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SUMMARY
An underactuated mechanical system is generally a good test bed for advanced nonlinear controllers
and can be applied to design a novel mechanical system with better energy efficiency and good
controllability. It has been shown that the dynamics of many underactuated mechanical systems
could be transformed into the chained canonical form. To improve the performance of the controllers
presented in the literature, a novel controller design method is proposed in this paper. It is shown that
the set-point stabilization problem of the second-order chained form systems can be changed into a
trajectory-tracking problem based on the nonsmooth Hölder continuous feedback. By designing the
tracked trajectory, the presented controller permits the achievement of exponential stability. Some
numerical simulations demonstrate the stability of the proposed controller for an underactuated
Hovercraft system.
KEYWORDS: Underactuation; Nonholonomic constraints; Global stability; Finite-time; Control.

1. Introduction

1.1. The motivations for the work
The underactuated mechanical systems are commonly used in real-word applications, such as the test
beds of advanced nonlinear controllers and a novel mechanism scheme for designing a mechanical
system with better energy efficiency and good controllability. For instance, the former includes
the underactuated manipulators,1 Acrobot,2 Pendubot,3 planar underactuated rigid,4 underactuated
ships,5 and underactuated Hovercrafts,6 etc. The later involves the novel underactuated hopping or
running robots.7 It has been shown that the dynamics of an underactuated mechanical system can
be transformed into some kinds of special canonical forms if the system under consideration holds
some kind of special differentially geometric or algebraic properties, such as differential flatness8 or
nilpotency,9 and then designing a controller for the underactuated system is effectively simplified.
On the basis of the chained form transformation theorem presented by Murray, Li and Sastry,10 it has
been shown many underactuated systems can be changed into the special regular form, such as the
mobile robots11 or the angular momentum conservation systems,12 etc.

It has also been found that the dynamics of many underactuated mechanical systems can be
transformed into the so-called second-order chained canonical form.13 The relevant systems include
RRR14 (R indicates the last joint is passive, R denotes the rotationally actuated joint, P denotes the
linearly telescopically actuated joint) and PPR15 underactuated manipulators, planar underactuated
rigid,4 and underactuated Hovercrafts,6 etc. Similar to the related research on the controller design for
the first-order nonholonomic systems, due to the Brockett’s theorem16 that confirms a nonholonomic
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system cannot be stabilized by any smooth time-invariant feedback, the presented controllers in
literature for the underactuated systems with acceleration constraints primarily belong to two
classes. One class of them is the smooth time-varying feedback,13,17 and another class is the
discontinuous feedback.14,15,18,19 Although a controller based on the smooth time-varying feedback
shows asymptotically stabilizing performance, among other things, the settling-time of this class of
controllers are commonly too long for some applications.4 A discontinuous feedback controller can
generally stabilize a system in finite settling time, however, this class of controllers tends to cause
abrupt changes on the states of the controlled systems, thus the control outputs exceed limits of the
physical actuators.

To improve the performance of the controllers presented in the literature for the second-order
chained form systems, a novel controller design method is presented in this paper on the basis of Hölder
continuous feedback.20 A function V (x) : Rn → R is said to be Hölder continuous at x1 ∈ Rn, if there
exist k > 0 and an open neighborhood U of x1 such that the inequality |V (x1) − V (x2)| ≤ k‖x1 − x2‖α

holds, where x2 ∈ U and α > 0. For the well-known Lipschiz continuity, the exponent of the inequality
must satisfy α ≥ 1. Therefore, Hölder continuity is a more general notion than Lipschiz continuity.
For instance, consider the scalar function f (x) = |x|α , x ∈ R, if the exponent α satisfies α ∈ (0, 1),
then the function f (x) is said to be Hölder continuous but not Lipschiz continuous. In this paper, the
Hölder continuous feedback just indicates continuous but nonsmooth feedback, and the finite-time
stabilizing controllers proposed in this paper are also stable in Lyapunov sense. For more thoroughly
understanding the finite-time stability, the readers are encouraged to see the book.36

As analyzed in the next subsection, nonsmooth feedback might be the unique feasible selection
for exponentially stabilizing a nonholonomic constraints system without controllable linearization.
For the nonholonomic systems with controllable linearization, the Hölder continuous feedback
guarantees the controlled system be (at least locally) stabilized in finite settling time. Whereas
for the nonholonomic systems without controllable linearization, the finite-time stability could not
be achieved by any continuous feedback. Hence, the exponential stability of the controller presented
in this paper is appealing in practice, at least in the sense of reducing both the settling time and the
impact effects, even though the settling time of the presented controller is actually infinite.

1.2. A concise overview of relevant works
In this subsection, we do not intend to give a thorough survey about the techniques related to the
presented work, but concisely review some benchmark results in literature according to the technical
relationships.

Two different methodologies have been proposed in the literature to design finite-time stabilizing
controllers. One is the higher-order sliding mode control21 presented by Levant and Fridman et al.
By designing a variable structure control (VSC) for the virtual inputs that are the time-derivatives
of the actual inputs, then the actual inputs do not show the “chattering” phenomenon and robustly
stabilize a system in finite-time. However, the higher-order sliding mode controllers are generally
required to use faster actuators and the stability of the controllers cannot be easily proved due
to the discontinuous differential equations. The other finite-time controllers use the fractional-
power-based Hölder continuous feedback.22–25 Due to the limited mathematical tools that can be
utilized to deal with nonsmooth differential equations, the finite-time controllers based on the
Hölder continuous feedback techniques cannot be easily applied to control the general nonlinear
systems. So far the Hölder continuous feedback techniques were primarily presented for perturbed
linear systems,22 and homogeneous nonlinear systems with special strict-feedback forms.23,24 The
mentioned references22–24 can be regarded as the relevant research of the presented work, whereas,
this research is not directly related to the nonholonomic systems without controllable linearization.

More directly related to this work, in the reference, Hong et al.25 presented a finite-time stabilization
approach for the first-order nonholonomic systems with uncertain chained form. We note that
the presented method is a switch-based discontinuous control method. M’Closkey and Morin4

proposed two methods to design the time-varying homogeneous feedback for stabilizing some special
nonholonomic systems. Related to another elegant paper,26 the first approach presented in ref. [4]
depends on the prior known smooth time-varying controllers. The second approach proposed in ref.
[4] depends on the homogeneous approximation system associated with the structure of the control
Lie algebra of the nonholonomic systems, and applies a time-averaging technique to analyze the
stability of the closed-loop homogeneous approximation systems.
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Closely related to the work of,4 Oriolo and Vendittelli9,27 more clearly showed the powerful
techniques of high-order approximation in constructing the time-varying control laws for general
nonholonomic systems. It is different from the approach proposed in ref. [4] and the works in refs.
[9, 27] extend the methodologies of homogeneous approximation to nonhomogeneous nilpotent
approximation on the basis of homogeneous nilpotent approximation algorithm.28 Even though
the approaches presented in refs. [4, 9, 26–28] lead to extremely involved control laws with just
localized stability when high-order Lie brackets of control vector fields are required to span the state
space, and yields highly oscillatory movement trajectories, the methodologies presented in these
works completely open the door for investigating the control problems for general highly nonlinear
dynamics systems, which are not limited to the well developed triangular forms nonlinear systems23,34

and not necessarily limited to nonholonomic systems.24,30

In recent years, the researches following this direction are devoted to controlling law synthesis
for uncertain nonholonomic systems with special normal forms.29,31 In the ref. [29], inspired by
the approach presented in ref. [30], an adaptive controller was presented for the uncertain chained
form systems with the help of Lyapunov-based method and time-rescaling technique. The work of31

involved the stabilization of stochastic nonholonomic chained form systems in finite settling time.
Similar to the approach presented in ref. [25], in order to stabilize the chained form systems in finite
settling time, both of the controllers proposed in refs. [29] and [31] followed the switched-based
control strategies, which are actually discontinuous control approach.

As for the opinions of the authors, the time-varying smooth feedback tenderly constrain the state
of a nonholonomic system moving on a special smooth manifold, so that the motion efficiency
is considerably reduced, thus the settling time increases. Contrarily, switch-based discontinuous
feedback crustily constrains a system moving on several sub-manifolds. Even though the motion
efficiency is improved, the impact effects caused by switched inputs make it infeasible for many
real-world applications.

1.3. The contributions of the work
Different from the time-varying smooth feedback13,17 and the switch-based controller design
methods,14,15,18,19 the new controller presented in this paper shows more appealing performance
in balancing the settling time and the peaking of control inputs. In principle, the performance of the
controller presented in this work and that presented in refs. [4, 26] are accordant, since the time-varying
Hölder continuous feedback is used in both of the works. Whereas it is different from the approaches
presented in refs. [4, 26], in this work, the presented controller design method does not depend on any
prior known controllers, and is not necessary to use the complex time-periodic averaging techniques
to analysis the stability of the closed-loop systems. Even though a class of specific nonholonomic
systems with the second-order chained form is considered in this paper, this work provides a rather
simple but effective controller design approach for stabilizing a class of high-order nonholonomic
systems, and provides new insights to the drifts for maneuvering the nonholonomic systems (see
remark 5 in Section 3.1). In Section 3.2, the robustness of the presented controller in this paper is also
analyzed under upper bounded disturbances. In Section 3.3, we also show that the presented controller
design method can be generalized to a class of uncertain higher-order chained form systems.

2. Problem Formulations and Some Useful Lemmas

2.1. Problem formulation
In this paper, we primarily consider the control problems of the second-order nonholonomic nonlinear
systems with chained form13–15,18,19

ÿ1 = u1, ÿ2 = u2, ÿ3 = y2u1, (1)

where y = [y1 y2 y3 ]T ∈ R3 are the generalized coordinates of the system, u1 ∈ R and u2 ∈ R are
two inputs. Define a coordinate transformation, which is given by

z1 = y1, z2 = ẏ1, z3 = y3, z4 = ẏ3, z5 = y2, z6 = ẏ2,
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then the system (1) can be written in state space form

ż1 = z2

ż2 = u1

ż3 = z4

ż4 = u1z5

ż5 = z6

ż6 = u2

(2)

Defining vector z = [z1, . . . , z6]T, the global stabilization problem for the chained form
nonholonomic system (2) can be stated as: to design control inputs u1 = u1(z, t) and u2 = u2(z, t)
such that the origin of the system (2) is stable from any given initial state z(t0).

2.2. Some useful lemmas
As they will be used in the sequence for synthesizing the new controller of the paper, some lemmas
are provided in this section.

Lemma 1:24 For any real numbers ai , i = 1, 2, . . . , n and 0 < γ ≤ 1, the following inequality
holds

(
n∑

i=1

|ai |
)γ

≤
n∑

i=1

|ai |γ . (3)

For x ∈ R, y ∈ R, when 0 < γ = p/q ≤ 1, where p > 0 and q > 0 are odd integers, then

|xγ − yγ | ≤ 21−γ |x − y|γ < 2 |x − y|γ . (4)

When γ > 1 is a constant, then

|x − y|γ < 2γ−1 |xγ − yγ | . (5)

Lemma 2:22,24 Let m, n be positive real numbers, and γ (x, y) ≥ 0 be a real-valued function, then
the following inequality holds

|x|m |y|n ≤ mγ (x, y)

m + n
|x|m+n + nγ −m/n(x, y)

m + n
|y|m+n . (6)

Remark 1: Lemma 2 can be proved by the Young’s inequality,32, pp.27, namely |ab| ≤ 1
p
|a|p +

1
q
|b|q , where 1

p
+ 1

q
= 1, and p > 0, q > 0. In particular, if let a = |x|mβ

m
m+n , b = |y|nβ −m

m+n , p = m+n
m

,

q = m+n
n

, and β is a non-negative real-valued function of (x, y), then the inequality (6) follows.

Lemma 3: Given 0 < γ = p/q ≤ 1, where p > 0 and q > 0 are odd integers, and ξ �= α, then the
following inequality holds

W =
∫ ξ

α

(s1/γ − α1/γ )2−γ ds > 0. (7)
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Remark 2: Lemma 3 can be proved using inequality (5) and the identity (x)γ = sign(x)|x|γ for
all 0 < γ = p/q ≤ 1 with p > 0 and q > 0 are odd integers. Actually, it is easy to show that

∫ ξ

α

(s1/γ − α1/γ )2−γ ds =
∫ ξ

α

sign(s1/γ − α1/γ )
∣∣s1/γ − α1/γ

∣∣2−γ
ds

(5)
> 2− γ (2−γ )

1−γ

∫ ξ

α

sign(s − α) |s − α| 2−γ

γ ds

= 2− γ (2−γ )
1−γ

∫ ξ

α

|s − α| 2−γ

γ d(s − α)

= 2− γ (2−γ )
1−γ × γ

2
(ξ − α)2/γ

> 0.

Remark 3: In the next section, the power integrator (7) will be used to design a Lyapunov function
candidate on the basis of the powerful “adding a power integrator” technique.21,23,24 Since the power
integrator (7) is a first differentiable function, i.e. W ∈ C1, thus the time derivate of W at origin will be
Hölder continuous but not Lipschiz continuous. The Hölder but non-Lipschiz continuous differential
equations are also called the finite-time differential equations.20,33 Thus, the following Lemma 4 is
also called the finite-time stability theorem.

Lemma 4:33 For the non-Lipschitz autonomous system ẋ = f (x), suppose there exists a continuous
function V (x) : D → R defined on a neighborhood N ⊆ D of the origin, such that the following
conditions hold:

(a) V (x) is positive definite on D ⊂ Rn;
(b) There exist real numbers c > 0 and γ ∈ (0, 1), such that V̇ (x) + cV γ (x) ≤ 0, x ∈ N\{0}.

Then the origin of system ẋ = f (x) is locally finite-time stable. The settling time, depending on the
initial state x(0) = x0, satisfies Tx(x0) ≤ V (x0)1−γ /[c(1 − γ )] for all x0 in some open neighborhood
of the origin. If D = Rn and V (x) is also unbounded, then the origin of system ẋ = f (x) is globally
finite-time stable.

Remark 4: Lemma 4 is generally used as the foundation for designing the finite-time stabilizing
controllers.33 It is worth mentioning that Bhat and Bernstein presented the detailed relationships
between the geometric homogenity and the finite-time stability in the ref.[20]. Referring to relevant
refs. [9] and [26–28], the relationships between the homogeneous approximation and nilpotent
approximation can be well understood. As to design the finite-time controllers, refs. [22–25] are
recommended. Whereas, as mentioned in Section 1.2, the relevant finite-time controllers were
primarily presented for homogeneous system with special strict feedback form,23,24 or even perturbed
linear systems.22 These methods cannot be directly used to design the controllers for chained
form nonholonomic systems since the linearization of nonholonomic systems is not controllable at
origin.

3. Global Stabilization of the Second-Order Chained Systems

3.1. Controller synthesis
To design a controller for the chained form system (2), let’s partition the system to two subsystems

ż1 = z2

ż2 = u1 (8a)
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ż3 = z4

ż4 = u1z5

ż5 = z6

ż6 = u2. (8b)

The primary obstacle of designing a controller for the second-order chained form system (8) is
that u1 or z5 should not be zero when (z3, z4) �= (0, 0). Otherwise, refer to (8b), if ż3 = z4, ż4 = 0,
which means ż3 = z4 = c, where c �= 0 is a constant, then it follows that z3 = z3(0) + ct , thus z3 will
be unstable under the case. To solve the problem, the approaches presented in the references25,29,31

generally design a bounded controller u1(t) = u1a(t) �= 0, so that the subsystem (8b) can be stabilized
to its origin (z3, . . . , z6) = (0, . . . , 0) in finite settling time T1. When the time satisfies t ≥ T1, then
switches the controller u1(t) to another state u1(t) �= u1b(t), so that the subsystem (8a) is stabilized
to its origin (z1, z2) = (0, , 0) in finite time T2. Therefore, the overall system (8a)–(8b) is stabilized
in finite settling time T ≤ T1 + T2 by switch-based discontinuous controllers.

Motivated by the limitations of time-varying smooth controllers and the switch-based controllers
presented for nonholonomic systems in the literature, in this paper, we change the set-point
stabilization problem for chained form system (8) to a trajectory tracking control problem. The
desired trajectories of the system (8) are given by a group of smooth and exponentially stable
functions, for instance

zd
1 (t) = β1(t), zd

3 (t) = β2(t), zd
5 (t) = β3(t), (9)

where βi(t) = βi0 exp(−λit), λi > 0 and βi0 �= 0, i = 1, 2, 3, are constants. The time derivative of
(9) is given by

zd
2 (t) = żd

1 (t) = −λ1β1

zd
4 (t) = żd

3 (t) = −λ2β2

zd
6 (t) = żd

5 (t) = −λ3β3.

Notably, the given exponentially stable trajectory satisfies (zd
1 (t), . . . , zd

6 (t)) �= 0 for all λi > 0 and
βi0 �= 0. This point is important for designing the controller for chained form nonholonomic systems
of which the origin is not controllable.

Now let’s define the error variables ξi = zi − zd
i , i = 1, . . . , 6, then the error systems of the chained

form system (8) can be written as

ξ̇1 = ξ2

ξ̇2 = u1 − λ2
1β1 (10a)

ξ̇3 = ξ4

ξ̇4 = u1 (ξ5 + β3) − λ2
2β2

ξ̇5 = ξ6

ξ̇6 = u2 − λ2
3β3. (10b)

It will be intuitional, if the error systems (10a)–(10b) could be stabilized to origin (ξ1, . . . , ξ6) =
(0, . . . , 0) in finite settling time T , then after the time t ≥ T , the motions of the original systems
(8a)–(8b) accurately satisfy the exponentially stable trajectories given by (9). Therefore, the origin
of the original chained form system (8) is exponentially stable. To this end, a finite-time stabilizing
controller for the error systems (10) is presented as following proposition.

Proposition 1: For the time-varying nonlinear system (10) endowed with a set of exponentially
stable functions βi = βi0 exp(−λit), i = 1, 2, 3, where λi > 0 and βi0 are constants, if the functions
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satisfy

λ2
2β2(t) = λ2

1β1(t)β3(t), (11)

then there exists a set of constants ki > 0, i = 1, . . . , 6, such that the controllers

u1 = λ2
1β1 − k2

(
ξ

9/7
2 − α

9/7
1

)5/9

u2 = λ2
3β3 − k6

(
ξ 3

6 − α3
4

)1/9
(12)

where

α4 = −k5

(
ξ

9/5
5 − α

9/5
3

)1/3
, α3 = − 1

u1
k4

(
ξ

9/7
4 − α

9/7
2

)5/9
,

α2 = −k3ξ
7/9
3 , and α1 = −k1ξ

7/9
1 , globally stabilize the time-varying nonlinear system (10) to origin

(ξ1, . . . , ξ6) = 0 in finite settling time.

Proof: see Appendix A. �
Remark 5: Synthesizing the controllers for a nonholonomic system with drifts is generally a

difficult task.4 However, in this work we deliberately utilize the nonzero but exponentially stable
drifts to generate the virtual control input α3 of the controller (12), such that the coupled vector filed
u1z5 of (8b) is bounded and then guarantees the state variables (ξ3, ξ4) do not escape in any finite time.
Due to the special cascade of chained form system (8), the structure characteristic is inherited by the
error system (10). The proof of proposition 1 follows a “nearly” standard back-stepping procedure.34

The slight difference is that the stability of the subsystem (10b) depends on the stability of the
subsystem (10a). Thus we have to design a nonzero and bounded control input u1(t) �= 0, such that
u1(t) and u2(t) simultaneously stabilize both of the time-varying error subsystems (10a) and (10b) in
finite settling time.

Remark 6: In proposition 1, the selected functions βi(βi0, λi, t), i = 1, 2, 3 should satisfy the
constraint (11). Refer to the subsystem (8b), one can find that the motions of the system satisfy
relationship ż4 = u1z5. When the error system (10) is stabilized to its origin (ξ1, . . . , ξ6) = (0, . . . , 0),
then the system (8) is stabilized to the exponentially stable trajectories given by (9), and the relevant
variables of differential equation ż4 = u1z5 satisfy

u1 = z̈d
1 = λ2

1β1(t),

ż4 = żd
4 = λ2

2β2(t),

z5 = zd
5 = β3(t).

Thus the design parameters of βi(βi0, λi), i = 1, 2, 3 should satisfy the relationship (11). More
specifically, the constraint Eq. (11) can be given by

λ1 = λ2 − λ3, β10 = β20λ
2
2/β30(λ2 − λ3)2. (13)

Remark 7: The partial differentials of the powerintegrators given by (7) are repeatedly used in the
proof of proposition 1. It can be proved that,22,24

∂W

∂ξk

= (ξ 1/γ

k − α1/γ )2−γ , (14)

∂W

∂ξi

= −(2 − γ )

(
∂α1/γ

∂ξi

)∫ ξk

α

(s1/γ − α1/γ )1−γ ds, i = 1, . . . , k − 1, (15)
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where

W =
∫ ξk

α

(s1/γ − α1/γ )2−γ ds, α = α(ξi), i = 1, . . . , k − 1,

is considered. Using the relationships (14) and (15), and considering the Lemmas 1 and 2, then
proposition 1 can be proved with step by step.

On the basis of proposition 1, we can give the following proposition that ensures the origin’s
exponential stability of the chained form nonholonomic system (8), when the system (8) is controlled
by the presented controller (12).

Proposition 2: If the origin of the error system (10) is globally finite-time stable, then the origin
of the original chained form system (8) is globally exponentially stable.

Proof: According to the condition of the proposition, the error system (10) is stabilized in finite-

time T (ξ 0) ≤ 18V (ξ 0)1/9

k
, thus if t > T (ξ 0) is satisfied, then the motions of the system (8) accurately

satisfy the following equations �

ż1 = −β10λ1 exp(−λ1t)

ż2 = β10λ
2
1 exp(−λ1t) (16a)

ż3 = −β20λ2 exp(−λ2t)

ż4 = β10β30λ
2
1 exp [− (λ1 + λ3) t]

ż5 = −β30λ3 exp(−λ3t)

ż6 = β30λ
2
3 exp(−λ3t), (16b)

where λi > 0, i = 1, 2, 3 are constants. Therefore, the origin of the chained form system (8) is
exponentially stable. Since the claim of proposition 1 is globally stable, and there is not any additional
condition in proposition 2, thus the origin’s stability of the chained form system (8) is global. �

Remark 8: The controller design method presented by proposition 1 and 2 can be easily applied
to design a controller for the first-order chained form nonholonomic system,25 and this problem is
further addressed in Section 3.3.

3.2. Robust controllers for disturbed second-order chained form systems
Nonsmoothness is a kind of highly nonlinear characteristic. The robustness of Hölder continuous
feedback has been illustrated by the homogenous systems.4,9,22,25–28 In this subsection, we will
further clearly show the appealing robustness of the nonsmooth but Hölder continuous feedback by
the disturbed second-order chained form systems.

Let’s consider the disturbed version of the system (10), suppose the systems has the following
form

ξ̇1 = ξ2 + φ1(ξ )

ξ̇2 = u1 − λ2
1β1 + φ2(ξ ) (17a)

ξ̇3 = ξ4 + φ3(ξ )

ξ̇4 = u1 (ξ5 + β3) − λ2
2β2 + φ4(ξ )

ξ̇5 = ξ6 + φ5(ξ )

ξ̇6 = u2 − λ2
3β3 + φ6(ξ ) (17b)

where ξ = (ξ1, ξ2, . . . , ξ6), and φi(ξ ), i = 1, . . . , 6 are disturbances. In this paper, we assume the
disturbance terms are bounded, and satisfy |φi(ξ )| ≤ ρi(ξ )

∑i
j=1 |ξj | < Mi , where 0 < ρi(ξ ) < ρi0,

both ρi0 and Mi > 0 are constants.
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Remark 9: For achieving global stability, the disturbance terms with lower triangular form are
assumed in this paper in order to make the structure of the uncertain terms consistent with the nominal
chained form systems. As to more general nonholonomic systems, only local stability can be obtained
in the refs. [4, 9, 27, 28], since in those cases the homogeneous approximation technique has to be
used to simplify the nonlinear model of the considered systems. In fact, for a general nonlinear
system, even the linearization of it is controllable, global stabilization is still a very open problem.

In order to understand the robustness of the Hölder continuous controller (12), for the uncertain
second-order chained form systems (17), the following proposition can be directly proved.

Proposition 3: The controller (12) globally stabilizes the disturbed second-order chained form
system (17) to origin in finite settling time.

Proof: The structure of the two subsystems of (17a) and (17b) is identical due to the lower
triangular form of the bounded disturbance terms. As shown in the proof of proposition 1, we just
need to prove the stability of the subsystem (17a). If the fact is that, then the stability of the overall
system (17a)–(17b) can be proved without any difficult. �

Let’s consider the subsystem (17a), and given a Lyapunov function candidate

V1 = 0.5ξ 2
1 + W1, W1 =

∫ ξ2

α1

(
s

9/7
1 − α

9/7
1

)11/9
ds1, (18)

then the time derivate of V is given by

V̇1 = ξ1 (ξ2 + φ1(ξ ) − α1) + ξ1α1 + ∂W1

∂α1

∂α1

∂ξ1
ξ2 + ∂W1

∂ξ2

(
u1 − λ2

1β1 + φ2(ξ )
)
. (19)

Considering the controller u1 = λ2
1β1 − k2(ξ 9/7

2 − α
9/7
1 )5/9 with α1 = −k1ξ

7/9
1 of (12), then (19)

can be written as

V̇1 = −k1ξ
16/9
1 + ξ1 (ξ2 − α1) + ξ1φ1(ξ ) + ∂W1

∂α1

∂α1

∂ξ1
ξ2 + ∂W1

∂ξ2

(
−k2

(
ξ

9/7
2 − α

9/7
1

)5/9
+ φ2(ξ )

)
.

(20)

Using the formula (14), it can be shown that

∂W1

∂ξ2
=

(
ξ

9/7
2 − α

9/7
1

)11/9
. (21)

Substitute (21) into (20), and then the Eq. (20) can be written as

V̇1 = −k1ξ
16/9
1 − k2

(
ξ

9/7
2 − α

9/7
1

)16/9
+ ξ1 (ξ2 − α1)

+ ∂W1

∂α1

∂α1

∂ξ1
ξ2 + ξ1φ1(ξ ) +

(
ξ

9/7
2 − α

9/7
1

)11/9
φ2(ξ ). (22)

The first uncertain terms in (22) can be estimated as follows

∣∣ξ1φ1(ξ )
∣∣ ≤ ρ10 |ξ1|2 =

(
ρ10ξ

2/9
1

)
|ξ1|16/9 .

Considering |φ1(ξ )| < M1, thus there exist a positive constant ρ̄10, such that∣∣ξ1φ1(ξ )
∣∣ ≤ ρ̄10 |ξ1|16/9 . (23)

The second uncertain term in right-hand side of (22) can be estimated as∣∣∣∣(ξ
9/7
2 − α

9/7
1

)11/9
φ2(ξ )

∣∣∣∣ ≤ ρ20

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣11/9 |ξ1| + ρ20

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣11/9 |ξ2| . (24)
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By the inequality (6) of Lemma 2, it not difficult to show there necessarily exist two positive
constants c1 and c2, such that (24) satisfies that

∣∣∣∣(ξ
9/7
2 − α

9/7
1

)11/9
φ2(ξ )

∣∣∣∣ ≤ c1 |ξ1|16/9 + c2

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣16/9
. (25)

Proceeding along similar lines, the bounds of the terms ξ1(ξ2 − α1) and ∂W1
∂α1

∂α1
∂ξ1

ξ2 can be estimated,
and then the Eq. (22) can be expressed as following form

V̇1 ≤ −kξ
16/9
1 − k

(
ξ

9/7
2 − α

9/7
1

)16/9
, (26)

where k is a positive constant associated with a pair of sufficiently large control parameters (k1,k2) of
the controller u1(t). On the other hand, from the definition (18), it is easy to show

V1 ≤ 2ξ 2
1 + 2

(
ξ

9/7
2 − α

9/7
1

)16/9
. (27)

By applying inequality (3), then from (26) and (27), we can conclude

V̇1 ≤ −k

2
V

8/9
1 . (28)

According to the Lemma 4, the subsystem (17a) is globally finite-time stable due to
lim‖(ξ 1,ξ2)‖→∞ V1 = ∞.

By a similar procedure as given above (possibly, if necessary, refer to the Appendix A), the global
finite-time stability of overall system (17) can be concluded. �

Remark 10: Even though only bounded and “matched” disturbances are considered in proposition
3, it is not difficult to show the controller (12) is still valid for bounded “unmatched” disturbances
with higher order homogeneous degree, due to the Theorem 7.4 of.20 It is worth pointing out that,
for more general disturbances, the structured characteristics of the chained form systems might be
changed by the uncertain terms. Under those more general cases, the homogeneous approximation
techniques have to be used for getting locally stabilizing controllers.4,9,27,28

3.3. Robust stabilization of a class of uncertain high-order chained form systems
In this subsection, we further show the controller design method presented in Section 3.1 can be
generalized to more generally disturbed chained form systems. Let’s consider a class of disturbed
high-order chained form systems25,29

ż0 = u0 + φ̄0(z)

ż1 = u0z2 + φ̄1(z)

...

żn−1 = u0zn + φ̄n−1(z)

żn = u1 + φ̄n(z), (29)

where z = (z0, z1, . . . , zn) ∈ Rn+1, u0, u1 are control inputs, φ̄i(z), i = 0, 1, . . . , n denote the
disturbances terms. As that does for stabilizing the second-order chained form systems in the former
subsections, we change the set-point stabilization problem for (29) to an exponential stable trajectory-
tracking problem. Define the target trajectories

zd
i = βi = βi0 exp(−λit), i = 0, 1, . . . , n (30)
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and the error variables

ξi = zi − zd
i , i = 0, 1, . . . , n, (31)

then the error system of (29) is given by

ξ̇0 = u0 + φ0(ξ ) + λ0β0

ξ̇1 = u0 (ξ2 + β2) + φ1(ξ ) + λ1β1

...

ξ̇n−1 = u0 (ξn + βn) + φn−1(ξ ) + λn−1βn−1

ξ̇n = u1 + φn(ξ ) + λnβn. (32)

A globally finite-time stabilizing controller for the disturbed error system (32) can be presented as
following proposition 4.

Proposition 4: Suppose the given exponential functions βi = βi0 exp(−λit), λi > 0, βi0 �= 0, for
i = 0, 1, . . . , n, satisfy the relationships λiβi = λ0β0βi+1, for i = 1, . . . , n − 1, namely

βiλi = β0λ0βi+1, λi = λ0 + λi+1. (33)

And the disturbances terms φi(ξ ), i = 0, 1, . . . , n, satisfy

|φi(ξ )| ≤ ρi(ξ )
i∑

j=1

|ξi | < Mi, (34)

where 0 < ρi(ξ ) < ρi0, both ρi0 and Mi > 0 are constants. Then there exists a set of positive constants
ki , i = 0, 1, . . . , n, and the controller

u0 = − [M0 + λ0β0] − k0ξ
(2n−1)/(2n+1)
0

u1 = − [Mn + λnβn] − kn

(
ξ (2n+1)/3
n − α

(2n+1)/3
n−1

) 1
2n+1

, (35)

where

αi = −ξi (u0βi+1 + Mi + λiβi) − ki

u0

(
ξ

1/ri

i − α
1/ri

i−1

) 4n
2n+1 −(2−ri )

with ri = 2n−2i+3
2n+1 , for i = 2, . . . , n − 1, and α1 = −ξ1(u0β2 + M1 + λ1β1) − k1

u0
ξ

(2n−1)/(2n+1)
1 ,

globally stabilize the error system (32) to origin in finite settling time.

Proof: This claim is an extension of proposition 3. By defining the Lyapunov function candidate�

V = 0.5ξ 2
0 + 0.5ξ 2

1 +
n−1∑
i=1

Wi, (36)

where Wi = ∫ ξi+1

αi
(s1/ri − α

1/ri

i )2−ri ds, i = 2, . . . , n − 1, then by a standard back-stepping

procedure,34 and using the inequalities (4)–(6) to estimate the bounds of the terms in V̇ of (36)
for the error system (32), proposition 4 can be proved without any difficulties. �

Remark 11: The assumption (34) is presented due to the bounded property of the state variables
of an actual physical system.

In refs. [25], [29] and [31], controller design for uncertain chained form systems closely related
to system (32) had also been investigated. As pointed out in Sections 1.2 and 3.1, the relevant
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Fig. 1. An underactuated hovercraft model.

researches adopted the switch-based control strategy. Whereas, propositions 1 4 clearly show the
considered disturbed chained form systems can be globally exponentially stabilized by non-switch-
based controllers. The nonsmooth but Hölder continuous feedback controllers proposed in this work
are also different from the methods presented in refs. [4] and [26]. We noted that some prior known
sinusoid time-varying smooth feedback controllers are necessary in those works to synthesize the
homogeneous feedback controllers for chained form systems. In refs. [4] and [9], homogeneous
approximation techniques were also used to design Hölder continuous feedback controllers for more
general nonholonomic systems without chained forms.

4. Application Example

4.1. The dynamics and the normal form of a simplified hovercraft model
A simple model of an underactuated hovercraft system is illustrated in Fig. 1. Let o − xy denote the
inertial coordinate system, o′ − uv is a coordinate system fixed to the mass center of the hovercraft.
Suppose the hovercraft system has only two actuators at the rear of it, and the produced forces of the
actuators are F1 and F2 respectively, the minimum distance between the mass center of the hovercraft
and the lines along the driving forces is r , the direction of thrust force parallels to the symmetric axis
of the hovercraft. We also suppose the mass of the system is m, the inertia of the system is I , the angle
between the symmetric axis of the hovercraft and the coordinate axis x is ϕ, and the positive direction
of ϕ is defined to be counter clockwise. Then the dynamics of the system can be expressed as

mẍ = (F1 + F2) cos ϕ

mÿ = (F1 + F2) sin ϕ

I ϕ̈ = (F2 − F1)r (37)

Obviously, the system (37) is an underactuated system since the three DOF systems are actuated
by two inputs F1, F2. The generalized coordinates of the system can be given by (x, y, ϕ). To simplify
the control design, a normal form transformation approach for the nonlinear system (37) is provided
by the following proposition.

Proposition 5: The dynamics of the underactuated system (37) can be transformed into the
canonical form (1) by the following coordinate transformation

y1 = x, y2 = tan ϕ, y3 = y, (38)

and the input changes

u1 = 1

m
(F1 + F2) cos ϕ

u2 = r

I
(F2 − F1) sec2 ϕ + 2ϕ̇2 tan ϕ sec2 ϕ (39)
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Fig. 2. Trajectories of the position error variables of the nominal system (10) in simulation 1.

Proof: Substitute (38) and (39) into (37), then the results follow. �

Remark 12: The inverse transformations of (38) and (39) are respectively given by

x = y1, ϕ = atan (y2) , y = y3, (40)

and

F1 = 1

2

[
(m sec ϕ) u1 − I cos2 ϕ

r

(
u2 − 2ϕ̇2 tan ϕ sec2 ϕ

)]

F2 = 1

2

[
(m sec ϕ) u1 + I cos2 ϕ

r

(
u2 − 2ϕ̇2 tan ϕ sec2 ϕ

)]
(41)

Then the actual configurations and the inputs of the underactuated hovercraft systems can be
recovered from the transformed coordinates y = (y1, y2, y3) and the inputs (u1, u2).

It is worth noting that ϕ = ±kπ + π
2 , k ∈ N are mathematically singular points for the system

(38), but not physically singular points for the underactuated hovercraft system shown in Fig. 1. One
can use any rotational coordinate transformations to avoid these mathematically singular points in
practice. In this paper, these singular points do not occur due to the particular selections of the smooth
and exponentially stable trajectories (9), which could not be zeros.

4.2. Numerical simulations
In this subsection, the physical parameters of the hovercraft system (37) are given by m = 100 kg,
I = 100 kg · m2, and r = 0.5 m. Four kinds of numerical simulation results are presented as follows.

Simulation 1: Nominal system (10) with the first kind of conditions

Given an initial state ξ (0) = [ 2 0 −1.5 0 −2 0 ]T, design the desired trajectory β2(t) =
− exp(−1.25t), β3(t) = exp(−t), and β1(t) is calculated to be β1(t) = −25 exp(−0.25t) by
applying (11). If we select the controller parameters of the controller (12) to be (k1, . . . , k6) =
(1, 2, 1, 2.5, 4, 30), and then the numerical simulation results are illustrated in Figs. 2–6. Figures 2
and 3 show the trajectories of the state variables of the system (10) controlled by (12). Figure 4 shows
the trajectories of virtual inputs u1 and u2. Figure 5 shows the actual inputs F1 and F2, which are
calculated from formulation (41). Figure 6 plots the movement path of the hovercraft with data from
Fig. 2. It is well known that a nonholonomic constraint system cannot perform a motion violating
the intrinsic nonholonomic constraints. For the first-order nonholonomic systems, such as a car,
which cannot move along lateral direction. However, for the second-order nonholonomic constraints
systems, such as the hovercraft system addressed in this paper, the nonholonomic constraints are
accelerate level but not speed level, the motion of a hovercraft system is free in every movement
directions due to air suspension, therefore the system can perform a motion in the lateral direction as
that shown in Fig. 6.
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Fig. 3. Trajectories of the speed error variables of the nominal system (10) in simulation 1.
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Fig. 4. Trajectories of the virtual inputs u1 and u2 of the nominal system (10) in simulation 1.
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Fig. 5. Trajectories of the actual inputs F1 and F2 corresponding to the virtual inputs u1 and u2 shown in Fig. 4.

Simulation 2: Disturbed system (42) with same conditions as simulation 1

To test the robustness of the controller (12), the following disturbed system (42) is considered in
this numerical simulation. All of the given parameters including the initial state, desired trajectories,
and the controller parameters are same as that in simulation 1. The corresponding simulation results
are plotted in Figs. 7 and 8.

ξ̇1 = ξ2 + 0.1 (ξ1 + ξ2 + ξ3) sin(10t)

ξ̇2 = u1 − λ2
1β1 − 0.1(ξ1 + ξ2) sin(5t) (42a)

ξ̇3 = ξ4 − 0.1ξ3 sin(3t)

ξ̇4 = u1 (ξ5 + β3) − λ2
2β2 − 0.2 (ξ3 + ξ4) sin(10t)

ξ̇5 = ξ6 − 0.5 (ξ3 + ξ4 + ξ5) sin(5t)

ξ̇6 = u2 − λ2
3β3 − (ξ3 + ξ4 + ξ5) sin(8t) (42b)
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Fig. 6. Movement path of the Hovercraft with data from Fig. 2.
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Fig. 7. Trajectories of the position error variables of system (42) in simulation 2.
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Fig. 8. Trajectories of the speed error variables of system (42) in simulation 2.

Simulation 3: Nominal system (10) with the second kind of conditions

Another initial state is selected to be ξ = [ 3 0 2 0 0 0 ]T, and design the desired trajectory β2(t) =
exp(−1.25t) and β3(t) = exp(−t), then β1(t) is calculated to be β1(t) = 25 exp(−0.25t) through
equality (11). Select the control parameters of (12) to be (k1, . . . , k6) = (1, 2, 1, 3, 4, 30), then the
corresponding numerical simulation results are illustrated in Figs. 9–13.

Simulation 4: Disturbed system (42) with the same conditions as simulation 3

This simulation adopts the same disturbed system (42) as in simulation 2 while the control target
and control parameters are the same as those in simulation 3. Then the numerical simulation results
are plotted in Figs. 14 and 15.
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Fig. 9. Trajectories of the position error variables of system (10) in simulation 3.
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Fig. 10. Trajectories of the speed error variables of system (10) in simulation 3.
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Fig. 11. Trajectories of the virtual inputs u1 and u2 of the nominal system (10) in simulation 1.

Comparisons of simulations 1and 2 show that the disturbances extend the settling time and cause
more obviously oscillating features in the systems states. Whereas, this conclusion is not always valid
due to the comparisons of simulations 3 and 4. In the later case, the disturbances show less influences
on the system states.

Since the desired exponentially stable trajectories of the state variables of (8) can be arbitrarily
set, the settling-time of the closed-loop system controlled by (12) is far less than that by a controller
based on the time-varying smooth feedback. This point had been clearly shown by M’Closkey et al.
in their works4,26 since the Hölder continuous feedback was applied there as the work does here.
However, a prior known time-varying smooth controller is needed in M’Closkey’s approach, which
is not required in our approach.

The approach presented in this paper is also different from the switch-based Hölder continuous
feedback controller or the controller based on the discontinuous feedback, such as the relevant works
of.25,29,31,35 Even though the state variables during the regulation procedure are nonsmooth, the
simulation results illustrated in Figs. 2–15 show the regulation trajectories of the state variables are
continuous, thus the impact effects caused by switching the control inputs are considerably reduced,
and the actuation forces of the system is smooth (see Figs. 5 and 12).
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Fig. 12. Trajectories of the actual inputs F1 and F2 corresponding to the virtual inputs u1 and u2 shown in
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Fig. 14. Trajectories of the position error variables of system (42) in simulation 4.

5. Conclusion
The second-order nonholonomic systems with chained form are a class of typical underactuated
nonholonomic systems. To improve the performance of the existing controllers for this class system,
in this paper a time-varying controller design method is presented on the basis of nonsmooth but
Hölder continuous feedback techniques. By changing an origin stabilization problem to a time-varying
trajectory tracking problem, it is shown the second-order nonholonomic chained form system can be
stabilized to a given exponentially stable trajectory in finite time, such that the settling-time of the
closed-loop system can be arbitrarily setting. Therefore, the presented controller shows a less settling
time and avoids the discontinuous inputs that are impractical for some actual systems in engineering.
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Fig. 15. Trajectories of the speed error variables of system (42) in simulation 4.

It is also worth pointing out that all of the nonsmooth feedback potentially cause the oscillating
behaviors of the systems states. This may be undesirable for some applications. Whereas, for highly
nonlinear systems without controllable linearization, the nonsmooth feedback might be the unique
feasible approach for exponentially stabilizing the systems in large region.
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Appendix A

Proof of the proposition 1
The proof is partitioned to two sections. In the first section, the stability of the subsystem (10a) is
proved by a standard back-stepping procedure,34 in order to clearly show the approach of estimating
the bounds of the time derivate of the Lyapunov function candidate by the Lemmas 1 and 2. Then the
stability of the overall system (10) is proved in the second section with considering the result of the
Section 1.

Section 1:
In the first, let’s design a finite-time stabilizing controller for the subsystem (10a). Consider the

subsystem ξ1, and select a Lyapunov function candidate V1 = 0.5ξ 2
1 , then the time derivate of V1 is

given by V̇1 = ξ1(ξ2 − α1) + ξ1α1. If select the virtual input to be α1 = −k1ξ
7/9
1 with k1 > 0, then

V̇1 = −k1ξ
16/9
1 + ξ1

(
ξ2 − α1

)
. (A.1)

Secondly, consider the subsystem (ξ1, ξ2), and select a new Lyapunov function candidate V2 =
V1 + W1, where W1 = ∫ ξ2

α1
(s9/7

1 − α
9/7
1 )11/9ds1. Guaranteed by Lemma 3, thus V2 = V1 + W1 ≥ 0 is
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satisfied. The time derivate of the function V2 can be written as

V̇2 = V̇1 + Ẇ1 = −k1ξ
16/9
1 + ξ1

(
ξ2 − α1

)
+∂W1

∂α1

∂α1

∂ξ1
ξ2 + ∂W1

∂ξ2

(
u1 − λ2

1β1
)
. (A.2)

Then we will estimate the bounds of the last three terms of the right-hand side of (A2). Using the
inequality (4), it follows that

∣∣ξ2 − α1

∣∣ =
∣∣∣∣(ξ

9/7
2

)7/9
−

(
α

9/7
1

)7/9
∣∣∣∣ ≤ 2

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣7/9
. (A.3)

By the inequality (6), then the second term of right-hand side of (A2) satisfies inequality

∣∣ξ1
(
ξ2 − α1

)∣∣ ≤ 2 |ξ1|
∣∣∣ξ 9/7

2 − α
9/7
1

∣∣∣7/9

≤ 2

[
1

1 + 7/9
|ξ1|(1+ 7

9 ) + 7/9

1 + 7/9

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣(1+ 7
9 )

]
.

Thus, the last inequality can be simply expressed as

∣∣ξ1
(
ξ2 − α1

)∣∣ ≤ δ1ξ
16/9
1 + δ2

(
ξ

9/7
2 − α

9/7
1

)16/9
, (A.4)

where δ1 and δ2 are two positive constants.
Using the formula (15) of remark 7, it is not difficult to show that

∂W1

∂α1

∂α1

∂ξ1
= 11

9
k

9/7
1

∫ ξ2

α1

(
s

9/7
1 − α

9/7
1

)2/9
ds1.

Additionally, it is easy to show the following fact

∣∣∣∣
∫ ξ2

α1

(
s

9/7
1 − α

9/7
1

)2/9
ds1

∣∣∣∣ ≤
∣∣∣∣(ξ

9/7
2 − α

9/7
1

)2/9
∣∣∣∣ |ξ2 − α1|

≤ (A(3))2

∣∣∣∣(ξ
9/7
2 − α

9/7
1

)2/9
∣∣∣∣
∣∣∣ξ 9/7

2 − α
9/7
1

∣∣∣7/9

= 2
∣∣∣ξ 9/7

2 − α
9/7
1

∣∣∣ ,
thus, the third term of right-hand side of (A2) satisfies∣∣∣∣∂W1

∂α1

∂α1

∂ξ1
ξ2

∣∣∣∣ ≤ 22

9
k

9/7
1

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣ |ξ2|

≤ 22

9
k

9/7
1

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣ [|ξ2 − α1| + |α1|]

= 22

9
k

9/7
1

[∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣ |ξ2 − α1| +
∣∣∣ξ 9/7

2 − α
9/7
1

∣∣∣ |α1|
]

≤ (A(3)) 44

9
k

9/7
1

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣(1+7/9)

+ 22

9
k

9/7
1

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣ ∣∣∣k1ξ
7/9
1

∣∣∣ .
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Proceeding along a similar line as that for getting the inequality (A4), it is not difficult to show
that ∣∣∣∣∂W1

∂α1

∂α1

∂ξ1
ξ2

∣∣∣∣ ≤ δ3ξ
16/9
1 + δ4

(
ξ

9/7
2 − α

9/7
1

)16/9
, (A.5)

where δ3 and δ4 are two positive constants.
As to the last term of right-hand side of (A2), using formula (13), it easy to show that

∂W1

∂ξ2
=

(
ξ

9/7
2 − α

9/7
1

)11/9
. (A.6)

Substitute (A4)–(A6) into (A2), then (A2) follows that

V̇2 ≤ (δ1 + δ3 − k1) ξ
16/9
1 + (δ2 + δ4)

(
ξ

9/7
2 − α

9/7
1

)16/9

+
(
ξ

9/7
2 − α

9/7
1

)11/9 (
u1 − λ2

1β1
)
. (A.7)

Select the control input to be

u1 = λ2
1β1 − k2

(
ξ

9/7
2 − α

9/7
1

)5/9
, (A.8)

where k2 = k̃2 + δ2 + δ4 > 0, k̃2 > 0, then using the inequality (3), the inequality (A7) satisfies that

V̇2 ≤ −k̃1ξ
16/9
1 − k̃2

(
ξ

9/7
2 − α

9/7
1

)16/9

≤ −k̃2

[
ξ 2

1 +
(
ξ

9/7
2 − α

9/7
1

)2
]8/9

, (A.9)

where k̃1 = k1 − (δ1 + δ3) > 0. On the other hand, it is easy to show the function V2 satisfies

V2 = 0.5ξ 2
1 +

∫ ξ2

α1

(
s

9/7
1 − α

9/7
1

)11/9
ds1

≤ 2ξ 2
1 +

∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣11/9 |ξ2 − α1| .

By the inequality (A3), it follows that

V2 ≤ 2ξ 2
1 + 2

(
ξ

9/7
2 − α

9/7
1

)2
. (A.10)

From (A9) and (A10), we have

V̇2 ≤ − k̃2

2
V

8/9
2 . (A.11)

Thus, according to Lemma 4, for any given exponentially stable trajectories β1(t) there exist
positive constants (k1, k2), such that the subsystems (10a) can be stabilized to origin (ξ1, ξ2) = (0, 0)
in finite settling time. This also indicates the input u1 is bounded. Let’s define the upper bound of
u1 as u10, i.e. |u1| ≤ u10, where u10 > 0 is a constant. Then as that will be shown in the next, the
stability of the closed-loop subsystem (10b) can be proved without any difficulties.
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Section 2:
For the subsystem (10b), define the Lyapunov function candidate

V3 = 0.5ξ 2
3 + W2 + W3 + W4, (A.12)

where

W2 =
∫ ξ4

α2

(
s

9/7
2 − α

9/7
2

)11/9
ds2,

W3 =
∫ ξ5

α3

(
s

9/5
3 − α

9/5
3

)13/9
ds3,

and

W4 =
∫ ξ6

α4

(
s3

4 − α3
4

)5/3
ds4.

Since u1 is stable, the stability of u1 does not depend on the variables ξ3, ξ4 and ξ5, then u1, ξ1 and
ξ2 are bounded and could not be zero. For the subsystem (10b), the control input u1 can be regarded
as a variable only depending on time t . Then the time derivate of the function V3 along the vector
field (10b), can be given by

V̇3 = ξ3ξ4 + ∂W2

∂ξα2

∂α2

∂ξ3
ξ4 + ∂W2

∂ξ4
ξ̇4

+ ∂W3

∂α3

[
∂α3

∂ξ3
ξ4 + ∂α3

∂ξ4
ξ̇4 + ∂α3

∂t

]
+ ∂W3

∂ξ5
ξ6

+ ∂W4

∂α4

[
∂α4

∂ξ3
ξ4 + ∂α4

∂ξ4
ξ̇4 + ∂α4

∂ξ5
ξ6 + ∂α4

∂t

]

+ ∂W4

∂ξ6

(
u2 − λ2

3β3
)
. (A.13)

Except the terms about ξ̇4, ∂α3
∂t

and ∂α4
∂t

in (A13), the other terms can be estimated by proceeding
along similar lines as in Section 1. Thus the terms about ξ̇4, ∂α3

∂t
and ∂α4

∂t
in the right-hand side of

(A13) just need to be estimated in the following.
Referring Eq. (10b), the time derivate ξ̇4 is given by

ξ̇4 = u1 (ξ5 + β3) − λ2
2β2. (A.14)

Substitute (A8) into (A14), and then it follows that

ξ̇4 = λ2
1β1ξ5 − k2

(
ξ

9/7
2 − α

9/7
1

)5/9
(ξ5 + β3)

+ λ2
1β1β3 − λ2

2β2. (A.15)

Using the relationship (11), (A15) is simplified as

ξ̇4 = λ2
1β1ξ5 − k2

(
ξ

9/7
2 − α

9/7
1

)5/9
(ξ5 + β3) . (A.16)

Since the subsystem (10a) is stabilized in finite settling time by the controller u1(t) of (A8), then
the bounds of the term (ξ 9/7

2 − α
9/7
1 )5/9 in (A16) can be estimated by |(ξ 9/7

2 − α
9/7
1 )5/9| ≤ ε0, where
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ε0 > 0 is a constant. Thus the bounds of (A16) can be estimated by the following inequality

∣∣ξ̇4

∣∣ ≤ λ2
1 |β1ξ5| + k2ε0 |ξ5| + k2

∣∣∣∣β3

(
ξ

9/7
2 − α

9/7
1

)5/9
∣∣∣∣ . (A.17)

With the help of inequality (A17), for instance, the third term in the right-hand side of (A13)
satisfies the following inequality

∣∣∣∣∂W2

∂ξ4
ξ̇4

∣∣∣∣ =
∣∣∣ξ 9/7

4 − α
9/7
2

∣∣∣11/9
×

(
λ2

1 |β1ξ5| + k2ε0 |ξ5| + k2

∣∣∣∣β3

(
ξ

9/7
2 − α

9/7
1

)5/9
∣∣∣∣
)

≤ (
λ2

1 |β10| + k2ε0
) ∣∣∣ξ 9/7

4 − α
9/7
2

∣∣∣11/9 |ξ5|

+ |β30|
∣∣∣ξ 9/7

4 − α
9/7
2

∣∣∣11/9 ∣∣∣ξ 9/7
2 − α

9/7
1

∣∣∣5/9
. (A.18)

Since the coefficients λ2
1|β10| + k2ε0 and |β30| of the two terms in right-hand side of (A18) are

positive constants, it is straightforward, both of the two terms of (A18) can be estimated by inequality
(6) in Lemma 2, such that the inequality (A18) can be written as a final form

∣∣∣∣∂W2

∂ξ4
ξ̇4

∣∣∣∣ ≤ δ5ξ
16/9
3 + δ6

(
ξ

9/7
4 − α

9/7
2

)16/9

+ δ7

(
ξ

9/5
5 − α

9/5
3

)16/9
. (A.19)

where all of the coefficients δi , i = 5, 6, 7 are positive constants. Proceeding along similar lines as
shown above, the bounds of other terms about ξ̇4 in (A13) can be estimated without any difficulties.

For the term ∂W3
∂α3

∂α3
∂t

in (A13), it can be shown

∂W3

∂α3
= −13

5
α

4/5
3

∫ ξ5

α3

(
s

9/5
3 − α

9/5
3

)4/9
ds3, (A.20)

and

∂α3

∂t
= −λ3

1β1

u2
1

k4

(
ξ

9/7
4 − α

9/7
2

)5/9
. (A.21)

In Section 1, it is shown that u1 is stable in finite time. For a given settling time T of ξ1 and ξ2,
there exists a constant ε > 0 such that 0 < |u1| ≤ ε is satisfied. Using the Lemmas 1 and 2, it is not
difficult to show that there always exist sufficient large constants δ8 > 0 and δ9 > 0 such that the
following inequality is satisfied

∣∣∣∣∂W3

∂α3

∂α3

∂t

∣∣∣∣ ≤ δ8

(
ξ

9/7
4 − α

9/7
2

)16/9
+ δ9

(
ξ

9/5
5 − α

9/5
3

)16/9
. (A.22)

By a similar procedure as above, the following inequality can be obtained

∣∣∣∣∂W4

∂α4

∂α4

∂t

∣∣∣∣ ≤ δ10

(
ξ

9/7
4 − α

9/7
2

)16/9
+ δ11

(
ξ

9/5
5 − α

9/5
3

)16/9
+ δ12

(
ξ 3

6 − α3
4

)16/9
, (A.23)

where δ10, δ11 and δ12 are positive constants.
By a similar procedure as presented in Section 1, and using the controllers given by (11), it can be

shown that there always exists a sufficient large constant k̄ > 0, such that (A13) satisfies the following
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inequality

V̇3 ≤ −k̄ξ
16/9
3 − k̄

(
ξ

9/7
4 − α

9/7
2

)16/9

− k̄
(
ξ

9/5
5 − α

9/5
3

)16/9
− k̄

(
ξ 3

6 − α3
4

)16/9
. (A.24)

On the other hand, the function V3 satisfies

V3 ≤ 2ξ 2
3 + 2

(
ξ

9/7
4 − α

9/7
2

)2

+ 2
(
ξ

9/5
5 − α

9/5
3

)2
+ 2

(
ξ 3

6 − α3
4

)2
. (A.25)

From (A24) and (A25), and by applying the inequality (3) in Lemma 1, it easy to show that

V̇3 ≤ − k̄

2
V

8/9
3 . (A.26)

Due to the inequalities (A11) and (A26), if we define V = V2 + V3 to be the Lyapunov function
candidate for overall system (10a)–(10b), then there always exists a positive constant k ≥ max{k̃, k̄}
such that

V̇ = V̇2 + V̇3 ≤ −k

2
V 8/9. (A.27)

From the Lemma 4, the settling time of (10) is given by

T (ξ 0) ≤ 18V (ξ 0)1/9

k
. (A.28)

where ξ 0 = (ξ10, . . . , ξ60)T is the initial state of system (10). The global finite-time stability of the
claim is ensured by lim‖ξ 0‖→∞ V = ∞. This completes the proof of proposition 1.
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