

U(y2)N2Γ̂∞, (5.12)

where

Ω̂c(y2;ω, k3, T) ≡
1

2π

∫ T

−T
e−iy3k3Ω̄c( yT :ω, T) dy3

=
1

(2π)2

∫ T

−T
e−iy3k3

∫ T

−T
eiωξ ω̃c(ξ , yT) dξ dy3 (5.13)

is the double Fourier transform of the convected quantity ω̃c(ξ , yT) and

Γ̂∞(y2;ω, k3, T) =
1

2π

∫
∞

−∞

e−iy3k3Γ̄ ∞2,0( yT :ω, T) dy3

=
1

(2π)2
lim

y1→−∞

∫
∞

−∞

e−iy3k3

∫ T

−T
eiω[τ−y1/U( yT )]Γ2,0(y, τ ) dτ dy3

(5.14)

is the upstream limit of the double Fourier transform of the physically measurable
vorticity derivative Γ2,0 given by (3.4).

But (3.4) and (3.6) imply that

Γ2,0(y, τ )=∇2u2 −
∂

∂y2
∇ · u=∇ · [c−2

∇(c2u2)] +
∂

∂y2

(
c−2 D0p′

Dτ

)
(5.15)

for two-dimensional mean flows and, therefore that Γ2,0(y, τ ) and, consequently,
Γ̂∞(y2;ω, k3, T) only depend on the physical variables u2 and p′ for these mean
flows. Equation (5.12) therefore provides the desired upstream boundary condition that
relates the Fourier transform of the unknown convected quantity ω̃c(τ − y1/U( yT), yT)
to the physically measurable quantity (5.15) in this case.

But we can go even further than this, since an argument similar to that given at the
end of appendix B can be used to show that p′ should vanish like 1/y2

1 as y1→−∞,
and limy1→∞ Γ2,0 is, therefore, given by ∇ · [c−2∇(c2u2)]. Inserting (4.11) into this
result, noting that u⊥(x, t)= u2(x, t) in this case, shows that

∇ · [c−2
∇(c2u2)]→

∂2u2

∂y2
2
→

[
∂U(y2)/∂y2

U2(y2)

]2
∂2

∂τ 2
U2(τ − y1/U(y2), yT), y1→−∞.

(5.16)
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Inserting this into (5.8) and (5.11), and integrating the result by parts shows that

Γ̄ ∞2,0(y :ω, T)= Γ̄ ∞2,0( yT :ω, T)=
1

2π

∫ T

−T
eiω[τ−y1/U( yT )]Γ∞(y, τ ) dτ , (5.17)

where

Γ∞(y, τ )≡
[
∂U(y2)/∂y2

U2(y2)

]2
∂2

∂τ 2
U⊥(τ − y1/U( yT), yT)=Γ∞(τ − y1/U( yT), yT). (5.18)

6. Relation between the ω̃c spectra and measurable turbulence correlations
But only statistical quantities, such as

, (6.1)

where Γ̂∞ is defined by (5.15) and (5.14), are of interest for the time-stationary
turbulent flows that are the main focus of RDT. For simplicity, we only consider
mean flows that are uniform in the y3-direction and suppose that the turbulence is
statistically homogeneous in the spanwise direction. Then the space–time average

〈Γ∞(y, τ )Γ∞( y1, ỹ2, y3 + η3, τ + τ̃ )〉

≡ lim
T→∞

1
2T

∫ T

−T

∫
∞

−∞

Γ∞( yT, τ − y1/U(y2))Γ∞(ỹ2, y3 + η3, τ − ỹ1/U(ỹ2)+ τ̃ ) dτ dy3

= lim
T→∞

1
2T

∫ T

−T

∫
∞

−∞

Γ∞( yT, τ )Γ∞(ỹ2, y3 + η3, τ + τ̃ − [y1/U(ỹ2)− y1/U(y2)]) dτ dy3

(6.2)

will exist and be independent of τ , y3 and it follows from the convolution theorem
that

1
(2π)2

∫
∞

−∞

∫
∞

−∞

exp{i[ω(τ̃ − [ỹ1/U(ỹ2)− y1/U(y2)])− k3η3]}

× 〈Γ∞(y, τ )Γ∞(ỹ1, ỹ2, y3 + η3, τ + τ̃ )〉 dτ̃ dη3

= (2π)2 lim
T→∞

Γ̂∞(y2;ω, k3, T)[Γ̂∞(ỹ2;ω, k3, T)]∗

2T
, (6.3)

where Γ̂∞(y2;ω, k3, T) is given by (5.14) and the asterisk denotes the complex
conjugate.

It, therefore, follows from (5.12) and (6.3) that

S(y2, ỹ2 : k3, ω)

≡ (2π)3 lim
T→∞

Ω̂c(y2 :ω, k3; T)Ω̂∗c (ỹ2 :ω, k3; T)
2T

=
1

2π

∫
∞

−∞

∫
∞

−∞

ei(ωτ̃−k3η3)〈ω̃c(t, yT)ω̃c(t+ τ̃ , ỹ2, y3 + η3)〉 dτ̃ dη3

=
U(y2)U(ỹ2)N2Ñ2

2πω2

∫
∞

−∞

∫
∞

−∞

e{i[ω(τ̃−[ỹ1/U(ỹ2)−y1/U(y2)])−k3η3]}

×〈Γ∞(y, t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 dτ̃ dη3, (6.4)

where Ω̂c(y2 :ω, k3, T) is given by (5.13).
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6.1. Source model
Since the problem is linear, it follows from (4.3) and (5.13) that the complete solution
to any problem where the surface extends continuously from −∞< x3 <∞, say for
the Fourier-transformed transverse velocity fluctuation ū⊥(x1, x2; k3, ω), must be of the
form

ū⊥(x1, x2;ω, k3)=

∫
lT

R(y2 | x1, x2;ω, k3)Ω̂(y2 :ω, k3) dy2, (6.5)

which means that knowledge of Ω̂( y2 :ω, k3) is all that is actually needed for the
two-dimensional mean flow solutions being considered here. A similar formula would,
of course, also hold for the Fourier-transformed pressure fluctuation p̂′(x1, x2; k3, ω).

The spectrum, S(y2, ỹ2 : k3, ω) of the convected quantity ω̃c, which is related to
the cross-correlation 〈Γ∞(y, t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 of the upstream vorticity
fluctuation by (6.4) needs to be specified before formulae for the acoustic spectrum
such as the one derived in GAL can actually be used. While (5.18) and (5.16) show
that

Γ∞(y, τ )= lim
y1→−∞

∇ · [c−2
∇(c2u2)] (6.6)

and therefore 〈Γ∞(y,t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 corresponds to a physically measurable
correlation, we are unaware of any measurements of this quantity that have actually
been carried out. But the transverse velocity correlation 〈v′2(t, y)v′2(t+ τ̃ , ỹ)〉, which
has been extensively measured, can be well represented by the exponential form

A(y2, ỹ2)ρ(y2)ρ(ỹ2)

{
1+ a1(τ̃ − [ỹ1/U(ỹ2)− y1/U(y2)])

∂

∂τ̃

}
× exp−

√
[ f (η2/l2)]2 + {τ̃ − [ỹ1/U(ỹ2)− y1/U(y2)]}2/τ

2
0 + (η3/l3)2, (6.7)

where the derivative term accounts for the negative tail of the correlation and the
amplitude A(y2, ỹ2) is expected to vanish as y2, ỹ2 → 0, ∞. We therefore initially
suppose that 〈U⊥(t− y1/U(y2), yT)U⊥(t+ τ̃ − ỹ1/U(ỹ2), ỹ2, y3 + η)〉 = limy1→−∞ y4

1
〈u⊥(y1, yT, t)u⊥(y1, ỹT, t+ τ̃ )〉 = limy1→−∞ y4

1〈ρv
′

⊥
( y1, yT, t)ρv′

⊥
(y1, ỹT, t+ τ̃ )〉 can be

modelled by

〈U⊥(t− y1/U(y2), yT)U⊥(t+ τ̃ − ỹ1/U(ỹ2), ỹ2, y3 + η3)〉

= A( y2, ỹ2)l4
2ρ(y2)ρ(ỹ2)

{
1+ a1(τ̃ − [ỹ1/U(ỹ2)− y1/U(y2)])

∂

∂τ̃

}
× exp−

√
[ f (η2/l2)]2 + {τ̃ − [ỹ1/U(ỹ2)− y1/U(y2)]}2/τ

2
0 + (η3/l3)2, (6.8)

which as shown by (5.18) is related to 〈Γ∞( y, t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 by

〈Γ∞(y, t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 =
[
(dU/dy2)(dU/dỹ2)

U2(ỹ2)U2(y2)

]2
∂4

∂τ 4

×〈U⊥(t− y1/U(y2), yT)U⊥(t+ τ̃ − ỹ1/U(ỹ2), ỹ2, y3 + η)〉. (6.9)

Equation (40) of Leib & Goldstein (2011) can be used to show that the spectrum (6.3)
of this quantity is given by the following Hankel transform

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.350


494 M. E. Goldstein, S. J. Leib and M. Z. Afsar∫
∞

−∞

∫
∞

−∞

ei[ω(τ̃−[ỹ1/U(ỹ2)−y1/U(y2)])−k3η3]〈Γ∞(y, t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 dτ̃ dη3

= 2πτ0l3l4
2A( y2, ỹ2)ρ(y2)ρ(ỹ2)

[
∂U/∂y2

U2(y2)

∂U/∂ ỹ2

U2(ỹ2)
ω2

]2 [
1− a1

(
1+ω

∂

∂ω

)]
×

∫
∞

0
J0

(
r
√
(ωτ0)2 + (k3l3)2

)
e−
√
[ f (η2/l2)]2+r2

r dr. (6.10)

And it follows from (A 14) and (A 18) of Afsar, Sescu & Leib (2016) that∫
∞

−∞

∫
∞

−∞

ei[ω(τ̃−[ỹ1/U(ỹ2)−y1/U(y2)])−k3η3]〈Γ∞(y, t)Γ∞(ỹ1, ỹ2, y3 + η3, t+ τ̃ )〉 dτ̃ dη3

=−2πτ0A( y2, ỹ2)l3l4
2ρ(y2)ρ(ỹ2)

[
∂U/∂y2

U2(y2)

∂U/∂ ỹ2

U2(ỹ2)
ω2

]2

×

[
1− a1

(
1+

(ωτ0)
2

χ

∂

∂χ

)]
1
χ

∂

∂χ

(
e−|f (η2/l2)|χ

χ

)
, (6.11)

where
χ ≡

√
1+ (ωτ0)2 + (k3l3)2 (6.12)

and (6.4) then shows that

S(y2, ỹ2 : k3, ω) = −(ρ∞c2
∞
)2τ0l4

2l3A(y2, ỹ2)

[
dU
dy2

dU
dỹ2

ω2

U3(ỹ2)U3( y2)

]
×

[
1− a1

(
1+

(ωτ0)
2

χ

∂

∂χ

)]
1
χ

∂

∂χ

(
e−| f (η2/l2)|χ

χ

)
(6.13)

since ρc2 is constant in transversely sheared flows.

7. Application to a large-aspect-ratio rectangular jet
The problem of a two-dimensional jet interacting with the trailing edge of a flat

plate is currently of considerable interest because of its relevance to understanding
noise production in future aircraft configurations, such as that shown in figure 3, in
which the engine exhaust is of a very wide aspect ratio on an almost rectangular jet.

GAL analysed the model problem shown in figure 4 in order to represent the
interaction between a jet emanating from a large-aspect-ratio rectangular nozzle with
the trailing edge of a flat plate, and compared the results with recent experiments
on this configuration that were performed at NASA Glenn Research Center (Zaman
et al. 2013; Brown 2015).

They considered the general case where the mean flow is non-zero at the surface
of the plate, and therefore leaves the trailing edge with different velocities above
and below the interface. But, as shown below, the surface velocity is relatively small
compared to the maximum velocity in the cases of interest, and will therefore be set
to zero in the present computation: in which case their analysis, which minimizes the
trailing-edge singularity (i.e. imposes a Kutta condition, Crighton 1985; Ayton, Gill
& Peak 2016) and uses the Wiener–Hopf method to calculate the Green’s function,
shows that the acoustic spectrum

, (7.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.350


Generalized rapid-distortion theory on transversely sheared mean flows 495

FIGURE 3. Proposed aircraft configuration.

Plate Vortex sheet

FIGURE 4. Computational model of the jet/surface interaction problem.

where ·̃ denotes the time average, is given by

Iω(x) =
(
(2π)2k∞ sin θ sinψ

|x|

)2 ∫ ∞
0

∫
∞

0
Φ≶(k

(s)
1 , k(s)3 , y2, ω)Φ

∗

≶(k
(s)
1 , k(s)3 , ỹ2, ω)

× Ḡ(y2 | 0 : k
(s)
3 , ω/U(y2), ω)Ḡ∗(ỹ2 | 0 : k

(s)
3 , ω/U(ỹ2), ω)S(y2, ỹ2 : k

(s)
3 , ω) dy2 dỹ2,

(7.2)

for x2 ≶ 0 where S(y2, ỹ2 : k
(s)
3 , ω) is defined by (6.4),

k∞ ≡ω/c∞, (7.3)

k(s)1 = k∞ cos θ, k(s)3 = k∞ sin θ cosψ, (7.4a,b)

Φ≶(k1, k1, y2, ω)≡
κ−(k1, k3, ω)A≶

κ+(ω/U(y2), k3, ω)[ω/U(y2)− k1]P̂′≶(0; k1, k3, ω)
, (7.5)

A<
P̂′<(0; k1, k3, ω)

=
1√

k2
1 + k2

3 − k2
∞

, (7.6)

Ḡ(y2 | 0 : k
(s)
3 , ω/U(y2), ω)=

ω2P>(y2 :ω, ω/U(y2), k3)

(2π)3c2
s P′>(0 :ω, ω/U(y2), k3)

, (7.7)

κ±(k1, k3, ω) denote bounded analytic functions in the upper/lower half-planes that
satisfy the factorization condition

κ+(k1, k3, ω)

κ−(k1, k3, ω)
=

P>(0 :ω, k1, k3)

P′>(0 :ω, k1, k3)
−

1√
k2

1 + k2
3 − k2

∞

, (7.8)

P≶(y2 :ω, k1, k3) denote homogeneous solutions to (A 3) that have outgoing wave
behaviour as y2 → ∓∞, θ denotes the polar angle measured from the downstream
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x1-axis, cs denotes the mean speed of sound at the plate surface and ψ denotes the
azimuthal angle measured from the plane of the plate.

GAL considered the low-frequency limit k3=O(k∞), k∞� 1 and obtained the result
given by equation (6.33) of their paper, which has the advantage of being much more
explicit than the exact O(1) result but does not adequately describe the high-frequency
sound field produced by the trailing-edge interaction. It does, however, adequately
describe the experimentally observed low-frequency spectrum when the negative tail
in the transverse velocity correlation is included (Afsar, Leib & Bozak 2017).

The high-frequency spectrum can be described by using the Wentzel–Kramers–
Brillouin–Jeffreys (WKBJ) method to obtain the high-frequency outgoing wave
homogeneous solution

P>(y2 :ω, k1, k3)=
1− k̂1M(y2)

[q(y2 | k̂1, k̂3)]1/4
exp

(
ik∞

∫ y2

0

√
q(y | k̂1, k̂3) dy

)
(7.9)

to (A 3) (Goldstein 1979a) where

k̂n ≡ kn/k∞, n= 1, 3 (7.10)

and
q(y | k̂1, k̂3)≡ [1− k̂1M(y)]2 − k̂2

1 − k̂2
3 (7.11)

and inserting the result into (7.5)–(7.8) to obtain the following

κ+(k1, k3, ω)

κ−(k1, k3, ω)
=

−2√
k2

1 + k2
3 − k2

∞

, (7.12)

κ−(k1, k3, ω)=−
1
2

√
k1 − k∞(1− sin2 θ cos2 ψ)1/2, (7.13)

κ+(k1, k3, ω)=
1√

k1 + k∞(1− sin2 θ cos2 ψ)1/2
. (7.14)

It, therefore, follows that

Φ<(k
(s)
1 , k(s)1 , y2, ω)=

−M1/2(y2)
√

1+ βM(y2)

2k∞[1−M(y2) cos θ ]
√
β + cos θ

(7.15)

and

Ḡ(y2 | 0 : k
(s)
3 , ω/U(y2), ω)=

−ik∞ exp
(

ik∞

∫ y2

0

√
q(y | y2) dy

)
(2π)3[q(0 | y2)q(y2 | y2)]1/4

, (7.16)

where
q(y | y2)≡ q(y | 1/M(y2), sin θ cosψ) (7.17)

and (7.2) then becomes

Iω(x) =
(

k∞
4π|x|

)2

(β − cos θ)
∫
∞

0

∫
∞

0

[M( y2)M(ỹ2)]
3/2Q( y2|θ, ϕ)[Q(ỹ2|θ, ϕ)]

∗

[1−M(y2) cos θ ][1−M(ỹ2) cos θ ]

×
S(y2, ỹ2 : k

(s)
3 , ω)√

[1− βM(y2)][1− βM(ỹ2)]
dy2 dỹ2, (7.18)
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FIGURE 5. Nozzle/plate configuration. Figure courtesy Dr James E. Bridges, NASA
Glenn.

for x2 < 0 where

Q(y2 | θ, ϕ)≡

[
q(0 | y2)− e−χ0k∞

q(y2 | y2)

]1/4

exp
(

ik∞

∫ y2

0

√
q(y | y2) dy

)2

, (7.19)

β ≡ (1− sin2 θ cos2 ψ)1/2, (7.20)

M(y2) = U(y2)/c∞ denotes the local acoustic Mach number at the position y2, χ0 is
a positive constant and we have inserted the exponential damping factor e−χ0k∞

into (7.19), which leaves the asymptotic expansion unchanged to the order of
approximation considered here. In other words, it is asymptotically equivalent to
the straightforward result. It reduces to the low-frequency result (6.33) of GAL when
Q(y2 | θ, ϕ)= 1. But Q(y2 | θ, ϕ) also → 1 as k∞→ 0 and (7.18), therefore, behaves
like (but is not identical to) a uniformly valid composite solution that applies at all
frequencies.

It is, of course necessary to insert a formula for the source function S into
(7.18) before using these results to calculate the acoustic field. GAL used a rather
complicated approximate procedure to relate this quantity to an experimentally
measurable turbulence correlation. The present analysis allows us to use the much
simpler and more general exact relation (6.4), and model the turbulence correlation
to obtain the explicit formula (6.13) for S.

As indicated above, the model problem considered in this section can be used to
represent the interaction between a jet emanating from a large-aspect-ratio rectangular
nozzle with the trailing edge of a flat plate. The analysis is basically inviscid, but
accounts for viscous effects by imposing a Kutta condition at the trailing edge (GAL).
Brown & Daniels (1975) use high-Reynolds-number asymptotic analysis to show that
this condition is consistent with the viscous boundary layer flow at the trailing edge.
The importance of imposing a Kutta condition in inviscid analyses involving an edge
has been reviewed and discussed by Crighton (1985) and Ayton et al. (2016).

Recent experiments on this configuration were performed at NASA Glenn Research
Center (Zaman et al. 2013; Brown 2015). The relevant geometric parameters are
shown in figure 5.

We assume that the mean density ρ is constant and the mean velocity profile U(y2)

can be represented by the twice differentiable function

U( y2)=Ud


[
(td/2)2 − ( y2 − yd)

2

(td/2)2

]2

e−( y2−yd)
2κ2
, for ( y2 − yd)

2 < (td/2)2

0, for ( y2 − yd)
2 > (td/2)2,

(7.21)
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with compact support |y2 − yd|6 td/2, where yd is the distance from the plate to the
nozzle centreline (see figure 5), td is the thickness of the jet and κ controls the profile
decay.

Since the factor A( y2, ỹ2) in (6.8) must vanish at the jet boundaries and is
determined by strength of the turbulence at the source location, we expect A(y2, y2)
to be proportional to the turbulence intensity at y2, which is roughly proportional to
the mean velocity gradient at that point. We therefore set

A( y2, ỹ2)≡ A0

√
|dU(y2)/dy2||dU(ỹ2)/dỹ2|[α(y2)α(ỹ2)] + B0U(y2)U(ỹ2), (7.22)

where B0 and A0 are constants and the factor

α(y2)=

{
[(td/2)2 − (y2 − yd)

2
]

3, for (y2 − yd)
2 < (td/2)2

0, for (y2 − yd)
2 > (td/2)2

(7.23)

is inserted to ensure that the turbulence correlation (6.9) vanishes at the jet boundaries.
Measurements of the noise generated by the interaction of rectangular jets in the

vicinity of a flat-plate trailing edge have been carried out at NASA Glenn Research
Center (Bridges et al. 2014; Brown 2015) in a facility validated for jet noise (Bridges
& Brown 2005; Brown & Bridges 2006). Flow measurements for essentially the same
geometries, but at a lower jet exit Mach number (Ma = 0.22), were carried out by
Zaman et al. (2013). We chose the configuration where the plate was located at 1.2
equivalent diameters from the jet centreline and 5.7 equivalent diameters downstream
of the exit of an 8 : 1 rectangular nozzle, for jet exit acoustic Mach numbers Ma =

0.5, 0.7, 0.9 as test cases for the theory. The arbitrary length scale D was taken
to be an equivalent nozzle diameter defined by π(D/2)2 = nozzle width × nozzle
height with nozzle width = 8× nozzle height, and was approximately equal to 2.12
inches in the experiments. Any ‘scrubbing noise’ that may have resulted from the flow
along the plate was deemed to be negligible for this configuration (Khavaran, Bozak
& Brown 2016). Recall that the source location is assumed to be at a large distance
from edge and independent of its location on the scale of the interaction, but not on
the longer scale over which the turbulence and mean flow evolve. So the mean flow
and turbulence properties must be recalibrated when changes in edge location occur
on the latter scale.

Figure 6(a) shows a comparison of the normalized (by the jet exit velocity, UJ)
mean velocity profile from the model (7.21) with velocity measurements at a very
small distance downstream of the plate trailing edge carried out by Zaman et al.
(2013). Reynolds-averaged Navier–Stokes solutions for the test cases considered in
this paper (Afsar et al. 2017) show that the normalized mean velocity profiles for
Ma = 0.5, 0.7, 0.9 are similar to each other and to that measured by Zaman et al.
(2013) at Ma = 0.22. (There is a very slight mismatch in the transverse distance of
the plate to the nozzle centreline between the Zaman et al. (2013) experiment and
the one where the acoustic data were taken, which may partially account for the
slightly higher velocity at y2/DJ = 0.) We therefore use the same normalized mean
flow model for all jet exit velocities with the mean flow parameters for a best fit to
the data, as indicated in the caption of figure 6. The data show that the mean velocity
is small but not equal to zero at the interface. This can, in part, be attributed to the
turbulent mixing that occurs upstream of the measuring station which, as noted above,
was located slightly downstream of the trailing edge. But as pointed out by one of
the referees, it could also be due to weakly nonlinear velocity fluctuations, which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.350


Generalized rapid-distortion theory on transversely sheared mean flows 499

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.030

0.020

0.025

0.015

0.010

0.005

0

Zaman et al. (2013)
Experiment
Equation (7.21)

Zaman et al. (2013)
Experiment
Equations (7.22) and (7.23)

(a) (b)

FIGURE 6. Comparison of (a) mean velocity profile and (b) turbulent kinetic energy
calculated from (7.21) and (7.22) against experiments reported in Zaman et al.
(2013). ( yd, td)= (0.98, 1.85), κ = 0.2 and (A0, B0)= (0.011, 0.022).

causes the mean velocity to leave the trailing edge at different speeds above and
below the plate. Hunt et al. (2016) have recently shown that the mean speeds above
and below the trailing edge can differ if the plate is at a small angle to the mean
flow, and similar effects could occur in the present case where it is nominally aligned
with the flow. However, the interface velocity is relatively small and in our cases is
deemed to be insignificant relative to other uncertainties in the data comparisons.

Figure 6(b) compares the turbulent kinetic energy measurements from the same
experiment to the amplitude A(y2, y2) defined by (7.22) and (7.23) with the parameters
A0 and B0 set equal to 0.011 and 0.022, respectively. The normalized turbulent kinetic
energy profiles are also relatively independent of jet exit velocity (Afsar et al. 2017),
and the models appear to be in reasonable agreement with the flow data. They are
therefore used in the following noise predictions.

Numerical results for the noise generated by jet–edge interaction are obtained by
evaluating the formula (7.18) for the acoustic spectrum, with the double integrals
being computed using a standard Simpson’s method. The integrand in (7.18) vanishes
outside of the support of the mean flow function (7.21), and the range of integration
in this equation is therefore limited to the region where U(y2) 6= 0.

Figures 8–10 show quantitative comparisons of measurements of the far-field
pressure fluctuations’ power spectral density per unit Strouhal number = fD/UJ ,
in dB scale PSD = 10 log(4πIωUJ/Dp2

ref ) (referenced to pref = 20 µPa) taken by
Brown (2015) with predictions obtained by inserting the spectrum (6.13) with
f = |η2/l2| = |(y2 − ỹ2)/l2| into the composite RDT solution (7.18). Results are shown
at observer locations directly below the plate (ψ =−90◦) and at several observer polar
angles, θ , measured from the downstream jet axis. The experimental trailing-edge
noise was educed by subtracting the noise measured in the corresponding free jet
(i.e. in the absence of a plate) from the total measured noise. The parameters used in
the predictions shown in figures 8–10 are τ0 = 2.5 and (l2, l3)= (0.67, 0.25), χ0 = 1.
Setting the coefficient a1 equal to 0.75 in (6.8) produces a normalized turbulence
correlation 〈U⊥(t− y1/U(y2), yT)U⊥(t+ τ̃ − y1/U(y2), ỹ2, y2 + η)〉, shown in figure 7,
which exhibits the experimentally observed cusp behaviour at zero spatial and
temporal separations (figure 7b) and the small but definite negative region at larger
time delays.
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FIGURE 7. (Colour online) Normalized transverse turbulence correlation (6.8) at η3 = 0
with parameters τ0=2.5, (l1, l2)= (0.67, 0.25) and a1=0.75 (a) various fixed η2 (b) η2=0.

The results for the downstream polar angles (in figures 8–10) show that the present
RDT-based edge-noise predictions are in much better agreement with the data than
those given in Goldstein et al. (2013a) and Afsar et al. (2017). The agreement is
now very good over the entire frequency range where the total measured noise (red
symbols) is dominated by that generated by the jet–surface interaction alone (green
symbols) for all jet exit Mach numbers at the downstream polar angles shown. The
results of GAL were limited to St < 0.4 and Ma >= 0.7. The predictions shown in
figure 11 for upstream polar angles are also in very good agreement over the entire
Mach number range.

Figure 12 is a comparison of the acoustic predictions obtained by inserting the
present source function model (6.13) into the low-frequency solution used in GAL and
Afsar et al. (2017) for the parameter values used in figures 8–10. As expected, the
present approach converges to the low-frequency result at very low frequencies and,
therefore, represents a much more robust mathematical model of trailing-edge noise
than either of the two previous studies since (for reasons indicated below (7.20)) it
is now applicable to O(1) frequencies. And our numerical tests show that the low-
frequency roll-off is now much less sensitive to the magnitude of the negative loop
in the correlation function 〈U⊥(t− y1/U(y2), yT)U⊥(t+ τ̃ − y1/U( y2), ỹ2, y2 + η)〉 than
the Afsar et al. (2017) model – although it is necessary to include this feature in the
model in order for the transverse turbulence correlation to be physically realizable. In
the present model the negative (anticorrelation) region enables the correct prediction
of the absolute level of the very low frequency sound (i.e. for St < 0.1) rather than
the roll-off per se.

The improved predictions of the present result (relative to that obtained in GAL) is
largely due to the exp(ik∞

∫ y2

0

√
q(y | y2) dy) factor in (7.19), which damps out the high

frequencies and, therefore, increases the high-frequency roll-off, since the argument of
the exponential ik∞

∫ y2

0

√
q(y | y2) dy is always negative. It accounts for the bending of

the sound waves away from the downstream axis and, therefore, represents a kind of
‘zone of silence’.

The present calculations are based on (6.4), which is obtained by using causality to
interpret the singular integral (4.13) for the transverse particle displacement η⊥(y, τ ).
But the causality condition results from an initial condition imposed in the distant
past and, as argued in the introduction, the long-time solutions to the initial value
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FIGURE 8. Power spectral density (PSD) of the far-field pressure fluctuations at 100
equivalent diameters from nozzle exit (lossless in dB scale referenced to 20 µPa) as a
function of Strouhal number, for Ma = 0.9. Predicted (solid line): measured data below
the plate at ψ = −90◦. (Total noise: red; difference between the total noise and noise
measured in the free jet: green.) Plate trailing edge at (xd, yd)/D= (5.7, 0.98). (a) θ = 90◦,
(b) θ = 75◦, (c) θ = 60◦, (d) θ = 45◦.

problem are not necessarily relevant to the time-stationary turbulent flows being
considered here. (Similar arguments can be found in Mani 1976; Dowling, Ffowcs
Williams & Goldstein 1978.) However, the singular integral in (4.13) will also be
well defined if it is interpreted as a Cauchy principal value. The resulting formulae
turn out to be more complicated than the present results, and our computations (not
shown here) indicate that the acoustic predictions based on these formulae do not
differ significantly from the present results – at least in the low-frequency limit where
comparisons were carried out. Data comparisons, such as those given in this section,
therefore, cannot be used to distinguish between the two approaches.

Figures 8–10 show that the predictions are better for larger polar angles (near
ninety degrees) and higher Mach numbers, as they were in GAL and Afsar et al.
(2017). The former is due to reduction in edge noise relative to the jet noise for
shallow polar observation angles and the latter (the deterioration in prediction
for Ma = 0.5 near St ∼ 0.1) may be a particular feature of the experimental data
(Bridges 2014) or may be associated with a change in the interference between
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FIGURE 9. Power spectral density (PSD) of the far-field pressure fluctuations at 100
equivalent diameters from nozzle exit (lossless in dB scale referenced to 20 µPa) as a
function of Strouhal number, for Ma = 0.7. Predicted (solid line): measured data below
the plate at ψ = −90◦. (Total noise: red; difference between the total noise and noise
measured in the free jet: green.) Plate trailing edge at (xd, yd)/D= (5.7, 0.98). (a) θ = 90◦,
(b) θ = 75◦, (c) θ = 60◦, (d) θ = 45◦.

the non-convecting jet noise and edge noise (Afsar et al. 2017, p. 202) at lower
Mach numbers. There are four free parameters: (l2, l3, τ0, a1) that determine the
source function S in the present model, with all other parameters determined by
matching to the turbulence or mean flow data, which makes the predictions much
less empirical than those of GAL and Afsar et al. (2017). No empirical coefficients
would be required if there were an experimental database for the transverse velocity
correlation 〈U⊥(t− y1/U(y2), yT)U⊥(t+ τ̃ − y1/U(y2), ỹ2, y2 + η)〉 for a rectilinear jet
in the vicinity of a plate trailing edge. It could also be obtained computationally using
large eddy simulation (LES) which would be much less expensive than a jet-noise
experiment. The parameters could, in principle, also be obtained by further optimizing
the agreement with the measured spectra.

8. Concluding remarks
This paper is based on the formal solutions (2.14)–(2.16) to the linearized Euler

equations for transversely sheared mean flows which, like the Kovasznay results for
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FIGURE 10. Power spectral density (PSD) of the far-field pressure fluctuations at 100
equivalent diameters from nozzle exit (lossless in dB scale referenced to 20 µPa) as a
function of Strouhal number, for Ma = 0.5. Predicted (solid line): measured data below
the plate at ψ = −90◦. (Total noise: red; difference between the total noise and noise
measured in the free jet: green). Plate trailing edge at (xd, yd)/D= (5.7, 0.98). (a) θ = 90◦,
(b) θ = 75◦ (c) θ = 60◦ (d) θ = 45◦.

the unsteady motion on uniform flows, involve two arbitrary convected quantities
ϑ(τ − y1/U, yT) and ω̃c(τ − y1/U, yT) that can be associated with the hydrodynamic
component of the flow and can, therefore, be used to specify upstream boundary (i.e.
initial) conditions for RDT problems that involve the interaction of turbulence with
solid surfaces. This paper derives a new relation between these quantities and the
physically measurable variables that is much simpler and more general than the one
given in Goldstein et al. (2013a,b).

This relation was used to relate the source term S that appears in the formula (7.2)
for the noise generated by the interaction of a two-dimensional jet with a semi-infinite
flat plate derived in Goldstein et al. (2013a) to the physically measurable second-
order velocity correlations in the jet. The result was combined with a modified high-
frequency solution to obtain a specific formula for the acoustic spectrum that applies
over a broad range of frequencies. This result was then compared with experimental
measurements carried out at Glenn Research Center, and excellent agreement was
obtained. The general results can of course, be applied to many other RDT problems
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FIGURE 11. Power spectral density (PSD) of the far-field pressure fluctuations at 100
equivalent diameters from nozzle exit (lossless in dB scale referenced to 20 µPa) as a
function of Strouhal number. Predicted (solid line): measured data below the plate at ψ =
−90◦. (Total noise: red; difference between the total noise and noise measured in the free
jet: green.) For plate trailing edge at (xd, yd)/D = (5.7, 0.98). (a) Ma = 0.9, θ = 95◦, (b)
Ma = 0.9, θ = 105◦, (c) Ma = 0.7, θ = 95◦, (d) Ma = 0.7, θ = 105◦, (e) Ma = 0.5, θ = 95◦,
( f ) Ma = 0.5, θ = 105◦.
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FIGURE 12. Convergence to the GAL solution. Same legend as figures 8–11. (a) Ma =

0.9, θ = 90◦, (b) Ma = 0.5, θ = 45◦.

involving the interaction of turbulence with surfaces embedded in transversely sheared
base flows or, more generally, in vortical base flows that asymptote to transversely
sheared mean flows in the upstream region.
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Appendix A. Green’s function for 2-D base flow

Since Ḡ0(yT | xT :ω, k1) can only depend on x3 and y3 in the combination x3 − y3,
for the planar mean flow

U =U( y2), c= c( y2) (A 1a,b)

the reduced Green’s function

Ĝ(y2 | x2 :ω, k1, k̂)≡
1

2π

∫
∞

−∞

ei(y3−x3)k̂Ḡ0( yT | xT :ω, k1) d(y3 − x3) (A 2)

only depends on the indicated arguments and satisfies the reduced Rayleigh equation

d
dy2

{
c2( y2)

[ω−U(y2)k1]
2

dĜ
dy2

}
+

{
1−

c2( y2)

[ω−U(y2)k1]
2
(k2

1 + k2
3)

}
Ĝ=

δ(x2 − y2)

(2π)3
, (A 3)

whose solution is given by

Ĝ(y2 | x2)= Ĝ(x2 | y2)=
P̂±(y2)P̂∓(x2)

∆(k1, k3, ω)
for y2 > /< x2, (A 4)
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where P̂+(y2), P̂−(y2) are the homogeneous solutions of (A 3) that exhibit appropriate
boundary conditions at the outer/inner edges of the shear layer and, according to
Abel’s theorem,

∆(ω, k1, k3)≡−
(2π)3c2

[P̂+(y2)P̂′−(y2)− P̂−(y2)P̂′+(y2)]

[ω−U(y2)k1]
2

(A 5)

depends on the normalization of P̂+(y2), P̂−(y2) but is independent of y2, which means
that the reduced transverse velocity Green’s function

Ĝ2(y2 | x2 :ω, k1, k3)=
1

2π

∫
∞

−∞

e−ik3((y3−x3))Ḡ2( yT | xT :ω, k1) d(y3 − x3), (A 6)

where Ḡ2( yT | xT :ω, k1) is defined by (4.9), only depends on the indicated argument
and is given by

Ĝ2(y2 | x2)=
1

[ik1U(x2)− iω]
∂

∂x2

P̂±(y2)P∓(x2)

∆(k1, k3, ω)
for y2 > /< x2. (A 7)

So the limit
lim

k1→ω/U(y2)
∆(k1, k3, ω) (A 8)

is expected to exist and be non-zero except at perhaps at a finite number of points,
say y2 = y(n)2 (ω), for n = 1, 2, . . . for any value of k3, ω. This also shows that
Ĝ2(y2 | x2 :ω, ω/U(y2)k3) and, therefore, Ḡ2(yT | xT :ω, ω/U(y2)) must be continuous
at x2 = y2. Moreover, it follows from the method of Frobenius that (A 3) possesses
two linearly independent solutions, say P̂1(y2), P̂2(y2), that behave like

P̂1(y2)=O((ω− k1U(y2))
3)=O((y2 − y(0)2 )

3), (A 9)

P̂2(y2)= a+ b(ω− k1U(y2))
2
+ cP̂1(y2) ln(ω− k1U(y2))+O((y2 − y(0)2 )

3), (A 10)

as y2→ y(0)2 , where y(0)2 is a point where U(y(0)2 )=ω/k1 and a, b, c are constants. So

lim
k1→ω/U(y2)

y2=const.

{P̂+(y2 : k1, k3, ω), P̂−(y2 : k1, k3, ω)}

= lim
y2→y(0)2

y(0)2 =const.

{P̂+(y2 :ω/U(y
(0)
2 ), k3, ω), P̂−(y2 :ω/U(y

(0)
2 ), k3, ω)} (A 11)

is also expected to exist and be non-zero since P̂+(y2), P̂−(y2) must be linear
combinations of P̂1(y2), P̂2(y2). It, therefore, follows from (A 2) and (A 4) that
the limits

Ḡ0( yT | xT :ω, ω/U(yT))≡ lim
k1→ω/U(yT )

Ḡ0( yT | xT :ω, k1) (A 12)

and
Ḡi( yT | xT :ω, ω/U(yT))≡ lim

k1→ω/U(yT )
Ḡi( yT | xT :ω, k1) (A 13)

also exists and are non-zero everywhere except at the finite number of points where
∆(k1, k2, ω) is equal to zero.
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Appendix B. Behaviour of transverse velocity at upstream infinity
When the mean flow is two-dimensional the integral

Ii ≡

∫
AT

eiωx1/U( yT )Ḡi( yT | xT :ω, ω/U( yT))Ω̄c( yT :ω) dyT (B 1)

on the right-hand side of (4.3) can be written as

I2(x :ω)=
∫
∞

−∞

∫
∞

y0

eiωx1/U(y2)Ḡ2(y2, y3 | x2, x3 :ω, ω/U(y2))Ω̄c(y2, y3 :ω) dy2 dy3, (B 2)

where y0 can be set to −∞ if the cross-sectional AT is all of space and can be set
to zero if the flow is bounded by an inner surface that extends from y1 = −∞ to
y1 =+∞. Now suppose that

Ω̄c(y2, y3 :ω)=O([U′(y2)]
3) (B 3)

whenever U′( y2) → 0. (We shall verify that Ω̄c(y2, y3 :ω) actually exhibits this
behaviour after the fact.) Then, since Ḡ2(y2, y3 | x2, x3 :ω, ω/U(y2)) is continuous
at y2 = x2, and U2( y2)/U′( y2) times the integrand and U2( y2)/U′( y2) times the
derivative of this quantity are expected to vanish at the end points y0,∞, equation,
(B 2) can be integrated by parts twice from y0 to x2 and from x2 to ∞ to show that

I2 ≡
1

iωx1

∫
∞

−∞

∫
∞

y0

eiωx1/U(y2)
∂

∂y2

×

[
U2(y2)

U′(y2)
Ḡ2(y2, y3 | x2, x3 :ω, ω/U(y2))Ω̄c(y2, y3 :ω)

]
dy2 dy3

= −eiωx1/U(x2)

[
U2(x2)

ωx1U′(x2)

]2

×

∫
∞

−∞

∆

[
∂

∂x2
Ḡ2(x2, y3 | x2, x3 :ω, ω/U(x2))

]
Ω̄c(x2, y3 :ω) dy3

−
1

(ωx1)2

∫
∞

−∞

∫
∞

y0

eiωx1/U(y2)
∂

∂y2

×

{
U2(y2)

U′(y2)

∂

∂y2

[
U2(y2)

U′(y2)
Ḡ2(y2, y3 | x2, x3 :ω, ω/U(y2))Ω̄c(y2, y3 :ω)

]}
dy2 dy3,

(B 4)

where the jump

∆

[
∂

∂x2
Ḡi2(x2, y3 | x2, x3 :ω, ω/U(x2))

]
≡ lim

ε→0

[
∂

∂y2
Ḡ2(y2, y3 | x2, x3 :ω, ω/U(y2))

∣∣∣∣
y2=x2+ε

]

−

[
∂

∂y2
Ḡ2(y2, y3 | x2, x3 :ω, ω/U(y2))

∣∣∣∣
y2=x2−ε

]
(B 5)
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will, in general, be non-zero. But this implies that

I2→−eiωx1/U(x2)

[
U2(x2)

ωx1U′(x2)

]2 ∫ ∞
−∞

∆

[
∂

∂x2
Ḡ2(x2, y3 | x2, x3 :ω, ω/U(x2))

]
× Ω̄c(x2, y3 :ω) dy3 (B 6)

as x1→−∞, since the method of stationary phase (Carrier, Krook & Pearson 1966,
p. 274) (or continued integration by parts if there is no stationary phase point) can be
used to show that the last term of (B 4) is O(1/x5/2

1 ) in this limit.

Appendix C. Upstream behaviour of transverse particle displacement
We assume, for simplicity, that there is a one-to-one mapping yT→{η( yT), ς(yT)}

of the rectangular coordinate system yT into an orthogonal coordinate system {η, ς}
such that U =U(η), and introduce this into the integral in (4.13) to obtain∫

AT

eiωx1/U( yT )
Ḡi( yT | xT :ω, ω/U( yT))

U(xT)−U(yT)
Ω̄c(yT :ω) dyT

=

∫
cT

[∫
∞

η0

eiωx1/U(η) Ḡi(η, ς | : xT, ω, ω/U(η))
[U(xT)−U(η)]

Ω̄c(η, ς :ω)
∂(y2, y3)

∂(η, ς)
dη

]
dς

=

∫
∞

−∞

∫
cT

[∫
∞

η0

eikx1δ(k−ω/U(η))
kḠi(η, ς | : xT, ω, k)
[kU(xT)−ω]

Ω̄c(η, ς :ω)

×
∂(y2, y3)

∂(η, ς)
dη
]

dς dk

= lim
n→∞

lim
ε→0

∫
∞

−∞

∫
cT

[∫
∞

η0

eikx1

( n
π

)1/2
e−n[k−(ω+iε)/U(η)]2

×
kḠi(η, ς | : xT, ω+ iε, k)
[kU(xT)−ω− iε]

Ω̄c(η, ς :ω+ iε)
∂(y2, y3)

∂(η, ς)
dη

]
dς dk, (C 1)

where ∂(y2, y3)/∂(η, ς) denotes the Jacobian of the transform yT → {η, ς}, we have
represented the delta function by a delta sequence (see Lighthill 1964, p. 17) and have
written U(η) ≡ U( yT(η)), Ḡi(η, ς | : xT, ω, ω/U(η)) ≡ Ḡi( yT(η, ς) | : xT, ω, ω/U(η))
etc. Then, since 1/[kU(xT)−ω− iε] is the only term that becomes infinite on the real
k-axis when ε= 0, the limit can be made explicit everywhere else in the nth member
of the sequence by setting ε= 0 there to obtain

lim
ε→0

∫
∞

−∞

∫
cT

[∫
∞

η0

eikx1

( n
π

)1/2
e−n[k−(ω+iε)/U(η)]2 kḠi(η, ς | : xT, ω+ iε, k)

[kU(xT)−ω− iε]

× Ω̄c(η, ς :ω+ iε)
∂(y2, y3)

∂(η, ς)
dη
]

dς dk

= lim
ε→0

∫
∞

−∞

∫
cT

[∫
∞

η0

eikx1

( n
π

)1/2
e−n[k−ω/U(η)]2 kḠi(η, ς | : xT, ω, k)

[kU(xT)−ω− iε]

× Ω̄c(η, ς :ω)
∂(y2, y3)

∂(η, ς)
dη
]

dς dk. (C 2)
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The delta sequence limit can then be retaken to show that the singular integral in
(4.13) can be interpreted in the following sense∫

AT

eiωx1/U(yT )
Ḡi(yT | xT :ω, ω/U( yT))

U(xT)−U(yT)
Ω̄c(yT :ω) dyT

=
1

U(xT)
lim
ε̄→0

∫
cT

{∫
∞

η0

eiωx1/U(η) U′(η)H(η, ς | xT :ω)

[U−1(η)−U−1(xT)− iε̄/ω]U2(η)
dη
}

dς, (C 3)

where we have put ε̄≡ ε/U(xT) and

H(η, ς | xT :ω)≡
U(η)Ḡi(η, ς | : xT, ω, ω/U(η))

U′(η)
Ω̄c(η, ς :ω)

∂(y2, y3)

∂(η, ς)
. (C 4)

But, as indicated in the introduction, our interest here is in the upstream behaviour of
the solutions as x1→−∞. To this end we suppose, for definiteness, that the mean
velocity profile has a single maximum, at say η= ηmax, that U = 0 at the end points
η0,∞ and that

Ω̄c(y2, y3 :ω)=O([U′(y2)]
2) when U′(y2)→ 0. (C 5)

(We shall verify that Ω̄c(y2, y3 :ω) actually exhibits this behaviour after the fact.)
Adding and subtracting terms to the particle displacement integral (C 1) then shows
that ∫

AT

eiωx1/U( yT )
Ḡi( yT | xT :ω, ω/U( yT))

U(xT)−U(yT)
Ω̄c( yT :ω) dyT

=
1

U(xT)

∫
cT

{∫ ηmax

η0

eiωx1/U(η)U
′(η)[H(η, ς | xT :ω)−H(η̄1, ς | xT :ω)]

[U−1(η)−U−1(xT)]U2(η)
dη

+

∫
∞

ηmax

eiωx1/U(η)U
′(η)[H(η, ς | xT :ω)−H(η̄2, ς | xT :ω)]

[U−1(η)−U−1(xT)]U2(η)
dη
}

dς

−
1

U(xT)

∫
cT

[H(η̄1, ς | xT :ω)−H(η̄2, ς | xT :ω)] dς

×

{
lim
ε̄→0

∫
∞

a

eiωx1/U

[U−1 −U−1(xT)− iε̄/ω]
d
(

1
U

)}
, (C 6)

where a≡1/U(ηmax), and η̄j for j=1,2 are the roots of U(η̄j)=U(xT) with U′(η̄1)<0.
But dividing the range of integration into two parts, changing integration variables

and noting that the final contour integral must be closed in the lower half-plane for
x1 < 0 shows that

lim
ε̄→0

∫
∞

a

eiωx1[U−1
−U−1(xT )]

[U−1 −U−1(xT)− iε̄/ω]
d
(

1
U

)
= lim

ε̄→0

{∫
∞ sgnω

−b(xT )ωx1

eit

t− iε̄x1
dt+e−iωx1/U(xT )

∫
∞ sgnω

−∞ sgnω

eiτx1

τ − iε̄
dτ
}

= lim
ε̄→0

{∫
∞ sgnω

−b(xT )ωx1

eit

t− iε̄x1
dt+ e−iωx1/U(xT )sgnω

∫
∞

−∞

eiτx1

τ − iε̄
dτ
}
→ 0,

as x1→−∞, (C 7)
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where b(xT) ≡ [U(xT)]
−1
− a > 0. And since the integrands of the inner integrals in

the first term on the right-hand side of (C 6) are now finite at yT = xT , the first of
these can be integrated by parts from η0 to η̄1 and from η̄1 toηmax to obtain

1
U(xT)

∫ ηmax

η0

eiωx1/U(η)U
′(η)[H(η, ς | xT :ω)−H(η̄1, ς | xT :ω)]

[U−1(η)−U−1(xT)]U2(η)
dη

=−
1

iωx1
eiωx1/U(η̄1) ∆

[
∂Ḡ2(η, ς | : xT, ω, ω/U(η))

∂η

]∣∣∣∣∣
η=η̄1

×


Ω̄c(η, ς :ω)

∂(y2, y3)

∂(η, ς)

[U′(η)]2


η=η̄1

−
1

iωx1

∫ ηmax

η0

eiωx1/U(η) ∂

∂η

{
[H(η, ς | xT :ω)−H(η̄1, ς | xT :ω)]

[U(xT)−U(η)]U(η)

}
dη, (C 8)

where ∆[∂Ḡ2(η, ς | : xT, ω, ω/U(η))/∂η]|η=η̄1 denotes the jump in ∂Ḡ2(η, ς | : xT, ω, ω/
U(η))/∂η at η = η̄1, while the second of these can be integrated by parts from ηmax
to η̄2 and from η̄2 to ∞, to obtain a similar result and thereby show that this term is
O(1/x1) as x1→−∞, and, therefore, that η̄⊥ satisfies (4.14).
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