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Let X be a 4-dimensional toric orbifold. If H3(X) has a non-trivial odd primary
torsion, then we show that X is homotopy equivalent to the wedge of a Moore space
and a CW-complex. As a corollary, given two 4-dimensional toric orbifolds having no
2-torsion in the cohomology, we prove that they have the same homotopy type if and
only their integral cohomology rings are isomorphic.
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1. Introduction

One of the central problems in topology is the rigidity question, namely when
a weaker equivalence between two spaces implies a stronger equivalence between
them. Freedman’s work [11] on the classification of closed oriented simply con-
nected topological 4-manifolds via the intersection form is a good example of this
type of question. In toric topology, a similar type of question was posed in [15],
which is now called the cohomological rigidity problem, which asks if homeomor-
phism/diffeomorphism classes of quasitoric manifolds can be classified by their
integral cohomology rings.

Although the problem looks overambitious, it is a sensible question to ask on
the following basis. No counter-example has been found since it was formulated.
On the contrary, there is a piece of evidence supporting the cohomological rigid-
ity of quasitoric manifolds. Indeed, the classification result in [16] together with
the description of the cohomology ring of a quasitoric manifold [9, theorem 4.14]
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The homotopy classification of four-dimensional toric orbifolds 627

implies the cohomological rigidity of 4-dimensional quasitoric manifolds. Besides,
many affirmative answers have been proved, for instance certain Bott manifolds [5],
generalized Bott manifolds [6] and 6-dimensional quasitoric manifolds associated to
3-dimensional Pogorelov polytopes [1].

Being a generalized notion of quasitoric manifold, a toric orbifold [9] is a 2n-
dimensional compact orbifold equipped with a locally standard Tn-action whose
orbit space is a simple polytope. It is known that the cohomology rings fail to classify
toric orbifolds up to homeomorphism. For instance, there are weighted projective
spaces with isomorphic cohomology rings that are not homeomorphic. Therefore,
toric orbifolds do not satisfy cohomological rigidity. However, in the above counter-
examples, two weighted projective spaces with isomorphic cohomology rings are
homotopy equivalent [2]. Hence, we take a step back and ask a homotopical version
of the cohomological rigidity:

Question 1.1. Are two toric orbifolds homotopy equivalent if their integral coho-
mology rings are isomorphic as graded rings?

This paper aims to answer this question for certain 4-dimensional toric orbifolds.
We first study certain CW-complexes which model 4-dimensional toric orbifolds and
investigate their homotopy theory. In what follows, H∗(X) denotes the cohomol-
ogy ring with integral coefficients unless otherwise stated, and P 3(k) denotes the
3-dimensional mod-k Moore space for k > 1. It is known thatH3(X) is a finite cyclic
group for all 4-dimensional toric orbifolds X. We refer to [10, 13]. Let H3(X) ∼= Zm

with m = 2sq for q odd and s � 0. When q > 1, we show that X decomposes into
a wedge of P 3(q) and a recognizable space.

Theorem 1.2. Let X be a 4-dimensional toric orbifold such that H3(X) ∼= Zm. If
m = 2sq for an odd integer q > 1 and s � 0, then X is homotopy equivalent to X̂ ∨
P 3(q), where X̂ is a simply connected 4-dimensional CW-complex with H3(X̂) =
Z2s and Hi(X̂) ∼= Hi(X) for i �= 3.

Ifm is odd or equivalently s = 0, then theorem 1.2 impliesX � X̂ ∨ P 3(m) where
H3(X̂) = 0. As an application, we can answer question 1.1 for certain 4-dimensional
toric orbifolds in the following theorem.

Theorem 1.3. Let X and X ′ be 4-dimensional toric orbifolds such that H3(X)
and H3(X ′) have no 2-torsion. Then X is homotopy equivalent to X ′ if and only
if there is a ring isomorphism H∗(X) ∼= H∗(X ′).

This paper is organized as follows. In § 2, we review the constructive definition
of a 4-dimensional toric orbifold X. In particular, it is important to see that X
is the mapping cone of a map from a lens space to a wedge of 2-spheres. This
phenomenon is motivated by the study of [4] and can also be understood in terms
of a q-CW complex studied in [3]. In § 3, we define a category Cn,m of certain
CW-complexes which model 4-dimensional toric orbifolds and study the homotopy
theory of Cn,m. Section 4 aims to give a necessary and sufficient condition for
X ∈ Cn,m to decompose into a wedge of P 3(q) and a space in Cn,2s . In § 5, we study
the p-local version of the discussion of § 4 for some odd prime p and apply this to

https://doi.org/10.1017/prm.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.23


628 X. Fu et al.

Figure 1. (n + 2)-gon with primitive vectors on facets.

4-dimensional toric orbifolds. Combining the equivalent condition (Proposition 4.8)
and the p-local decomposition (Proposition 5.3), we finally complete the proofs of
theorems 1.2 and 1.3 in § 6.

2. Toric orbifolds of dimension 4

We begin with a summary of the constructive definition of a toric orbifold. For our
purpose, we focus on the 4-dimensional case. For more details on toric orbifolds see
[9, § 7], [18, § 2] and [7, chapters 3, 10].

Let P be an (n+ 2)-gon on vertices v1, . . . , vn+2 for some n � 0. We denote
by Ei the edge connecting vi and vi+1 for i = 1, . . . , n+ 2, where we take indices
modulo n+ 2. To each edge Ei, assign a primitive vector ξi = (ai, bi) ∈ Z

2 such
that two adjacent vectors ξi and ξi+1 are linearly independent. We often describe
this combinatorial data as in Figure 1.

Identify Z
2 with Hom(S1, T 2). Each ξi defines a one-parameter subgroup of T 2

S1
ξi

= {(tai , tbi) ∈ T 2 | t ∈ S1}.
Now, define the following identification space

X = P × T 2/∼ (2.1)

where we identify (p, g) and (p, h) for gh−1 ∈ S1
ξi

if p is in the relative interior of Ei,
and for all g, h ∈ T 2 if p is a vertex of P . Note that there is no identification between
(p, g) and (q, h) unless p = q. Here, the torus T 2 acts on X by the multiplication
on the second factor, which yields the orbit map π : X → P by the projection onto
the first factor.

We roughly describe the orbifold structure on X following the identification (2.1).
First, there is a standard presentation of C

2 given by a homeomorphism R
2
� ×

T 2/∼std
∼= C

2 that maps [(x, y), (t, s)] in R
2
� × T 2/∼std

to (xt, ys) in C
2. Here, the

standard identification ∼std is given by ((x, y), g) ∼std ((x, y), h)

(1) for gh−1 ∈ 1 × S1 if x = 0 and y �= 0;

(2) for gh−1 ∈ S1 × 1 if x �= 0 and y = 0;

(3) for all g, h ∈ T 2 if x = y = 0.
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Note that there is no identification between ((x1, y1), g) and ((x2, y2), h) in R
2
� × T 2

unless (x1, y1) = (x2, y2).
Let Ui be a neighbourhood of vi in P , which is homeomorphic to R

2
� as a manifold

with corners. Let ψi be a homeomorphism R
2
� ∼= Ui and let ρi : T 2 � T 2 be an

endomorphism of T 2 given by

ρi : T 2 → T 2, (t1, t2)
ρi�−→ (tai

1 t
ai+1
2 , tbi

1 t
bi+1
2 ). (2.2)

Since ξi = (ai, bi) and ξi+1 = (ai+1, bi+1) are linearly independent, the kernel Ki =
ker ρi is a cyclic subgroup of T 2. Then the map ψi × ρi induces a surjection

C
2 ∼= R

2
�×T 2/∼std

ψi×ρi−−−−→ Ui × T 2/∼. (2.3)

This shows that Ui × T 2/∼ is homeomorphic to the quotient C
2/Ki, where Ki

acts on C
2 as a subgroup of T 2. Hence, the map (2.3) forms an orbifold chart around

the point [vi, g] ∈ X. The gluing maps among these orbifold charts are determined
by the underlying polygon.

A certain cofibration construction of X is studied in [4] based on the orbifold
structure onX. Pick a vertex vi of P and Ui is its neighbourhood as above. Consider
a line segment �i in P connecting two points lying in the relative interior of Ei and
Ei+1, respectively. The restriction of identification (2.1) to �i gives rise to a subspace
of X

Li = �i × T 2/∼.

By assuming that the homeomorphism ψi : R
2 → Ui sends the arc S1

� = S1 ∩ R
2
�

to �i, the restriction of (2.3) to S1
� × T 2/∼std

induces a homeomorphism (S1
� ×

T 2/∼std
)/Ki

∼= Li. Here, we notice that Ki is isomorphic to Zmi,i+1 , where

mi,j = |det
[
ξti ξtj

] |. (2.4)

As S1
� × T 2/∼std

is homeomorphic to S3, we conclude that Li is homeomorphic to
S3/Zmi,i+1 which is S3 if mi,i+1 = 1 and is a lens space otherwise. This description
can be found in [19, Proposition 2.3] including higher dimensional cases.

Moreover, the subspace Ui × T 2/∼ is homeomorphic to a tubular neighbourhood
of the cone on Li. Let B be the union of all edges Ej where j �= i, i+ 1. The subspace
B × T 2/∼ is homotopic to a wedge of n copies of 2-spheres and the subspace (P −
{vi}) × T 2/∼ retracts to B × T 2/∼. As X is a union of (P − {vi}) × T 2/∼ and
Ui × T 2/∼, it implies a homotopy cofibration

Li
fi−→
∨n

j=1
S2 → X (2.5)

where the map fi is induced by the composition of the inclusion ι and the
retraction r

�i × T 2/∼
ι
↪→ (P − {vi}) × T 2/∼

r−→ B × T 2/∼.

See Figure 2 for a pictorial illustration of (2.5).
Applying the cohomology functor to the cofibre sequence (2.5) and referring to

[3, theorem 1.1], we can compute the free part of H∗(X). The cohomology of X has
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Figure 2. X =
∨3
i=1S2 ∪fi

CLi.

been discussed using various tools in the studies [13, theorem 2.5.5], [10, theorem
2.3] and [14, corollary 5.1] which can be summarized as follows.

Proposition 2.1. Let X be a toric orbifold of dimension 4. Then we have

i 0 1 2 3 4 � 5
Hi(X) Z 0 Z

n
Zm Z 0 (2.6)

where m is the greatest common divisor of {mi,j | 1 � i < j � n+ 2} for mi,j’s
defined in (2.4). We set Zm = 0 if m = 1.

Remark 2.2. The way of realizing X as a cofibre in (2.5) can be understood in a
more general framework of a q-CW complex. A q-CW complex is defined inductively
starting from a discrete set X0 of points. Then, Xi is defined by the pushout

where ei and Si−1 are i-dimensional cell and its boundary, respectively, and Kα is
a finite group acting linearly on ei. Every toric orbifold is a q-CW complex. We
refer to [3] for more details.

3. Cohomology of 4-dimensional CW-complexes

3.1. A category of 4-dimensional CW-complexes

Suppose that X is a simply connected CW-complex satisfying (2.6). By
[12, Proposition 4H.3] it is homotopy equivalent to a CW-complex(

n∨
i=1

S2 ∨ P 3(m)

)
∪f e4 (3.1)

where f : S3 → ∨n
i=1S

2 ∨ P 3(m) is the attaching map of the 4-cell. In this section,
we study the homotopy theory of CW-complexes in this form.

Define Cn,m to be the full subcategory of Top∗ consisting of mapping cones as in
(3.1). Here, the orientation of the 4-cell e4 is the induced orientation of the upper

https://doi.org/10.1017/prm.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.23


The homotopy classification of four-dimensional toric orbifolds 631

hemisphere in S5. We label the ith copy of 2-spheres in
∨n
i=1S

2 by S2
i for 1 � i � n

and write

Y =
n∨
i=1

S2
i ∨ P 3(m)

for short. Let μi, ν ∈ H2(Y ) be homology classes representing S2
i and the 2-cell of

P 3(m) respectively. Then, we have

H2(Y ) ∼= Z〈μ1, . . . , μn〉 ⊕ Zm〈ν〉. (3.2)

Let g : Y → Y be a map. Then the induced homology map g∗ : H2(Y ) → H2(Y )
is given by g∗(μi) =

∑n
j=1 xijμj + yiν and g∗(ν) = zν for some integers xij and

mod-m congruence classes yi and z. Conversely, we have the following lemma.

Lemma 3.1. Given a vector (y1, . . . , yn, z) ∈ (Zm)n+1 and an (n× n)-integral
matrix ⎛

⎜⎝
x11 . . . x1n

...
. . .

...
xn1 · · · xnn

⎞
⎟⎠ ∈ Matn(Z),

there exists a map g : Y → Y such that g∗(μi) =
∑n
j=1 xijμj + yiν and g∗(ν) = zν.

Proof. First, consider the string of isomorphisms

[ n∨
i=1

S2
i ,

n∨
j=1

S2
j ∨ P 3(m)

]
∼=

n⊕
i=1

[
S2
i ,

n∨
j=1

S2
j ∨ P 3(m)

]

∼=
n⊕
i=1

π2

( n∨
j=1

S2
j ∨ P 3(m)

)

∼=
n⊕
i=1

H2

( n∨
j=1

S2
j ∨ P 3(m)

)

∼=
n⊕
i=1

⎛
⎝ n⊕
j=1

Z ⊕ Zm

⎞
⎠

where the third isomorphism is due to the Hurewicz theorem. Under these
isomorphisms, take g′ :

∨n
i=1S

2
i → Y to be the map corresponding to

⎛
⎜⎝

x11 · · · x1n

...
. . .

...
xn1 · · · xnn

⎞
⎟⎠⊕ (y1, . . . , yn) ∈

⎛
⎝ n⊕
i=1

n⊕
j=1

Z

⎞
⎠⊕

(
n⊕
i=1

Zm

)
.

Then g′∗(μi) =
∑n
j=1 xijμj + yiν.
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Next, for z ∈ Zm let g′′ : P 3(m) → Y be the composition

g′′ : P 3(m)
z−→ P 3(m) ↪→ Y,

where z : P 3(m) → P 3(m) is the degree-z map. Let g : Y → Y be the wedge sum
g = g′ ∨ g′′. Then g∗(μi) =

∑n
j=1 xijμj + yiν and g∗(ν) = zν. �

3.2. Cellular cup product representation

Let Cf ∈ Cn,m be the mapping cone of a map f : S3 → Y . As the inclu-
sion Y ↪→ Cf induces an isomorphism H2(Y ) → H2(Cf ), we do not distinguish
μi, ν ∈ H2(Y ) and their images in H2(Cf ). Let ui ∈ H2(Cf ) and e ∈ H4(Cf ) be
cohomology classes dual to μi and the homology class represented by the 4-cell in
Cf respectively. Let v ∈ H3(Cf ) be the Ext image of ν. Then

H2(Cf ) ∼= Z〈u1, . . . , un〉, H3(Cf ) ∼= Zm〈v〉, H4(Cf ) ∼= Z〈e〉. (3.3)

We call the set {u1, . . . , un, v, e} the cellular basis of H∗(Cf ).
With coefficient Zm, let ūi ∈ H2(Cf ; Zm) and ē ∈ H4(Cf ; Zm) be the mod-m

images of ui and e, and let v̄ ∈ H2(Cf ; Zm) be the cohomology class dual to ν.
Then

H2(Cf ; Zm) ∼= Zm〈ū1, . . . , ūn, v̄〉, H3(Cf ; Zm) ∼= Zm〈β(v̄)〉,
H4(Cf ; Zm) ∼= Zm〈ē〉,

where β is the Bockstein homomorphism. We call the set {ū1, . . . , ūn, v̄; ē} the
mod-m cellular basis of H∗(Cf ; Zm).

Definition 3.2. Let Cf be a mapping cone in Cn,m. Then the cellular cup product
representation Mcup(Cf ) of Cf is A ∈ Matn(Z) if m = 1, and is a triple (A,b, c) ∈
Matn(Z) ⊕ (Zm)n ⊕ Zm if m > 1, where

A =

⎛
⎜⎝

a11 · · · a1n

...
. . .

...
an1 · · · ann

⎞
⎟⎠ and b = (b1, . . . , bn)

are given by ui ∪ uj = aije, ūi ∪ v̄ = biē and v̄ ∪ v̄ = cē.

Here, A is a symmetric matrix since it is the matrix representation of the bilinear
form

(−∪−)Z : H2(Cf ; Z) ⊗H2(Cf ; Z) → H4(Cf ; Z)

with respect to the cellular basis {u1, . . . , un; e}. Furthermore, universal coef-
ficient theorem implies ūi ∪ ūj = aij ē (mod m). So, (− ∪−)Zm

: H2(Cf ; Zm) ⊗
H2(Cf ; Zm) → H4(Cf ; Zm) can be recovered from Mcup(Cf ) as well.
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Remark 3.3. When X is an oriented compact smooth 4-manifold, the intersection
form I(X) is the bilinear form given by cup products of degree 2 cohomology classes
modulo torsion

I(X) : H2(X)/Tor ⊗H2(X)/Tor → Z, x⊗ y �→ 〈x ∪ y, [X]〉,
where [X] ∈ H4(X) is the fundamental class. Although defined in a similar fashion,
I(X) and Mcup(X) are different. First, I(X) only concerns cup products of free
elements in H2(X) and its matrix representation is a symmetric matrix, while
Mcup(X) concerns cup products of cohomology with integral and Zm-coefficients
and is a triple consisting of a matrix, a mod-m vector and a mod-m congruence
class that record all data. Second, a matrix representation of I(X) depends on
the choice of generators of H2(X), whereas we define Mcup(X) using a fixed CW-
complex structure of X. In the following section, we will discuss the transformation
between cellular map representations of two CW-complex structures of the same X.
It is similar to matrix congruence but is slightly more complicated, as cup products
of cohomology with Zm coefficient are involved.

Let g : S3 → Y be another map and let Cg ∈ Cn,m be its mapping cone. Recall
that f + g is the composition

f + g : S3 comult−−−−→ S3 ∨ S3 f∨g−−→ Y ∨ Y fold−−→ Y.

Denote its mapping cone by Cf+g.

Lemma 3.4. Let Y be (1) S2
1 ∨ S2

2 or (2) S2
1 ∨ P 3(m) and let f, g : S3 → Y be two

maps. Then Mcup(Cf+g) = Mcup(Cf ) +Mcup(Cg).

Proof. In the following, we only prove case (2). The proof also works for case (1)
but is simpler. Let

• {u, v; e}, {u1, v1; e1} and {u2, v2; e2} be the cellular bases of H∗(Cf+g),H∗(Cf )
and H∗(Cg), respectively;

• {ū, v̄; ē}, {ū1, v̄1; ē1} and {ū2, v̄2; ē2} be the mod-m cellular bases of
H∗(Cf+g; Zm), H∗(Cf ; Zm) and H∗(Cg; Zm), respectively;

• the cellular cup product representations of Cf+g, Cf and Cg be Mcup(Cf+g) =
(A,b, c), Mcup(Cf ) = (A1,b1, c1) and Mcup(Cg) = (A2,b2, c2), respectively.

Here, A,A1, A2 are integers and b,b1,b2 are mod-m congruence classes. We claim
that

A = A1 +A2, b = b1 + b2 and c = c1 + c2.

Consider the mapping cone C ′ = Y ∪f∨g (e41 ∨ e42) of g ∨ h : S3 ∨ S3 → Y . Let

• u′ ∈ H2(C ′), e′1, e
′
2 ∈ H4(C ′) be cohomology classes dual to S2, e41 and e42;

• ū′ ∈ H2(C ′; Zm), ē′1, ē
′
2 ∈ H4(C ′; Zm) be the mod-m images of u, e′1 and e′2;

• v̄′ ∈ H2(C ′; Zm) be the cohomology class dual to the 2-cell of P 3(m).
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Observe that Cf and Cg are subcomplexes of C ′. Let ı1 : Cf → C ′ and ı2 : Cg → C ′

be natural inclusions and let q : Cf+g → C ′ be the map collapsing the equatorial
disk of the 4-cell in Cf+g to a point. Then

q∗(u′) = u, q∗(v̄′) = v̄, q∗(e′1) = q∗(e′2) = e,

ı∗j (u
′) = uj , ı∗j (v̄

′) = v̄j , ı∗j (e
′
k) = δjkej

for j, k ∈ {1, 2}, where δjk is the Kronecker symbol. On the one hand, u′ ∪ u′ =
α1e

′
1 + α2e

′
2 for some integers α1 and α2. Now the naturality of cup products implies

ı∗j (u
′ ∪ u′) = ı∗j (α1e

′
1 + α2e

′
2)

ı∗j (u
′) ∪ ı∗j (u′) = α1ı

∗
j (e

′
1) + α2ı

∗
j (e

′
2)

uj ∪ uj = αjej

for j ∈ {1, 2}. So, αj = Aj . On the other hand,

u ∪ u = q∗(u′) ∪ q∗(u′)
= q∗(u′ ∪ u′)
= q∗(A1e

′
1 +A2e

′
2)

= A1q
∗(e′1) +A2q

∗(e′2)

= (A1 +A2)e.

So, A = A1 +A2. Similarly we can show b = b1 + b2 and c = c1 + c2. Therefore,
we have

Mcup(Cf+g) = Mcup(Cf ) +Mcup(Cg). �

3.3. Cellular map representations

Let f, f ′ : S3 → Y be two maps and Cf , Cf ′ ∈ Cn,m be their mapping cones. Let

• {u1, . . . , un, v, e} and {u′1, . . . , u′n, v′, e′} be the cellular bases of H∗(Cf ) and
H∗(Cf ′),

• {ū1, . . . , ūn, v̄, ē} and {ū′1, . . . , ū′n, v̄′, ē′} be the mod-m cellular bases of
H∗(Cf ; Zm) and H∗(Cf ′ ; Zm).

Given a map ψ : Cf ′ → Cf and a coefficient ring R, let

ψ∗
R : H2(Cf ;R) → H2(Cf ′ ;R)

be the induced morphism on the second cohomology with coefficient R.

Definition 3.5. Let ψ : Cf ′ → Cf be a map. Then the cellular map representa-
tion M(ψ) of ψ is W ∈ Matn(Z) if m = 1, and is the triple (W,y, z) ∈ Matn(Z) ⊕
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(Zm)n ⊕ Zm if m > 1, where

W =

⎛
⎜⎝

x11 · · · x1n

...
. . .

...
xn1 · · · xnn

⎞
⎟⎠ and y = (y1, . . . , yn) (3.4)

are given by ψ∗
Z
(uj) =

∑n
i=1 xiju

′
i and ψ∗

Zm
(v̄) =

∑n
i=1 yiū

′
i + zv̄′.

Lemma 3.6. For R = Z or Zm, consider ψ, ψ∗
R and M(ψ) as above. For 1 � j � n,

we have ψ∗
Zm

(ūj) =
∑n
i=1 xij ū

′
i. Furthermore, if ψ is a homotopy equivalence, then

W is an invertible matrix and z is a unit in Zm.

Proof. Since Cf and Cf ′ are simply connected, universal coefficient theorem implies
that

H2(Cf ;R) ∼= Hom(H2(Cf ), R),H2(Cf ′ ;R) ∼= Hom(H2(Cf ′), R) and

ψ∗
R = Hom(ψ∗, R)

is dual to ψ∗ : H2(Cf ′) → H2(Cf ). So, ψ∗
Zm

(ūj) is the mod-m image of ψ∗
Z
(uj) and

the first part of the lemma follows.
If ψ is a homotopy equivalence, then W ∈ Matn(Z) and⎛
⎜⎜⎜⎝

x̄11 · · · x̄1n y1
...

. . .
...

...
x̄n1 · · · x̄nn yn
0 · · · 0 z

⎞
⎟⎟⎟⎠ ∈ Matn+1(Zm), where x̄ij ≡ xij (mod m)

are invertible matrices. So, the second part follows. �

The cellular map representation records the data of ψ∗
Z

and ψ∗
Zm

. The square
matrixW in (3.4) is the map representation of ψ∗

Z
with respect to bases {u1, . . . , un}

and {u′1, . . . , u′n}. Lemma 3.6 implies that(
W yt

0 z

)
∈ Matn+1(Zm),

is the matrix representation of ψ∗
Zm

with respect to bases {ū1, . . . , ūn, v̄} and
{ū′1, . . . , ū′n, v̄′}, where W is the mod-m image of W and 0 = (0, . . . , 0).

Recall that in linear algebra, matrix representations of a bilinear form V ⊗ V → Z

with respect to different bases of V are congruent to each other. So, we have the
following lemma.

Lemma 3.7. For Cf , Cf ′ ∈ Cn,m, let Mcup(Cf ) = (A, b, c) and Mcup(Cf ′) =
(A′, b′, c′) be their cellular cup product representations. If there is a homotopy
equivalence ψ : Cf ′ → Cf with M(ψ) = (W,y, z) ∈ GLn(Z) ⊕ (Zm)n ⊕ Z

∗
m, then

A′ = W tAW, b′ = yAW + zbW, c′ = yAyt + 2zybt + z2c.
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In particular, if two maps f and f ′ : S3 → Y are homotopic, then the matrix cup
product representations of their mapping cones are the same.

Lemma 3.8. If f is homotopic to f ′, then Mcup(Cf ) = Mcup(Cf ′).

Proof. Take a homotopy φ : S3 × I → Y between f and f ′. It induces a homotopy
equivalence Φ: Cf → Cf ′ such that its restriction to Y is the identity map. So,
M(Φ) = (In,0, 1). Then the lemma follows from lemma 3.7. �

Lemma 3.9. Let Cf ∈ Cn,m and let (W,y, z) be a triple in GLn(Z) ⊕ (Zm)n ⊕ Z
∗
m.

Then there exist a CW-complex Cf ′ ∈ Cn,m and a homotopy equivalence ψ : Cf →
Cf ′ such that the cellular map representation M(ψ) is (W,y, z).

Proof. Let

W =

⎛
⎜⎝

x11 · · · x1n

...
. . .

...
xn1 · · · xnn

⎞
⎟⎠ and y = (y1, . . . , yn).

By lemma 3.1, there exists a map ψ̃ : Y → Y such that ψ̃∗(μi) =
∑n
j=1 xijμj + yiν

and ψ̃∗(ν) = zν, where μ1, . . . , μn and ν are elements in H2(Y ) as in (3.2). Thus,
we have ψ̃∗

Z
(ui) =

∑n
j=1 xjiuj and ψ̃∗

Zm
(v̄) =

∑n
i=1 yiūi + zv̄.

Let f ′ = ψ̃ ◦ f and let Cf ′ be its mapping cone. Then there is a diagram of
cofibration sequences

S3
f

�� Y ��

ψ̃

��

Cf

ψ

��

S3
f ′

�� Y �� Cf ′ ,

where ψ is an induced map. Since W ∈ GLn(Z) and z ∈ Z
∗
m, the middle vertical

arrow ψ̃ induces an isomorphism in homology. By five lemma, ψ∗ is an isomorphism,
which implies that ψ is a homotopy equivalence. Finally, we have M(ψ) = (W,y, z)
by the construction. �

4. The homotopy theory of complexes in Cn,m

4.1. The Cn,1 case

When m = 1, the mapping cone Cf ∈ Cn,1 is in the form
∨n
i=1S

2
i ∪f e4 where

f : S3 → ∨n
i=1S

2
i is the attaching map of the 4-cell. The Hilton–Milnor theorem

(see for instance [20, theorem 7.9.4]) implies that f is homotopic to a wedge sum

n∑
i=1

aiηi +
∑

1�j<k�n
ajkωjk,
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for some integers ai’s and ajk’s. Here ηi’s and ωjk’s are compositions

ηi : S3 η→ S2
i ↪→

n∨
�=1

S2
�

ωjk : S3 [ı1,ı2]−−−→ S2
j ∨ S2

k ↪→
n∨
l=1

S2
�

of Hopf map η, Whitehead product [ı1, ı2] and canonical inclusions of S2
i and

S2
j ∨ S2

k into
∨n
�=1S

2
� . The lemma below shows that the coefficients ai and ajk

are determined by Mcup(Cf ).

Lemma 4.1. Let Cf ∈ Cn,1 be the mapping cone of f �∑n
i=1 aiηi +

∑
1�j<k�n

ajkωjk. If

Mcup(Cf ) =

⎛
⎜⎜⎜⎝
a′1 a′12 · · · a′1n
a′12 a′2 · · · a′2n
...

...
. . .

...
a′1n a′2n · · · a′n

⎞
⎟⎟⎟⎠ ,

then ai = a′i and ajk = a′jk for all i, j and k.

Proof. By lemma 3.8, we may assume f =
∑n
i=1 aiηi +

∑
1�j<k�n ajkωjk. For

n = 2, let C1, C2 and C12 be the mapping cones of a1η1, a2η2 and a12ω12. Then
their cellular cup product representations are

Mcup(C1) =
(
a1 0
0 0

)
, Mcup(C2) =

(
0 0
0 a2

)
,

Mcup(C12) =
(

0 a12

a12 0

)
.

By lemma 3.4, we have

Mcup(Cf ) =
(
a1 a12

a12 a2

)
.

So, the lemma holds.
For n � 3, let {u1, . . . , un, e} be the cellular basis of H∗(Cf ). We claim that

ui ∪ ui = aie and uj ∪ uk = ajke,

for each 1 � i � n and 1 � j < k � n. The composition

fjk : S3 f→
n∨
l=1

S2
l

pinch−−−→ S2
j ∨ S2

k

is homotopic to ajη′1 + akη
′
2 + ajkω

′
12, where η′1 : S3 η→ S2

j ↪→ S2
j ∨ S2

k and η′2 : S3 η→
S2
k ↪→ S2

j ∨ S2
k are compositions of Hopf map η and canonical inclusions and
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ω′
12 : S3 → S2

j ∨ S2
k is the Whitehead product. Let Cjk be the mapping cone of

fjk. By lemma 3.8 and the above argument, we have

Mcup(Cjk) =
(
aj ajk
ajk ak

)
.

Let {u′j , u′k; e′} be the cellular basis of H∗(Cjk) and let α : Cf → Cjk be the map
which pinches all 2-spheres in Cf to the basepoint except for S2

j and S2
k. Then

α∗(u′j) = uj , α
∗(u′k) = uk and α∗(e′) = e.

By the naturality of cup products, we have

α∗(u′j) ∪ α∗(u′k) = α∗(u′j ∪ u′k)
uj ∪ uk = α∗(ajke′)

= ajke.

So, a′jk = ajk. Similarly we can show a′i = ai. Hence, the lemma follows. �

Now we classify the homotopy types of CW-complexes in Cn,1 by their integral
cohomology rings in the next statement.

Proposition 4.2. Let f, f ′ : S3 → ∨n
i=1S

2
i be two maps and let Cf , Cf ′ ∈ Cn,1 be

their mapping cones. Then Cf � Cf ′ if and only if there is a ring isomorphism
H∗(Cf ) ∼= H∗(Cf ′).

Proof. The ‘only if’ part is trivial. Assume that H∗(Cf ) ∼= H∗(Cf ′). Then there is
an invertible matrix W ∈ GLn(Z) such that

W t ·Mcup(Cf ) ·W = εMcup(Cf ′),

where ε is either 1 or −1. Suppose first ε = 1. By lemma 3.9, there is a CW-complex
C̃ ∈ Cn,1 together with a homotopy equivalence ψ : C̃ → Cf such that M(ψ) = W .
We claim that C̃ � Cf ′ . By lemma 3.7, we have

Mcup(C̃) = W t ·Mcup(Cf ) ·W = Mcup(Cf ′).

Let f̃ be the attaching map of the 4-cell in C̃ and let

Mcup(C̃) = Mcup(Cf ′) =

⎛
⎜⎜⎜⎝
a1 a12 · · · a1n

a12 a2 · · · a2n

...
...

. . .
...

a1n a2n · · · an

⎞
⎟⎟⎟⎠ .

Then lemma 4.1 implies that f ′ and f̃ are homotopic to the wedge sum
n∑
i=1

aiηi +
∑

1�i<j�n
aijωij ,

which means Cf ′ � C̃. Therefore, Cf � Cf ′ .
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Suppose ε = −1. Let C−f ′ be the mapping cone of −f ′ : S3 −1→ S3 f ′
→ ∨n

i=1S
2
i .

Then

W t ·Mcup(Cf ) ·W = Mcup(C−f ′)

and C−f ′ � Cf ′ . The above argument implies Cf � C−f ′ , so Cf � Cf ′ . Hence, we
have established the claim. �

Corollary 4.3. Two 4-dimensional toric orbifolds without torsion in (co)homology
are homotopy equivalent if and only if their integral cohomology rings are
isomorphic.

As 4-dimensional quasitoric manifolds always have torsion-free (co)homology,
corollary 4.3 implies that the homotopy types of 4-dimensional quasitoric mani-
folds are classified by their cohomology rings. As we mentioned in Introduction, the
homeomorphism types of 4-dimensional toric manifolds are cohomologically rigid.
One can deduce the conclusion from the topological classification of 4-dimensional
smooth manifolds with T 2-action studied in [16] together with the cohomology
formula [9, theorem 4.14].

We note that the method in Proposition 4.2 applies to CW-complexes in Cn,1
which are not necessarily manifolds. We also refer to [8, § 5] for the computation of
the cohomology ring of toric orbifolds considered in corollary 4.3.

4.2. The Cn,m case

From now on, we assume m = 2sq, where q > 1 is odd and s � 0. Recall from
(3.3) thatH3(Cf ) ∼= Zm for Cf ∈ Cn,m. In this subsection, we discuss the homotopy
type of Cf . To be more precise, we study a necessary and sufficient condition for a
wedge decomposition

Cf � Ĉ ∨ P 3(q) (4.1)

where Ĉ is a complex in Cn,2s so that Hi(Cf ) ∼= Hi(Ĉ) for i �= 3 and H3(Ĉ) ∼= Z2s .

Lemma 4.4. Let q be odd and greater than 1. Consider

(i) a map g1 : S3 → P 3(q) and its mapping cone C1,

(ii) a map g2 : S3 → P 4(q) and the mapping cone C2 of the composition

S3 g2−→ P 4(q)
[κ1,κ2]−−−−→ S2 ∨ P 3(q),

where [κ1, κ2] is the Whitehead product of inclusions

κ1 : S2 → S2 ∨ P 3(q) and κ2 : P 3(q) → S2 ∨ P 3(q).

For i = 1 or 2, if H∗(Ci; Zm) has trivial cup products, then gi is null homotopic.
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Proof. Let q = pr11 . . . pr�

� be a primary factorization of q such that pj ’s are different
odd primes and all rj ’s are at least 1. By the Hurewicz theorem, π3(P 4(q)) ∼= Zq.
By [17, theorem 4] and [21, lemma 2.1],

π3(P 3(q)) ∼=
�⊕
j=1

π3(P 3(prj

j )) ∼=
�⊕
j=1

Z
p

rj
j

∼= Zq.

It suffices to prove the two cases after localization at pj .
For the i = 1 case, the lemma is a special case of [21, Proposition 4.4]. For the

i = 2 case, it can be proved by the argument of [21, Proposition 3.2] and replacing
P 3(pt) by S2 and the index t by ∞, respectively. �

Lemma 4.5. Let m = 2sq, where q is odd and greater than 1. Let f : S3 → ∨n
i=1S

2
i ∨

P 3(m) be the attaching map of the 4-cell in Cf and let Mcup(Cf ) = (A, b, c). If
b ≡ (0, . . . , 0) (mod q) and c ≡ 0 (mod q), then there is a CW-complex Ĉ ∈ Cn,2s

such that Cf � Ĉ ∨ P 3(q).

Proof. Since 2s and q are coprime, we have P 3(m) � P 3(2s) ∨ P 3(q). By the
Hilton–Milnor theorem, f is homotopic to a wedge sum

f �
n∑
i=1

aiηi +
∑

1�j<k�n
ajkωjk + η′ +

n∑
i=1

ω′
i + ηq +

n∑
i=1

ωiq

for some integers ai’s and ajk’s. Here, η′, ω′
i, ηq and ωiq are compositions

η′ : S3 b′−→ P 3(2s) ↪→
n∨
j=1

S2
j ∨ P 3(2s) ∨ P 3(q)

ω′
i : S

3 b′i−→ P 4(2s)
[κ′

1,κ
′
2]−−−−→ S2

i ∨ P 3(2s) ↪→
n∨
j=1

S2
j ∨ P 3(2s) ∨ P 3(q)

ηq : S3 bq−→ P 3(q) ↪→
n∨
j=1

S2
j ∨ P 3(2s) ∨ P 3(q)

ωiq : S3 biq−−→ P 4(q)
[κ1,κ2]−−−−→ S2

i ∨ P 3(q) ↪→
n∨
j=1

S2
j ∨ P 3(2s) ∨ P 3(q)

for some maps b′, b′i and bq, biq. Here

[κ′1, κ
′
2] : P 4(2s) → S2

i ∨ P 3(2s)

is the Whitehead product of inclusions κ′1 : S2
i → S2

i ∨ P 3(2s) and κ′2 : P 3(2s) →
S2
i ∨ P 3(2s), and

[κ1, κ2] : P 4(q) → S2
i ∨ P 3(q)

is the Whitehead product of inclusions κ1 : S2
i → S2

i ∨ P 3(q) and κ2 : P 3(q) → S2
i ∨

P 3(q). If ηq and ωiq’s are null homotopic, then f factors through a map f̂ : S3 →∨n
i=1S

2
i ∨ P 3(2s). Let Ĉ be the mapping cone of f̂ . Then Cf � Ĉ ∨ P 3(q).
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Hence, it suffices to show that ηq and ω�q are null homotopic for any � with
1 � � � n. After localization away from 2, P 3(2s) becomes contractible and the
composition

f�q : S3 f→
∨n

j=1
S2
j ∨ P 3(q)

pinch−−−→ S2
� ∨ P 3(q)

is homotopic to the wedge sum a�η̃� + j ◦ bq + [κ1, κ2] ◦ b�q, where η̃ is the compo-
sition of Hopf map η and inclusion S2

� → S2
� ∨ P 3(q), and j : P 3(q) → S2

� ∨ P 3(q) is
the inclusion.

Consider the diagram of homotopy cofibration sequences

where C�q is the mapping cone of f�q and π is an induced map. Let {ū1, . . . , ūn, v̄; ē}
and {ū′, v̄′; ē′} be the mod-q cellular bases of H∗(Cf ; Zq) and H∗(C�q; Zq). Then

π∗(ū′) = ū�, π∗(v̄′) = v̄, π∗(ē′) = ē.

By the hypothesis, π∗(ū′ ∪ v̄′) = ū� ∪ v̄ = 0. Since π∗ : H4(C�q; Zq) → H4(Cf ; Zq)
is isomorphic, we have ū′ ∪ v̄′ = 0. Similarly, we have v̄′ ∪ v̄′ = 0 and ū′ ∪ ū′ = a�ē
so that Mcup(C�q) = (a�, 0, 0). Let C1 and C2 be the mapping cones of [κ1, κ2] ◦ b�q
and j ◦ bq. By lemma 3.4,

Mcup(C1) = Mcup(C2) = (0, 0, 0)

so H∗(C1; Zq) and H∗(C2; Zq) have trivial cup products. By lemma 4.4, b�q is null
homotopic and so is ω�q. Also, notice that C2 � S2

� ∨ C ′ where C ′ is the map-
ping cone of bq. So H∗(C ′; Zq) has trivial cup products. By lemma 4.4, bq is null
homotopic and so is ηq. �

Remark 4.6. In general, Ĉ cannot be further decomposed into a wedge of non-
contractible spaces, for example Ĉ = ΣRP

3.

Notice that Ĉ ∨ P 3(q) is not contained in Cn,m, but it is homotopic to a mapping
cone in Cn,m as follows. Since 2s and q are coprime to each other, there exist
integers α and β such that 2sα+ qβ = 1, where the mod-q congruence class of α
and the mod-2s congruence class of β are unique. Identify Z2s ⊕ Zq with Zm via
the isomorphism

ρ : Z2s ⊕ Zq → Zm, (x, y) �→ qβx+ 2sαy. (4.2)
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It induces a homotopy equivalence ρ : P 3(2s) ∨ P 3(q) → P 3(m). Consider the
diagram of homotopy cofibrations

(4.3)

where C ′ is the mapping cone of (id ∨ ρ) ◦ (f̂ ∨ ∗) and ρ̃ is an induced homotopy
equivalence. Then C ′ � Ĉ ∨ P 3(q) via ρ̃.

Lemma 4.7. Let Mcup(C ′) = (A, b, c). Then b ≡ (0, . . . , 0) and c ≡ 0 (mod q).

Proof. We prove bi ≡ 0 (mod q). Let

• ūi ∈ H2(Ĉ; Zm) and ē ∈ H4(Ĉ; Zm) be the mod-m cohomology classes dual to
homology classes representing S2

i and the 4-cell in Ĉ, respectively;

• μi, ω2s , ωq ∈ H2(Ĉ ∨ P 3(q); Z) be the homology classes representing S2
i , the

bottom cells of P 3(2s) and P 3(q);

• w̄2s , w̄q ∈ H2(Ĉ ∨ P 3(q); Zm) be the cohomology classes such that

w̄2s(ω2s) ≡ qβ w̄2s(ωq) ≡ 0 w̄2s(μi) ≡ 0

w̄q(ω2s) ≡ 0 w̄q(ωq) ≡ 2sα w̄q(μi) ≡ 0
(mod m).

Denote v̄ = w̄2s + w̄q. Then ū1, . . . , ūn and v̄ form a basis of H2(Ĉ ∨ P 3(q); Zm).
The right square of (4.3) implies

ρ̃∗(ū′i) = ūi, ρ̃∗(v̄′) = v̄ = w̄2s + w̄q.

By the naturality of cup products, we have

ρ̃∗(ū′i ∪ v̄′) = ρ̃∗(biē′)

ūi ∪ (w̄2s + w̄q) = biē

ū ∪ w̄2s = biē.

Since w̄2s is a multiple of q and ē is a generator, bi ≡ 0 (mod q). Similarly we can
show that c ≡ 0 (mod q). �
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Proposition 4.8. Let m = 2sq as before. For Cf ∈ Cn,m, let Mcup(Cf ) = (A, b, c)
where

A =

⎛
⎜⎝
a11 · · · a1n

...
. . .

...
an1 · · · ann

⎞
⎟⎠ and b = (b1, . . . , bn).

Then Cf � Ĉ ∨ P 3(q) for some Ĉ ∈ Cn,2s if and only if the system of mod-q linear
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a11y1 + · · · + a1nyn ≡ −b1

...
an1y1 + · · · + annyn ≡ −bn
b1y1 + · · · + bnyn ≡ −c

(mod q) (4.4)

has a solution (y1, . . . , yn) ∈ (Zq)n.

Proof. Suppose g : C ′ � Ĉ ∨ P 3(q) → Cf is a homotopy equivalence. Let M(g) =
(W,y, z) and let Mcup(C ′) = (A′,b′, c′). By lemma 3.7, we have

A′ = W tAW, b′ = yAW + zbW and c′ = yAyt + 2zybt + z2c. (4.5)

Lemma 4.7 implies b′ ≡ (0, . . . , 0) and c′ ≡ 0 modulo q. SinceW and z are invertible
in Zq, we can rewrite equations in (4.5) as

z−1yA ≡ −b and z−1ybt ≡ −c (mod q).

Therefore, z−1y is a solution of (4.4).
Conversely, suppose there is a solution y = (y1, . . . , yn) ∈ (Zq)n of (4.4). By

lemma 3.9, there exist C ′′ ∈ Cn,m and a homotopy equivalence g : C ′′ → Cf such
that M(g) = (I,y′, 1) and

Mcup(C ′′) =
(
A, y′Ā+ b, y′Ā(y′)t + 2b(y′)t + c

)
,

where y′ = (ρ(y1, 0), . . . , ρ(yn, 0)) ∈ (Zm)n for ρ defined in (4.2) and Ā is the mod-m
image of A. Then

y′Ā+ b ≡ 0 and y′Ā(y′)t + 2b(y′)t + c ≡ 0 (mod q).

Note that lemma 4.5 implies C ′′ � Ĉ ∨ P 3(q) for some Ĉ ∈ Cn,2s . Consequently, we
have Cf � Ĉ ∨ P 3(q). �

5. Odd primary local decomposition of toric orbifolds

Let X = P × T 2/∼ be a 4-dimensional toric orbifold associated with the combina-
torial data described in § 2. Since X is simply connected and H∗(X) satisfies (2.6),
[12, Proposition 4H.3] implies that X is in Cn,m up to homotopy. Let m = 2sq,
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where q is odd and s � 0. In this section, we show that for any odd prime p, there
is a p-local equivalence

X �(p) X̂ ∨ P 3(q) (5.1)

for a CW-complex X̂ in Cn,2s and P 3(q) denotes a point if q = 1.
The q-CW complex structure of X with respect to a vertex vi (see remark 2.2)

implies that X is homotopy equivalent to the mapping cone of a map

f : Li →
∨n

j=1
S2

where Li is the quotient S3/Zmi,i+1 and mi,i+1 = |det
[
ξti , ξ

t
i+1

] |. Recall that
Zmi,i+1 is isomorphic to a subgroup ker ρi of T 2, where ρi is defined in (2.2). The
Zmi,i+1-action on S3 is given by the inclusion ker ρi ↪→ T 2 and the standard T 2-
action on S3. If mi,i+1 = 1, then Li ∼= S3 and X is in Cn,1. So, the equivalence (5.1)
holds. If mi,i+1 > 1, then Li is a lens space L(mi,i+1; ki) for some ki coprime to
mi,i+1.

In the following, the p-component νp(t) of a number t is defined to be the p-power
pr such that pr divides t but pr+1 does not.

Lemma 5.1. For p odd prime, let νp(mi,i+1) = pr and let Li = L(mi,i+1; ki) be a
lens space. Then there is a map αp : ΣLi → S4 ∨ P 3(pr) that is a p-local equivalence.

Proof. Let mi,i+1 = prt where p and t are coprime. Then P 3(mi,i+1) � P 3(pr) ∨
P 3(t). Consider the diagram of homotopy cofibration sequences

where φ is the attaching map of the 4-cell in ΣLi, φ′ is the composition of φ and
the pinch map, C is the mapping cone of φ′ and αp is an induced map. The right
column induces an exact sequence

· · · → H̃i−1(P 3(t); Zpr ) → H̃i(C; Zpr )
α∗

p−−→ H̃i(ΣLi; Zpr ) → H̃i(P 3(t); Zpr ) → · · ·

Since H̃∗(P 3(t); Zpr ) = 0, the map α∗
p : H∗(C; Zpr ) → H∗(ΣLi; Zpr ) is an isomor-

phism. Moreover, H∗(C; Zpr ) has trivial cup products because ΣLi is a suspension.
Now, lemma 4.4 shows that φ′ is null homotopic, which means C � S4 ∨ P 3(pr).
Therefore, we consider αp as a map from ΣLi to S4 ∨ P 3(pr). Since P 3(t) is
contractible after p-localization, the right column implies that αp is a p-local
equivalence. �
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Lemma 5.2. Let p be a prime and let H3(X) ∼= Zm. Then there exists i ∈
{1, . . . , n+ 2} such that νp(mi,i+1) = νp(m).

Proof. By [14, corollary 5.1] and [10, lemma 3.1],m = gcd{mi,j |1 � i < j � n+ 2}.
If n = 1, the lemma is trivial. So, we prove the lemma for n � 2.

Without loss of generality, suppose νp(m1,j) = νp(m) = pr for some j ∈
{3, . . . , n+ 1}. Let ξ1 = (a, b). Since a and b are coprime, there exist u and v such
that (

u −b
v a

)
∈ SL2(Z).

Changing the basis of Z
2 if necessary, we may assume ξ1 = (1, 0).

Let ξ2 = (x, y) and ξj = (z, w). Then

m1,2 =
∣∣∣∣det

(
1 x
0 y

)∣∣∣∣ = |y|, m1,j =
∣∣∣∣det

(
1 z
0 w

)∣∣∣∣ = |w|.

Write w = cpr and y = c′ps, where c and c′ are integers coprime to p and s � r. If
s = r, then vp(m1,2) = νp(m) and consequently the lemma holds. If s > r, then

m2,j = |xw − yz| = |cxpr − c′yps| = pr|cx− c′yps−r|.

Since x is coprime to y, x is coprime to p. So, cx− c′yps−r is coprime to p and
νp(m2,j) = pr. If j = 3, then we are done. If not, iterate this argument to m2,j , ξ3
and ξj . Then we can conclude that νp(mj−1,j) = pr. �

For any odd prime p, let νp(m) = pr. By lemma 5.2, there is an i ∈ {1, . . . , n+
2} such that νp(mi,i+1) = νp(m) = pr. Pick the vertex vi and construct the q-
CW-complex structure with respect to vi. Then there is a homotopy cofibration
sequence

Li
f→
∨n

j=1
S2 → X

with a coaction c : X → X ∨ ΣLi. Furthermore, the 3-skeleton of X is
∨n
j=1S

2 ∨
P 3(m) for m = 2sq. Let X̂ be the quotient X/P 3(q) and let φp be the composition

φp : X c→ X ∨ ΣL
j∨α−−→ X̂ ∨ P 3(pr) ∨ S4 pinch−−−→ X̂ ∨ P 3(pr) (5.2)

where α is the map in lemma 5.1 and j : X → X̂ is the quotient map.

Proposition 5.3 (p-local version of main theorem). Let p be an odd prime. If
νp(m) = pr for some r � 1, then φp : X → X̂ ∨ P 3(pr) is a p-local equivalence.

Proof. We claim that the map φp in (5.2) induces an isomorphism on Z(p)-
cohomology

φ∗p : H∗(X̂ ∨ P 3(pr); Z(p)) → H∗(X; Z(p)) (5.3)

where Z(p) is the ring of p-local integers.
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The cofibration sequence P 3(q) ↪→ X
j→ X̂ induces an exact sequence

· · · → H̃i−1(P 3(q)) → H̃i(X̂)
j∗→ H̃i(X) → H̃i(P 3(q)) → H̃i+1(X̂) → · · ·

For i �= 3, since H̃i(P 3(pr)) = 0 and j∗ : Hi(X̂) → Hi(X) is an isomorphism, the
map (5.3) is an isomorphism.

Next, consider the cofibration sequence Li
f→ ∨n

i=1S
2 ı→ X

δ→ ΣLi, where ı is the
inclusion and δ is the coboundary map. It induces an exact sequence

· · · → H̃i(ΣLi; Z(p))
δ∗−→ H̃i(X; Z(p)) → H̃i

( n∨
i=1

S2; Z(p)

)
→ H̃i+1(ΣL; Z(p)) → · · ·

Since ı∗ : H2(X; Z(p)) → H2(
∨n
i=1S

2
i ; Z(p)) is an isomorphism, δ∗ : H3(ΣL; Z(p)) →

H3(X; Z(p)) is an isomorphism. Consider the following commutative diagram

X
c ��

=

��

X ∨ ΣLi
j∨αp

��

��

X̂ ∨ P 3(pr) ∨ S4 ��

��

X̂ ∨ P 3(pr)

��

X
δ �� ΣLi

αp
�� P 3(pr) ∨ S4 �� P 3(pr)

where the composite in the upper row is φp in (5.2) and the unnamed arrows are
pinch maps. The left square commutes due to the property of the coaction map.
By lemma 5.1, the map α∗

p : H3(P 3(pr) ∨ S4; Z(p)) → H3(ΣL; Z(p)) is isomorphic,
so the composite in the lower row induces an isomorphism H3(P 3(pr); Z(p)) →
H3(X; Z(p)). Since H3(X̂; Z(p)) = 0, the map (5.3) is an isomorphism for i = 3.
Therefore, φ∗p : H∗(X̂ ∨ P 3(pr); Z(p)) → H∗(X; Z(p)) is an isomorphism and φp is a
p-local equivalence. �

Lemma 5.4. Let X be a 4-dimensional toric orbifold with H3(X) ∼= Zm, and let
νp(m) = pr for some odd prime p and r � 1. If Mcup(X) = (A, b, c) where

A =

⎛
⎜⎝
a11 · · · a1n

...
. . .

...
an1 . . . ann

⎞
⎟⎠ and b = (b1, . . . , bn),

then the system of mod-pr linear equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a11y1 + . . .+ a1nyn ≡ −b1

...
an1y1 + . . .+ annyn ≡ −bn
b1y1 + . . .+ bnyn ≡ −c

(mod pr)

has a solution in (Zpr )n.

https://doi.org/10.1017/prm.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.23


The homotopy classification of four-dimensional toric orbifolds 647

Proof. By Proposition 5.3 there is a map φp : X → X̂ ∨ P 3(pr) that becomes a
homotopy equivalence after localized at p, where X̂ ∈ Cn,2s is the quotientX/P 3(q).
Let

M(φp) = (W,y, z) ∈ Matn(Z) ⊕ (Zm)n ⊕ Zm

be the cellular map representation of φp. After p-localization, W is an invertible
matrix and z is a unit. The lemma follows from Proposition 4.8. �

6. Proof of the main theorems

Proof of theorem 1.2. Let q = pr11 . . . prk

k be the primary factorization where pi’s
are different odd primes and ri � 1. For each prime pi, lemma 5.4 implies that
the mod-pri

i version of (4.4) has a solution. By Chinese Remainder theorem, they
give a mod-q solution for (4.4). By Proposition 4.8, X is homotopy equivalent to
X̂ ∨ P 3(q). �

Proof of theorem 1.3. The ‘only if’ part is trivial. To prove the ‘if’ part, let X
and X ′ be 4-dimensional toric orbifolds such that H3(X) ∼= Zm and H3(X ′) ∼=
Zm′ for m and m′ odd. The hypothesis implies that H3(X) ∼= H3(X ′), hence we
have m = m′. By theorem 1.2, we have X � X̂ ∨ P 3(m) and X ′ � X̂ ′ ∨ P 3(m)
for some X̂, X̂ ′ ∈ Cn,1. Since Hi(X) ∼= Hi(X̂) and Hi(X ′) ∼= Hi(X̂ ′) for i �= 3, we
have H∗(X̂) ∼= H∗(X̂ ′). Then Proposition 4.2 implies that X̂ � X̂ ′, which yields
X � X ′. �
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