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Abstract. Let Q→ X be a continuous principal bundle whose group G is reductive.
A flow φ of automorphisms of Q endowed with an ergodic probability measure on the
compact base space X induces two decompositions of the flag bundles associated to Q: a
continuous one given by the finest Morse decomposition and a measurable one furnished
by the multiplicative ergodic theorem. The second is contained in the first. In this paper
we find necessary and sufficient conditions so that they coincide. The equality between
the two decompositions implies continuity of the Lyapunov spectra under perturbations
leaving unchanged the flow on the base space.

1. Introduction
The purpose of this paper is to give necessary and sufficient conditions for the equality of
Morse and Oseledets decompositions of a continuous flow on a flag bundle.

We consider a continuous principal bundle Q→ X with group G, which is assumed
to be semi-simple or reductive. A continuous automorphism φ ∈ Aut(Q) of Q defines a
discrete-time flow φn , n ∈ Z, on Q. For instance, Q→ X could be the bundle of frames
of a d-dimensional vector bundle V→ X over X , in which case G is the reductive group
Gl(d, R). Since a linear flow on a vector bundle lifts to the bundle of frames, our setup
includes this classical case.

The flow of automorphisms on Q induces a flow on the base space X , also denoted
by φ. It also induces flows on bundles having as typical fiber a space F where G acts.
Such bundle is built via the associated bundle construction and is denoted by Q ×G F . If
there is no risk of confusion, the flows on the associated bundles are denoted by φ as well.
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When G is a reductive group we are especially interested in its flag manifolds F2,
distinguished by the subindex 2, which are compact homogeneous spaces of G. We
write E2 = Q ×G F2 for the corresponding flag bundle. For the flow φ induced on
E2, it was proved in [3, 15] that it has a finest Morse decomposition (under the mild
assumption that the flow on the base space X is chain transitive). Each Morse component
of this finest decomposition meets a fiber of E2→ X in an algebraic submanifold of F2.
This submanifold is defined as a set of fixed points for some g ∈ G acting on F2. For
instance, in a projective bundle the fibers of a Morse component are subspaces, which can
be seen as sets of fixed points on the projective space of diagonalizable matrices (see
also Selgrade [21] for the Morse decomposition on a projective bundle). The Morse
decomposition is thus described by a continuous section χMo of an associated bundle
Q ×G (Ad(G)HMo), whose typical fiber is an adjoint orbit Ad(G)HMo of G. Here HMo

belongs to the Lie algebra g of G and its adjoint ad(HMo) has real eigenvalues. The Morse
components are then built from the section χMo and the fixed point sets of exp HMo on the
flag manifolds. (See [15, Theorem 7.5].)

On the other hand, we also have the Oseledets decomposition, coming from the
multiplicative ergodic theorem (as proved in [1]). To consider this decomposition, there
is required a φ-invariant measure ν on the base space. If ν is ergodic and supp ν = X
(which provides chain transitivity on X ), then the multiplicative ergodic theorem yields an
analogous decomposition to the Morse decomposition that describes the level sets of the a-
Lyapunov exponents (see [1, 19]). Again there are an adjoint orbit Ad(G)HLy and a section
χLy of the associated bundle Q ×G (Ad(G)HLy) such that the Oseledets decomposition is
built from χLy and the fixed point sets of exp HLy. The section χLy is now only measurable
and defined up to a set of ν-measure 0.

It turns out that any component of the Oseledets decomposition is contained in a
component of the Morse decomposition (see §6 below). This means that the eigenspaces
of ad(HMo) are contained in the eigenspaces of ad(HLy), that is, the multiplicities of the
eigenvalues of ad(HMo) are larger than those of ad(HLy).

In this paper we write down three conditions that together are necessary and sufficient
for both decompositions to coincide (see §9). In this case the Morse decomposition is a
continuous extension of the Oseledets decomposition.

The first of these conditions requires boundedness of the measurable section χLy, which
means that different components of the Oseledets decomposition do not approach each
other. The other two conditions are about the Oseledets decomposition for the other
ergodic measures on supp ν = X . They can be summarized by saying that if ρ is an ergodic
measure, then its Oseledets decomposition is finer than the decomposition for ν.

It is easy to prove that each of the three conditions is necessary. Our main result is to
prove that together they imply equality of the decompositions.

Now we describe the contents of the paper and say some words about other results that
have independent interest.

Sections 2–4 are preliminary. Section 2 contains notation and general facts about flag
manifolds, while in §3 we recall the results of [1, 3, 15, 19] about Morse decomposition,
Morse and Lyapunov spectra and the multiplicative ergodic theorem on flag bundles. In
§4 we discuss briefly flows over periodic orbits.
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Section 5 is devoted to the analysis of ergodic measures on the flag bundles. We exploit
the Krylov–Bogolyubov technique of occupation measures to see that any Lyapunov
exponent coming from the multiplicative ergodic theorem is an integral over an ergodic
measure and conversely. Combining this with the fact that an ergodic measure charges
just one Oseledets component allows us to introduce what we call attractor and repeller
measures. Later their supports will provide attractor–repeller pairs on the flag bundles,
thus relating them to the finest Morse decomposition.

In §6 we use the attractor and repeller measures to check that the components of the
Oseledets decomposition are indeed contained in the finest Morse decomposition.

Another tool is developed in §7, namely the Lyapunov exponents of the derivative flow
on the tangent space of the fibers of the flag bundles. The knowledge of these exponents
allows us to find ω-limits in the bundles themselves.

In §8 we prove our main technical lemma that furnishes attractor–repeller pairs on the
flag bundles.

In §9 we state our conditions and prove that they are necessary. Their sufficiency is
proved in §10.

In the next two sections (§§11 and 12) we discuss two cases that go in opposite
directions. Namely, flows where the base space is uniquely ergodic (§11) and products
of independent identically distributed (i.i.d.) sequences. For a uniquely ergodic base space
the second and third conditions are vacuous and it follows by previous results that the
Morse spectrum is a polyhedron that degenerates to a point if the first condition is satisfied.
As to the i.i.d. case, there are plenty of invariant measures enabling us to find examples
that violate our second condition. We do that with the aid of a result by Guivarch’ and
Raugi [11].

Section 13 is independent of the rest of the paper. It contains a result that motivates
the study of the equality between Oseledets and Morse decompositions. We prove that
if both decompositions coincide for φ, then the Lyapunov spectrum is continuous under
perturbations σφ of φ with σ varying in the gauge group G of Q. This continuity is
a consequence of the differentiability result of [9]. By that result, there exists a subset
8Mo of linear functionals defined from the finest Morse decomposition such that the map
σ 7→ α(HLy(σφ)) is differentiable with respect to σ (at the identity) if α ∈8Mo, where
HLy(σφ) is the vector Lyapunov spectrum of σφ. Having equality of the decompositions,
we can exploit upper semi-continuity of the spectrum to prove continuity of β(HLy(σφ))

with β in a basis that contains 8Mo.
Finally, we mention that for a linear flow φ on a vector bundle V→ X , the topological

property given by the finest Morse decomposition of the flow induced on the projective
bundle PV→ X can be given an analytic characterization via exponential separation
of vector subbundles of V (see Colonius and Kliemann [5, Ch. 5] and Bonatti et al
[2, Appendix B]). In fact, by a theorem of Bronstein and Chernii [4] (quoted from [5]),
the finest Morse decomposition on PV corresponds to the finest decomposition of V
into exponentially separated subbundles (see [5, Theorem 5.2.10]). Hence, our main
result gives, in particular, necessary and sufficient conditions ensuring that the Oseledets
decomposition of a vector bundle is exponentially separated. Our conditions are given
in terms of the mutual distances of the Oseledets spaces as well as on invariant
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measures on the flag bundles defined by the Oseledets filtrations for the forward and
backward flows.

Furthermore, the result of §13 shows that if the Oseledets decomposition is
exponentially separated, then the Lyapunov spectrum changes continuously when φ

is perturbed in such a way that the flow on the base X is kept fixed.

2. Flag manifolds
We explain here our notation about semi-simple (or reductive) Lie groups and their flag
manifolds. We refer to Knapp [13], Duistermat et al [7] and Warner [22].

Let g be a semi-simple non-compact Lie algebra. In order to make the paper
understandable to readers without acquaintance with Lie theory, we adopted the strategy
of defining the notation by writing explicitly their meanings for the special linear group
Sl(d, R) and its Lie algebra sl(d, R) (or Gl(d, R) and gl(d, R) in the reductive case). We
hope that the reader with expertise in semi-simple theory will recognize the notation for
the general objects (e.g. k is a maximal compact embedded subalgebra, etc).

At the Lie algebra level the Cartan decomposition reads g= k⊕ s, where k= so(d) is
the subalgebra of skew-symmetric matrices and s is the space of symmetric matrices with
zero trace. The Iwasawa decomposition of the Lie algebra is g= k⊕ a⊕ n, where a is the
subalgebra of diagonal matrices and n is the subalgebra of upper triangular matrices with
zeros on the diagonal.

The set of roots is denoted by 5. These are linear maps αi j ∈ a
∗, i 6= j , defined by

αi j (diag{a1, . . . , ad})= ai − a j . The set of positive roots is 5+ = {αi j : i < j} and the
set of simple roots is 6 = {αi j : j = i + 1}. The root space is gα (gαi j is spanned by the
basic matrix Ei j ) and

g=m⊕ a⊕
∑
α∈5

gα,

where m= zk(a)= z(a) ∩ k is the centralizer of a in k (m= 0 in sl(d, R)). The basic
(positive) Weyl chamber is denoted by

a+ = {H ∈ a : α(H) > 0, α ∈6}

(cone of diagonal matrices diag{a1, . . . , ad} satisfying a1 > · · ·> ad ). Its closure cla+ is
formed by diagonal matrices with decreasing eigenvalues.

At the Lie group level the Cartan decomposition reads G = K S, K = exp k and
S = exp s (K is the group SO(d) and S the space of positive-definite symmetric matrices
in Sl(d, R)). The Iwasawa decomposition is G = K AN , A = exp a and N = exp n.
The Cartan decomposition splits further into the polar decomposition G = K (clA+)K ,
A+ = exp a+.

The group M = CentK (a) is the centralizer of a in K (diagonal matrices with entries
±1), M∗ = NormK (a) is the normalizer of a in K (signed permutation matrices) and W =
M∗/M is the Weyl group (for Sl(d, R), it is the group of permutations in d letters, which
acts in a by permuting the entries of a diagonal matrix).

The (standard) minimal parabolic subalgebra is p=m⊕ a⊕ n (= upper triangular
matrices), and a general standard parabolic subalgebra p2 is defined by a subset2⊂6 as

p2 =m⊕ a⊕
∑
α∈5+

gα ⊕
∑

α∈〈2〉+

g−α,
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where 〈2〉 is the set of roots spanned (over Z) by 2 and 〈2〉+ = 〈2〉 ∩5+. That is,
p2 = p⊕ n−(2), where n±(2)=

∑
α∈〈2〉+ g±α .

Alternatively, given 2, take H2 ∈ cla+ such that α(H2)= 0, α ∈6, if and only if
α ∈2. Such H2 exists and we call it a characteristic element of2. Then p2 is the sum of
eigenspaces of ad(H2) having eigenvalues ≥0. In sl(d, R), H2 = diag(a1, . . . , ad) with
a1 ≥ · · · ≥ ad , where the multiplicities of the eigenvalues are prescribed by ai = ai+1 if
αi,i+1 ∈2, that is, p2 is the subalgebra of matrices that are upper triangular in blocks,
whose sizes are the multiplicities of the eigenvalues of H2. When 2 is empty, p∅ reduces
to the minimal parabolic subalgebra p.

Conversely, if H ∈ cla+, then 2H = {α ∈6 : α(H)= 0} defines a flag manifold
F2H (e.g. the Grassmannian Grk(d) is a flag manifold of Sl(d, R) defined by H =
diag{a, . . . , a, b, . . . , b} with (n − k)a + kb = 0). For H1, H2 ∈ cla+, we say that H1

refines H2 in case 2H1 ⊂2H2 . In sl(d, R), this means that the blocks determined by the
multiplicities of the eigenvalues of H1 are contained in the blocks of H2.

The parabolic subgroup P2, associated to2, is defined as the normalizer of p2 in G (as
a group of matrices, it has the same block structure as p2). It decomposes as P2 = K2AN ,
where K2 = CentK (H2) is the centralizer of H2 in K . We usually omit the subscript
when 2= ∅ and P = P∅ is the minimal parabolic subgroup.

The flag manifold associated to2 is the homogeneous space F2 = G/P2 ( just F when
2= ∅). If 21 ⊂22, then the corresponding parabolic subgroups satisfy P21 ⊂ P22 , so
that there is a canonical fibration π21

22
: F21 → F22 given by g P21 7→ g P22 (just π22 if

21 = ∅). For the matrix group the flag manifold F2 identifies with the manifold of flags
of subspaces V1 ⊂ · · · ⊂ Vk , where the differences dim Vi+1 − dim Vi are the sizes of the
blocks defined by2 (or rather the diagonal matrix H2). The projection π21

22
: F21 → F22

is defined by ‘forgetting subspaces’.
The flag manifold dual of F2 is defined as follows: let w0 be the principal involution of

W , that is, the only element of W such that w0a
+
=−a+, and put ι=−w0. Then ι(6)=

6 and for 2⊂6 write 2∗ = ι(2). Then F2∗ is called the flag manifold dual of F2. For
the matrix group the vector subspaces of the flags in F2∗ have complementary dimensions
to those in F2 (for instance, the dual of a Grassmannian Grk(d) is the Grassmannian
Grd−k(d)).

We say that two elements b1 ∈ F2 and b2 ∈ F2∗ are transversal if (b1, b2) belongs to the
unique open G-orbit in F2 × F2∗ , by the action g(b1, b2)= (gb1, gb2). For instance, b1 ∈

Grk(d) and b2 ∈ Grd−k(d) are transversal if and only if they are transversal as subspaces
of Rd . In general, transversality can be expressed in terms of transversality of subalgebras
of g (see e.g. [18]). By the very definition, transversality is an open condition and if g ∈ G
then gb1 is transversal to gb2 if and only if b1 is transversal to b2. The following lemma
about transversality will be used afterwards.
LEMMA 2.1. Let b∗n be a sequence in F2∗ with lim b∗n = b∗. Suppose that b ∈ F2 is not
transversal to b∗. Then there exists a sequence bn ∈ F2 with bn not transversal to b∗n such
that lim bn = b.

Proof. There exists a sequence kn ∈ K with b∗n = knb∗ and kn→ 1. Since b is not
transversal to b∗, it follows that knb is not transversal to b∗n . Hence, bn = knb is the required
sequence. �
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We consider now the fixed point set of the action of h = exp H , H ∈ cla+, on a flag
manifold F2. Look first at the example of the projective space RPd−1. The fixed point set
is the union of the eigenspaces of h. The eigenspace associated to the biggest eigenvalue
is the only attractor (for the iterations hn) that has an open and dense stable manifold. In
the same way, the eigenspace of the smallest eigenvalue is the unique repeller with open
and dense unstable manifold.

In general, the flow defined by exp t H is gradient in any flag manifold F2 (see [7]). Its
fixed point set is given by the union of the orbits

Z H · wb2 = K H · wb2, w ∈W,

where b2 = 1 · P2 is the origin of F2 = G/P2, Z H = {g ∈ G : Ad(g)H = H}, K H =

Z H ∩ K and w runs through the Weyl group W . We write fix2(H, w)= Z H · wb2 and
refer to it as the set of H -fixed points of typew. In addition, fix2(H, 1) is the only attractor
while fix2(H, w0) is the unique repeller, where w0 is the principal involution of W .

As to the stable and unstable sets of fix2(H, w), let 2H = {α ∈6 : α(H)= 0}. The
subspaces

n+H =
∑

α∈5+\〈2H 〉

gα, n−H =
∑

α∈5+\〈2H 〉

g−α

are nilpotent subalgebras having connected subgroups N±H = exp n±H . Put

st2(H, w)= N−H K H · wb2, un2(H, w)= N+H K H · wb2.

Then st2(H, w) and un2(H, w) are the stable and unstable sets of fix2(H, w),
respectively.

More generally, if D = Ad(g)H , g ∈ G and H ∈ cla+, then the dynamics of exp t D
is conjugate under g to the dynamics of exp t H . Hence, fix2(D, w)= g · fix2(H, w),
st2(D, w)= g · st2(H, w) and un2(D, w)= g · un2(H, w). It follows that

st2(D, w)= P−D · gwb2, un2(H, w)= P+D · gwb2,

where P±D = gN±H K H g−1
= N±D K D , N±D = gN±H g−1 and K D = gK H g−1.

For any D = Ad(g)H , there is just one fixed point component (namely, fix2(D, 1))
whose stable manifold is open and dense. We denote this component by att2(D).
Analogously, there is a unique component (fix2(D, w0), where w0 is the principal
involution) whose unstable manifold is open and dense. We denote this component by
rp2(D). We use the same notation for d = exp D.

If H1 refines H2, then the centralizers satisfy Z H1 ⊂ Z H2 and hence the fixed point set
of exp t H1 in a flag manifold F2 is contained in the fixed point set of exp t H2.

The following lemma shows that we can control the inclusion of fixed point sets for
different elements by looking at the attractor and repeller fixed point sets in the right flag
manifolds.

LEMMA 2.2. Suppose that H1 refines H2, take S ∈ Ad(G)H1 and T ∈ Ad(G)H2, and
put s = exp S, t = exp T . Suppose that att2(H1)(s)⊂ att2(H1)(t) and rp2(H1)∗

(s)⊂
rp2(H1)∗

(t). Then the fixed point set of s in any flag manifold is contained in the fixed
point set of t .

Moreover, the fixed points are the same in case these attractor and repeller fixed points
coincide.
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Proof. If we identify Ad(G)H1 with the open orbit in F2(H1) × F2(H1)∗ , then S is
identified with the pair (att2(H1)(s), rp2(H1)

(s)). In the same way, T is identified with
the pair (att2(H2)(t), rp2(H2)

(t)) ∈ F2(H2) × F2(H2)∗ . Now, since H1 refines H2, there are
fibrations p : Ad(G)H1→ Ad(G)H2, π1 : F2(H1)→ F2(H2) and π2 : F2(H1)∗→ F2(H2)∗

with the equalities π1(att2(H1)(t))= att2(H2)(t) and π2(att2(H1)(t))= att2(H2)(t). Hence,
we have p(S)= T . This means that there exists g ∈ G such that S = Ad(g)H1 and
T = Ad(g)H2. Hence, the fixed point set of s (respectively t) in a flag manifold F2 is
the image under g of the fixed point set of exp H1 (respectively exp H2), which implies the
lemma. �

3. Lyapunov and Morse spectra and decompositions
From now on we consider a discrete-time continuous flow φn on a continuous principal
bundle (Q, X, G), where the base space X is a compact metric space endowed with an
ergodic invariant measure ν with supp ν = X . The structural group G is assumed to be
semi-simple and non-compact or, slightly more generally, G is reductive with non-compact
semi-simple component. We fix once and for all a maximal compact subgroup K ⊂ G and
a K -subbundle R ⊂ Q. (For a bundle of frames of a vector bundle V→ X , this amounts
to the choice of a Riemannian metric on V . In case of a trivial bundle Q = X × G, the
reduction is R = X × K .)

The Iwasawa (G = K AN ) and Cartan (G = K S) decompositions of G yield
decompositions of Q = R × AN and Q = R × S by writing q ∈ Q as

q = r · hn and q = r · s,

r ∈ R, hn ∈ AN and s ∈ S. In what follows we write for q ∈ Q,

a(q)= log A(q) ∈ a,

where A(q) is the projection onto A against the Iwasawa decomposition. Also, we
write S : Q→ S as the projection onto S of Q = R × S. By the polar decomposition
G = K (clA+)K , we get a map A+ : Q→ clA+ by S(q)= kA+(q)k−1, k ∈ K . We write

a+(q)= log A+(q) ∈ cla+.

Now the flow φn on Q induces a flow φR
n on R by declaring φR

n (r) to be the projection of
φn onto R against the decomposition Q = R × AN (φR

n is indeed a flow because AN is a
group). The projections a and a+ define maps (denoted by the same letters) a : Z× R→ a

and a+ : Z× R→ cla+ by

a(n, r)= a(φn(r)) and a+(n, r)= a+(φn(r)).

It turns out that a(n, r) is an additive cocycle over φR
n . This cocycle factors to a cocycle

(also denoted by a) over the flow induced on E= Q ×G F, an associated bundle of Q with
typical fiber the maximal flag manifold F. The a-Lyapunov exponent of φn in the direction
of ξ ∈ E is defined by

λ(ξ)= lim
k→+∞

1
k

a(k, ξ) ∈ a, ξ ∈ E.
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The polar exponent is defined by

Hφ(r)= lim
k→+∞

1
k

a+(k, r) ∈ cla+, r ∈ R.

It turns out that Hφ(r) is constant along the fibers of R (when it exists), so is written Hφ(x),
x ∈ X . The existence of these limits is ensured by the multiplicative ergodic theorem, as
follows.

MULTIPLICATIVE ERGODIC THEOREM [1]. The polar exponent Hφ(x) exists for x in a
set of total measure �. Assume that ν is ergodic. Then there is HLy = HLy(ν) ∈ cla+

such that Hφ(·) is almost surely equal to HLy. Put E� = π−1(�), where π : E→ X is the
projection. Then:
(1) λ(ξ) exists for every ξ ∈ E� and the map λ : E�→ a assumes values in the finite set

{wHLy : w ∈W};
(2) there exists a measurable section χLy of the bundle Q ×G Ad(G)(HLy), defined on

�, such that λ(ξ)= w−1 HLy if ξ ∈ st(χLy(x), w), x = π(ξ).

(To be rigorous, the stable set st(χLy(x), w), simply denoted by st(x, w), must be
defined using the formalism of fiber bundles. If Q = X × G is trivial, then χLy : X→
Ad(G)(HLy) and st(χLy(x), w) is the stable set discussed in the last section.)

We write st(w) for the union of the sets st(χLy(x), w) with x running through �. In the
same way, we let fix(w) be the union of the fixed point sets fix(χLy(x), w).

By analogy with the multiplicative ergodic theorem on vector bundles, the union of the
sets fix(w), w ∈W , is called the Oseledets decomposition of E. These sets project to a
partial flag bundle E2 to fixed point sets fix2(w) that form the Oseledets decomposition
of E2.

To the exponent HLy(ν) ∈ cla+ we associate the subset of the simple system of roots

2Ly =2Ly(ν)= {α ∈6 : α(HLy(ν))= 0}.

The corresponding flag manifold F2Ly and flag bundle E2Ly = Q ×G F2Ly play a
prominent role in the proofs. (For a linear flow on a vector bundle F2Ly , it is the manifold
of flags (V1 ⊂ · · · ⊂ Vk) of subspaces of Rd having the same dimensions as the subspaces
of the Oseledets splitting when the Lyapunov spectrum is ordered decreasingly.) We refer
to F2Ly as the flag type of φ with respect to ν.

Remark. We mention that the section χLy yields (actually is built from) two sections ξ and
ξ∗ of the flag bundles F2Ly and F2∗Ly

, respectively. Their images are defined from level
sets of Lyapunov exponents and hence are measurable (see [1, §7.1]).

On the other hand, there are continuous decompositions of the flag bundles (defined
in the same way as sets of fixed points) obtained by working out the concept of
Morse decomposition of the flows on the bundles (see Conley [6] and Colonius and
Kliemann [5]). It was proved in [3] and [15] that if the flow on the base space is chain
transitive then the flow on any flag bundle E2 admits a finest Morse decomposition
with Morse sets M(w), also parametrized by w ∈W . Analogous to the Oseledets
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decomposition, the Morse sets are built as fixed point sets defined by a continuous section
of an adjoint bundle χMo : X→ Q ×G Ad(G)HMo, where HMo ∈ cla+ as well. There is
just one attractor Morse component, which is given by M+

=M(1). There is a unique
repeller component as well, which is M−

=M(w0), where w0 is the principal involution.
The assumption that the invariant measure ν is ergodic with support supp ν = X implies

chain transitivity on X .
We write

2Mo =2Mo(φ)= {α ∈6 : α(HMo)= 0}

and refer to F2Mo as the flag type of φ (with respect to the Morse decomposition).
The spectral counterpart of the Morse decomposition is the Morse spectrum associated

to the cocycle a(n, ξ). This spectrum was originally defined by Colonius and Kliemann [5]
for a flow on a vector bundle and extended to flag bundles (and vector-valued cocycles)
in [19]. By the results of [19], each Morse set M(w) has a Morse spectrum 3Mo(w)

which is a compact convex subset of a and contains any a-Lyapunov exponent λ(ξ),
ξ ∈M(w). The attractor Morse component is given by the identity 1 ∈W and we write
3Mo =3Mo(1), which is the only Morse spectrum meeting cla+. The Morse spectrum
3Mo satisfies the following properties:
(1) 3Mo is invariant under the group W2Mo generated by reflections with respect to the

roots α ∈2Mo (see [19, Theorem 8.3]);
(2) α(H) > 0 if H ∈3Mo and α is a positive root that does not belong to the set 〈2Mo〉

+

spanned by 2Mo (see [19, Corollary 7.4]).
By the last statement, α(HLy) > 0 if α is a simple root outside2Mo because HLy ∈3Mo.

Hence, α /∈2Ly by definition of2Ly. It follows that2Ly ⊂2Mo. Below in §6 we improve
this statement by proving, with the aid of invariant measures on flag bundles, that the
Oseledets decomposition is contained in the Morse decomposition.

Our objective is to find necessary and sufficient conditions ensuring that 2Ly =2Mo

and hence that the Oseledets decomposition coincides with the Morse decomposition.

4. Flows over periodic orbits
Before proceeding, let us recall the case where the base space is a single periodic orbit
X = {x0, . . . , xω−1} of period ω, which will be used later to reduce some arguments to
non-periodic orbits.

In the periodic case we have 2Ly =2Mo since, as is well known, the asymptotics
depends ultimately on iterations of a fixed element in the group G. Here the principal
bundle is Q = X × G and the flow is given by

φ(xi , h)= (xi+1(mod ω), A(xi )h)

for a map A : X→ G, so that

φn(xi , h)= (xi+n(mod ω), gn,i h),

where gn,i = A(xi+n−1(mod ω)) · · · A(xi+1)A(xi ). We have gn+m,i = gn,i+m(mod ω)gm,i ,
so that gkω,i = gk

ω,i . Hence, the asymptotics of an orbit starting at a point above xi is
dictated by the iterations of the action of gω,i . The iterations for the action of a fixed
g ∈ G on the flag manifolds, as well as the continuous-time version of periodicity, were
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studied by Ferraiol et al [8]. Let gn,i = un,i hn,i xn,i be the Jordan decomposition of gn,i

with un,i , hn,i and xn,i elliptic, hyperbolic and unipotent, respectively. There is a choice
of an Iwasawa decomposition G = K AN such that un,i ∈ K , hn,i ∈ A and xn,i ∈ N . It
follows that the Lyapunov spectrum is given by log hω,i , which is the same for any
i = 0, . . . , ω − 1 (because gω,i+1 = A(xi )gω,i A(xi )

−1). Also, as proved in [8], the Morse
decomposition is given by the fixed point sets of hω,i . Hence, 2Ly =2Mo.

5. Invariant measures on the bundles and a-Lyapunov exponents
Let µ be an invariant measure for the flow on the maximal flag bundle π : E→ X . Then
the integral ∫

q dµ, q(ξ)= a(1, ξ)

is an a-Lyapunov exponent for the cocycle a(n, ξ) (see [19]). On the other hand, by
applying the multiplicative ergodic theorem to an invariant measure ν on the base space,
we obtain a-Lyapunov exponents, which we call regular Lyapunov exponents with respect
to ν (because they are obtained as limits of sequences in a, which in turn come from regular
sequences in G, see [1]).

In this section we show that these Lyapunov exponents coincide. Namely, if ν is an
ergodic measure on X , then any of its a-Lyapunov exponents is an integral over an ergodic
measure µ that projects onto ν, i.e. π∗µ= ν, and conversely any such integral is a regular
Lyapunov exponent.

Fix an ergodic invariant measure ν on the base space and let�⊂ X be the set of ν-total
measure given by the multiplicative ergodic theorem (as proved in [1]). Recall that

π−1(�)=
⋃̇

w∈W2Ly\W
st(w)

and λ(ξ)= w−1 HLy if ξ ∈ st(w), where HLy is the polar exponent with respect to ν.

PROPOSITION 5.1. Let µ be an ergodic measure on E that projects onto ν. Then there
exists w ∈W such that µ(st(w))= 1 and µ(st(w′))= 0 if W2Lyw 6=W2Lyw

′. In this
case, ∫

q dµ= w−1 HLy.

Proof. By ergodicity of µ, the ergodic theorem applied to µ and q(ξ)= a(1, ξ) implies
that there exists a measurable set I ⊂ E with µ(I)= 1 and

λ(ξ)= lim
k→∞

1
k

a(k, ξ)=
∫

q dµ, ξ ∈ I.

Now µ(π−1(�) ∩ I)= 1 and π−1(�) ∩ I is the disjoint union of the sets st(w) ∩ I. In
each st(w) ∩ I,w ∈W , λ is defined and is a constant equal tow−1 HLy. Since λ is constant
on I, it follows that π−1(�) ∩ I ⊂ st(w) for some w ∈W . Then, for any ξ ∈ I,∫

q dµ= λ(ξ)= w−1 HLy.

Finally, µ(st(w))≥ µ(π−1(�) ∩ I)= 1, which implies that µ(st(w′))= 0 if st(w′) 6=
st(w), that is, if W2Lyw 6=W2Lyw

′. �
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COROLLARY 5.2. Let 3Mo(w)⊂ a be the Morse spectrum of the Morse set M(w). Then
the extremal points of the compact convex set3Mo(w) are regular Lyapunov exponents for
ergodic measures on the base space.

Proof. In fact, it was proved in [19, (see Theorem 3.2(6))] that any extremal point of
3Mo(w) is an integral

∫
q dµ with respect to an ergodic measure µ on E. (See also

[5, Lemma 5.4.10].) �

The converse to the above proposition says that any regular Lyapunov exponent is the
integral of q with respect to some ergodic measure projecting onto ν. In order to prove the
converse, we recall the Krylov–Bogolyubov procedure of constructing invariant measures
as occupation measures (see e.g. [5]). Let ψn , n ∈ Z, be a flow on a compact metric space
Y . Then this means that

(Ln,x f )(x)=
1
n

n−1∑
k=0

f (ψk x), x ∈ Y,

define linear maps on the space C0(Y ) of continuous functions and hence Borel probability
measures ρn . An accumulation point ρx = limk ρnk is called an (invariant) occupation
measure. When the limit f̃ (x)= limn 1/n

∑n−1
k=0 f (ψk x) exists, it is an integral f̃ (x)=∫

f (y)µx (dy) with respect to an occupation measure. The following properties will be
used below.
(1) Let ρ be an ergodic probability measure on Y . Then, for ρ-almost every y ∈ Y ,

any occupation measure ρy = ρ (this is an easy consequence of the Birkhoff ergodic
theorem).

(2) There exists a set J ⊂ Y of total probability (that is, ρ(J )= 1 for every invariant
measure ρ) such that for all y ∈ J there exists an ergodic occupation measure ρy

(see Mañé [14, Ch. II, §6]).

PROPOSITION 5.3. Givenw ∈W , there exists an invariant ergodic measure µw on E with
π∗µ

w
= ν such that ∫

q dµw = w−1 HLy

and µw(st(w))= 1.

Proof. If ξ ∈ st(w), then

λ(ξ)= lim
k→+∞

1
k

a(k, ξ)= w−1 HLy

and, since a(k, ξ) is a cocycle, it follows that there exists an occupation measure µξ such
that

w−1 HLy =

∫
q dµξ .

Note that π∗(µξ ) is an occupation measure ρx with x = π(ξ). Since ν is ergodic for ν-
almost all x , ρx = ν and hence we can choose ξ with π∗(µξ )= ν.

It is not clear in advance that µξ is ergodic. Nevertheless, we can decompose µξ into
ergodic components θη with η ranging through a set A of µξ total probability, that is,

µξ (·)=

∫
θη(·) dµξ (η).

Since π∗µξ = ν, it follows that π∗θη = ν for µξ -almost all η.
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We claim that
w−1 HLy =

∫
q dθη

for almost all η ∈A. In fact,

w−1 HLy =

∫
E

(∫
q dθη

)
dµξ (η).

Hence, w−1 HLy belongs to the convex closure of the set {
∫

q dθη ∈ a; η ∈A}. However,
by Proposition 5.1, for any ergodic θη there exists u ∈W such that

∫
q dθη = u−1 HLy, so

that w−1 HLy is a convex combination of points of the orbit W · HLy. But this is possible
only if

∫
q dθη = w−1 HLy for almost all η because the convex closure of the orbit W · HLy

is a polyhedron whose vertices (extremal points) are the points of the orbit. Hence, there
exists µw yielding the Lyapunov exponent w−1 HLy. Finally, the equality µw(st(w))= 1
follows by the previous proposition. �

Now we select two special kinds of ergodic measures on the flag bundles.

Definition 5.4. An ergodic measure µ on the maximal flag bundle E, which projects to ν,
is said to be an attractor measure for the flow if

∫
q dµ ∈ cl a+. A measure µ2 in E2

is an attractor measure if µ2 = π2∗µ with µ attractor in E, where π2 : E→ E2 is the
canonical projection.

Similarly, a measure µ in E, which projects to ν, is a repeller measure if
∫

q dµw ∈
−cl a+, and µ2 in E2 is a repeller measure if µ2 = π2∗µ with µ repeller in E.

Proposition 5.3 ensures the existence of both attractor and repeller measures.

PROPOSITION 5.5. A repeller measure is an attractor measure for the backward flow.

Proof. Let µ be a repeller measure on E and write q−(·)= a(−1, ·). Then, by the cocycle
property, q−(ξ)=−a(1, φ−1(ξ))=−q(φ−1(ξ)), so that∫

q− dµ=−
∫

q dµ ∈ cl a+

because
∫

q dµ ∈ −cl a+. Thus, µ is an attractor measure for the backward flow. This
proves the statement on the maximal flag bundle E. On the other bundles the result follows
by definition. �

Now we relate the supports of the attractor and repeller measures with the
decomposition given by the multiplicative ergodic theorem on the flag bundle E2Ly(ν) and
in its dual E2∗Ly(ν)

. This decomposition is given by sections ξ and ξ∗ of E2Ly(ν) and
E2∗Ly(ν)

, respectively.

We write simply 2Ly =2Ly(ν) and distinguish the several projections as π : E→ X ,
π2Ly : E→ E2Ly , π2∗Ly

: E→ E2∗Ly
and p for either E2Ly → X or E2∗Ly

→ X .
Let µ be a repeller measure on E and put µ2∗Ly

= π2∗Ly∗
(µ) for the corresponding

repeller measure on E2∗Ly
. We have p∗(µ2∗Ly

)= ν because p ◦ π2∗Ly
= π and π∗µ= ν.

Hence, we can disintegrate µ2∗Ly
with respect to ν to get

µ2∗Ly
(·)=

∫
X
ρx (·) dν(x),
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where x ∈ X 7→ ρx ∈M+(E2∗Ly
) is a measurable map into the space of probability

measures on E2∗Ly
.

LEMMA 5.6. For ν-almost all x ∈ X, the component ρx in the above disintegration is a
Dirac measure at ξ∗(x), that is, ρx = δξ∗(x).

Proof. Let Z be the Borel set

Z = {im ξ∗}c = E2∗Ly
\{im ξ∗}

(see the remark in §3). Then

µ2∗Ly
(Z)= µ(π−1

2∗Ly
(Z))= µ(E\st(w0))= 0

because µ is a repeller measure. However,

0= µ2∗Ly
(Z)=

∫
X
ρx (Z) dν(x)

and, since ρx is supported at π−1
2∗Ly
(x), it follows that ρx (E2∗Ly

\{ξ∗(x)})= 0 for ν-almost

all x ∈ X . �

This lemma shows also that a repeller measure on the dual flag manifold E2∗Ly
is unique.

Now we can apply the same argument for the reverse flow φ−t , and get a similar result for
an attracting measure on E2Ly with ξ∗ replaced by ξ .

For later reference, we summarize these facts in the following proposition.

PROPOSITION 5.7. There exists a unique attractor measure µ+2Ly
for φt in its flag type

E2Ly , which is a Dirac measure on ξ(x), that is, it disintegrates as

µ+2Ly
(·)=

∫
δξ(x)(·) dν(x)

with respect to ν. There also exists a unique repeller measure µ−2Ly
on E2∗Ly

, which is
Dirac at ξ∗.

COROLLARY 5.8. There exists a unique attractor (respectively repeller) measure in E2 if
2Ly ⊂2 (respectively 2∗Ly ⊂2).

Proof. This is true because the projection E→ E2 factors through E2Ly if2Ly ⊂2: E→
E2Ly → E2. Hence, a measure in E2 is an attractor if and only if it is the projection of
the attractor measure in E2Ly . �

6. Morse decomposition × Oseledets decomposition
In this section we use the concepts of attractor and repeller measures developed above to
relate the Oseledets decomposition and the Morse decomposition on a flag bundle E2, as
well as the Lyapunov spectrum HLy and the Morse spectrum 3Mo.

First we have the following consequence of Proposition 5.3.

PROPOSITION 6.1. Suppose that α(3Mo)= 0 for all α ∈2Mo. Then 2Ly(ρ)=2Mo for
every ergodic measure ρ on the base space.
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Proof. As checked in §3, we have 2Ly(ρ)⊂2Mo. On the other hand, by Proposition 5.3,
any regular Lyapunov exponent is a Morse exponent, that is, HLy(ρ)⊂3Mo. Hence,
α(HLy(ρ))= 0 if α ∈2Mo, showing that 2Mo ⊂2Ly(ρ). �

Now we look at the decompositions of the flag bundles.

PROPOSITION 6.2. Let µ be an attractor measure on E. Then its support supp µ is
contained in the unique attractor component M+ of the finest Morse decomposition.

Proof. Each point in suppµ is recurrent and hence belongs to the set of chain recurrent
points which is the union of the Morse components.

Now, since µ is an attractor measure we have

λµ =

∫
q dµ ∈ cla+.

This integral is the a-Lyapunov exponent of µ-almost all z ∈ suppµ and hence is contained
in the Morse spectrum. Actually, λµ ∈3Mo(M+), the Morse spectrum of M+, because
this is the only Morse component whose spectrum meets cla+. Therefore, for µ-almost all
z ∈ suppµ, z ∈M+. Since M+ is compact, it follows that suppµ⊂M+. �

By taking the backward flow, we get a similar result for the repeller measures.

PROPOSITION 6.3. Let µ be a repeller measure on E. Then its support suppµ is contained
in the unique repeller component M− of the finest Morse decomposition.

PROPOSITION 6.4. Let O be a component of the Oseledets decomposition in a flag bundle
E2. Then there exists a component M of the Morse decomposition of E2 such that
O ⊂M.

Proof. Let µ2Ly be the only attractor measure in E2Ly and µ2∗Ly
the repeller measure in

E2∗Ly
. These are projections of attractor and repeller measures on E. Hence, the above

lemmas imply that suppµ2Ly ⊂M+

2Ly
and suppµ2∗Ly

⊂M+

2∗Ly
. However, we checked in

§3 that 2Ly ⊂2Mo. Hence, by Lemma 2.2, we conclude that the fixed point set—in
any flag bundle—of the Oseledets section χLy is contained in the fixed point set of the
Morse section χMo. This means that the Oseletets components are contained in the Morse
components. �

Remark. It is proved in [5, Corollary 5.5.17] that the Oseledets decomposition is contained
in the Morse decomposition for a linear flow on a vector bundle.

7. Lyapunov exponents in the tangent bundle T f E2Ly

A fiber of a flag bundle E2 is a differentiable manifold and hence has a tangent bundle.
Gluing together the tangent bundles to the fibers of E2, we get a vector bundle T f E2→
E2 over E2. The flow φt on E2 is differentiable along the fibers with differential map ψt ,
a linear map of the vector bundle T f E2. (See [16] for a construction of this vector bundle
as an associated bundle Q ×G V .)
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We look here at the Lyapunov exponents for the linear flow ψt on T f E2Ly with respect
to an attractor measure of φt . These Lyapunov exponents will be used in the proof of the
main technical lemma to describe the ω-limit sets (with respect to φt ) in the flag bundles.

Equip the bundle T f E2 with a Riemannian metric 〈· , ·〉, which can be built from a
K -reduction R of the principal bundle Q. (Roughly, the metric 〈· , ·〉 is constructed by
piecing together K -invariant metrics on the fibers. See [16] for details.)

PROPOSITION 7.1. Let ν be an ergodic measure on X and denote by µ its attractor
measure on the bundle E2Ly . Let H(ν) ∈ cla+ be the polar exponent of ν. Then the
Lyapunov spectrum of ψ with respect to µ is ad(H(µ))

|n−2Ly
, which is a diagonal linear

map of n−2Ly
(that is, an element of a Weyl chamber cla+ of gl(n−2Ly

)).

Proof. Denote by O(ν) the Z HLy -measurable reduction of Q, corresponding to the
Oseledets section of ν. This reduction is a principal bundle with structural group Z HLy

over a set �⊂ X with ν(�)= 1 (see [1]).
The section ξLy :�→ E2Ly gives a disintegration of µ with respect to ν by Dirac

measures. Let �# be the image of this section. Then the restriction of T f E2Ly to �#

is a vector bundle T f�#
→�#, which is invariant by the differential flow ψt .

We can build the vector bundle T f�# as an associated bundle O(ν) through the adjoint
representation θ of Z HLy in n−2Ly

.

Then, if we take compatible Cartan decompositions of θ(Z HLy) and Gl(n−2Ly
), it follows

that the polar exponent of ψt is precisely θ(H(µ)). By the constructions of [1, §8], it
follows that the Lyapunov exponents of ψt are the eigenvalues of θ(H(µ)) as linear maps
of n−2Ly

. �

COROLLARY 7.2. Suppose that 2Ly ⊂2. Then the Lyapunov exponents of ψt in T f E2
with respect to the attractor measure µ are strictly negative.

Later on, we will combine this corollary with the following general fact about Lyapunov
exponents on vector bundles. Let p : V → X be a continuous vector bundle endowed with
a norm ‖ · ‖. Let 8n be a continuous linear flow on V . If ν is a 8-invariant ergodic
measure on the base X , then 8 has a Lyapunov spectrum HLy(ν)= {λ1 ≥ · · · ≥ λn} with
respect to ν, as ensured by the multiplicative ergodic theorem. The following lemma may
be well known. For the sake of completeness, we prove it here using the Morse spectrum
of the linear flow.

LEMMA 7.3. Suppose that for every 8-invariant ergodic measure ν on X the spectrum
with respect to ν is strictly negative. Then, for every v ∈ V ,

lim
n→+∞

‖8nv‖ = 0.

Proof. Let p : PV → X be the projective bundle of V . The cocycle ρ(n, v)= ‖8nv‖/‖v‖

on V induces the additive cocycle a(n, η)= log ρ(n, η), η ∈ PV , whose asymptotics gives
the Lyapunov spectrum of 8. Write q(·)= a(1, ·). Then, by general results on the Morse
spectrum of an additive cocycle (see [19, §3] and references therein), the Morse spectrum
of a is a union of intervals whose extreme points are integrals

∫
q(x)µ (dx) with respect
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to ergodic invariant measures µ for the flow on PV . By the Birkhoff ergodic theorem, it
follows that for µ-almost all η ∈ PV ,

lim
n→∞

1
n

a(n, η)= lim
n→∞

1
n

n−1∑
k=0

q(8kη)=

∫
q(z)µ(dz).

On the other hand, the projection p∗µ= ν is ergodic on the base X . Hence, by assumption,
the spectrum with respect to ν, given by the multiplicative ergodic theorem, is strictly
negative. This means that for ν-almost all x ∈ X , limn→∞ (1/n)a(n, η) exists for every
η ∈ p−1

{x} and is strictly negative. Combining these two facts, we conclude that∫
q(z)µ(dz) < 0

and therefore the Morse spectrum is contained in (−∞, 0).
Now, for every η ∈ PV , lim supn→+∞ (1/n)a(n, η) belongs to the Morse spectrum

(see [5, Theorem 5.3.6]). Hence, for every 0 6= v ∈ V ,

lim sup
n→+∞

1
n

log ‖8nv‖< 0.

This implies that for large n, ‖8nv‖< ecn , c < 0, proving the lemma. �

Applying the lemma for the backward flow, we have the following result.

COROLLARY 7.4. With the same assumptions of the lemma, we have limn→−∞ ‖8nv‖ =

∞ if v 6= 0.

8. Main technical lemma
LEMMA 8.1. Let E2 be a flag manifold with dual E2∗ . Suppose that there are three
compact φ-invariant subsets A, B ⊂ E2 and C ⊂ E2∗ that project onto X and such that:
(1) A ∩ B = ∅;
(2) Bc is the set of elements transversal to C (that is, an element v ∈ E2 belongs to B if

and only if it is not transversal to some w ∈ C in the same fiber as v);
(3) for any ergodic measure ρ for the flow on the base space X, we have 2Ly(ρ)⊂2.

By Corollary 5.8, this implies that there are a unique attractor measure µ+2(ρ) for ρ
on E2 and a unique repeller measure µ−2∗(ρ) on E2∗ ;

(4) for any ergodic measure ρ on X, suppµ+2(ρ)⊂ A and suppµ−2∗(ρ)⊂ C.
Then (A, B) is an attractor–repeller pair on E2. That is, the ω-limit set ω(v)⊂ A if

v /∈ B while the α-limit set ω∗(v)⊂ B if v /∈ A.

The proof of this lemma will be done in several steps. Before starting, we define a
fourth set D ⊂ Q ×G (F2 × F2∗) by

D = π−1
1 (A) ∩ π−1

2 (C),

where π1 : Q ×G (F2 × F2∗)→ E2 and π2 : Q ×G (F2 × F2∗)→ E2∗ are the
projections. This set is compact and invariant and, by the transversality given by the
first and second conditions in the lemma, we can view D as a compact subset of the bundle

A2 = Q ×G Ad(G)H2,
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where 2= {α ∈6 : α(H2)= 0}. In fact, Ad(G)H2 is in bijection with the set of
transversal pairs in F2 × F2∗ (see e.g. [20]).

Now, to start the proof, fix x ∈ X that has a periodic orbit O(x). Then the Oseledets
decomposition coincides with the Morse decomposition above O(x), which, by §4, is built
from the dynamics of the action of a gx ∈ G. Clearly, the homogeneous measure θ on the
periodic orbit is an ergodic invariant measure on X . By the third condition of the lemma, gx

has one attractor fixed point at F2, say b+, and a repeller fixed point b− ∈ F2∗ . The Morse
decomposition of gx is the union of {b+}with subsets whose elements are not transversal to
b−. It follows that the attractor µ+2(θ) and the repeller µ−2∗(θ)measures are homogeneous
measures on periodic orbits. By the fourth condition of the lemma, suppµ+2(θ)⊂ A and
suppµ−2∗(θ)⊂ C , so that by the second condition the Morse decomposition above O(x) is
the union of suppµ+2(θ) with subsets contained in B. Hence, if v is in the fiber above x ,
then ω(v)⊂ A if v /∈ B, while ω∗(v)⊂ B if v /∈ A.

Therefore, from now on we look at ω-limits ω(v) and ω∗(v) assuming that the orbit
O(x) of x = π(v) is not periodic, that is, the map n ∈ Z 7→ xn = φn(x) ∈ X is injective
and O(x) is in bijection with Z.

To prove that the ω-limits are contained in A, we will use the following consequence of
Lemma 7.3.

LEMMA 8.2. Given v ∈ A, let w ∈ T f
v E2Ly be a tangent vector at v. Then limt→+∞

‖ψtw‖ = 0.

Proof. Is an immediate consequence of Lemma 7.3, combined with the third and fourth
conditions of the lemma. �

Now, above the non-periodic orbit O(x) we reduce the flow to just a sequence gn of
elements of the subgroup Z H2 . The construction is the following: start with an element
η0 ∈ D in the fiber over x . The orbit O(η0) is the sequence ηn = φn(η0), n ∈ Z, that can
be viewed as a section over O(x) by xn 7→ ηn . The elements of the associated bundle A2

are written as p · H2, p ∈ R, where as before R is the K -reduction of Q→ X . Hence,
there exists a sequence pn ∈ R such that ηn = pn · H2.

Since pn+m and φn(pm) are in the same fiber, we have φn(pm)= pn+m · gn,m with
gn,m ∈ G, n, m ∈ Z. Actually, gn,m ∈ Z H2 because φn(ηm)= ηn+m , so that

pn+m · Ad(gn,m)H2 = φn(ηm)= ηn+m = pn+m · H2.

We write ξn and ξ∗n for the projections of ηn into E2 and E2∗ , respectively. By definition
of D, we have ξn ∈ A and ξ∗n ∈ C . Hence, by the second assumption of the lemma, the
elements in E2 that are not transversal to ξ∗n are contained in B. In other words, we have
the following result.

LEMMA 8.3. Take v /∈ B in the fiber of x. Then v is transversal to ξ∗0 .

Now we use Lyapunov exponents of the lifting ψn of φn to T f E2 to show that
ω(v)⊂ A if v /∈ B is in the fiber of x .

To do that, we first note that if the starting element η0 ∈A2 is written as η0 = p · H2,
p ∈ R, then the set of points that are transversal to ξ∗0 is given algebraically by

T = p · (N−2 · b0)= {p · nb0 : n ∈ N−2 },
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where b0 is the origin of the flag F2 and N−2 is the nilpotent subgroup with Lie algebra
n−2 =

∑
α/∈〈2〉,α<0 gα (lower triangular matrices).

Since exp : n−2→ N−2 is a diffeomorphism, we have also T = {p · (exp Y · b0) :

Y ∈ n−2}.
The action of φn on an element p · (exp Y · b0) ∈ T is given as follows: put gn = gn,0

∈ Z H2 . Then, as remarked above, φn(p)= pn · gn , so that

φn(p · (exp Y · b0))= pn · (gn exp Y g−1
n · gnb0).

But gnb0 = b0 because gn ∈ Z H , and gn exp Y g−1
n = exp(Ad(gn)Y ). Hence,

φn(p · (exp Y · b0))= pn · exp(Ad(gn)Y )b0. (1)

The next lemma relates this action with the lifting ψn of φn to the tangent space T f E2.

LEMMA 8.4. Given Y ∈ g, denote by p · Y the vertical tangent vector (d/dt)(p · (exp tY ·
b0))t=0 ∈ T f

p·b0
E2. Then p · Y , Y ∈ n−2, fulfill the vertical tangent space T f

p·b0
E2, and the

derivative ψn of φn at p · b0 satisfies

ψn(p · Y )= pn · Ad(gn)Y.

Proof. The fact that any tangent vector in T f
p·b0

E2 is given by p · Y for some Y ∈ n−2 is
due to the fact that N−2 · b0 is an open submanifold of F2. For the last statement, we have

ψn(p · Y ) =
d
dt
φn(p · (exp tY · b0))t=0

= pn ·
d
dt
(exp(tAd(gn)Y )b0)t=0 = pn · Ad(gn)Y. �

We are now prepared to prove that ω(v)⊂ A if v /∈ B is in the fiber of x . We have
v = p · (exp Y · b0) for some Y ∈ n−2, so that by (1) φn(v)= pn · exp(Ad(gn)Y )b0.

Now, by Corollary 7.2 and Lemma 7.3, we have limn→+∞ ‖ψnw‖ = 0 if w ∈ T f
p·b0

E2.
Taking w = p · Y , we have ‖p · Y‖ = ‖Y‖ because p ∈ R and hence it is an isometry
between the flag manifold F2 and the corresponding fiber of E2 (see [16] for the
construction of the norm in T f E2). Since the same remark holds for pn ∈ R, we have
‖ψnw‖ = ‖Ad(gn)Y‖, so that

Ad(gn)Y → 0 and exp Ad(gn)Y → 1.

This implies that if d is the metric on E2Ly , then d(φn(v), pn · b0)→ 0. But pn · b0 =

ξn ∈ A as well as its limit points, by invariance and compactness of A. Therefore, we
conclude that ω(v)⊂ A if v /∈ B.

We turn now to the proof that ω∗(v)⊂ B if v /∈ A, again with v above a non-periodic
orbit.

Take a sequence nk→−∞ such that φnkv converges in E2. Taking subsequences, we
assume the convergences pnk → p ∈ R, ηnk → η, ξnk → ξ and ξ∗nk

→ ξ∗.
By invariance, it is enough to take v /∈ B, so that we can write v = p0 · (exp Y )b0 with

Y ∈ n−2 and Y 6= 0 (because v /∈ A).
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Taking subsequences again, we assume that gnk (exp Y )b0 converges to b1 ∈ F2. Since
gn ∈ Z H2 , we have gnb0 = b0 and hence

(exp Ad(gnk )Y )b0 = gnk (exp Y )b0→ b1.

Now Ad(gn)Y →∞ in n−2Ly
because the Lyapunov exponents for the backward flow

are greater than zero. This implies that b1 is not transversal to the origin b∗0 of F2∗ . Hence,
pnk · b1 is not transversal to pnk · b

∗

0 , so that pnk · b1 ∈ B. But

φnkv = pnk gnk · (exp Y )b0 = pnk · (exp Ad(gnk )Y )b0,

so that lim φnkv = p · b1, showing that ω∗(v)⊂ B.
In conclusion, we have compact invariant sets A and B that satisfy ω(v)⊂ A and

ω∗(v)⊂ B if v /∈ A ∪ B. Hence, A and B define a Morse decomposition of E2Ly with
A the attractor component.

9. Three conditions
In this section we state three conditions that together are necessary and sufficient to
have equality between the Lyapunov and Morse decompositions over an ergodic invariant
measure.

Thus, as in §3, let φn be a continuous flow on a continuous principal bundle π : Q→ X
whose structural group G is reductive and non-compact. We fix once and for all an ergodic
invariant measure ν on the base space having support supp ν = X . Then the a-Lyapunov
exponents of φn select a flag type, which is expressed by a subset 2Ly of simple roots.
The flow on X is chain transitive, so it also has a flag type 2Mo coming from the Morse
decomposition and a-Morse spectrum.

We start by writing down the three conditions and check that they are necessary. In the
next section we prove that together they are also sufficient to have 2Ly =2Mo.

9.1. Bounded section. The Oseledets section is a measurable section χLy :�→ Q ×G

OLy of the associated bundle Q ×G OLy→ X above the set of full ν-measure�. The fiber
of this bundle is the adjoint orbit OLy = Ad(G)HLy. Associated to this section there is the
equivariant map fLy : Q�→OLy defined above �, where Q� = π

−1(�) and π : Q→ X
is the projection. The map fLy is defined by fLy(q)= q−1

· χLy(x) with x = π(q), where
q is viewed as a map from OLy to a fiber of Q ×G OLy.

Let R ⊂ Q→ X be a (continuous) K -reduction of Q and write R� = π−1(�). Then
we say that the Oseledets section is bounded if:
• fLy is bounded in R�.

This definition does not depend on the specific K -reduction because the base space X
is assumed to be compact.

If 2Ly =2Mo, then we can take HMo = HLy and χMo = χLy, so that fLy is continuous
and hence bounded by compactness.

Hence, boundedness is a necessary condition.

Example. Let φ be a linear flow on a d-dimensional trivial vector bundle X × V with two
Lyapunov exponents λ1 > λ2 whose Oseledets subspaces have dimensions k and d − k.
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Then HLy is chosen to be a diagonal matrix diag{λ1, . . . , λ1, λ2, . . . , λ2} with λ1 having
multiplicity k. Since the bundle is trivial, the Oseledets section is ultimately given by a
map fLy :�→ Ad(G)HLy, fLy(x)= fLy(x, 1), with obvious abuse of notation. Then
the Oseledets subspaces at x ∈ X are the eigenspaces Vλ1(x) and Vλ2(x) of fLy(x) ∈
Ad(G)HLy. To say that fLy is bounded means that the subspaces Vλ1(x) and Vλ2(x) have
a positive distance.

9.2. Refinement of the Lyapunov spectrum of other invariant measures. Denote by
PX (φ) the set of φ-invariant probability measures on X . For each ergodic measure
ρ ∈ PX (φ), we have its Lyapunov spectrum HLy(ρ) and the corresponding flag type
2Ly(ρ)= {α ∈6 : α(HLy(ρ))= 0}. Our second condition is:
• 2Ly(ρ)⊂2Ly(ν) for every ergodic ρ ∈ PX (φ).

This is a necessary condition for 2Ly(ν)=2Mo. To see this, let ρ ∈ PX (φ) be ergodic
and denote by Y ⊂ X its support. Let2Mo(Y ) be the flag type of the Morse decomposition
of the flow restricted to Y (that is, to the fibers above Y ). We have2Mo(Y )⊂2Mo because
the Morse components of the flow restricted to Y are contained in the components over X .
However, 2Ly(ρ)⊂2Mo(Y ), so that the equality 2Mo =2Ly(ν) implies that

2Ly(ρ)⊂2Mo(Y )⊂2Mo =2Ly(ν).

Example. Let φ be a linear flow on a d-dimensional vector bundle X × V with Lyapunov
spectrum λ1 > · · ·> λs with multiplicities k1, . . . , ks with respect to ν. Then this
condition means that the Lyapunov spectrum µ1 > · · ·> µt with respect to another
ergodic measure ρ has multiplicities r1, . . . , rt that satisfy r1 + · · · + ri1 = k1, ri1 +

· · · + ri2 = k2, etc.

9.3. Attractor and repeller measures. Recall that we defined an attractor measure on a
partial flag manifold E2 to be the projection of an ergodic invariant measure µ on E such
that

HLy(µ)=

∫
q dµ ∈ cla+.

In the specific flag bundle E2Ly , the attractor measure µ+2Ly
is unique and has a

disintegration over ν by Dirac measures on the fibers above a set � of total measure ν.
We denote by att2Ly(ν) the support of µ+2Ly

.

Analogously, in the dual flag bundle E2∗Ly
there is a unique repeller measure µ−2Ly

. We

denote by rep2∗Ly
(ν) the support of µ−2Ly

.

Let ρ ∈ PX (φ) be an ergodic measure with support the compact set Y ⊂ X , which
is an invariant subset. The subset π−1

2Ly
(Y ) ∩ att2Ly(ν) is invariant as well. We denote

by E+2Ly
(ρ) the set of ergodic probability measures with support contained in π−1

2Ly
(Y ) ∩

att2Ly(ν) that project down to ρ. Also, we put E−
2∗Ly
(ρ) for the set of ergodic probability

measures with support in π−1
2Ly
(Y ) ∩ rep2∗Ly

(ν) that project down to ρ. Both sets E+2Ly
(ρ)

and E−
2∗Ly
(ρ) are not empty, since in the compact invariant sets π−1

2Ly
(Y ) ∩ att2Ly(ν) and
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π−1
2Ly
(Y ) ∩ rep2∗Ly

(ν) there are occupation measures that project down to ρ (cf. the proof
of Proposition 5.3).

Now we can state our third condition.
• Any θ ∈ E+2Ly

(ρ) is an attractor measure and any θ ∈ E−
2∗Ly
(ρ) is a repeller measure

for φ.
If 2Mo =2Ly(ν), then the attractor Morse component M2Ly =M2Ly(1) in E2Ly is

the image of a section ξ : X→ E2Ly and contains the support att2Ly(ν) of the attractor
measure. This implies that M2Ly = att2Ly(ν), so that M= π−1

2Ly
(att2Ly(ν)) is the attractor

Morse component M in the maximal flag bundle. Now the Morse spectrum 3Mo(M) of
M is contained in the cone

a+2Mo
= {H ∈ a : ∀α /∈ 〈2Mo〉, α(H) > 0}

(see [19]). Hence, any Lyapunov exponent of M belongs to a+2Mo
. By projecting down

to E2Ly the measures with support in M, we see that any θ with support in π−1
2Ly
(Y ) ∩

att2Ly(ν) is an attractor measure.
The same proof with the backward flow shows that θ ∈ E−

2∗Ly
(ρ) is a repeller measure.

9.4. Oseledets decompositions for other measures. The second and third conditions
above refer to ergodic measures ρ on X different from the initial measure ν. These two
conditions can be summarized in just one condition on the Oseledets section for the ergodic
measures ρ ∈ PX (φ).

Given ρ ∈ PX (φ), write χρ for its Oseledets section and ξρ and ξρ∗ for the
corresponding sections on E2Ly(ρ) and E2∗Ly(ρ)

, respectively.

Definition 9.1. We say that χρ is contained in the Oseledets section of ν in case the
following two conditions are satisfied.
(1) 2Ly(ρ)⊂2Ly(ν). In this case there is the fibration p : Q ×G Ad(G)(HLy(ρ))→

Q ×G Ad(G)(HLy(ν)).
(2) p(imχρ)⊂ cl(imχ), where χ is the Oseledets section of ν.

The second condition implies that the images of the sections ξρ and ξρ∗ project
onto cl(imξ) and cl(imξ∗), by the fibrations E2Ly(ρ)→ E2Ly(ν) and E2∗Ly(ρ)

→ E2∗Ly(ν)
,

respectively.
Since the attractor and repeller measures for ρ disintegrate according to the sections ξρ

and ξρ∗, respectively, it follows that the second and third conditions above are equivalent
to having χρ contained in χ .

10. Sufficiency of the conditions
We apply here the main lemma (Lemma 8.1) to get sufficiency of the conditions of the
last section and thus prove the following characterization for the equality of Morse and
Oseledets decompositions.

THEOREM 10.1. Suppose that the invariant measure on the base space is ergodic.
Then the three conditions together—bounded section (9.1), refinement of Lyapunov
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spectrum (9.2) and attractor–repeller measures (9.3)—are necessary and sufficient to have
2Ly =2Mo and χLy = χMo.

As before, we have the sections ξ :�→ E2Ly and ξ∗ :�→ E2∗Ly
, respectively, that are

combined to give the Oseledets section χLy :�⊂ X→A2Ly .
We apply Lemma 8.1 with:

(1) A = cl(imξ), which is the support of the unique attractor measure µ+2Ly
in E2Ly ;

(2) C = cl(imξ∗), which is the support of the unique repeller measure µ−2Ly
in E2∗Ly

; and
(3) B = cl

⋃
w 6=1 st2Ly(x, w), x ∈�. That is, B is the closure of the set of elements that

are not transversal to ξ∗(x), x ∈�.
Alternatively, we have the following characterization of B in terms of the closure of the

dual section ξ∗.

PROPOSITION 10.2. An element v ∈ E2Ly belongs to B if and only if it is not transversal
to some w ∈ cl(imξ∗) in the same fiber as v.

Proof. Take local trivializations so that locally E2Ly 'U × F2Ly , E2∗Ly
'U × F2∗Ly

(U ⊂
X open), ξ :U → F2Ly and ξ∗ :U → F2∗Ly

. If v = (x, b) ∈ B, then there exists a sequence
(xn, bn)→ v with bn not transversal to ξ∗(xn). By taking a subsequence, we can assume
that ξ∗(xn) converges to b∗ ∈ F2∗Ly

. Then the pair (bn, ξ
∗(xn)) converges to (b, b∗) ∈

F2Ly × F2∗Ly
. Now the set of non-transversal pairs in F2Ly × F2∗Ly

is closed. Hence, b and
b∗ are not transversal, showing that v = (x, b) is not transversal tow = (x, b∗) ∈ cl(imξ∗).

Conversely, suppose that v = (x, b) ∈ E2Ly is not transversal to w = (x, b∗) ∈
cl(imξ∗). Then b∗ = lim ξ∗(xn) with lim xn = x . By Lemma 2.1, there exists a sequence
bn ∈ F2Ly such that bn is not transversal to ξ∗(xn) and lim bn = b. Hence, (xn, bn) ∈ B
and lim(xn, bn)= (x, b)= v, showing that v ∈ B. �

Clearly, A, B and C are compact sets. Also, A and C are invariant because the sections
ξ and ξ∗ are invariant and, since transversality is preserved by the flow, it follows that B is
invariant as well.

Now we verify that the assumptions of Lemma 8.1 hold in the presence of the three
conditions of Theorem 10.1. Statements (3) and (4) of Lemma 8.1 are the same as the
refinement of Lyapunov spectrum and attractor-repeller measure conditions, respectively.
Item (2) of Lemma 8.1 is the above proposition. So, it remains to prove that A and B are
disjoint. This is the only place where the boundedness condition is used.

PROPOSITION 10.3. We have A ∩ B = ∅. Precisely, if v ∈ A and w ∈ cl(imξ∗), then v
and w are transversal and, if v ∈ B, then there exists w ∈ cl(imξ∗) in the same fiber which
is not transversal to v.

Proof. Since the restriction of fLy to R� is bounded, its image in OLy = Ad(G)HLy has
compact closure. By the equality χLy(x)= p · fLy(p) (p ∈ Q with π(p)= x), it follows
that cl(imχLy) is a compact subset of the bundle Q ×G OLy. After identifying OLy with
an open subset of F2Ly × F2∗Ly

, we get a section of Q ×G (F2Ly × F2∗Ly
) over � also

denoted by χLy. The image of this section is contained in the open subset of those pairs in
Q ×G (F2Ly × F2∗Ly

) that are transversal to each other. The closure of the image of χLy
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is a compact subset contained in the open subset of Q ×G (F2Ly × F2∗Ly
) identified with

Q ×G OLy. Hence, the closure of the image of χLy contains only transversal pairs.
Now let p : Q ×G (F2Ly × F2∗Ly

)→ E2Ly and p∗ : Q ×G (F2Ly × F2∗Ly
)→ E2∗Ly

be
the canonical projections. Then

ξ = p ◦ χLy and ξ∗ = p∗ ◦ χLy.

Hence, by compactness, p(cl(imχLy))= cl(imξ) and p∗(cl(imχLy))= cl(imξ∗). It
follows that two elements v ∈ A = cl(imξ) and w ∈ cl(imξ∗) are transversal to each other
if they are in the same fiber.

On the other hand, if v ∈ B, then, by Proposition 10.2, there exists w ∈ cl(imξ∗) such
that v and w are in the same fiber and are not transversal. Hence, v /∈ A, concluding that
A and B are disjoint. �

End of proof of Theorem 10.1. By Lemma 8.1, A and B define a Morse decomposition of
E2Ly with A the attractor component. Hence, A = cl(imξ) contains the unique attractor
component M+

2Ly
of the finest Morse decomposition of E2Ly . On the other hand,

by Proposition 6.4, the Oseledets component imξ ⊂M+

2Ly
. Therefore, A = cl(imξ)⊂

M+

2Ly
, so that they are equal. �

11. Uniquely ergodic base spaces
When the flow on the base space has unique invariant (and hence ergodic) probability
measure ν, the second and third conditions of §9 are meaningless. Hence, in this case, a
necessary and sufficient condition to have equality of Oseledets and Morse decompositions
is that the Oseledets section for ν is bounded (first condition of §9).

From another point of view, the Morse spectrum 3Mo of the attractor component M+

is a compact convex set whose extremal points are Lyapunov exponents given by integrals
with respect to invariant measures on the maximal flag bundle. By the results of §5,
any such integral Lyapunov exponent is a regular Lyapunov exponent of an invariant
probability in the base space. Just one of these Lyapunov exponents belongs to cla+,
which is the polar exponent HLy associated to the measure.

Hence,3Mo has a unique extremal point in cla+ if the flow on the base space is uniquely
ergodic.

PROPOSITION 11.1. Suppose that the flow on the base space X has a unique invariant
probability measure ν with supp ν = X. Let HLy = HLy(ν) be its polar exponent. Then
3Mo is the polyhedron whose vertices are wHLy, w ∈W2Mo .

Proof. The convex set 3Mo is invariant by W2Mo (see §3 above and [19, Theorem 8.3]).
Since HLy ∈3Mo, the polyhedron with vertices in W2Mo(HLy) is contained in 3Mo.
Conversely, suppose that H is an extremal point of 3Mo. Then there exists w ∈W such
that wH ∈ cla+. We claim that w ∈W2Mo . In fact, by Weyl group invariance of the
Morse spectrum, there exists a Morse component M such that wH ∈3Mo(M) (see [19]).
But the attractor component M+ is the only one whose Morse spectrum meets cla+,
so that M=M+ and wH ∈3Mo =3Mo(M+) and, since the spectra of distinct Morse
components are disjoint, we have w3Mo =3Mo, implying that w ∈W2Mo .
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Now wH ∈ cla+ is an extremal point of 3Mo = w3Mo and hence wH = HLy.
Therefore, W2Mo HLy is the set of extremal points of 3Mo, concluding the proof. �

THEOREM 11.2. Suppose that the flow on the base space X has a unique invariant
probability measure ν with supp ν = X. Then the following conditions are equivalent.
(1) 2Ly =2Mo.
(2) The Oseledets section for ν is bounded.
(3) α(3Mo)= {0} for all α ∈2Mo.

If these conditions hold, then 3Mo = {HLy}.

Proof. As mentioned above, the equivalence between the first two conditions is a
consequence of the main theorem (Theorem 10.1) and the fact that ν is the only ergodic
measure on X . Now 2Ly =2Mo means that α(HLy)= 0 for all α ∈2Mo. If this
happens, then any α ∈2Mo annihilates on the polyhedron with verticeswHLy, w ∈W2Mo .
Hence, α ∈2Mo is zero on 3Mo by the above proposition. Conversely, if (3) holds, then
α(HLy)= 0 for all α ∈2Mo because HLy ∈3Mo.

Finally, if α(HLy)= 0 for all α ∈2Mo, then wHLy = HLy for every w ∈W2Mo , so that
3Mo = {HLy} by the previous proposition. �

By piecing together known results in the literature, we can have examples of flows over
uniquely ergodic systems for which 2Ly 6=2Mo. Indeed, as proved by Furman [10], the
Lyapunov spectrum is discontinuous at a non-uniform cocycle with values in Gl(d, R),
that is, at a flow on the trivial bundle X × Gl(d, R). The result of [10, Theorem 5] makes
the assumption that the flow on the base space is equicontinuous, which is satisfied, e.g.,
by the translations on compact groups, like an irrational rotation on the circle S1.

In Herman [12], there is an example of a non-uniform cocycle with values in Sl(2, R)
over the irrational rotation. Thus, that example is a discontinuity point of the Lyapunov
spectrum. Finally, in §13 below, we prove continuity of the whole Lyapunov spectrum if
2Ly =2Mo. Hence, we get 2Ly 6=2Mo for the example in [12].

12. Products of i.i.d. sequences
The product of i.i.d. random elements in G yields flows on product spaces X × G with
plenty of invariant measures on X . In this section we provide an example of such flow
that violates the second condition of §9 and hence has distinct Morse and Oseledets
decompositions.

Let C ⊂ G be a compact subset and form the product X = CZ endowed with the
compact product topology. The shift τ((xn))= (xn+1)n∈Z is a homeomorphism and hence
defines a continuous flow on X .

Now let µ be a probability measure with suppµ= C and take the product measure µ×Z

on X . Then µ×Z is ergodic with respect to the shift τ and suppµ×Z = X .
These data define the continuous flow φµn on X × G by φµn (x, g)= (τ n(x), ρµ(n, x)g),

where x= (xn)n∈Z ∈ CZ
⊂ GZ and

ρµ(n, x)=
{

xn−1 · · · x0 if n ≥ 0,
x−1

1 · · · x
−1
n if n < 0.
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The a-Lyapunov spectrum of φµ was founded by Guivarch’ and Raugi [11]. To state
their result, we recall the following concepts.
(1) A subgroup H ⊂ G is totally irreducible if it does not leave invariant a subset which

is a finite union of complements of Bruhat cells in their respective closures (Schubert
cells).

(2) A sequence gn ∈ G is said to be contracting with respect to the maximal flag
manifold if its polar decomposition gn = unhnvn ∈ K (clA+)K is such that

lim
n→∞

α(log hn)=∞

for every positive root α.
Now denote by Gµ and Sµ the subgroup and semigroup generated by suppµ= C ,

respectively. Then we have the following result of [11, Theorem 2.6].

THEOREM 12.1. Let µ be a probability measure on G, and suppose that:
(1) the subgroup Gµ is totally irreducible;
(2) the semigroup Sµ has a contracting sequence with respect to F.

Then the polar exponent of φµ is regular, that is, it belongs to a+. This means that
2Ly(µ

×Z)= ∅.

Both conditions of this theorem are satisfied if Sµ has non-empty interior in G:
(1) if intSµ 6= ∅, then Gµ = G because G is assumed to be connected;
(2) if intSµ 6= ∅, then there exists a regular h ∈ intSµ (see [17, Lemma 3.2]). Then hn

∈

Sµ is a contracting sequence with respect to F because hn
∈ clA+ (hence its polar

decomposition has un = vn = 1) and α(log hn)= nα(log h).
Hence, we get the following consequence of Guivarch’ and Raugi’s [11] result.

COROLLARY 12.2. If intSµ 6= ∅, then 2Ly(φ
µ)= ∅.

Now it is easy to give an example that does not satisfy the second condition of §9 and
hence 2Ly(φ

µ) 6=2Mo(φ
µ). In fact, take a non-regular element h = exp H ∈ clA+, that

is, 2(H)= {α ∈6 : α(H)= 0} 6= ∅, and a probability µ whose support C contains h in
its interior. For instance,

µ=
1
I

f · η,

where η is Haar measure and I =
∫

G f (g)η(dg) <∞ with f : G→ R a non-negative
function with supp f = C .

Let ρ = δxh be the Dirac measure at the constant sequence xh = (xn)n∈Z, xn = h.
Clearly, ρ is τ -invariant and ergodic. Since

φµn (xh, 1)= (τ n(xh), ρ(n, xh))= (xh, hn),

the polar exponent of δxh is

lim
n→+∞

1
n

log hn
= log h = H,

which is not regular. Hence, 2Ly(δxh )=2(H) 6= ∅ is not contained in 2Ly(µ
×Z)= ∅.

Therefore, the second condition of §9 is violated and the flag types 2Ly(µ
×µ) and

2Mo(φ
µ) are different.
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13. Continuity of the Lyapunov spectrum
In this section we apply the differentiability result of [9] to show that the equality 2Ly =

2Mo implies continuity of the Lyapunov spectrum by perturbations of the original φ that
do not change the flow on the base space.

Let G = G(Q) be the gauge group of Q→ X , that is, the group of automorphisms of Q
that project to the identity map of X . It is well known that G is a Banach Lie group.

If σ ∈ G, then φ and σφ induce the same map on X and hence have the same ergodic
measure ν. Denote by Hσφ

Ly the polar spectrum of σφ with respect to ν. Assume as before
that ν has full support. Then we have the following continuity result.

THEOREM 13.1. If 2Ly(φ)=2Mo, then the map σ ∈ G 7→ Hσφ
Ly ∈ cla+ is continuous at

σ = id.

We work out separately the proof for Sl(n, R) in order to explain it in concrete terms.
For this group a is the algebra of zero-trace diagonal matrices and a+ are those with
strictly decreasing eigenvalues. The simple set of roots is 6 = {α1, . . . , αn−1}, where
αi = αi,i+1 = λi − λi+1 and λi ∈ a

∗ maps the diagonal H ∈ a to its i th diagonal entry. We
denote by 1= {δ1, . . . , δn−1} the set of fundamental weights, which is defined by

2〈αi , δ j 〉

〈αi , αi 〉
= δi j

and is given by δ j = λ1 + · · · + λ j . The Morse decomposition of φ on the flag bundles is
determined by the subset 2Mo ⊂6. Alternatively, we can look at the partition

{1, . . . , n} = {1, . . . , r1} ∪ {r1 + 1, . . . , r2} ∪ · · · ∪ {rk + 1, . . . , n},

where6 \2Mo = {αr1 , . . . , αrk }. From the partition, we recover2Mo as the set of α j, j+1

such that if [r, s] is the interval of the partition containing j , then r ≤ j < s.
For H ∈ cla+ with α(H)= 0 for all α ∈2Mo, its eigenvalues ai are such that ai = a j

if the indices i, j belong to the same set of the partition. If furthermore H is such that
2Mo = {α ∈6 : α(H)= 0}, then the multiplicities of the eigenvalues of H are the sizes of
the sets of the partition.

Hence, 2Ly =2Mo means that the multiplicities of the Lyapunov exponents are given
by the partition associated to 2Mo.

Now it was proved in [9] that the map

σ ∈ G 7→ δ j (H
σφ
Ly ) ∈ R+

is differentiable at σ = id for any index j such that α j, j+1 /∈2Mo. Since 1 is a basis of
a∗, we get continuity of Hσφ

Ly if we prove that δ j (H
σφ
Ly ) is continuous when α j, j+1 ∈2Mo.

For this purpose, we recall from [1] that δ j (H
σφ
Ly ) is obtained as a limit furnished by the

subadditive ergodic theorem. Namely,

δ j (H
σφ
Ly )= lim

1
k
δ j (a+σ (k, x))= inf

k≥1

1
k

∫
δ j (a+σ (k, x))ν (dx), (2)

where a+σ (k, x), x ∈ X , is the polar component of the flow defined by σφ. (See [1,
§3.2]. Since δ j is a fundamental weight δ j (a+σ (k, x)), it is a subadditive cocycle on the
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base space. As shown in [1], this cocycle can be written as a norm in the space of a
representation of G, which in this case is the j-fold exterior product of Rn .)

By (2), we have that σ 7→ δ j (H
σφ
Ly ) is upper semi-continuous.

To prove continuity, take j with α j, j+1 ∈2Mo and let [r, s], r ≤ j < s, be the interval of
the partition that contains j . Assume by contradiction that there exist c > 0 and a sequence
σk ∈ G converging to id such that

δ j (H
σkφ
Ly ) < δ j (H

φ
Ly)− c.

Then we have two cases, as follows.
(1) s < n. Then αs,s+1 /∈2Mo, so that σ 7→ δs(H

σφ
Ly ) is continuous. In the same way,

δr−1(H
σφ
Ly ) is continuous (where δr−1 = 0 if r = 1). Then, for large k, we have

δr−1(H
σkφ
Ly ) > δr−1(H

φ
Ly)− c/2.

Since λi1 ≥ λi2 on cla+ if i1 ≤ i2 and the polar exponents Hσkφ
Ly ∈ cla+, we get

δ j (H
φ
Ly)− c > δr−1(H

σkφ
Ly )+ ( j − r + 1)λ j (H

σkφ
Ly ).

Hence, for large k, we have

δ j (H
φ
Ly)− c > δr−1(H

φ
Ly)− c/2+ ( j − r + 1)λ j (H

σkφ
Ly ),

that is,

λ j (H
σkφ
Ly ) <

1
j − r + 1

(δ j (H
φ
Ly)− δr−1(H

φ
Ly)− c/2).

By the inequality δs = δ j + λ j+1 + · · · + λs ≤ δ j + (s − j)λ j that holds on cla+, we
get

δs(H
σkφ
Ly )≤ δ j (H

φ
Ly)− c +

s − j
j − r + 1

(δ j (H
φ
Ly)− δr−1(H

φ
Ly)− c/2). (3)

Now we use the assumption that 2Ly(φ)=2Mo, which implies that

δ j (H
φ
Ly)= δr−1(H

φ
Ly)+ ( j − r + 1)λ j (H

φ
Ly)

and
δs(H

φ
Ly)= δ j (H

φ
Ly)+ (s − j)λ j (H

φ
Ly).

Hence, the last term in (3) becomes

s − j
j − r + 1

(( j − r + 1)λ j (H
φ
Ly)− c/2)= (s − j)λ j (H

φ
Ly)−

s − j
j − r + 1

c
2
,

so that for large k we have

δs(H
σkφ
Ly )≤ δs(H

φ
Ly)− c −

s − j
j − r + 1

c
2
, (4)

which contradicts the continuity of δs(H
σφ
Ly ).

(2) s = n. If r = 1, then 2Ly(φ)=2Mo =6, so that Hφ
Ly = 0 and continuity follows

by upper semi-continuity. When r 6= 1, we get continuity of δr−1(H
σφ
Ly ). By arguing

https://doi.org/10.1017/etds.2014.100 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.100


1034 L. A. Alves and L. A. B. San Martin

as in the first case, we get the same estimate (4) for 0= δn = λ1 + · · · + λn , which is a
contradiction.

This proves Theorem 13.1 for the group Sl(d, R).
Now we consider a general semi-simple group G. As before, let 6 = {α1, . . . , αl} and

1= {δ1, . . . , δl} be the simple system of roots and fundamental weights, respectively.
Given2⊂6, let12 ⊂1 be the set of fundamental weights δ j such that the root with the
same index α j ∈2. We put

a(2)= span(2), a2 = span(1\12).

These subspaces are orthogonal to each other and, since2 ∪ (1 \12) is a basis of a∗, we
have a= a(2)⊕ a2.

The proof of continuity will be an easy consequence of the following algebraic lemma.

LEMMA 13.2. If δ ∈12, then its coordinates with respect to 2 ∪ (1 \12) are non-
negative.

Proof. Let γ1 and γ2 be the orthogonal projections of δ on a(2) and a2, respectively. First
we check that the coefficients of γ1 with respect to2 are non-negative. By definition, there
exists just one root α ∈2 such that 2〈α, δ〉/〈α, α〉 = 1 and 2〈β, δ〉/〈β, β〉 = 0 if β 6= α.
But, if β ∈2, then 2〈β, δ〉/〈β, β〉 = 2〈β, γ1〉/〈β, β〉. Hence, γ1 is a fundamental weight
for the root system defined by 2. Its coefficients with respect to 2 are the entries of the
inverse of the Cartan matrix, which are non-negative.

As to γ2, it is given by the mean

γ2 =
1
|W2|

∑
w∈W2

wδ

because γ2 is orthogonal to 2 and hence wγ2 = γ2 for every w ∈W2. Moreover, 〈2〉 is
a root system in a(2) with Weyl group W2 which has no fixed points in a(2) besides 0.
Hence, the mean applied to γ1 is 0, since it is a fixed point.

Now, if a+ = {β ∈ a∗ : ∀α ∈6, 〈α, β〉> 0} is the Weyl chamber in a∗, then the
fundamental weight δ ∈ cla+. Hence,

γ2 ∈W2(cla+)=
⋃

w∈W2

w(cla+)

because W2(cla+) is a cone. On the other hand, if β /∈2 and γ ∈W2(cla+), then
〈β, γ 〉 ≥ 0 (see e.g. [19, Lemma 7.5]). But

γ2 =
∑
β /∈2

2〈γ2, β〉

〈β, β〉
δβ ,

where δβ is the fundamental weight corresponding to β. Hence, the coefficients of γ2 are
non-negative, concluding the proof. �

Proof of Theorem 13.1 for G semi-simple. Let 2=2Ly(φ)=2Mo and take δ ∈12.
Then σ 7→ δ(Hσφ

Ly ) is upper semi-continuous. Write

δ =
∑
α∈2

aαα +
∑

δ∈1\12

bδδ
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with aα ≥ 0 by the lemma. We have

δ(Hσφ
Ly )=

∑
α∈2

aαα(H
σφ
Ly )+

∑
λ∈1\12

bλλ(H
σφ
Ly ),

where the last sum is continuous by the differentiability result of [9]. Hence, the first sum
is upper semi-continuous as well. The assumption that 2Ly(φ)=2Mo implies that the
first sum is zero at σ = id. Since it is non-negative because α(Hσφ

Ly )≥ 0 and aα ≥ 0, we
conclude that δ is continuous at id, proving Theorem 13.1. �

It remains to consider the reductive groups, which amounts to checking continuity of
the central component defined in [1, Section 3.3]. The continuity of this component holds
without any further assumption. This is because this central component is given by an
integral ∫

a+σ (1, x)ν (dx)

on the base space whose integrand is the time 1 of a cocycle a+σ (n, x) that depends
continuously of σ ∈ G (see [1] for the details).
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