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Abstract

We consider a continuous, infinitely divisible random field in Rd , d = 1, 2, 3, given as an
integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy
measure. For a large class of such random fields, we compute the asymptotic probability
that the excursion set at level x contains some rotation of an object with fixed radius as
x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail
of the underlying Lévy measure.
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1. Introduction

In this paper we investigate the extremal behaviour of excursion sets for a field (Xt )t∈B

defined by

Xt =
∫

Rd

f (|t − s|)M(ds), (1.1)

where M is an infinitely divisible, independently scattered random measure on Rd , f is some
kernel function, and B is a compact index set. We assume that the Lévy measure of the random
measure M has a convolution equivalent right tail; see [5], [6], [10]. In [13] it was shown
under some regularity conditions that the distribution of supt∈B Xt has a similar convolution
equivalent tail. In this paper we are interested in the excursion set

Ax = {t : Xt > x}.
Under the additional assumption (2.10) below, we show that the asymptotic probability of the
excursion set at level x containing some rotation of an object with a fixed radius r has a tail
that is equivalent to the tail of the underlying Lévy measure. A more precise definition of the
event that is studied asymptotically is found in Section 2 below. Measures with a convolution
equivalent tail cover the important cases of an inverse Gaussian and a normal inverse Gaussian
(NIG) basis, respectively, see [13].
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834 A. RØNN-NIELSEN AND E. B. VEDEL JENSEN

Lévy models as defined in (1.1) provide a flexible and tractable modelling framework that
recently has been used for a variety of modelling purposes, including modelling of turbulent
flows [4], growth processes [8], Cox point processes [7], and brain imaging data [9]. In [9], a
model (1.1) with M following a NIG distribution was suitable for modelling the neuroscience
data under consideration. For such data it is typically of interest to detect for which t ∈ B a
given field attains values that are significantly large. The results in this paper make it possible to
discuss whether a cluster of t ∈ B with large observations jointly form an extreme observation.

For Gaussian random fields it is known that the distribution of the supremum of the field
can be approximated by the expected Euler characteristic of an excursion set (see [1] and the
references therein). The supremum and excursion sets of a non-Gaussian field given by integrals
with respect to an infinitely divisible random measure have already been studied in the case
that the random measure has regularly varying tails. Results for the asymptotic distribution
of the supremum can be found in [11], and these results were refined in [2] and [3], where
results were obtained on the asymptotic joint distribution of the number of critical points of the
excursion sets. The arguments used there, as also in the present paper, are based on finding the
Lévy measure of a dense countable subset of the field. However, otherwise the proofs of [2],
[3], and [11] rely heavily on the assumption of regularly varying tails and, therefore, cannot be
translated into the convolution equivalent framework.

Note that convolution equivalent distributions have heavier tails than Gaussian distributions
and lighter tails than those of regularly varying distributions. The latter statement follows from
the fact that convolution equivalent distributions have exponential tails while regularly varying
distributions have power function tails.

The present paper is organised as follows. In Section 2 we define the random field (1.1) and
introduce the necessary assumptions. In Section 3 we prove three technical lemmas concerning
the asymptotic behaviour of deterministic fields. These results are used in Section 4 where we
give the main result of the paper. The proof is comprised of several steps, exploiting the fact
that X can be decomposed as X1 + X2, where X1 is a compound Poisson sum and X2 has a
lighter tail than X1. The proofs in Section 4 apply techniques similar to those of [13].

2. Preliminaries

We make the same general assumptions as in [13] except for the additional assumption (2.10)
below. For completeness, we present all assumptions in the following.

Consider an independently scattered random measure M on Rd , d = 1, 2, 3. Then for
a sequence of disjoint sets (An)n∈N ⊆ Rd in B(Rd), the random variables (M(An))n∈N

are independent and satisfy M(∪An) = ∑
M(An). Further, assume that M(A) is infinitely

divisible for all A ∈ B(Rd). Then M is called a Lévy basis (see [4] and the references therein).
For a random variable X let κX(λ) denote its cumulant function log E[eiλX]. We shall assume

that the Lévy basis is stationary and isotropic such that for A ∈ B(Rd) the variable M(A) has
a Lévy–Khintchine representation given by

κM(A)(λ) = iλamd(A) − 1

2
λ2θmd(A) +

∫
A×R

(eiλz − 1 − iλz1[−1,1](z))F (ds, dz), (2.1)

where md denotes the Lebesgue measure on (Rd , B(Rd)), a ∈ R, θ ≥ 0, and F is a measure
on B(Rd × R) of the form

F(A × B) = md(A)ρ(B). (2.2)
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We assume that ρ in (2.2) has an exponential tail with index β > 0, i.e. for all y ∈ R,

ρ((x − y, ∞))

ρ((x, ∞))
→ eβy as x → ∞. (2.3)

Here the assumption β > 0 excludes the subexponential case. Let ρ1 be a normalization of
the restriction of ρ to (1, ∞), and note that ρ1 also has an exponential tail with index β > 0.
Assume also that

(ρ1 ∗ ρ1)((x, ∞))

ρ1((x, ∞))
→ 2m as x → ∞, (2.4)

where m < ∞. This makes ρ1 a convolution equivalent distribution. (Formally, a distribution
is said to be convolution equivalent, if it has an exponential tail and satisfies (2.4).) Here ρ1 ∗ρ1
denotes the convolution. In fact, m = ∫

R+eβzρ1(dz); cf. [10, Corollary 2.1(ii)]. Writing
ρ((x, ∞)) = L(x)e−βx , it is seen from (2.3) that, for all y ∈ R,

L(x − y)

L(x)
→ 1 as x → ∞. (2.5)

For each a, b ∈ R, the limit (2.5) holds uniformly in y ∈ [a, b]; cf. [10, p. 408]. Further, we
assume that ∫

R

z2ρ(dz) < ∞. (2.6)

Now assume that f : R+ → R+ is a strictly decreasing kernel function satisfying
∫

Rd

f (|s|)ds < ∞, (2.7)

and

f (x) ≤ K1

(x + 1)d
for all x ≥ 0 (2.8)

for some finite, positive constant K1. Further, assume that f is differentiable with f ′ satisfying

|f ′(x)| ≤ K2

(x + 1)d
for all x ≥ 0 (2.9)

for some finite, positive constant K2. Finally, let r > 0 be fixed and assume that there exists a
g such that both f (x) ≤ g(x) for all x ≥ 0 and

g(x) = f ′(r)(x − r) + f (r) for all x ∈ [0, 2r]. (2.10)

Note that such a g exists in the particular case that f is concave on [0, 2r]. Further, we can and
do choose g on [2r, ∞) such that it satisfies (2.7)–(2.9).

Let B be a compact, convex subset of Rd with md(B) > 0 and define the set B ⊕ Cr =
{x + y : x ∈ B, y ∈ Cr(0)}, where Cr(0) is the ball with radius r and centre at 0. We consider
the family of random variables (Xt )t∈B⊕Cr defined by

Xt =
∫

Rd

f (|t − s|)M(ds)

(see [13] for the existence of these integrals).

https://doi.org/10.1017/jpr.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.37


836 A. RØNN-NIELSEN AND E. B. VEDEL JENSEN

Example 2.1. (Gaussian kernel function.) Suppose that f (x) = e−σx2
, σ > 0. Then the

assumptions (2.7)–(2.9) are satisfied, and f is concave on the interval [0, 1/
√

2σ ]. In particular,
assumption (2.10) is satisfied for r ≤ 1

2/
√

2σ .

Example 2.2. (Matérn kernel function.) Suppose that

f (x) = |λx|ηKη(λ|x|)
2η−1	(η)

,

where Kη is the modified Bessel function of the second kind, index η ≥ 1
2 , and λ > 0. It can be

shown that the Matérn kernel satisfies assumptions (2.7)–(2.9) (see [12, Example 2.5] and the
references therein for details). Further, [12, Example 2.5] provides identities for the derivatives
of f from which it can be shown that when η > 1

2 , f is concave in an interval (0, δ) close to 0.
In particular, assumption (2.10) is satisfied.

For s ∈ B, let Cr(s) be the ball in Rd with radius r and centre s, and let Sd−1 = {α ∈ Rd :
|α| = 1} denote the unit sphere. Let D ⊆ Cr(0) be a set with radius r in the sense that there
exists β ∈ Sd−1 such that {−rβ, rβ} ⊆ D. Further, let SO(d) denote the special orthogonal
group, i.e. the set of all orthogonal matrices with determinant 1. Hence, each R ∈ SO(d)

represents a rotation in Rd . For R ∈ SO(d) and s ∈ Rd , define DR(s) = RD + s. Recalling
the definition of the excursion set, Ax = {t ∈ B ⊕ Cr : Xt > x}, we are interested in the event

{there exist t ∈ B and R ∈ SO(d) : DR(t) ⊆ Ax}.
This event can be alternatively expressed as

{
sup
t0∈B

sup
R∈SO(d)

inf
t∈DR(t0)

Xt > x
}
.

Example 2.3. One possible choice of D is Cr(0); then the rotations of D are unnecessary.
Another choice is D = {rα0, −rα0} for some fixed α0 ∈ Sd−1. A third possibility is the line
segment connecting the points rα and −rα. For convenience, we let α0 = 1, α0 = (1, 0),
α0 = (1, 0, 0) for d = 1, 2, 3 respectively.

For our study of the extremal behaviour of (Xt )t∈B⊕Cr , it is crucial that the field (Xt )t∈T

should itself be infinitely divisible, where T = (B ⊕ Cr) ∩ Qd and Qd denotes the rational
numbers in Rd (see [13] and the references therein for details). The Lévy measure of (Xt )t∈T

is the measure ν on (RT , B(RT )) defined by ν = F ◦ V −1, where V : Rd × R → RT is given
by

V (s, z) = (zf (|t − s|))t∈T .

Because (Xt )t∈T is infinitely divisible, we have the following decomposition (see, for example,
[11]):

Xt = X1
t + X2

t ,

where the fields (X1
t )t∈T and (X2

t )t∈T are independent. The first field, (X1
t )t∈T , is a compound

Poisson sum

X1
t =

N∑
n=0

Un
t ,

where N is Poisson distributed with parameter ν(A) < ∞ and A = {x ∈ RT : supt∈T xt > 1}.
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The fields (Un
t )t∈T are independent and identically distributed (i.i.d.) with common distribution

ν1 = νA/ν(A), where νA is the measure on (RT , B(RT )) obtained by restricting ν to A. Further,
(X2

t )t∈T is infinitely divisible with a Lévy measure νAc , the restriction of ν to Ac.
As argued in [13], all the fields Un, X1 and X2 have continuous extensions to B ⊕Cr . Note

also that each of the fields (Un
t )t∈B⊕Cr

can be represented by (Zf (|t − S|))t∈B⊕Cr , where
(S, Z) ∈ Rd × R+ has distribution F1, the restriction of the measure F to the set

V −1(A) =
{
(s, z) ∈ Rd × R : sup

t∈T

zf (|t − s|) > 1
}
.

3. Asymptotic results for deterministic fields

An important property for the arguments in [13] is that for a continuous field (yt )t∈B⊕Cr
,

the limit relation

inf
t∈B

x − yt

f (|t − s|) − (x − ys) → 0 (x → ∞) (3.1)

holds for all s ∈ B. In this paper we need a similar but more involved result concerning the
asymptotic behaviour of

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x − yt

f (|t − s|) − x

f (r)
, (3.2)

where SO(d) and DR(t) are as defined in Section 2.

Lemma 3.1. Let (yt )t∈B⊕Cr
be a continuous field. Then there exists a function λs((yt )t∈B⊕Cr

)

such that, for each s ∈ B,

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x − yt

f (|t − s|) − x

f (r)
+ λs((yt )t∈B⊕Cr

) → 0 (x → ∞). (3.3)

Further,

(i) if (yt )t∈B⊕Cr
is constant-valued and equal to y then λs((yt )t∈B⊕Cr

) = y/f (r) for all s;

(ii) for constant y, λs((y + yt )t∈B⊕Cr
) = y/f (r) + λs((yt )t∈B⊕Cr

);

(iii) for any ε > 0, λs((yt )t∈B⊕Cr
) depends only on (yt )t∈Cr+ε(s)

.

Proof. Let y∗ = supt∈B⊕Cr
and y∗ = inf t∈B⊕Cr . Then the expression in (3.2) is bounded

above by

x − y∗
supt0,R

inf t∈DR(t0)
f (|t − s|) − x

f (r)
= x − y∗

f (r)
− x

f (r)
= −y∗

f (r)
.

Similarly, the expression is bounded below by −y∗/f (r). Assertion (i) for a constant field (yt )

follows from these two bounds. Similarly, assertion (ii), when a constant y is added to (yt ),
follows once the existence of the limit λs((yt )t∈B⊕Cr

) is established. For each x > 0 we can
choose tx ∈ B and Rx ∈ Sd−1 such that

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x − yt

f (|t − s|) − x

f (r)
= sup

t∈DRx (tx )

x − yt

f (|t − s|) − x

f (r)
. (3.4)
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First, we show that tx → s as x → ∞. We find

x − inf t∈Cr(s) yt

f (r)
= sup

t∈Cr(s)

x − yt

f (r)
≥ sup

t∈DRx (tx )

x − yt

f (|t − s|) ≥ x − y∗

inf t∈DRx (tx ) f (|t − s|) .

On using inf t∈DRx (tx ) f (|t − s|) ≤ f (r) this yields

x − y∗

x − inf t∈Cr(s) yt

≤ inf t∈DRx (tx ) f (|t − s|)
f (r)

≤ 1,

so inf t∈DRx (tx ) f (|t − s|) → f (r) as x → ∞. Since also inf t∈DR(t0)
f (|t − s|) < f (r) for

all t0 �= s and R ∈ SO(d), we can conclude that tx → s. From this we can conclude that
λs((yt )t∈B⊕Cr

) depends only on yt for t close to Cr(s), i.e. assertion (iii).
In fact we need a stronger version of (iii). The differentiability of f in r implies that, for

u ≥ 0,
1

f (u)
− 1

f (r)
= b(u − r) + (u − r)φ(u − r) (3.5)

for b > 0 and some continuous function φ with φ(0) = 0. Since f is decreasing, for each
K > 0,

x

(
1

f (u)
− 1

f (r)

)
⎧⎪⎪⎨
⎪⎪⎩

≤ −bK + φ

(
−K

x

)
for 0 < u < r − K/x,

≥ bK + φ

(
K

x

)
for u > r + K/x.

In particular, we can choose K and x0 such that, for all x > x0,

x − yt

f (|t − s|) − x

f (r)

⎧⎪⎪⎨
⎪⎪⎩

< − y∗

f (r)
for |t − s| < r − K/x,

> − y∗
f (r)

for |t − s| > r + K/x.

With this choice of K , we have, for x > x0,

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x − yt

f (|t − s|) − x

f (r)
= inf

t0∈B
inf

R∈SO(d)
sup

t∈DR(t0)∩Hx

x − yt

f (|t − s|) − x

f (r)
, (3.6)

where Hx = {t ∈ Rd : r − K/x ≤ |t − s| ≤ r + K/x}. Define

h(�) = sup{|φ(u − r)| : r − � ≤ u ≤ r + �},
and note that h(�) → 0 as � → 0.

We now show the convergence result (3.3) by contradiction. To this end, assume that there
is a sequence x1 < x̃1 < x2 < x̃2 < · · · and constants a and ε > 0 such that

sup
t∈DRn(tn)

xn − yt

f (|t − s|) − xn

f (r)
≤ a sup

t∈DR̃n (t̃n)

x̃n − yt

f (|t − s|) − x̃n

f (r)
≥ a + ε (3.7)

for all n, where Rn = Rxn , R̃n = Rx̃n
are the corresponding rotation matrices, and tn = txn ,

t̃n = tx̃n
correspond to the relevant displacements, chosen according to (3.4). By using
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subsequences we can assume that |tn − s| is decreasing and that (Rn) is convergent. Let �

be chosen such that h(�) < 1/m, where m ∈ N will be determined later. Let Sn be the rotation
that is needed to rotate DRn+1(0) into DRn(0): SnD

Rn+1(0) = DRn(0). Choose δ > 0 according
to the uniform continuity of (zt )t∈B⊕Cr

= (yt/f (|t − s|))t∈B⊕Cr such that |zs2 − zs1 | < 1
4ε if

|s2 − s1| < δ. Further, δ should be chosen so small that δ < 1
2�. Choose x̃ > x0 such that

δ + K/x̃ < �. Now choose n such that |tn − tn+1| < 1
2δ, such that |Snu − u| < 1

2δ for all
u ∈ B ⊕ Cr , and such that K/xn + |tn − tn+1| < K/x̃.

Recall that DRn(tn) can be parameterised by {Rnt + tn : t ∈ D} and, similarly, DRn+1(tn+1)

is parameterised by {Rn+1t + tn+1 : t ∈ D}. Choose Dx̃ ⊆ D such that DRn(tn) ∩ Hx̃ =
{Rnt + tn : t ∈ Dx̃}. From the definition of tn, it follows that

sup
t∈DRn∩Hx̃

xn − yt

f (|t − s|) − xn

f (r)
≤ a. (3.8)

Further, let D̃
Rn+1
x̃

be the rotation by Sn of DRn(tn) ∩ Hx̃ centred in s: D̃
Rn+1
x̃

= Sn(D
Rn(tn) ∩

Hx̃ − s) + s. Now D̃
Rn+1
x̃

has the form {Rn+1t + t̃ : t ∈ Dx̃} for some t̃ , where in fact t̃ =
Sn(tn−s)+s but this is not important in the following. Since for t ∈ Dx̃ eachRn+1t + t̃ ∈ D̃

Rn+1
x̃

is the rotation around s of Rnt + tn ∈ DRn(tn) ∩ Hx̃ , the distance to s is unchanged. Since also
|Rn+1t + t̃ − (Rnt + tn)| < δ for t ∈ Dx̃ because of the choice of Sn, the inequality (3.8) now
leads to

sup
t∈D̃

Rn+1
x̃

xn − yt

f (|t − s|) − xn

f (r)
≤ a + 1

4
ε,

which can be reparameterised as

sup
t∈Dx̃

xn

(
1

f (|Rn+1t + t̃ − s|) − 1

f (r)

)
− zRn+1t+t̃ ≤ a + 1

4
ε. (3.9)

Define in the same way D
Rn+1
x̃

(tn+1) = {Rn+1t + tn+1 : t ∈ Dx̃} as a reduced version of
DRn+1(tn+1). From the definition of tn+1, we have, similarly,

sup
t∈Dx̃

xn

(
1

f (|Rn+1t + tn+1 − s|) − 1

f (r)

)
− zRn+1t+tn+1 ≤ a,

and by the uniform continuity of (zt ) and the small distance between tn+1 and t̃ , we have

sup
t∈Dx̃

xn

(
1

f (|Rn+1t + tn+1 − s|) − 1

f (r)

)
− zRn+1t+t̃ ≤ a + 1

4
ε. (3.10)

Note that D
Rn+1
x̃

(tn+1) is a translation of D̃
Rn+1
x̃

. We parameterise all the intermediate transla-
tions by

Du,x̃ = {Rn+1t + γ (u) : t ∈ Dx̃} for u ∈ [0, 1].
Here γ (u) = t̃ + u(tn+1 − t̃ ) is a linear parameterisation of the line segment from t̃ to tn+1.
Note that D0,x̃ = D̃

Rn+1
x̃

and D1,x̃ = D
Rn+1
x̃

(tn+1). Now define x(u) = K/(1 − u + C) for
u ∈ [0, 1], where C, K > 0 are chosen such that x(0) = xn and x(1) = xn+1 (see Lemma A.1).
Suppose that we can show, for all u ∈ [0, 1],

sup
t∈Dx̃

x(u)

(
1

f (|Rn+1t + γ (u)) − s|) − 1

f (r)

)
− zRn+1t+t̃ ≤ a + 1

2
ε. (3.11)
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Then choosing u such that x(u) = x̃n and defining t̃n = γ (u) yields

sup
t∈Dx̃

x̃n

(
1

f (|Rn+1t + t̃n) − s|) − 1

f (r)

)
− zRn+1t+t̃ ≤ a + 1

2
ε.

Using the uniform continuity of (zt ) again together with a reparameterisation gives

sup
t∈Du,x̃

x̃n − yt

f (|t − s|) − x̃n

f (r)
≤ a + 3

4
ε.

Note that from the choice of x̃ and the fact that xn < x̃n, DRn+1(t̃n) ∩ Hx̃n
⊆ Du,x̃ . In

combination with (3.6) this yields the desired contradiction to (3.7).
Thus, the proof will be complete, if we can show (3.11). First, we observe that the cases

u = 0 and u = 1 follow from (3.9) and (3.10). The result for a general u ∈ (0, 1) then follows
if, for any given t ∈ Dx̃ , we can show that

x(u)F (u) ≤ a + z̃ + 1
2ε for all u ∈ [0, 1], (3.12)

where

F(u) = 1

f (|γ̃ (u) − s|) − 1

f (r)
, z̃ = zRn+1t+t̃ , γ̃ (u) = Rn+1t + γ (u).

For ease of notation, t is suppressed. To obtain (3.12), we use the facts that, for all t such that
r ≤ |t − s| ≤ r + �,(

b − 1

m

)
(|t − s| − r) ≤

(
1

f (|t − s|) − 1

f (r)

)
≤

(
b + 1

m

)
(|t − s| − r), (3.13)

and, for r − � ≤ |t − s| ≤ r ,(
b + 1

m

)
(|t − s| − r) ≤

(
1

f (|t − s|) − 1

f (r)

)
≤

(
b − 1

m

)
(|t − s| − r), (3.14)

where we have applied (3.5) and the fact that h(�) < 1/m. Note that the assumptions above
imply that ||γ̃ (u) − s| − r| < � for all u ∈ [0, 1]. Note also that F(u) > 0 if and only if
|γ̃ (u) − s| − r > 0. Consider the four cases (1◦) F (0), F (1) > 0; (2◦) F (0), F (1) < 0; (3◦)
F (0) < 0 < F(1); (4◦) F (0) > 0 > F(1).

For case (1◦), using (3.13), we find, for u = 0, 1,(
b − 1

m

)
x(u)(|γ̃ (u) − s| − r) ≤ a + z̃ + 1

4
ε. (3.15)

Now let G(u) be the linear interpolant such that G(0) = (|γ̃ (0)− s|− r) and G(1) = (|γ̃ (1)−
s| − r). Then since, for u = 0, 1,(

b − 1

m

)
x(u)G(u) ≤ a + z̃ + 1

2
ε, (3.16)

and since u �→ x(u)G(u) is monotone, Lemma A.1 implies that inequality (3.16) is satisfied
for all u ∈ [0, 1]. Also, since u �→ |γ̃ (u) − s| is convex, (3.15) is satisfied for all u ∈ [0, 1];
thus, for all u in [0, 1],(

b + 1

m

)
x(u)(|γ̃ (u) − s| − r) ≤

(
a + z̃ + 1

4
ε

)
b + 1/m

b − 1/m
.
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Another appeal to (3.13) then shows that

x(u)F (u) ≤
(

a + z̃ + 1

4
ε

)
b + 1/m

b − 1/m
. (3.17)

For the (2◦) case, since F(u) < 0 if both F(0) < 0 and F(1) < 0, inequality (3.12) is
trivially satisfied if a + z̃ + 1

2ε ≥ 0. So assume that a + z̃ + 1
2ε < 0. Then, similarly, using

(3.14),

x(u)F (u) ≤
(

a + z̃ + 1

4
ε

)
b − 1/m

b + 1/m
. (3.18)

Case (3◦) is trivially satisfied because u �→ F(u) is increasing.
For case (4◦), we only need to show that x(u)F (u) ≤ a + z̃ + 1

4ε for all u ∈ [0, u0], where
F(u0) = 0. To do so, we can repeat the technique from (1◦), since now x(u)F (u) ≤ a+ z̃+ 1

4ε

for u = 0, u0.
The desired inequality (3.12) follows from (3.17) and (3.18) by letting m → ∞. Note that

this can be carried out uniformly in t because the field (zt ) is bounded. �
The next lemma describes λs for a particularly simple set D.

Lemma 3.2. If D = {−α0r, α0r} with α0 as defined in Example 2.3 then

λs((yt )t∈B⊕Cr
) = sup

α∈Sd−1

1

2f (r)
(ys+αr + ys−αr ).

Proof. First, we introduce the notation Dα(s) = {s −αr, s +αr} for α ∈ Sd−1 and s ∈ Rd .
Then, for such s fixed, {Dα(s) : α ∈ Sd−1} = {DR(s) : R ∈ SO(d)}, so for D chosen as in the
lemma, we can use unit vectors to parameterise all rotations. Now define us,α = s + rα for
α ∈ Sd−1 and us,t,γ,α = s + tγ + rα for t ≥ 0 and γ ∈ Sd−1. The latter parameterises points
on the boundary of a ball with radius r and centre in s + tγ . Note that us,0,γ,α = us,α and that
limt→0 us,t,γ,α = us,γ,α . Further,

|utγ,α − s| = |tγ + rα| =
√

t2 + r2 + 2tr cos � (α, γ ),

where � (α, γ ) denotes the angle between α and γ (for example, in the one-dimensional case,
we have � (1, −1) = π ). Because f is differentiable in r , we can write

∣∣∣∣1

t

[
1

f (|us,t,γ,α − s|) − 1

f (r)

]
− −f ′(r)

f (r)2 cos � (α, γ )

∣∣∣∣
=

∣∣∣∣1

t

[−f ′(r)
f (r)2 (|tγ + rα| − r) + φ(|tγ + rα| − r)(|tγ + rα| − r)

]

− −f ′(r)
f (r)2 cos � (α, γ )

∣∣∣∣,
where φ is continuous with φ(0) = 0. Using a second-order Taylor approximation around 0
of t �→ √

t2 + r2 + 2tr cos � (α, γ ), we see that
(|tγ + rα| − r

)
/t converges to cos � (α, γ )

uniformly in α, γ as t → 0. Thus, for all s ∈ B,

sup
γ,α

∣∣∣∣1

t

(
1

f (|us,t,γ,α − s|) − 1

f (r)

)
− −f ′(r)

f (r)2 cos � (α, γ )

∣∣∣∣ → 0 (t → 0).
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Since yus,t,γ,α → yus,α uniformly in α, γ ∈ Sd−1 due to uniform continuity of the (yt )-field, we
find that if (tx) is a sequence decreasing to 0 such that xtx → C as x → ∞, then

sup
γ,α

∣∣∣∣ x − yus,tx ,γ,α

f (|us,tx ,γ,α − s|) − x

f (r)
−

(
C

−f ′(r)
f (r)2 cos � (α, γ ) − yus,α

f (r)

)∣∣∣∣ → 0 (x → ∞).

From this we find, still for x → ∞,

sup
γ,α

∣∣∣∣ max
t∈Dα(s+γ t)

(
x − yt

f (|t − s|) − x

f (r)

)
− max

t∈Dα(s)

(
C

−f ′(r)
f (r)2 cos � (t − s, γ ) − yt

f (r)

)∣∣∣∣ → 0.

Next, we claim that, for all α, γ ∈ Sd−1 and C ≥ 0,

max
t∈Dα(s)

(
C

−f ′(r)
f (r)2 cos � (t − s, γ ) − yt

f (r)

)

= max

{
C

−f ′(r)
f (r)2 cos � (α, γ ) − ys+rα

f (r)
, −C

−f ′(r)
f (r)2 cos � (α, γ ) − ys−rα

f (r)

}

≥ sup
α∈Sd−1

1

2f (r)
(ys+rα + ys−rα),

with equality if

α0 = arg max
α∈Sd−1

{
ys+rα + ys−rα

2f (r)
: ys+rα ≥ ys−rα

}
,

and, further, γ0 = α0 and C0 = f (r)/(−2f ′(r))(ys+rα − ys−rα). For the proposed choice of
α0, γ0, and C0, it is easily seen that

C0
−f ′(r)
f (r)2 cos � (α0, γ0) − ys+rα0

f (r)
= −C0

−f ′(r)
f (r)2 cos � (α0, γ0) − ys−rα0

f (r)
,

and that the common value equals the desired lower bound. It is also seen that any other choice
of α, γ and C can only increase one of the two terms above.

Now let (αn) and (γn) be sequences in Sd−1, (tn) a sequence of positive numbers, and (xn)

a sequence increasing to ∞. Then the results above show that

lim inf
n→∞ max

t∈Dα
n (s+γntn)

(
x − yt

f (|t − s|) − x

f (r)

)
≥ sup

α∈Sd−1

ys+rα + ys−rα

2f (r)
,

and that there is equality if αn = α0, γn = γ0, and xntn → C0 with α0, γ0, and C0 as proposed
above. Combined with Lemma 3.1 this gives the desired result. �
Lemma 3.3. Let n ∈ N and assume that, for each i = 1, . . . , n, (yi

t )t∈B⊕Cr has the form

yi
t = zif (|t − si |) for all t ∈ B ⊕ Cr,

where all zi ≥ 0 and si ∈ Rd . Let g be as defined in (2.10). Define, for s ∈ Rd ,

ϕ(s) = f (r)1B⊕Cr (s) + 1(B⊕Cr)
c (s) sup

t∈B

g(|t − s|). (3.19)

Then

sup
s∈B

λs

(( n∑
i=1

yi
t

)
t∈B⊕Cr

)
≤ 1

f (r)

n∑
i=1

ziϕ(si), sup
t0∈B

sup
α∈Sd−1

inf
t∈Dα(t0)

n∑
i=1

yi
t ≤

n∑
i=1

ziϕ(si).
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Proof. Assume that si ∈ B ⊕ Cr . For each α ∈ Sd−1 and s ∈ B, if min{|s + rα − si |,
|s − rα − si |} = r − δ for some δ > 0, then max{|s + rα − si |, |s − rα − si |} ≥ r + δ. Using
assumption (2.10) then yields

1
2 (yi

s+rα + yi
s−rα) ≤ 1

2zi(g(r − δ) + g(r + δ)) = zif (r) = ziϕ(si).

Clearly, this inequality is also satisfied if both |s + rα − si | ≥ r and |s − rα − si | ≥ r . If
si ∈ (B ⊕ Cr)

c then for all choices of s ∈ B and α ∈ Sd−1, we must have

1
2 (yi

s+rα + yi
s−rα) ≤ 1

2zi(g(|s + rα − si |) + g(|s − rα − si |)) ≤ ziϕ(si).

Recall that for a given rotation matrix R ∈ SO(d), there exists α ∈ Sd−1 such that {s − rα,

s + rα} ⊆ DR(s); then combined with Lemma 3.2, we now see that, for each s ∈ B,

λs

(( n∑
i=1

yi
t

)
t∈B⊕Cr

)
≤ sup

α∈Sd−1

1

2f (r)

( n∑
i=1

yi
s+αr +

n∑
i=1

yi
s−αr

)

≤
n∑

i=1

1

2f (r)
sup

α∈Sd−1
(yi

s+αr + yi
s−αr )

≤ 1

f (r)

n∑
i=1

ziϕ(si).

Taking the supremum over s ∈ B yields the first statement of the lemma.
For the second statement, similarly, we have, for each t0 ∈ B and R ∈ SO(d),

inf
t∈DR(t0)

n∑
i=1

yi
t ≤ min

{ n∑
i=1

yi
t0+rα,

n∑
i=1

yi
t0−rα

}
≤ 1

2

( n∑
i=1

yi
t0+αr +

n∑
i=1

yi
t0−αr

)
≤

n∑
i=1

ziϕ(si),

where, again, α ∈ Sd−1 is chosen such that {s − rα, s + rα} ⊆ DR(s). The result follows by
taking the supremum over t0 ∈ B and R ∈ SO(d). �

4. The main theorem

In this section we derive the main result, namely Theorem 4.4 below. For x > 0, define the
set

�(x) =
{
(yt )t∈B⊕Cr : sup

t0∈B

sup
R∈SO(d)

inf
t∈DR(t0)

yt > x
}
.

Note that for a random field (Yt )t∈B⊕Cr
with excursion set Ax = {t ∈ B ⊕ Cr : Yt > x},

P((Yt )t∈B⊕Cr ∈ �(x)) = P(there exist t ∈ B and R ∈ SO(d) : DR(t) ⊆ Ax).

Our first step is to determine the asymptotic behaviour of excursion sets for a field U with
distribution ν1. Recall the definition of L(x) from (2.5).

Theorem 4.1. Assume that (Ut )t∈B⊕Cr
has distribution ν1 and let (yt )t∈B⊕Cr

be continuous.
Then, as x → ∞,

P((Ut + yt )t∈B⊕Cr ∈ �(x))

L(x/f (r)) exp(−βx/f (r))
→ 1

ν(A)

∫
B

exp(βλs((yt )t∈B⊕Cr ))ds, (4.1)

P((Ut )t∈B⊕Cr ∈ �(x))

L(x/f (r)) exp(−βx/f (r))
→ 1

ν(A)
md(B), (4.2)
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and
P((Ut + yt )t∈B⊕Cr

∈ �(x))

P((Ut )t∈B⊕Cr
∈ �(x))

→
∫
B

exp(βλs((yt )t∈B⊕Cr
))ds

md(B)
. (4.3)

Proof. The limit results (4.2) and (4.3) follow directly from (4.1), so we only need to prove
(4.1). We can assume that (yt )t∈B⊕Cr

is nonnegative: simply write x = x′ −x0 for a suitable x0
such that (x0 + yt )t∈B⊕Cr

is nonnegative; we shall find

lim
x′→∞

P((Ut + x0 + yt )t∈B⊕Cr
∈ �(x′))

L(x′/f (r)) exp(−βx′/f (r))
.

Consider

P((Ut + yt )t∈B⊕Cr
∈ �(x))

= 1

ν(A)
F

({
(s, z) ∈ Rd × R : sup

t0∈B

sup
R∈SO(d)

inf
t∈DR(t0)

zf (|t − s|) + yt > x
})

= 1

ν(A)
F

({
(s, z) ∈ Rd × R : z > inf

t0,R
sup

t∈DR(t0)

x − yt

f (|t − s|)
})

= 1

ν(A)

∫
B

L

(
inf
t0,α

sup
t∈DR(t0)

x − yt

f (|t − s|)
)

exp

(
−β inf

t0,R
sup

t∈DR(t0)

x − yt

f (|t − s|)
)

ds

+ 1

ν(A)

∫
Rd\B

L

(
inf
t0,R

sup
t∈DR(t0)

x − yt

f (|t − s|)
)

exp

(
−β inf

t0,α
sup

t∈DR(t0)

x − yt

f (|t − s|)
)

ds.

(4.4)

Start by showing that the second term in (4.4) is o(L(x/f (r)) exp(−βx/f (r))). Let y∗ =
sups∈B⊕Cr

ys . Observe that L(x)e−βx decreases in x so if x > y∗ then the second term is
bounded above by

1

ν(A)

∫
Rd\B

L

(
x − y∗

f0(s)

)
exp

(
−β

x − y∗

f0(s)

)
ds, (4.5)

where f0(s) := supt0,R
inf t∈DR(t0)

f (|t − s|). From arguments similar to those used to
prove [13, Theorem 3.1] it can be seen that for all γ > 0 there exists x0 > 0 and C > 0
such that

L(ax)

L(x)
≤ Ce(a−1)γ x for all x ≥ x0 and a ≥ 1. (4.6)

Note that the convexity of B implies that f0(s) < f (r) for all s ∈ Rd \ B. Combining this
with (2.5), relation (4.6), and the fact that L(x)e−γ x → 0 for all γ > 0 shows that the integrand
in (4.5) is o(L(x/f (r)) exp(−βx/f (r))).

Denote the integrand of (4.5) by h(s; x). If we can find an integrable function g such that

h(s; x)

L(x/f (r)) exp(−βx/f (r))
≤ g(s), s ∈ Rd ,

then the dominated convergence theorem implies that (4.5) is o(L(x/f (r)) exp(−βx/f (r))).
Let 0 < γ < β. Using (4.6) and the boundedness of L((x − y∗)/f (r))/L(x/f (r)), we can
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find a constant C̃ and x0 > y∗ such that, for x ≥ x0,

h(s; x)

L(x/f (r)) exp(−βx/f (r))
≤ C̃ exp

(
βy∗

f (r)

)
exp

(
− (β − γ )

[
1

f0(s)
− 1

f (r)

]
(x0 − y∗)

)
.

(4.7)
Now choose D > 0 such that B⊕Cr ⊆ CD(0) and supt∈B f (|t −s|) < f (r) for all s /∈ CD(0).
Then using (2.8), we find for s /∈ CD(0) that

f0(s) ≤ sup
t∈B

f (|t − s|) ≤ sup
t∈CD(0)

f (|t − s|) ≤ sup
t∈CD(0)

1

(|t − s| + 1)d
= 1

(|s| − D + 1)d
.

It follows that the function (4.7) is integrable.
The theorem now follows by applying dominated convergence to the first term of (4.4).

From Lemma 3.1, we have, for s ∈ B,

L(inf t0,R supt∈DR(t0)
(x − yt )/f (|t − s|))(−β inf t0,R supt∈DR(t0)

(x − yt )/f (|t − s|))
L(x/f (r)) exp(−βx/f (r))

→ eβλs((yt )t ).

Again using the fact that L(x)e−βx is decreasing, it follows that, for large enough x,

∣∣∣∣L(inf t0,R supt∈DR(t0)
(x − yt )/f (|t − s|)) exp(−β inf t0,R supt∈DR(t0)

(x − yt )/f (|t − s|))
L(x/f (r)) exp(−βx/f (r))

− eβλs((yt )t )

∣∣∣∣
≤ L((x − y∗)/f (r)) exp(−β(x − y∗)/f (r))

L(x/f (r)) exp(−βx/f (r))
+ eβλs((yt )t )

≤ (C + 1)eβy∗
,

where C is chosen such that
L(x − y∗)/f (r)

L(x/f (r))
≤ C.

The result is integrable over B. �

The next step is to extend the result of Theorem 4.1 to the case P((U1 + · · · + Un + yt )t ∈
�(x)), where Ui , i = 1, . . . , n, are independent with common distribution ν1. Recall that each
(Ui

t )t∈B⊕Cr
can be represented by

(
Zif (|t − Si |))

t∈B⊕Cr
, where (Si, Zi) has distribution F1.

For this purpose we need the following lemma and corollary.

Lemma 4.1. Let (S, Z) be distributed according to F1. Then, when x → ∞,

P(Zϕ(S) > x)

L(x/f (r)) exp(−βx/f (r))
→ md(B ⊕ Cr)

ν(A)
.

In particular,

E

[
exp

(
β

f (r)Zφ(S)

)]
< ∞.
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Proof. Similar to the proof of Theorem 4.1, we can write

P(Zφ(S) > x) = 1

ν(A)
F ({(s, z) ∈ Rd × R : zϕ(s) > x})

= 1

ν(A)

∫
B⊕Cr

L

(
x

f (r)

)
exp

(
− βx

f (r)

)
ds

+ 1

ν(A)

∫
B⊕Cr

L
( x

supt∈B g(|t − s|)
)

exp

(
− βx

supt∈B g(|t − s|)
)

ds,

where the first term equals L(x/f (r)) exp(−βx/f (r)) times the desired limit while a dominated
convergence argument (using supt∈B g(|t − s|) < f (r) for all s ∈ (B ⊕ Cr)

c) shows that the
second term is o(L(x/f (r)) exp(−βx/f (r)).

The second particular result follows from [10, Corollary 2.1(ii)]. �

Corollary 4.1. For U1, U2, . . . i.i.d. with distribution ν1,

E

[
exp

(
β sup

s∈B

λs((U
1
t + · · · + Un

t )t∈B⊕Cr )
)]

< ∞ (all n ∈ N).

Proof. Because each Ui has the form (Zif (|t − Si |))t∈B⊕Cr
, the result follows from Lem-

mas 3.3 and 4.1. �

Theorem 4.2. Let U1, U2, . . . be i.i.d. with distribution ν1 and assume that (yt )t∈B⊕Cr
is

continuous. For all n ∈ N and x → ∞,

P((U1
t + · · · + Un

t + yt )t ∈ �(x))

P((U1
t )t ∈ �(x))

→ n

md(B)

∫
B

E[exp(βλs((U
1
t + · · · + Un−1

t + yt )t ))]ds.

Proof. As in the proof of Theorem 4.1, we can assume that (yt )t∈B⊕Cr
is nonnegative. The

result is shown by induction over n. For n = 1, the result is shown in Theorem 4.1. Assume
now that the theorem is correct for some n ∈ N. For convenience, write V = U1 + · · · + Un

and recall the representation Ui
t = Zif (|t − Si |). Then

P((Vt + Un+1
t + yt )t ∈ �(x))

= P

( n∑
i=1

Ziϕ(Si) >
1

2
x, Zn+1ϕ(Sn+1) >

1

2
x, (Vt + Un+1

t + yt )t ∈ �(x)

)

+ P

( n∑
i=1

Ziϕ(Si) ≤ 1

2
x, (Vt + Un+1

t + yt )t ∈ �(x)

)

+ P
(
Zn+1ϕ(Sn+1) ≤ 1

2x, (Vt + Un+1
t + yt )t ∈ �(x)

)
. (4.8)

The first term on the right-hand side is bounded above by the product

P

( n∑
i=1

Ziϕ(Si) >
1

2
x

)
P

(
Zn+1ϕ(Sn+1) >

1

2
x

)
.
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In Lemma 4.1 we showed that the distribution of each Ziϕ(Si) is convolution equivalent.
Thus, both terms of the product are asymptotically equivalent with ρ1((x/(2f (r)), ∞)), and
then it follows from the proof of [5, Lemma 2] that the product is o((ρ1 ∗ ρ1)((x/f (r), ∞))).
In particular, the product above is o(ρ1((x/f (r), ∞))) due to convolution equivalence (see
around (2.5) above concerning these ideas for ρ and ρ1).

The two remaining terms in (4.8) divided by P((U1
t )t ∈ �(x)) can be rewritten as below:

∫
Cx

P((Un+1
t + ∑n

i=1 zif (|t − si |) + yt )t ∈ �(x))

P((U1
t )t ∈ �(x))

F ∗⊗n
1 (d(s1, z1; . . . ; sn, zn))

+
∫

C̃x

P((Vt + zf (|t − s|) + yt )t ∈ �(x))

P((U1
t )t ∈ �(x))

F1(d(s, z)). (4.9)

Here F ∗⊗n
1 is the n-fold product measure of F1, and we have used the fact that (Vt )t can be

represented by (
∑n

i=1 Zif (|t − Si |))t . The sets Cx and C̃x in (4.9) are defined by

Cx =
{
(s1, z1; . . . ; sn, zn) :

n∑
i=1

ziϕ(si) ≤ 1

2
x

}
and C̃x =

{
(s, z) : zϕ(s) ≤ 1

2
x

}
.

Using Theorem 4.1 and the induction assumption, the two integrands of (4.9) multiplied by 1Cx

and 1
C̃x

respectively, converge as x → ∞ to

f1(s
1, z1; . . . ; sn, zn) = 1

md(B)

∫
B

exp

(
βλs

((
yt +

n∑
i=1

zif (|t − si |)
)

t∈B⊕Cr

))
ds

and

f2(s, z) = n

md(B)

∫
B

E[exp(βλs((U
1
t + · · · + Un−1

t + zf (|t − s|) + yt )t∈B⊕Cr ))]ds,

respectively. We want to show that (4.9) converges to
∫

f1(s
1, z1; . . . ; sn, zn)F ∗⊗n

1 (d(s1, z1; . . . ; sn, zn)) +
∫

f2(s, z)F1(d(s, z))

= n + 1

md(B)

∫
B

E[exp(βλs((U
1
t + · · · + Un

t + yt )t ))]ds.

To this end, it is enough to find integrable functions g1(s
1, z1; . . . ; sn, zn; x) and g2(s, z; x)

that are upper bounds of the two integrands of (4.9) such that the limits g1(s
1, z1; . . . ; sn, zn) =

limx→∞ g1(s
1, z1; . . . ; sn, zn; x) and g2(s, z) = limx→∞ g2(s, z; x) exist with

∫
Cx

g1(s
1, z1; . . . ; sn, zn; x)F ∗⊗n

1 (d(s1, z1; . . . ; sn, zn)) +
∫

C̃x

g2(s, z; x)F1(d(s, z)) (4.10)

converging to the similar integrals with g1(s
1, z1; . . . ; sn, zn) and g2(s, z), and use Fatou’s

lemma. Using Lemma 3.3 we find that as functions g1(s
1, z1; . . . ; sn, zn; x) and g2(s, z; x)

we can use

g1(s
1, z1; . . . ; sn, zn; x) = P(Z1ϕ(S1) > x − y∗ − ∑n

i=1 ziϕ(si))

P((Ut )t ∈ 	(x))
,
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where, as previously, y∗ = supt∈B⊕Cr
yt , and

g2(s, z; x) = P(
∑n

i=1 Ziϕ(Si) > x − y∗ − zϕ(s))

P((Ut )t ∈ 	(x))
.

From Theorem 4.1 and Lemma 4.1, we see that, for large x,

P((Ut )t ∈ 	(x)) ∼ md(B)

md(B ⊕ Cr)
P(Z1ϕ(S1) > x),

and, hence,

g1(s
1, z1; . . . ; sn, zn; x) → g1(s

1, z1; . . . ; sn, sn)

= md(B ⊕ Cr)

md(B)
exp

(
β

f (r)(y∗ + ∑n
k=1 ziϕ(si))

)
.

Since the distribution of
∑n

i=1 Ziϕ(Si) is convolution equivalent, [6, Corollary 2.11] yields

g2(s, z; x) → g2(s, z) = md(B ⊕ Cr)

md(B)
n · eβ/f (r)(y∗+zϕ(s))

(
E[eβ/f (r)Z1ϕ(S1)])n−1

.

We observe that∫
g1(s

1, z1; . . . ; sn, zn)F ∗⊗n
1 (d(s1, z1; . . . ; sn, zn)) +

∫
g2(s, z)F1(d(s, z))

= md(B ⊕ Cr)

md(B)
(n + 1) · eβ/f (r)y∗(

E[eβ/f (r)Z1ϕ(S1)])n
. (4.11)

Since the tails of
∑n

i=1 Ziϕ(Si) and Z1ϕ(S1), in particular, are exponential with index β/f (r),
appealing to [5, Lemma 2] shows that (4.10) is asymptotically equal to

eβ/f (r)y∗ P(
∑n+1

i=1 Ziϕ(Si) > x)

P(Z1ϕ(S1) > x)

which, by another reference to [6, Corollary 2.11], is seen to converge to (4.11). �
For a dominated convergence argument, we need the lemma below.

Lemma 4.2. Let U1, U2, . . . be i.i.d. with distribution ν1, and assume that (S, Z) has distri-
bution F1. There exists a constant K such that

P((U1
t + . . . + Un

t )t ∈ �(x)) ≤ KnP(Zϕ(S) > x) (all n ∈ N and all x ≥ 0).

Proof. Since Zϕ(S) has a convolution equivalent tail according to Corollary 4.1, it follows
from [6, Lemma 2.8] that there exists K such that

P

( n∑
i=1

Ziϕ(Si) > x

)
≤ KnP(Zϕ(S) > x).

The result now follows directly from Lemma 3.3. �
Recall that we can write the field (Xt )t∈T as Xt = X1

t + X2
t , where the field X1 is obtained

from the fields U1, U2, . . . and an independent Poisson distributed variable N with parameter
ν(A) by X1

t = ∑N
n=1 Un

t .
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Theorem 4.3. (a) For each s ∈ B, E[exp(βλs((X
1
t )t∈B⊕Cr

))] < ∞.
(b) For a continuous field (yt )t∈B⊕Cr

,

lim
x→∞

P((X1
t + yt )t ∈ �(x))

L(x/f (r)) exp(−βx/f (r))
=

∫
B

E[(exp(βλs((X
1
t + yt )t∈B⊕Cr )))]ds.

Proof. To prove part (a), recall that λs((X
1
t )t∈B⊕Cr ) ≤ (1/f (r))

∑N
n=0 Ziϕ(Si) and that

E[exp(β/f (r)Z1ϕ(S1))] is finite.
To prove (b), we use the relation

P((X1
t + yt )t ∈ �(x)) = e−ν(A)

∞∑
n=1

ν(A)n

n! P((U1
t + · · · + Un

t + yt )t ∈ �(x)).

For the sum here, we use Lemma 4.2 and the notation y∗ = supt∈B⊕Cr
yt as follows:

∞∑
n=1

ν(A)n

n!
P((U1

t + · · · + Un
t + yt )t ∈ �(x))

P(Zϕ(S) > x − y∗)

≤
∞∑

n=1

ν(A)n

n!
P((U1

t + · · · + Un
t )t ∈ �(x − y∗))

P(Zϕ(S) > x − y∗)

≤
∞∑

n=1

Knν(A)n

n!
P(Zϕ(S) > x − y∗)
P(Zϕ(S) > x − y∗)

=
∞∑

n=1

Knν(A)n

n!
< ∞.

Now we obtain from Lemma 4.1 and Theorem 4.2 that

lim
x→∞

P((U1
t + · · · + Un

t + yt )t ∈ �(x))

P(Zϕ(S) > x − y∗)

= n

eβ/f (r)y∗
md(B ⊕ Cr)

∫
B

E[eβλs((U
1
t +···+Un−1

t +yt )t )]ds,

with the convention that U1
t + · · · + Un−1

t = 0 if n = 1. Then dominated convergence yieldss

lim
x→∞

P((X1
t + yt )t ∈ �(x))

P(Zϕ(S) > x − y∗)

= e−ν(A)

eβ/f (r)y∗
md(B ⊕ Cr)

∞∑
n=1

ν(A)n

n! n

∫
B

E[eβλs((U
1
t +···+Un−1

t +yt )t )]ds

= ν(A)

eβ/f (r)y∗
md(B ⊕ Cr)

∞∑
n=0

e−ν(A) ν(A)n

n!
∫

B

E[eβλs((U
1
t +···+Un

t +yt )t )]ds

= ν(A)

eβ/f (r)y∗
md(B ⊕ Cr)

∫
B

E[eβλs((U
1
t +...+UN

t +yt )t )]ds

= ν(A)

eβ/f (r)y∗
md(B ⊕ Cr)

∫
B

E[eβλs((X
1
t +yt )t )]ds,

which with a final reference to Theorem 4.1 and Lemma 4.1 concludes the proof. �
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The theorem below is the main result of our paper. In the formulation of the theorem, we
explicitly state the assumptions under which the limit holds.

Theorem 4.4. When M satisfies assumptions (2.1)–(2.6) and f satisfies (2.7)–(2.10), we have
E[exp(βλt0((Xt )t∈B⊕Cr

)] < ∞ and

lim
x→∞

P(supt0∈B supR∈SO(d) inf t∈DR(t0)
Xt > x)

L(x/f (r)) exp(−βx/f (r))
= E[exp(βλt0((Xt )t∈B⊕Cr

)md(B)],

where t0 ∈ B is chosen arbitrarily and λt0 is as defined in Lemma 3.1.

Proof. First we note that E[exp(γ supt∈B⊕Cr
X2

t )] < ∞ for all γ > 0 according to [13,
Lemma 4.1]. Since, by Lemma 3.1, we also have

λt0((Xt )t ) ≤ λt0

((
X1

t + sup
t

X2
t

)
t

)
= λt0((X

1
t )t ) + supt X2

t

f (r)
,

the first statement follows from part (a) of Theorem 4.3. Let π be the distribution of (X2
t )t∈B⊕Cr .

We find that

P((Xt )t ∈ �(x))

P((X1
t )t ∈ �(x))

=
∫

P((X1
t + yt )t ∈ �(x))

P((X1
t )t ∈ �(x))

π(dy) =
∫

f (y; x)π(dy),

where

f (y; x) = P((X1
t + yt )t ∈ �(x))

P((X1
t )t ∈ �(x))

.

From Theorem 4.3 it is seen that as x → ∞,

f (y; x) → f (y) :=
∫
B

E[(exp(βλs((X
1
t + yt )t∈B⊕Cr )))]ds∫

B
E[(exp(βλs((X

1
t )t∈B⊕Cr )))]ds

.

If we can show that ∫
f (y; x)π(dy) →

∫
f (y)π(dy) as x → ∞, (4.12)

then the theorem follows with another reference to Theorem 4.3 and by recalling that (Xt )t∈B⊕Cr

is stationary. According to Fatou’s lemma, (4.12) follows if we can find integrable nonnegative
functions g(y; x) and g(y) such that

f (y; x) ≤ g(y; x), (4.13)

g(y; x) → g(y), (4.14)∫
g(y; x)π(dy) →

∫
g(y)π(dy). (4.15)

For this purpose, let

g(y; x) = P((X1
t + supt yt )t ∈ �(x))

P((X1
t )t ∈ �(x))

.

Then (4.13) is satisfied. Further, using Theorem 4.3 and Lemma 3.1, we find that (4.14) is
satisfied with g(y) = exp(β/f (r) supt yt ). To prove (4.15), we have

∫
g(y; x)π2(dy) = P(supt0,R

inf t∈DR(t0)
X1

t + supt X2
t > x)

P(supt0,R
inf t∈DR(t0)

X1
t > x)

.
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Note that supt0,R
inf t∈DR(t0)

X1
t has a convolution equivalent tail according to Theorem 4.3

and [10, Lemma 2.4 (i)]. Since E[exp(γ supt X2
t )] < ∞ for all γ > 0, it follows from [10,

Lemma 2.1] and [10, Lemma 2.4 (ii)] that

lim
x→∞

P(supt0,R
inf t∈DR(t0)

X1
t + supt X2

t > x)

P(supt0,R
inf t∈DR(t0)

X1
t > x)

= E

[
exp

(
β

f (r) supt X2
t

)]
=

∫
g(y)π(dy).

Thus, (4.15) is satisfied. �

Appendix A.

The following simple lemma is used in Lemma 3.1.

Lemma A.1. Let 0 < xn < xn+1 be given. Then there exist constants C, D > 0 such that
x : [0, 1] → [0, ∞) defined by

x(u) = C

1 − u + D
(A.1)

is strictly increasing with x(0) = xn and x(1) = xn+1. Further, if g(u) = au + b then
u �→ x(u)g(u) is monotone on [0, 1].

Proof. Any function of the form (A.1) is clearly strictly increasing on [0, 1]. The constants
C, D that yield x(0) and x(1) as stated are found by straightforward manipulation. The last
result is proved by differentiating u �→ x(u)g(u). �
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