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By looking at three significant examples in analysis, geometry and dynamical systems,
I propose the possibility of having two levels of realism in mathematics: the upper one,
the one of entities; and a subordinated ground one, the one of objects. The upper level
(entities) is more the one of ‘operations’, of mathematics in action, of the dynamics of
mathematics, whereas the ground floor (objects) is more dedicated to culturally well-
defined objects inherited from our perception of the physical or real world. I will show
that the upper level is wider than the ground level, therefore foregrounding the possi-
bility of having in mathematics entities without underlying objects. In the three exam-
ples treated in this article, this splitting of levels of reality is created directly by the
willingness to preserve different symmetries, which take the form of identities or equiv-
alences. Finally, it is proposed that mathematical Platonism is – in fine – a true branch
of mathematics in order for mathematicians to avoid the temptation of falling into the
Platonist alternative ‘everything is real’/‘nothing is real’.

Prelude

Repetition, Seriality, Temporality and Reality in Mathematics

It took a long time for mathematicians to realize that symmetry is temporal: some-
thing is symmetric because one can act on it repetitively without disturbing it.
Musicians were much faster is inventing symmetry, reverse symmetry, dilation,
i.e. group theory, just because time is intrinsic to music. So symmetry has to do with
temporality; it conforms perfectly to the triad of temporality, repetition and seriality:
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being the series of an infinite number of repetitions, which determines whether
something is truly symmetric. But temporality in mathematics questions the notion
of intrinsic realism: what is real in mathematics? And this refers immediately to
Platonism, as I shall develop below.

Symmetry is often thought as identity in mathematics, or more precisely as
conservation of identity (two parts of a symmetric object are equal). But this conser-
vation can be seen with respect to very different forms of temporality: exchanges of
paradigms, equivalence between objects of different types, symmetry between an
equation and its solutions, etc. In other words symmetry in intrinsic mathematics
calls necessarily for a precise notion of realism in mathematics.

Repetition, seriality and temporality are three concepts to be considered
carefully when looking at how they operate in the field of mathematics. To be
more precise, they act, at first glance, more naturally in a field, a space tied to
mathematics. This field surrounds them, mostly inspires them, but does not boil
down to them.

Repetition refers to the confrontation between identity and non-identity: to repeat
means that we repeat the same, the identical. Any change breaks repetition. Seriality
questions the possibility of decomposition of sequences, i.e. a succession of, say,
objects in their full diversity into identical ones: decomposition of diversity into
partial identity. Temporality addresses the phenomenon of successive actions param-
etrized by a ‘time’ belonging to an ordered set. The vocabulary used in this descrip-
tion of the three concepts is totally absent from mathematics. It rather belongs,
among others and to restrict the view to academic directions, to the natural sciences
or the philosophy of them. In other words, it belongs to real situations. In mathe-
matics, there is no intrinsic time, i.e. an ordered set of parameters indexing mathe-
matical objects; the question of identity (together with the strongly related concepts
of repetition and seriality) is supposed to have been defined and settled once and
for all in the mathematical concept of definition. From that naïve perspective,
too, the three concepts of Repetition–Seriality–Temporality do not seem to belong
to the core of mathematics. But they do in fact belong to mathematics, and in a
fundamental way, to some space of upstream and downstream mathematics.
Downstream is their domain of applications, such as physics, chemistry, biology,
economy – the list can be long. In short, we are talking of real situations. The field
upstream refers to the famous concept of Platonism in mathematics. Very broadly
speaking, if one took a Platonistic point of view, the mathematical results would be
located somewhere where the mathematician would catch them during his process of
research. And it would then be in this area, this ‘somewhere’ upstream from mathe-
matics, that Repetition–Seriality–Temporality in mathematics would be incarnated.
That is, upstream mathematics would be a kind of a closet where real objects
are placed and ordered by identity or chronology.

In conclusion, one can say, less naively than before, that the mathematical
pertinence of Repetition–Seriality–Temporality is definitively tied to the general
pertinence of realism in mathematics.
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1. Realism and (Different Levels in) Mathematics

When conceiving of the concept of realism in mathematics, one faces immediately
the necessity of considering the two actors involved, namely mathematics itself
and the mathematician. By mathematics itself, I mean the whole process of thinking,
elaborating, proving, stating mathematical results produced by the mathematician at
(mathematical) work (and not only the results themselves), and, by the mathemati-
cian, the mathematician in his action of looking at realism in mathematics.

What we are talking about by positing the existence of mathematics
(itself) independently from the mathematician consists of considering by ‘mathe-
matics’ the agent (including the mathematician at (mathematical) work for exam-
ple) responsible for the thinking of the doing of mathematics; and by ‘the
mathematician’ – the thinking of looking at mathematics. These two aspects,
although they both concern the mathematician as a human person, are very
distinct, especially when realism and Platonism are involved. They are even sometimes
opposites, as we shall see later. There are mathematicians who are Platonists in their
perspective on mathematics, although their own mathematics develop a non-Platonist
view in a sense of an ‘internal Platonism’ – as we propose to discuss in this text.

Mathematicians and realism: this conjunction appears a bit strange, a tentative
conciliation, since mathematicians have the reputation of being external to any trace
of reality. However, we will concentrate on realism insidemathematics. The question
we would like to address is whether there are entities without objects in mathematics
in the sense that we shall explain.

It is usually understood (though this may be wrong, in our opinion) that mathe-
matics (once again by this I mean the result of considerations and constructions of
the mathematician ‘at work’) consist of two separate parts: objects (so to speak) and
operations, i.e. transformations or a certain ‘cooking’ with the objects; the important
part conceptually being the objects (numbers, manifolds, algebraic structures, etc).
There is more: the dynamical operations leading to a mathematical statement have
the tendency to disappear at the moment when the statement is definitively settled.
Of course definitive, static statements often have a certain aesthetic in mathematics,
but what we would like to claim in this article, and prove on the basis of three exam-
ples taken from contemporary mathematics, is that this distinction between objects
and dynamical operations performed on them vanishes very often. In addition to
this, in mathematics, objects merge with operations made on them (for example even
numbers are numbers that can be divided by two) and these operations are entities
themselves (because in mathematics everything is precisely defined so that operations
are written in the same language as objects). It is therefore natural, in mathematics,
to try to better understand, to progress, by working directly at the level of these enti-
ties that are operations on objects, i.e. to perform ‘operations on these operations’
so to speak. In doing so, however, one sometimes reaches a point where there is no
underlying object any more. In other words, new operations without a clear idea of
what they are acting on. This might seem paradoxical but we will try to convince the
reader that such situations indeed exist in mathematics.
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Of course, the history of mathematics is long and there are plenty of instances
where the new object corresponding to these new operations was just hidden for a
while and eventually appeared in full light.1 Nevertheless, not being an historian,
we would like to concentrate on examples where this happens either intentionally
or because of a lack of strength of the technical tools the mathematician has currently
at their disposal. In the two cases, there is a mathematician at work who is aware of
what is going on. This ‘intentionality’ will play a key role in the notion of realism we
would like to exhibit in mathematics.

And indeed, and this will be a guide for our formulation of a possible ‘realism
without entities’. The mathematics of the twentieth century, far beyond the afore-
mentioned Platonism, seriously took under consideration this systematic exploration
(of operations on objects) through the corpus of what is nowadays called quantum
mathematics. But not only that. We will give two other examples from the theory of
differential equations.

Our title, ‘Mathematical entities without objects’, refers to the fact that realism in
mathematics can be seen as a feature, a product of the action of doing mathematics.
Could it be something else (Benoist 2011)? Mathematics, by the fact of doing some-
thing, is real, it is in some reality. But traditionally this is not what is considered as
realism, especially from a Platonist point of view: in mathematics one should distin-
guish between a ‘doing’, an action, and a ‘done’, a static result (of this action). And
then after this distinction, which is debatable according to us, comes the consider-
ation of the status of these ‘done’. Do they exist? Are they real? Or ‘just’ a product
of thinking? A weak solution of a partial differential equation (PDE), as we will see in
Section 2.3, is not an object given in its task of being a solution of a PDE. In fact,
it solves an equation in the sense that after the action of averaging against test func-
tions (a lot of them and only after this action), the equation is solved. So much work
to be done compared with the simple fact of looking at the solution itself, one might
say. Well, try to do better – if you can, you win one million dollars.2

The philosophical, epistemological scheme of what we just described and which we
will further develop in the next section is always the same: a ‘classical’, (culturally) very
well defined, mathematical object (such as an equation, a space, a partition of a space)
happens to be isomorphic to a mathematical entity of a very different nature (operations,
actions of these objects). The latter’s slight generalization (for example the suppression
of one of its axioms) not only breaks the given isomorphism, but also ruins any attempt
to make this modified entity isomorphic to any another ‘classical’ object.

Think of a second degree equation posed on real numbers. We all know that
sometimes a root can be complex, that is, it does not belong to the original space

1. An example is the case of group theory, born out of the study of the transformation of objects and
which actually is not restricted to the sciences (think for example of fugues in seventeenth- and eigh-
teenth-century theory and the practice of inversion and dilation of musical themes), before it takes off
as a theory of groups per se, that is, transformations of : : : nothing.

2. You will win one of the so-called ‘Millennium Prizes’ for showing the existence and uniqueness for all
times of the solutions of the equations of the hydrodynamics. An offer still valid at the time where this
article was completed.
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where the equation is settled. We know how to solve the problem: we define the
‘number’ i. Nowadays we can define the complex plane without having in mind
the original second-degree equation. But this was not the case when the number i,
satisfying i2 � �1, was invented, not being part of any set of numbers, merely a
notation. And which equation could be more symmetric than this one, where the
unknown is just multiplied by itself? What we learn by this example (and will learn
on the coming ones) is that the need of symmetry creates a new paradigm (the com-
plex numbers), a new reality.

The three examples of the next section will be comparable to the creation of
��������1p

outside the framework of complex numbers.

2. Three Key Examples

2.1. Dynamical Systems

Our first example deals with a quite new subject of mathematics: flows with low reg-
ularity properties.

The idea that the dynamical movement of rigid objects in our physical space
should result from solving differential equations is the great revolutionary discovery
of Newton. Let us try and put this in a nutshell as follows. Suppose our rigid body is
ideally reduced to a point, a point like the one you get by posing the extremity of your
pen on a sheet of paper. If you now draw a curve on the paper, you just draw the
successive positions of your ideal rigid body. Successive refers to time and positions
refers to space: at each moment the body occupies one point, and when times evolves
it follows a trajectory consisting of the different, successive, points of the drawn
curve. Exactly in the way you ask the internet the route from one town to another:
the answer is a curve on a map.

At each point of the curve you have drawn, you can draw a straight line tangent to
the original curve at the point you selected (the tangent to a curve at a chosen point is
obtained by taking the straight line passing through two points near the point you
chose and letting both points move towards the chosen point). This set of tangents
reflects the dynamical process which produced the curve: when you draw in a row a
curve, as you do spontaneously with a pencil of a sheet of paper, the curve you obtain
is very nice, regular, smooth. On the contrary, if you stop your drawing because your
phone rings or somebody touches your hand, the tangent will jump discontinuously
and the curve will present at this point an angle, a singularity. The same is true for
the online route finder: if you influence the dynamics of the process by asking, for
example, not to take highways, or to avoid centres of towns, or to get there the cheap-
est way, you will find abrupt changes of directions in your route.

The fundamental problem of the theory of dynamical systems, one of the most
productive fields in mathematics of the last century, consists of going the inverse
way: instead of first drawing the curve and then tracing the tangents at each point,
let us suppose that the dynamics is given first, that is, let us be given a straight line at
each point of your sheet of paper. Can we start at any point we wish to pose our pen
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and draw a curve, the tangent at any point of it being the straight line which was
given initially? And when this curve exists, another important question arises: is it
unique or can we draw two curves having the same distributions of tangents?
‘Existence’, ‘uniqueness’, we are entering slowly the vocabulary of mathematics.

The intuition is that these two questions (existence, uniqueness) should have both
a positive answer when the distribution of tangents is continuous: by this one means
that, moving a little bit the point on the sheet, the associated tangent should change
its direction just a little bit. The reader can have such an intuition by trying to draw a
curve by following a distribution of tangents.

But this intuition is wrong.
It was proven by the end of the nineteenth century that the distribution of tangents

must have a stronger property in order to allow the construction of a unique, nice
curve. Without defining it for the moment, let us name the extra-property that the
distribution of tangent must have the ‘Lipschitz continuity’. A natural question arises
immediately: what happens when this Lipschitz continuity condition is not satisfied
by the distribution of tangents?

It took more than one century to have an intimation regarding the answer to
this question (DiPerna and Lions 1989; Bouchut 2001; Ambrosio 2004) and we will
see that the answer necessitates that one destroy the underlying space. In order to
understand the philosophical ideas behind this a priori negative phenomenon, we need
to rephrase the preceding discussion in more mathematical language. But the non-
mathematician reader should not be afraid of the mathematical ‘vocabulary’ used
below, but should just concentrate on the (changes of) morphology of the syntax,
almost at a graphical level, and try to adopt low-level thinking ‘à la Teissier’ (2005).

Inmathematics (and in physics), a flow on a given space is defined, once again similar
to a roadmap provided by an online route finder, by a curve (i.e. the route on a map)
and a way of assigning to any value t the time a point X�t� in this curve (e.g.
0 hours: departure Paris, 2 hours: Tours, 3 hours: Poitiers, etc.). Such an assignment
is called in mathematics a function t ! X t� �. When consulting an online route finder,
you are asked certain constraints you wish your travel to satisfy. For example, youmight
decide not to pay any highway fees. The route finder will then decide to change brutally
the direction of your trajectory when you are about to meet a highway toll booth: the
tangent to your course will be modified and the trajectory will follow this new tangent
indication. In other words, a certain trajectory is assigned to a certain dynamics (e.g.
avoid fees). Such a dynamics is realized in mathematics by the fact of putting a vector
field on your space, that is to say a way of associating with each pointX a direction f �X�,
an (oriented) straight line, supposed to be the tangent of the trajectory at the point X.
The problem is then to find a curve with the requirement that at each point the curve is a
tangent to the direction assigned by the vector field at this point. It happens that solving
this problem consists mathematically of solving a differential equation written as

dX
dt

�t� � f �X�t��; X�0� � X0 (1)
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Here, X�t� is the point on the curve at time t and f �X�t�� is the direction (vector
field) at the point X�t�, as seen before. The new ingredients are X0, the point of de-
parture, which can be chosen in principle anywhere in the space considered, and what
is (a bit barbarically) denoted by dX

dt �t�, the ‘velocity’ on the trajectory at time t(see
the link with the definition of the tangent expressed earlier), a notion everybody
knows intuitively. The equality between the ‘velocity’ dX

dt �t� and the direction
f �X�t�� at each point X�t� is, in particular, the formalization of the statement ‘the
curve is tangent to the vector field’.

As we mentioned earlier, solving this problem in a unique way and for any initial
point X0 necessitates that the way f �X� depends on X is regular enough, not too hectic
(Lipschitz continuity): otherwise the curve might not exist or the problem might have
several solutions.

When the Lipschitz condition is not satisfied and replaced by a weaker hypothe-
sis, ‘BV’ regularity,3 it happens that equation (1) is still solvable in a unique way, but
only for almost all initial points X0, not all initial points X0. When we release the
Lipschitz condition, though equation (1) is still very cute, very smooth so that we
naively expect as before the solution to be smooth too, the actual solution is often
quite hectic: it still exists but only ‘almost everywhere’, not ‘everywhere’. What is
meant by ‘exists almost everywhere’? It means that if you select by chance an initial
point, then almost surely, with probability one, as one says in mathematics, every-
thing will go smoothly, as if the equation were more regular. But nothing prevents
you from picking as an initial point, ‘by chance’, one of these rare points where,
for example, two different trajectories (or even worse, none) can be born at the
same time.

The flow can then be defined to meet the requirements of the original task,
although not on the whole space but rather on an ‘almost everywhere’ defined space.
There is no trouble with that a priori: we know such spaces, real numbers deprived of
the rational numbers is such an example. But in our case, the set of remaining points
of our space is not known. Or equivalently the bad points are not known (contrary to
the rationals imbedded in the reals which are perfectly identifiable). But there is
more: the bad points of this ‘almost everywhere space’ can change if you compose
flows, that is, if you stop and restart again. A good point can happen to become bad,
and a bad one good. In fact nothing is known about that, except the fact that almost
all points are again good when you restart.

By identifying a ‘space’ by the entity consisting of all the trajectories which are the
solutions of a vector field’s equation, and not by an ‘object’ made of points given
(platonically?) a priori, you see that the two definitions merge when the vector field
is Lipschitz. But when the vector filed has only BV regularity, there is no ‘object’
counterpart to the ‘entity-like’ notion of space.

We have the two following diagrams.

3. The definition of BV goes beyond the scope of this text. Let us just mention that the two letters B
and V refer to ‘bounded variations’, which indicate that the vector field could be hectic but not totally
crazy.
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When the vector field f is Lipschitz,

When the vector field f has only BV regularity

There is no underlying object to this new entity.
In the case of Lipschitz vector fields, there was a symmetry/identity between the

two spaces where the equation and its solution were sitting: the two spaces were the
same. The willingness to preserve this symmetry in the non-Lipschitz situation leads
to a new type of space, a new paradigm, a new form of reality.

2.2. Quantum Mathematics

The, nowadays, quite popular notions of quantum groups and quantum (= noncom-
mutative) geometries have no underlying group or geometry-type objects.
Nevertheless, they fulfil completely, according to us, the paradigm of realism in
the sense that their structures provide an arsenal of study methods, comparable
to the ones available in the ‘classical’ situation.

How are they constructed?
A rigid body, a human body, a landscape, is a geometrical object, a manifold, per-

fectly understood if one knows enough drawings of it (it can be reconstructed from
them). There is no need to explain this fact experienced by all of us. What is a drawing?
It is a set of points on a sheet of paper. What does the action of drawing consist of? It
consists of assigning to each point of the (surface of the) body a point on the sheet, that
is, precisely, a function from the body to the sheet. A single drawing does not capture
the body entirely but, and Picasso understood this very well, several drawings do. This
beautiful fact turns into a theorem in mathematics: the set of all the functions on a man-
ifold (e.g. the surface of a rigid body) determine the manifold itself.4 Looking closely at

4. To be more precise: the algebra of continuous functions with values in the complex numbers deter-
mines a manifold.
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this statement, we see that stating (and using) it consists of building a higher level, as in
the preceding section. This theorem refers to a dynamical action (‘drawing, looking at’)
and to a formalism: it belongs definitively to the side of ‘entities’.

But identity (again identity) in mathematics allows the semantic shift:

‘determines’ ) ‘is’: a manifold ‘is’ the algebra of its functions.

This is a dynamical point of view, an operating one. And this algebra of functions
inherits from numbers a nice property: one can multiply functions like numbers. The
order in which you perform this operation is insignificant: one calls such an algebra a
commutative algebra since we can commute the different functions/drawings that we
multiply without changing the result. (It seems to us that this multiplication is truly
incarnate in the cubist’s portraits. On a single drawing one put/multiplies several dif-
ferent views of the body to be drawn. And, obviously, the order between the different
takes is insignificant.)

And, somehow evenmore importantly, the converse is also true: giveme any algebra
with this property, that is, any commutative algebra, then I can construct the underlying
manifold. This is the Gelfand Theorem (Gelfand 1941). We can start building our dia-
gram: at the lower level, the ground floor, we put what we would like to call, by con-
vention, objects such as a manifold, considered as a set of points. At the upper level we
put an alternative ‘entity’, the algebra of functions on the corresponding object.

We will now remove one property of the algebra, the commutativity. And we will
think about this displacement from commutative to noncommutative as a left to right
movement. By doing that we leave a commutative algebra, isomorphic to a lower level
object, the manifold, and we get a new algebra, noncommutative, with a priori no cor-
responding object under it, at the lower level. Nevertheless, this right-upper level exists
and inherits from the left-upper one all the properties you need, in principle, to gener-
alize the construction made at the lower level. The question is: can we move by staying
on the ground floor and construct an object that would be the classical object corre-
sponding to the new upper level? Can we move left/right by remaining at the
lower level?

Let us draw a picture.

The answer is: no!
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There is no manifold whose space of functions is noncommutative. But then, what
becomes of the arrow at the ground floor? The diagrammatic answer is the following:

The object ‘manifold’ joins the upper level and becomes the entity ‘noncommu-
tative algebra’, and by another semantic shift one can say:

a noncommutative manifold is a noncommutative algebra.

This presentation might let us think that the noncommutative manifold arrives in the
field of mathematics just by a fantasy of generalization that mathematicians are
known to be fond of. This is not true, and the most interesting situations where
the lower floor disappears are the ones in which this destruction is performed at
(by) the lower floor itself. The simplest case comes from the concept of quotient
space, which is defined as the set of families of elements of a space, a family being
the subset of elements sharing a certain property. For example, take a sheet of paper
and fill it completely by drawing straight lines on it. The quotient appears as the set
of such lines. The sheet itself is a sweet set of points, each line is itself a collection of
points. What about the quotient? Well, it is a fact in mathematics (only in mathe-
matics?) that the set of nice objects included in a nice object might be not nice at all.

This can be metaphorically visualized as follows: when you talk about a packet of
spaghetti, you mention in fact two different things. One is the set of the 250 grams of
flour its volume contains, the other is the set of 50 spaghetti it contains. The second is
the quotient of the first when you regroup the grams of flour sharing the property of
belonging to the same spaghetti. When the spaghetti are very well stored in the
packet, you can count the spaghetti and easily determine one from the other. But
drop the packet of spaghetti on the floor and try to count them without putting them
back into the packet.

The reader interested in going a bit further and treating her/himself a very simple
example, though totally meaningful, can try the following experiment.

Let him/her draw on a sheet of paper a (two-dimensional) torus. A torus takes the
form of a square whose facing borders are identified, so that each point on the left
side is taken as the same of the one on the right side with the same altitude. The same
construction should be done for the upper and lower sides. If one now draws an obli-
que straight line passing by the left-down corner and the middle of the right side, the
curve drawn by this method will be closed: one comes back to the original point after
two ‘rounds’ around the torus (do not forget that the right and left sides of the square
have been identified, so that when the straight line arrives to the right side, it has to be
continued by starting again at the middle of the left side). The line will pass two times
on the left side: first at its middle, second at the top (which is the same as the bottom
after identifying the upper and lower sides). If you now draw a parallel line starting
from any point in the lower left half-side, the same argument will apply and the line
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will cross again the left side only at a point in the upper half side this time. Therefore
one sees that any such straight line passes through one and only one point in the
lower left half-side, and to any such point passes one and only one straight line.
That is to say that one can label any such straight lines univocally by one point
on the lower left half side: the set of such straight lines is identified with the lower
left half-side. Everything goes well, the quotient we were looking at is just a piece of a
straight line, a nice geometrical object.5

But let us suppose now that one does exactly the same construction but without
taking care of how we choose the point where you are going to cross the right side. In
other words, let us choose this point randomly. ‘In general’, the drawn straight lines
will not be closed any more: you will not go back to the starting point but you will, in
general, miss it narrowly after many rounds (try this!), the line will intersect the left
side at an infinite number of points. But there is more: if you continue going around
the torus on this line, the set of these intersection points will accumulate everywhere
and become dense on the left side. If you now choose another starting point and draw
a straight line parallel to the latter, the set of intersections with the left side will look
exactly the same as the one for the first straight line, and you will not be able to dis-
tinguish which intersection point belongs to which straight line, although each point
of the left side belongs to one and only one of the two straight lines.

In mathematical language this means that, in general (namely, for almost all val-
ues of the slope of the straight line), the set of straight lines, still ideally well defined as
a set, is totally unreachable by any approximation, this last property reflects the
‘looks the same’ expressed before. Defining the set of drawn straight lines only as
‘a set’ is tautologically possible. But this view is unsatisfactory, as the simple drawing
shows, since one cannot differentiate any line from the other by its trace on the left
side. In fact, if one looks at the (algebra of) continuous functions on this set, one can
prove the following theorem:

Any continuous function on the quotient ‘space’, set of dense points, is constant
everywhere (it asserts the same number to all the points).

The set of drawings of our set, the algebra of functions on it, is reduced to trivial
ones, the ones making no differences between the points: i.e. a fully black drawing,
with not even a texture ‘à la Soulages’. Nothing. No classical structure, nothing. But
if we lift the whole construction we made on the lower level to the upper one, we find
that there is a possibility of describing and ‘understanding’ this space by identifying it
with a noncommutative algebra (Connes 1994). One can calculate, manipulate this
set-entity, construct a topology on it, although there is: no underlying object to this
new entity.

The symmetry/equivalence between manifolds and algebras is lost, but, by disap-
pearing, it creates the incredibly rich mathematical structure of quantum mechanics.

5. The attentive reader might have noticed that if we start the straight line from the very bottom of the
lower left half side, this line will cross the segment twice. But this means that the bottom and the
middle of the lower left half side are on the same straight line. They therefore have to be identified.
And the quotient is thereby not a segment but a segment with the two extremities identified (like in the
course of the construction of the torus on the sheet of paper), i.e. a circle, topologically.
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We insisted a bit heavily on the preceding construction not because we wanted to
torture the reader, but rather because we believe that it gives a quite faithful image of
the mathematician at work: tedious drawings, computations, failures, repetitions,
etc. – using and pushing to its very extremities a formalism leading to a new
paradigm. In a nutshell: the mathematical formalism is a formalism in action
(Benoist and Paul 2013a; Benoist and Paul 2013b).

In order to conclude this section, we would like to point out6 a clear difference
between the object–entity dialectic present in this article and the dynamics of ‘gen-
eralization–extension’ so familiar in mathematics, where, though widely generalized,
the underlying object never really disappears. An example of this in group theory is
already hinted at in Footnote 1: abstract groups are transformations of : : : nothing.
Yet, it happens that a very efficient way of studying groups is to let them ‘act’ on
different types of objects in the framework of representations theory. Let us give an-
other example: Analysis situs by Poincaré (1885) views objects as new entities but
without removing the lower level. Perhaps the upper level becomes more important,
the concepts of fundamental group and simplicial homology becoming even neces-
sary to an understanding of the underlying level, but the underlying object never
disappears.

2.3. Partial Differential Equations

Our last example will be a bit more technical and might be skipped by the uninter-
ested reader without affecting the comprehension of the core of this article.

Solving the Navier–Stokes equations, fundamental equations of hydrodynamics,
has up to now been limited to defining ‘weak’ solutions. In this section we would like
to show how this concept of weak solutions, which we are going to explain later on,
conforms perfectly to the notion of entity as it was defined before: it is an entity
considered as the solution (because the important fact here is that there is only
one), as a substitute to a ‘true’ solution; an object which is, for the Navier–Stokes
problem, still unknown and might never exist.

Let us be a little bit precise, without too much technicality (once again the reader
should not be afraid by the presence of equations whose precise meaning is irrelevant
for the purpose developed here). A partial differential equation (PDE) consists of a func-
tion u (the unknown), for example a function x ! u�x� as defined in Section 2.1 which
sends (real) numbers x to (real) numbers u�x�, an operator P : u ! P u� �, a ‘function’
with sends the ‘function x ! u�x�’ to another function P u� � : x ! P u� � x� �, and an
‘equality to zero’:

P�u� � 0 (2)

What is meant by this is that P�u� is a function. And one looks at a function u such
that P�u� is the null function, i.e. the function identically equals to zero: we want to
find the u such that P�u��x� � 0 for all numbers x.

6. This paragraph follows a demand of clarification by J. Brüning, J. Jost and B. Teissier.
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We see here a question arising concerning identity: ‘identically equal to 0’ means
what we just wrote. But checking something ‘for all numbers’ is a long task, a very
long task. And doing such a task patiently is boring and the risk of missing ‘some x’ is
high. An alternative way consists in taking averages of p�u� with a given probability
distribution. What does this mean? Just that we will add up the numbers u�x� defined
out of ‘almost’ all numbers x by weighting them according to the importance we want
to lend to each x – just as insurance or political survey companies do. The reader
might argue that we still miss some values of x through the concept of ‘almost’, in-
trinsic to the concept of average. The answer is that if we take all the averages with all
probability distributions then we determine the value of P�u��x� for all x. Actually,
the reason is very simple: take a probability asserting the maximal value to a number
x0 and the value zero to all others. Obviously, the corresponding average will be
equal to P�u��x0�. What else?

Taking the average of a function f with a probability distribution φ is written in
mathematics the following way7

Z
φ�x�f �x�ds

And what we just wrote can be formalized as

�P�u��x� � 0� ,
Z

φ�x�P�u��x�ds � 0 for all functions φ

� �
(3)

It is a matter of fact (a very unpleasant fact) that in many cases the mathematician
finds out that a prototype model of solution u she/he’s working on is such that, for
some few points y, P�u��y� is infinite and therefore cannot be properly defined.8 Of
course, in this case, u cannot pretend to be a solution of equation (2) as we just
defined, but these ‘bad’ points y are sometimes so few that, in the interest of proceed-
ing, we would like to be just able to ignore them for the moment. In order to do that
we first remark that, usually in these situations, these points are so few and so iso-
lated that they disappear when taking an average of the left hand side of equation (2).
But one does not want to take averages with all probabilities since, because of equa-
tion (3), this would be equivalent to equation (2). What to do?

7. The reader not familiar with infinitesimal calculus might remember that, when averages are taken
over integers numbers, one writes

P
i
φ�i�f �i�. The following notation (it is just a notation) is obtained

by formally ‘translating’
P
i
. . . to ∫ . . . dx.

8. In many cases, such as for the Navier–Stokes equations, the operator P when acting on u conveys the
speed of variation of the number u�x� when x varies just a little bit. This quantity becomes obviously
infinite at a point y where, e.g., u is not continuous, that is, where u has jumps. It can jump discon-
tinuously from one value to another one.
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It happens that solving the right-hand side of equation (3) by restricting it to some
special functions, called, meaningfully, ‘test functions’, is easier than solving the left-
hand side, namely equation (2).

We will say that u is a weak solution of equation (2) ifZ
φ�x�P�u��x�ds � 0 for all ‘test functions’ φ (4)

Why do we say that such a function u satisfying equation (4) is a weak solution of
equation (2)? Well because if u was a nice solution of equation (2), then equation (4)
would be true for every function, not only a test function and therefore equation (4)
would be equivalent to equation (2), as every function whose integration against
every function is equal to 0 is itself equal to 0.

We propose to define as ‘objects’ the contents of equation (2) and the bracket in
the right place in equation (3), and as ‘entities’ the brackets in the left place in equa-
tion (3) and the contents of equation (4). We have

�P�u� � 0�|�����{z�����}
object

,
Z

φ�x�P�u��x�ds � 0 for all functions φ

� �
|���������������������������������������{z���������������������������������������}

entity

and, since test functions are functions, after all,

�P�u� � 0�|�����{z�����}
object

)
Z

φ�x�P�u��x�ds � 0 for all ‘test functions’ φ

� �
|��������������������������������������������{z��������������������������������������������}

entity

But as we mentioned before

Z
φ�x�P�u��x�ds � 0 for all ‘test functions’ φ

� �
|��������������������������������������������{z��������������������������������������������}

entity

=)�P�u� � 0�|�����{z�����}
object

Under this last entity there is no clear existence of a true solution, nothing which
plays the role of the complex plane for the second degree equation. Equation (4)
is definitively different from equation (2), so:

No underlying object to this new entity9

9. Although we will not develop it here, let us make a link with sections 2.1 and 2.2 by mentioning that
we believe that we are facing here an epistemological shift: the geometrical space becomes a func-
tional space, i.e. a space of functions. For other studies of mutations of the notion of space, one
can consult Paul (2013).
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We get the two following diagrams.

Here also we see that it is the need of symmetry, taking the form of an equivalence
between entity and object in the good case (column on the left), which leads to an
identity: there is only the upper level in the column on the right.

3. The Three Examples Reunified: What Happened?

Let us resume the three diagrams corresponding to the three situations we discussed
earlier.

The three unanswered questions (or equivalently wrongly answered by a forced
essentialist-type answer: ‘;-nothing’)

were finally answered in an existentialist way by
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Objects disappear at the benefit of entities.

What Happened?

We claim that one attends here to a sort of mathematization of non-Platonism in the
following sense: not only are the mathematical entities somewhere and waiting to be
discovered (as being upstairs, over a non-existing ground floor), but they are not even
expressible by the standard essentialist language of mathematics available at the time
of their creation. And more than that, they influence language right up to its para-
doxical extremities: a noncommutative manifold is stricto senso a non-sense as there
is nothing in the definition of a manifold to be multiplied, commutatively or not
(check the definition on Wikipedia).

But how could mathematics be non-Platonist, even sometimes anti-Platonist, in itself
without being Platonic when viewed by the mathematicians? More precisely, if mathe-
matics did the job itself – that is, the job of inventing a new realism over the traditional
ones – it could just mean that mathematics itself is somewhere, i.e. that it happens to be
outside the thinking of mathematicians inside of which it could only be a construction.

The answer to this ‘paradox’ lies, according to us, in the finality of these entities
without objects, which is to compensate for the lack of a classical, standard definition
of underlying objects or to compensate for their lack of ability in solving an equation.
It is when they face a dead end that mathematics take off to the upper level: this
realism is not a new one, it is just the right one.

The realism of an equation lies in its solutions. In the case of a nice, gentle partial
differential equation (PDE) the solutions are nice functions on a nice space, and it is
to this space, this nice one, that they, the solutions, provide the status of realism. But
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for the Navier–Stokes equations, the solutions exist only in a weak sense (up to now-
adays), i.e. without a clear spatial counterpart. But if we set aside this lack of a ‘clear
spatial counterpart’, the situation is the same, one continues to do mathematics, to
compute, to estimate: realism = solutions. In fact:

What is space? It is the repository of a movement.
Do you see space? NO.
Do you see movement? YES.

The realism belongs to the movement, identified with a nice space in the
good situations, to an ‘almost everywhere’, a noncommutative one in the bad ones:
realism = movement.10 In the three situations examined in Section 2, realism lies on
the upper floor, isomorphic to the ‘natural’ object for the good situations, isomorphic
to itself, and only to itself, in the ‘bad’ ones. This is the meaning of the north-east
oriented arrows in the diagrams.

The essentialist diagrams do not commute, the existentialist ones do.

Intermezzo

Identity: Last Call for Immediate Boarding to Temporality!

Let us return to the theme evoked in the Prelude: Identity–Repetition–Seriality or, more
generally and synthetically, identity versus temporality. Indeed, discussing identity to-
gether with repetition–seriality seems to us like realizing an attempt to look at identity
versus temporality: repetition–seriality refers to identity in a temporality of repetition.

Naively, identity belongs to the ground floor and temporality (namely action,
process, dynamics) is located on the upper level. We tried to show in Section 3 that
temporality possibly creates a kind of non-existing objects that we named entities.
Weak solutions of PDEs, almost everywhere defined as flows, and noncommutative
manifolds are examples of such entities without clear underlying identified objects.
The word identified clearly refers to the concept of identity, a concept that disap-
peared from the lower level in such situations.

But one of the goals of mathematics, under the angle we chose to look at in this
article, is precisely to give an identity to these entities. Weak solutions, which
appeared first as worse options (or the worst solution), or as the lesser evil, are now-
adays perfectly identifiable: they acquired their own identity by themselves.

10. In the good cases, a solution of a PDE is ‘pushed’ by a flow: that’s what you see on a flowing river.
One identifies a stream of moving particles with a ‘push forward’, one identifies a flow with the solu-
tion of a PDE. The meaning of this is that one can solve some PDEs as in Section 2.3, by solving some
flow equations, that is by the theory of dynamical systems as in Section 2.1. When the motion, the
underlying flow is long, fast, chaotic, the movement is unbearable, impossible to see. What is left to be
apprehended are some geometric features (invariants), for example eddies. Therefore, in the chaotic
situations, the real space for dynamical systems consists of a set of geometrical objects quite similar to
the construction on the torus of Section 2.2: a quantum (noncommutative) one. And precisely the
solution of the PDE driving the quantum evolution (Schrödinger equation) conveys such a noncom-
mutative space of invariants when looking at large values of the size of the system and time of evo-
lution: realism=space of invariants. This last identification leads to a unified probabilistic view of
quantum and classical mechanics where quantum indeterminism and classical unpredictability merge
(Paul 2011, 1177–1182; Paul 2010, 219–232; Paul 2009a, 660–669).
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Identity jumped from the lower to the upper level.

The temporality of : : : nothing, happens to be only a transient phenomenon,
which, after taking off, creates its own identity. And in the three examples we treated,
it was the willing of preserving a type of symmetry/identity/equivalence which
was the strong engine responsible for this precious temporality which creates new
paradigms, new ‘levels’ in mathematical reality.

4. Platonism and Realism Revisited

Would we say that this would somehow put Platonism and Realism in duality:

the object belongs to the mathematician,
the entity to mathematics?

What is remarkable in the three examples studied in Section 2 is that there is no a
priori willingness behind the disappearance of the object. Nevertheless the replacing,
‘standing for’ entity is very often (supposed to be) just a tool, something the ontology
of which has to be fixed later. And, after all, it often happens that the new entity is as
comfortable to handle as the original object and the choice of the floor to sit in is
insignificant. More than that: it is insignificant whether there is a lower level or
not. The essentialist status of the ground floor does not matter (as did the existence
of a god for existentialists in Saint-Germain-des-Prés). A few questions arise.

• Would we therefore put the realism at the entities’ level defined earlier?
Yes, definitively, because entities are dynamical.

• Is there no need of talking of an (even not existing) underlying object?
• Are not the entities we are talking about just new objects?
• Is it the case in a pure abstract way?
Yes, strictly at a technical level.

But nevertheless, one continues to talk about a ‘space’, although it has disap-
peared: the entity replaced the object, but not quite for our mind since one continues
to remember the object. We talk about a noncommutative space (a non-sense, stricto
senso, as we saw before), a space defined almost everywhere, without any reference to
an immutable set and a weak solution, though the equation stricto senso is not any-
more solved.

Here again appears the Platonist paradox introduced in Section 3, which we
can revisit now: how is it possible to set a question of Platonism inside mathematics,
to criticize it, to let the mathematics decide, without being Platonist ourselves, wemath-
ematicians? After all, the mathematics could owe this very Platonist property of being
given first, and look nevertheless at themselves in a non-, an anti-Platonist way.

Definitively, an answer consists of overcoming this difficulty by being a non-
Platonist as mathematician; the only way, for us, to let go on the creation of these
non-Platonic mathematics. Otherwise realism, in the traditional sense of the word,
would be everywhere present and, through this, paradoxes would start to proliferate.
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More interestingly, can this conception of a form of realism strictly inside mathe-
matics be exported outside of mathematics? The noncommutative space is a space by
the fact that topology, among other things, can be defined on it. That is to say, it is its
own properties, the look one has on it, the way of indirectly handling it, which trans-
form an object into an entity, on which realism is real. Exporting this outside math-
ematics, into ‘real life’ so to speak, would constitute a fantastic issue,11 to be added to
the already long list of services rendered by mathematics to the human community.

Sonate que me veux-tu? Elle veut être écoutée. (A. Boucourechliev, Essai sur
Beethoven)

5. Synopsis

Five Key Ideas (Kinematics of the Article)

1. Realism inside mathematics leads to the question: is Platonism inside
mathematics?

2. Necessity in mathematics to dynamically reinterpret objects: probably one of
the lessons of twentieth-century mathematics.

3. Importance in mathematics of the formalism, formalism in action:
temporality.

4. Structure: extension without non-extended counterpart.
5. Without object: reference to a classical culture, but ‘tradition=trahison’ (tra-

dition=treason) and, in mathematical terms, the three diagrams at the begin-
ning of Section 3 never commute (as mathematicians say).

Five Key (E)motions (Dynamics of the Article)

Realism sits down at the (upper) floor of operations,
not at the (lower) floor of objects.

+
Sometimes you can go down, sometimes not.

+
The mathematics mathematize this idea

by making the upper floor precise.
+

The upper floor is the one of entities,
the ground floor the one of objects,

sometimes non-existing.
+

Entities are in a process of thinking, of operating, and
decide on their own Platonism

(existence or not of underlying objects).

11. For a similar attempt concerning mathematics versus music and mathematics versus quantum me-
chanics, the reader can consult Paul (2014, 71–77); Paul (2007); and Paul (2009b).
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Postlude

Mathematics versus Philosophy: The Other Way

We believe that this discussion offers the opportunity of considering an example of
interaction between mathematics and philosophy which goes ‘the other way’. Indeed,
the traditional discussion concerning Platonism involves mathematics as outside phi-
losophy, watched by it, and looks at what they do when creativity is in action: do
they invent or do they discover?

It seems to us that in the situations described in this article, which belong to recent
mathematics, everything works the other way. It is inside mathematics that the ques-
tion of discovering (something already existing, i.e. at the lower level) or creating
(something new, i.e. something which belongs only to the upper level) is considered.
A noncommutative manifold does not exist somewhere else than in the framework of
‘its’ noncommutative algebra of functions, that is, functions : : : on the (non-existing)
manifold itself.

By bringing mathematical Platonism inside their own interior, the mathematics
itself may well have closed the debate on its own reality.

Acknowledgement

The author would like to thank warmly Professor Fludernik, Dr Kerler, Professor
Middeke and Dr Riedelsheimer for their very careful readings of the manuscript.

References

Ambrosio L (2004) Transport equation and Cauchy problem for BV vector fields.
Inventiones Mathematicae 158, 227–260, https://doi.org/10.1007/s00222-004-0367-2.

Benoist J (2011) Éléments de Philosophie Réaliste: Réflexions sur ce que l’on a. Paris:
Vrin.

Benoist J and Paul T (2013a) Pour une phénoménologie du formalisme
mathématique. In Benoist J and Paul T (eds), Le Formalisme en Action:
Aspects Mathématiques et Philosophiques. Paris: Hermann, pp. 5–11.

Benoist J and Paul T (eds) (2013b) Le Formalisme en Action: Aspects Mathématiques
et Philosophiques. Paris: Hermann.

Bouchut F (2001) Renormalized solutions to the Vlasov equation with coefficients of
bounded variation. Archive Rational Mechanics Analysis 157, 75–90, https://doi.
org/10.1007/PL00004237.

Connes A (1994) Noncommutative Geometry. New York: Academic Press.
DiPerna RJ and Lions PL (1989) Ordinary differential equations, transport theory

and Sobolev spaces. Inventiones Mathematicae 98, 511–547, https://doi.org/10.
1007/BF01393835.

Gelfand IM (1941) Normierte Ringe. Recueil Mathématique [Matematicheskii
Sbornik] 9, 3–24.

Paul T (2007) La mécanique quantique vue comme processus dynamique. In
Joinet JB (ed.), Logique, Dynamique et Cognition. Paris: Publications de la
Sorbonne, pp. 99–115.

272 Thierry Paul

https://doi.org/10.1017/S1062798720000393 Published online by Cambridge University Press

https://doi.org/10.1007/s00222-004-0367-2
https://doi.org/10.1007/PL00004237
https://doi.org/10.1007/PL00004237
https://doi.org/10.1007/BF01393835
https://doi.org/10.1007/BF01393835
https://doi.org/10.1017/S1062798720000393


Paul T (2009a) Semiclassical analysis and sensitivity to initial conditions. Information
and Computation 207, 660–669, https://doi.org/10.1016/j.ic.2008.06.006.

Paul T (2009b) A propos du formalisme mathématique de la mécanique quantique.
‘Logique & Interaction: Géométrie de la Cognition’: Actes du Colloque et École
Thématique du CNRS ‘Logique, Sciences, Philosophie’ à Cerisy. Paris: Hermann.

Paul T (2010) Indéterminisme quantique et imprédictibilité classique. Noesis 17,
219–232, http://journals.openedition.org/noesis/1793.

Paul T (2011) Semiclassical approximation and noncommutative geometry.
Comptes Rendus Mathematique 349, 1177–1182, https://doi.org/10.1016/j.crma.
2011.10.011.

Paul T (2013) Le vierge, le vivace et le bel aujourd’hui: trois mouvements de la
structure espace vu des équations différentielles. In Benoist J and Paul T (eds),
Le Formalisme en Action: Aspects Mathématiques et Philosophiques. Paris:
Hermann, pp. 111–133.

Paul T (2014) Rigueur-contraintes: mathématique-musique. Gazette des Mathé-
maticiens 139, 71–77, https://hal.archives-ouvertes.fr/hal-00867275.

Poincaré H (1885) Analysis situs. Journal de l’École Polytechnique 1, 1–123.
Teissier B (2005) Protomathematics, perception and the meaning of mathematical

objects. In Grialou P, Longo G and Okada M (eds), Images and Reasoning.
Tokyo: Keio University, pp. 135–145.

About the Author

Thierry Paul is ‘Directeur de recherche’ at CNRS and member of the ‘Centre de
Mathématiques Laurent Schwartz’ at the Ecole polytechnique where he is responsible
for the team ‘Analyse et Équations aux Dérivées Partielles’. His domain of research
contains, among other things, analysis, partial differential equations and quantum
mechanics. He co-organizes exchanges between mathematicians and philosophers
within the Réseau Thématique Pluridisciplinaire ‘phenomath’ from CNRS.

Mathematical Entities without Objects 273

https://doi.org/10.1017/S1062798720000393 Published online by Cambridge University Press

https://doi.org/10.1016/j.ic.2008.06.006
http://journals.openedition.org/noesis/1793
https://doi.org/10.1016/j.crma.2011.10.011
https://doi.org/10.1016/j.crma.2011.10.011
https://hal.archives-ouvertes.fr/hal-00867275
https://doi.org/10.1017/S1062798720000393

	Mathematical Entities without Objects. On Realism in Mathematics and a Possible Mathematization of (Non)Platonism: Does Platonism Dissolve in Mathematics?
	Prelude
	Repetition, Seriality, Temporality and Reality in Mathematics

	1.. Realism and (Different Levels in) Mathematics
	2.. Three Key Examples
	2.1.. Dynamical Systems
	2.2.. Quantum Mathematics
	2.3.. Partial Differential Equations

	3.. The Three Examples Reunified: What Happened?
	What Happened?

	Intermezzo
	Identity: Last Call for Immediate Boarding to Temporality!

	4.. Platonism and Realism Revisited
	5.. Synopsis
	Five Key Ideas (Kinematics of the Article)
	Five Key (E)motions (Dynamics of the Article)

	Postlude
	Mathematics versus Philosophy: The Other Way

	Acknowledgement
	References
	About the Author


