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Abstract While the classification project for the simple groups of finite Morley rank is unlikely to
produce a classification of the simple groups of finite Morley rank, the enterprise has already arrived
at a considerably closer approximation to that ideal goal than could have been realistically anticipated,
with a mix of results of several flavors, some classificatory and others more structural, which can be
combined when the stars are suitably aligned to produce results at a level of generality which, in parallel
areas of group theory, would normally require either some additional geometric structure, or an explicit
classification. And Bruno Poizat is generally awesome, though sometimes he goes too far.
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1. Introduction

Bruno Poizat is associated, among other things, with broadening the scope of the theory
of groups of finite Morley rank to the level of stable groups [17], in keeping with the
general trend of the development of model theory from Morley to Shelah. But this has
not prevented him from taking an active interest in such aspects of the theory as are
associated more particularly with the case of finite Morley rank, and in particular the
algebraicity conjecture of Zilber and the present author: a simple group of finite Morley
rank is algebraic. In particular he joined with Borovik in one of the early manifestations
of the project of bringing the techniques of finite group theory to bear on this problem, in
an article on Sylow theory entitled ‘Tores et p-groupes’ [6], two topics which, for p = 2,
will be central to our discussion on this occasion. The 2-Sylow theory became the basis of
a vigorous programme of close analysis, reminiscent of substantial portions of the much
larger and more elaborate developments leading to the classification of the finite simple
groups, and over time has achieved results considerably exceeding our initial hopes for
these methods, in part because of advances on the model theoretic side, notably Wagner’s
work on fields of finite Morley rank [18].

As a result, enough is known about simple groups of finite Morley rank to give useful
information about connected groups of finite Morley rank generally, particularly those
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containing involutions. We will illustrate this point by discussing two problems of a very
general character where the structure theory can be usefully applied even though the
algebraicity conjecture remains unresolved. The first of these problems was proposed by
Poizat, as an example of a question which, while trivial in an algebraic group, seemed
out of reach of the theory of groups of finite Morley rank. Namely, suppose a connected
group of finite Morley rank is generically of finite exponent, in other words the equation

xn = 1

holds generically (on a set of full Morley rank). Does this same equation then hold
identically? In an algebraic group, or whenever there is a reasonable topology in sight,
this is clearly the case, by density and continuity. This problem of Poizat is a contender
for the title of the simplest thing we do not know about groups of finite Morley rank.

The peculiar efficacy of the known structure theory with respect to the prime 2 allows
us to solve Poizat’s problem completely when n is a power of 2, and more generally to
reduce to the case of odd n. But even in this special case, the analysis requires some
consideration of p-groups for all primes p. Fortunately, there are parts of the theory of
torsion in connected groups of finite Morley rank which hold quite generally, notably
those involving p-tori (divisible abelian p-groups).

Accordingly, after presenting the relevant part of the structure theory for connected
groups of finite Morley rank (§ 2), in a considerably condensed form, we will discuss its
application to this problem of Poizat (§ 3).

Going in a quite different direction, Borovik proposed a problem in the theory of
permutation groups of finite Morley rank which appeared to call for structural analysis
of a similar kind. The problem is the following: bound the rank of a definably primitive
permutation group of finite Morley rank in terms of the rank of the set on which it acts.
Recall that a permutation group is primitive if it preserves no non-trivial equivalence
relation; it is natural to work with the definable version of this notion in our category.
Using structure theory, one can indeed prove the existence of such a bound. The bound
obtained is quite weak, but to achieve any bound at all appears to require some structural
analysis, just as many results in finite permutation group theory appear out of reach
except via the classification of the finite simple groups. This parallel goes fairly far: in
finite group theory, the starting point for the analysis of primitive permutation groups
is an analysis due to O’Nan, Scott and Aschbacher of the structure of the socle, and this
has been carried over to our context by Macpherson and Pillay [16].

In that analysis, quite general arguments reduce the problem to what may be called
the generically multiply transitive case. A permutation group is t-transitive if it acts
transitively on t-tuples of distinct elements from the underlying set. The ‘generic’ version
of this notion requires that there be at least one generic orbit in this space. The key to
the solution of Borovik’s problem lies in bounding the degree of generic t-transitivity in
terms of the rank of the underlying set. This can be done by first bounding the Morley
rank of a maximal 2-torus and then using this to control the parameter t [4] (§ 4).

Coming back to the structure theory itself, as opposed to its applications, I would like
to examine two ingredients of that theory which have been quite active in recent years,
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namely the theory of Carter subgroups, and the use of genericity arguments (§§ 5,6). The
use of genericity arguments goes back to the earliest work on ‘bad groups,’ but they
have played an increasingly central role of late. The role of Carter subgroups is a little
less clear, and partly conjectural at this point. What these topics have in common is an
obsession with conjugacy theorems or their more model theoretic counterparts, generic
covering theorems.

It may seem odd that partial results on the algebraicity conjecture can yield any sort
of general results at all. The first explicit, and practical, suggestion as to how this might
actually be achieved is found in Altınel’s habilitation [1]. This largely determines the
form in which we present the structure theory, as we shall see next.

2. Connected groups of finite Morley rank

In the present section we set out a structure theory for connected groups of finite Morley
rank. This includes a user-friendly repackaging of a portion of the known results on the
classification of simple groups of finite Morley rank. Our formulation captures somewhat
more than half of what is currently known about the algebraicity conjecture; the balance
does not fit into the framework we have chosen here.

2.1. Fundamental notions

We consider a group G of finite Morley rank. The Morley rank of a definable set X is
denoted rk(X). A definable subset X of G is generic if rk(X) = rk(G).

The notion of connectivity may be defined in two distinct, but fortunately equivalent,
ways. Namely a group G is said to be connected if

• there is no proper definable subgroup of G of finite index;

• the intersection of two generic subsets is generic.

With the first definition, it is easy to show that G contains a unique definable connected
subgroup of finite index, denoted G◦. When one already has a connected group in hand,
it is the second definition which is useful.

If X is an arbitrary subset of G (by no means required to be definable) we let d(X)
be the subgroup of G definably generated by X, that is the smallest definable subgroup
of G containing X. If we write 〈X〉 for the subgroup generated by X in the usual sense,
we have d(X) = d(〈X〉), and in the context of algebraic groups this would be the Zariski
closure of 〈X〉.

One can extend the notion of connectivity to groups which are not necessarily definable
as follows: H◦ = H ∩ d(H)◦.

2.2. p-tori and p-unipotent groups

For p a prime, and P a p-group, we say that P is a p-torus if it is divisible abelian,
and P is p-unipotent if it is definable, connected, of bounded exponent, and nilpotent.

These notions are of value for all primes p, but of particular value for p = 2 in view of
the following.
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Theorem 2.1. Let S be a maximal connected 2-subgroup of a group G of finite Morley
rank, not necessarily definable. Then S has the following structure:

U ∗ T,

where U is 2-unipotent and T is a 2-torus.

Maximal connected 2-subgroups of G are referred to as Sylow◦ 2-subgroups; they are
all conjugate. In this structure theorem, the product U ∗ T is a central product: the
factors commute, and in addition have finite intersection.

In algebraic groups, the structure of Sylow◦ 2-subgroups depends on the characteristic
of the base field: in characteristic two they will be unipotent (S = U , T = 1) and in
other characteristics they will be 2-tori (S = T , U = 1). It is therefore natural to adopt
the following classification of groups of finite Morley rank according to the structure of
the Sylow◦ 2-subgroup.

• Even type: S = U .

• Odd type: S = T .

• Mixed type: U, T > 1.

• Degenerate type: S = 1.

The study of simple groups of finite Morley rank goes very much according to this
classification, with different methods being applied in each case. We will not dwell on
this here, as for our purposes a much coarser classification is appropriate. Namely, we
will ask only whether the group G does, or does not, contain a non-trivial 2-torus. In
the absence of non-trivial 2-tori we have very good structural information, and in their
presence matters are less clear. One can however make some good use of the 2-torus
itself, as we shall see.

2.3. Main results

Suppose that G is a connected group of finite Morley rank.

Definition 2.2.

• O2(G) is the largest normal unipotent 2-subgroup of G.

• U2(G) is the subgroup of G generated by its unipotent 2-subgroups.

• Ô(G) is the largest connected normal definable subgroup of G of degenerate type.

The main structural result is the following.

Theorem 2.3 (groups without 2-tori). Let G be a connected group of finite Morley
rank containing no non-trivial 2-torus, and suppose O2(G) = 1. Then

G = U2(G) ∗ Ô(G).

Furthermore, U2(G) is a product of simple algebraic groups over algebraically closed
fields of characteristic two, and Ô(G) contains no involutions.
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This has the following useful consequence. We say that a group G is of unipotent type
if it contains no non-trivial p-torus, for any p.

Corollary 2.4. Let G be a connected group of finite Morley rank of unipotent type.
Then G/O2(G) contains no involutions.

When the group in question contains a non-trivial 2-torus we lack such definite struc-
tural information. However the following result holds quite generally.

Theorem 2.5 (Cherlin [11]). Let G be a connected group of finite Morley rank. Then
the generic element of G belongs to C◦(T ) for some unique maximal 2-torus T .

Of course, in the absence of 2-tori this says nothing; but then our structural result
applies.

The foregoing is more or less everything needed for the applications considered later,
but we will go into more detail below. And we will refer to some of these details in the
sequel.

2.4. Groups without 2-tori

The structure theorem for groups without non-trivial 2-tori (Theorem 2.3) incorpo-
rates a great deal of information about simple groups of finite Morley rank in even and
degenerate types. The two main ingredients are as follows.

Theorem 2.6.

(1) A simple group of finite Morley rank of even type is algebraic.

(2) A connected group of degenerate type contains no involutions.

The first result, on groups of even type, is proved by a close structural analysis heavily
inspired by parts of the classification of the finite simple groups as well as the amalgam
method. The published articles in this direction assume the group in question has no
simple definable sections of degenerate type. As we have mentioned, Altınel’s habilitation
pointed the way toward the ‘absolute’ result given here. Implementing that required
making major changes in some of the earlier analysis, in some cases invoking [18], and
making at least minor changes in the remainder. One point that emerged in this, most
clearly in [2], was the importance of ‘good tori’, to which we return below. Only portions
of the analysis can be found in the journal literature. A full account is given in [3].

The result on groups of degenerate type has a short and self-contained proof inspired in
part by techniques from ‘black box’ group theory [7]. Another way of stating this result
is as follows: if a connected group of finite Morley rank contains an involution, then it
contains an infinite 2-subgroup.

2.5. Good tori

The proof that a simple group of even type is algebraic came in three waves. In the
first instance, two extra hypotheses were imposed: that the group in question has no non-
trivial definable simple sections of degenerate type, and that it interprets no ‘bad fields’;
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this second hypothesis came to be eliminated fairly quickly and so the first wave was
rapidly engulfed by the second, retaining the hypothesis on degenerate type sections. As
noted above, the practical possibility of eliminating the latter hypothesis was opened up in
[1], whose implementation was found to depend on the results of [18], most conveniently
expressed in terms of the notion of a good torus.

Definition 2.7. A definable divisible abelian subgroup T of a group of finite Morley
rank is a good torus if every definable subgroup of T is the definable hull of its torsion
subgroup.

These tori have the following excellent rigidity properties, which follow fairly directly
from the definitions.

R-I: N◦(T ) = C◦(T ).

R-II: any uniformly definable family of subgroups of T is finite.

R-III: if H is any definable section of the ambient group G, then any uniformly definable
family of homomorphisms from H to T is finite.

Furthermore, the result of [18] can be expressed in the following terms: the multiplica-
tive group of a field of finite Morley rank and positive characteristic is a good torus.

In [11] the following conjugacy theorem is proved, making heavy use of all three rigidity
properties.

Theorem 2.8. Let G be a group of finite Morley rank. Then any two maximal good
tori of G are conjugate.

This theory was applied in the analysis of even type groups in [2] in the following form.

Corollary 2.9. Let F be a uniformly definable family of good tori in a group of finite
Morley rank G. Then under the action of G, F breaks up into finitely many conjugacy
classes.

Proof. As mentioned, maximal good tori are conjugate in G and hence we may fix one
such, T , and assume that the tori in the family F are all subtori of T . At this point F
is finite, by property R-II. �

The finiteness result needed in [2] was actually proved first, and the more general for-
mulation given as Corollary 2.9 was subsequently disengaged from the particular context
in which it first arose.

The good tori which actually come into consideration are the tori in copies of SL2(K)
sitting inside the ambient group G, where K has characteristic two (so that Wagner’s
result applies). We will say more on about this in § 6.2.
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2.6. Groups of unipotent type

As we have seen, if G is a connected group of finite Morley rank of unipotent type,
then G/O2(G) has degenerate type, and this follows from the general structure theory
for groups without 2-tori, which depends on a very elaborate analysis of all simple groups
of even type. But this particular result also has a direct proof, given in detail in [8]. We
will sketch that proof here.

Let U be the connected component of a Sylow◦ 2-subgroup of G. As G has unipotent
type, U is unipotent and in particular definable. We claim U = O2(G), or in other words
we must show that G = N(U).

One may suppose G is a minimal counterexample. Let M = NG(U). One argues that
M has the property of strong embedding : for g ∈ G, if M ∩ Mg contains an involution,
then g ∈ M . By a well-known and elementary group theoretic argument, if M < G then
this implies that all of the involutions of U are conjugate under the action of M .

But on the other hand, if one studies the action of the connected group M◦ on U

by conjugation it follows that M◦ = UC◦(U). In the contrary case one could extract a
section of U on which a connected section of M acts like a multiplicative subgroup of a
field, and then in consequence of [18] this group must be a good torus, and thus contain a
non-trivial p-torus for some p. But this contradicts the assumption that G has unipotent
type.

Now it suffices to put these two facts together: M◦ acts trivially on the involutions of
Z(U), while if M < G, then M acts transitively on the same set, forcing the unipotent
group U to be trivial. But then M = G in any case.

2.7. Maximal p-tori

The result given earlier for p = 2 actually holds more generally.

Theorem 2.10. Let G be a connected group of finite Morley rank, and p a prime. Then
the generic element of G belongs to C◦(T ) for some unique maximal p-torus T .

Let us focus on the following variant.

Theorem 2.11 (Tp). Let G be a group of finite Morley rank, T a p-torus, and H =
C◦(T ). Then the union of the conjugates of H is generic in G.

This quite properly puts the emphasis on the group H, and the bulk of the argument
is aimed at establishing the following points.

Lemma 2.12. With the notation of Theorem 2.11, the group H has the following prop-
erties.

• H is almost self-normalizing (i.e. H = N◦(H)).

• H is generically disjoint from its conjugates (i.e. H \(
⋃

H [G\N(H)]) is generic in H).

The work comes in the derivation of the second property, which we pass over. Given
that, the rest of the argument is entirely soft.
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Lemma 2.13 (genericity lemma). If G is a group of finite Morley rank and H a
definable subgroup which is almost self-normalizing and generically disjoint from its
conjugates, then

(1)
⋃

HG is generic in G;

(2) for X ⊆ H, the set
⋃

XG is generic in G if and only if
⋃

XH is generic in H.

After a time, one gets tired of repeating the phrase ‘the union of the conjugates is
generic in G’. It was Jaligot who first got sufficiently tired of this form of words to
introduce a shorter term.

Definition 2.14. A definable subset X of G is generous in G if the union of its conjugates
is generic in G.

We may rephrase our genericity lemma as a generosity lemma.

Lemma 2.15 (generosity lemma). If G is a group of finite Morley rank and H

a definable subgroup which is almost self-normalizing and generically disjoint from its
conjugates, then

• H is generous in G;

• for X ⊆ H, the set X is generous in G if and only if it is generous in H.

That’s better!
Now it is time to look at Poizat’s problem and see if we have learned anything.

3. Generic equations

3.1. The result

Conjecture 3.1. Let G be a connected group of finite Morley rank which satisfies the
equation

xn = 1

generically. Then the equation holds identically.

We have the following partial result, and somewhat more.

Theorem 3.2. Let G be a connected group of finite Morley rank which satisfies the
equation

xn = 1

generically, with n a power of 2. Then the equation holds identically.

The more general form reads as follows.

Theorem 3.3. Let G be a connected group of finite Morley rank which satisfies the
equation

xn = 1
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generically, and write n = 2knO with nO odd. Then we may decompose G into a central
product as follows:

G = U ∗ G1

with U 2-unipotent and so that G/U satisfies the equation

xnO = 1

generically.

In other words, one may suppose n to be odd.

3.2. The analysis

Under the hypotheses of Theorem 3.3, the proof takes place in two stages, as follows:

• G contains no non-trivial p-torus;

• G = U ∗ G1 where U is a 2-group of bounded exponent and G/U contains no
involutions.

Most of the work goes into the first point, after which the second is a modest refinement
of Corollary 2.4. So let us see how the first point is argued.

Suppose on the contrary that G contains a non-trivial p-torus, and let Tp be a maximal
one, and T = d(Tp), H = C◦(Tp). We then obtain, successively:

• xn = 1 generically in G;

• xn = 1 generically in H;

• xn = 1 generically in some coset Ta with a ∈ H;

• xn = 1 generically in T ;

• and a contradiction.

The transition from the first point (our assumption) to the second point is most clearly
expressed by the generosity lemma (Lemma 2.15). The passage from the second to the
third is a sort of Fubini principle (or additivity of rank). From the third to the fourth we
use the fact that a and T commute.

And that is all there is to it.

4. Permutation groups

We consider permutation groups as structures (G, X) consisting of a group G, a set X,
and a faithful action of G on X. And we will always suppose that the permutation group
under consideration has finite Morley rank.
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4.1. The main result, and a special case

Definition 4.1. A permutation group (G, X) is definably primitive if there is no non-
trivial G-invariant definable equivalence relation on X.

The result we aim at is the following.

Theorem 4.2 (Borovik and Cherlin [4]). Let (G, X) be a definably primitive per-
mutation group of finite Morley rank. Then the rank of G is bounded by a function of
the rank of X.

This leads us directly to the notion of generic multiple transitivity.

Definition 4.3. Let (G, X) be a permutation group of finite Morley rank. The action is
generically t-transitive if there is an orbit of G in Xt which is generic in Xt.

A generically t-transitive group has rank at least t rk(X), so bounding this parameter
t in terms of rk(X) is certainly an essential part of the problem. In fact one can show
that the whole problem reduces to this. So we will focus on this special case.

Theorem 4.4. There is a function τ such that for any definably primitive and generically
t-transitive permutation group (G, X) with rk(X) = r, we have

t � τ(r).

4.2. A bound on t

We discuss the proof of Theorem 4.4. So let (G, X) be a definably primitive permutation
group of finite Morley rank.

The first point is to get some control over divisible torsion subgroups of G, and this is
expressed as follows.

Lemma 4.5. If T is a definable divisible abelian subgroup of G and T∞ is its maximal
definable torsion free subgroup, then

rk(T/T∞) � rk(X).

The point here is that if a point of X is generic over the torsion subgroup of T , then
the stabilizer of that point is torsion free and hence contained in T∞. The lemma follows.

What remains after this is to show that the parameter rk(T/T∞) grows with the degree
of generic transitivity of G.

Using general results on definably primitive permutation groups due to O’Nan, Scott
and Aschbacher in the finite case and Macpherson and Pillay in our context [16], one
comes down eventually to the case in which G is simple. If G contains no non-trivial
2-torus then it is algebraic in characteristic two, and in particular its maximal torus T

is a good torus, so T∞ = 1 and we have a bound on the rank of T , giving us a bound
on both the rank of the underlying field, and the Lie rank of the group, from which one
may bound the Morley rank of the group.

So we focus on simple groups with non-trivial 2-tori. In that case if we assume a high
degree of generic multiple transitivity, then after some maneuvering we may consider the
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definable hull of a maximal 2-torus, not in G, but in the point stabilizer of a suitably
chosen and not too large (compared to t) set of points in X, and the generic multiple
transitivity will give us something like an action of the symmetric group Symn on this
torus with a little effort. We say ‘something like’ for two reasons: really the group acting
is some finite group which has the symmetric group as a quotient, and secondly it is not
clear that the action is faithful. This question of faithfulness is an important one, and
the analysis bifurcates at this point.

• If there is a faithful action of a group like Symn (with n large) then this can be
used to blow up the rank of T/T∞; this takes some argument but is intrinsically
very plausible.

• On the other hand, if there is no such action then the situation becomes delicate
again. We will take this up separately.

In dealing with the second point we need to be more explicit about what our setup
is and how we actually choose the point stabilizer of interest to us. Let x1, x2, . . . be a
sequence of t independent generic points in X. Rather than working in the original group
G, we want to work in the connected component of the stabilizer of some initial segment
of these points, and then consider the subgroup stabilizing a further n points (where n

is proportional to t). Call these two groups H and H0. The main point is that one can
choose these groups so that a maximal 2-torus of H0 is maximal in H; in other words, the
maximal 2-torus in successive point stabilizers cannot decrease steadily. Now by generic
t-transitivity the group H will induce an action of Symn on the n points whose stabilizer
in H is H0, and thus on H0, and with a little adjustment also on a maximal 2-torus
of H0.

This then sets us up to apply the following specialized result on torsion in connected
groups of finite Morley rank, which says that this induced action is faithful.

Lemma 4.6. Let G be a connected group of finite Morley rank with no unipotent
2-subgroup, and let T be a maximal 2-torus of G. Then T contains all the 2-elements
in C(T ).

This is a sharp statement, implying for example our earlier claim that connected degen-
erate type groups have no involutions, and its proof develops that line of analysis further.
There is a good deal of related work on torsion in groups of finite Morley rank, notably
recent work of Altınel, Burdges, Deloro and Frécon.

5. Carter subgroups

5.1. Carter subgroups and their kin

Definition 5.1. Let G be a group of finite Morley rank. A Carter subgroup of G is a
connected definable nilpotent subgroup which is almost self-normalizing in G.
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Theorem 5.2 (Frécon and Jaligot [13]). A group of finite Morley rank has a Carter
subgroup.

The existence proof uses Burdges’s ‘graduated’ unipotence theory (viewed upside down,
and equally legitimately, as a graduated semisimplicity theory). The general idea is to
take the most semisimple (and, simultaneously, largest) group one can find among all
connected nilpotent groups, building it up by degrees.

The role that should perhaps be played by Carter subgroups in our theory is often
fulfilled in an approximate way by the subgroups C◦(T ) with T some sort of torus
(e.g. maximal good). That there is some underlying logic to this is suggested by a result
of Frécon.

Theorem 5.3 (Frécon [12]). Suppose the group G involves no bad groups and no bad
fields, and T0 is a maximal divisible torsion subgroup of G. Then C◦(T0) is a Carter
subgroup.

5.2. Generosity and conjugacy

One would like to know that Carter subgroups are also generous and conjugate. This
is rather more than is really needed however. What one really would like to know is that
some Carter subgroups are generous, and that those are conjugate; one would then be
entitled to build in the generosity condition as part of the ‘right’ definition of Carter
subgroup.

A step in this direction has been taken by Jaligot.

Theorem 5.4 (Jaligot [15]). Let G be a group of finite Morley rank, and Q1, Q2

Carter subgroups. If both are generous in G, then they are conjugate.

Frécon has proved the conjugacy of Carter subgroups in minimal simple groups. These
issues take us deeply into the theory of degenerate type groups, in particular, a subject
which for a very long time seemed entirely shrouded in mystery.

This takes us a little outside the part of the theory that we can really apply at this
stage, but as Theorem 5.3 suggests, this is the setting we would like to be in.

6. Generosity arguments

As we have noticed, generosity arguments have been used in our subject from the earliest
work on bad groups to some of the most recent work on Carter subgroups. As the level
of generality at which we work has increased, we have been led to rely more and more
on such arguments, and correspondingly a little less on special features of the theory of
solvable groups or algebraic groups.

We have already seen one of the basic methods used, in the generosity lemma
(Lemma 2.15). The method is a little more versatile than that particular formulation
would suggest, but the essence of the method is there. On the other hand, actually get-
ting to the point of being able to apply that method usefully generally involves plunging
into some quite tightly prescribed configurations that arise here and there in various
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classification problems. I would like to open this up a bit and actually examine three
such specific situations a little more closely; they have all been touched on above. I have
the following three cases in view.

(1) Degenerate type groups.

(2) Weak embedding.

(3) Toricity arguments.

6.1. Degenerate type groups

We will discuss the role played by generosity arguments in the proof that a connected
degenerate type group G of finite Morley rank contains no involutions. Proceeding induc-
tively, one may suppose that any proper definable connected subgroup contains no invo-
lutions.

There are three points to be established.

(1) We may suppose G is simple.

(2) A Sylow subgroup of G is elementary abelian.

(3) And then a final contradiction.

For the first point, the claim is not that our minimal counterexample G is necessarily
simple, but that Z(G) is finite and Ḡ = G/Z(G) is again a minimal counterexample, and
simple. The delicate point here is the proof that G/Z(G) will still contain an involution,
if G does. We will not dwell on this point now; but observe that it should not be passed
over as obvious!

The second point is proved by a generosity argument, and this is the one on which we
will elaborate.

The third point is the core of the argument, and exploits an idea from black box group
theory. By good fortune, it leads to a precisely opposite conclusion to the second point.
One may interchange these two steps, as the arguments involved are entirely independent
of one another.

Let us then take up the task of showing that in our minimal counterexample the Sylow
2-subgroup, which is in any case finite (that is what degenerate type means), is elementary
abelian. Or in other words, we must show that there are no elements of order 4.

The key points are these.

Lemma 6.1.

(1) For any two distinct non-trivial 2-elements t, t′ ∈ G, the cosets tC◦(t) and t′C◦(t′)
are disjoint.

(2) For any non-trivial 2-element t ∈ G, the coset tC◦(t) is generous in G.
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These two points together show that all 2-elements of G have the same order, as
otherwise we have two disjoint generic subsets of G. For the first point, if a ∈ tC◦(t),
then easily t is the unique 2-element in d(a) ∩ tC◦(t), and the claim follows. So we come
down to the generosity argument needed for the second point, which is a variation on
the basic generosity lemma (Lemma 2.15). Namely, the coset tC◦(t) has the following
properties:

• N◦(tC◦(t)) = C◦(t);

• distinct conjugates of tC◦(t) are pairwise disjoint.

The notation N◦(tC◦(t)) is unusual, but we interpret N(tC◦(t)) as the stabilizer of
tC◦(t) under conjugation. Since t is the unique 2-element in tC◦(t), the first property is
immediate. And the second property is a special case of the one just discussed above.
Now an easy rank computation suffices:

rk
( ⋃

[tC◦(t)]G
)

= rk(G/N(tC◦(t))) + rk(tC◦(t))

= rk(G) − rk(C◦(t)) + rk(C◦(t))

= rk(G)

and the union is generic.

6.2. Weak embedding

In a series of four articles Altınel and I took up the line proposed in his habilitation
and reworked the first chapter of the classification of K∗-groups of even type, which had
already been carried out twice under successively weaker side conditions. The more or
less descriptive titles of the first three papers in this series gave way to a more evocative
title in the fourth: ‘Limoncello’. If one takes these articles in order then the situation
should be clear enough by the time one hits the fourth. But I propose to plunge into the
fourth, take a look around, and see what sort of generosity argument comes into play. At
this point one finds good tori on the scene.

The setting for the whole series which ends with ‘Limoncello’ is a so-called uniqueness
case, specifically the case of weak embedding. One has a simple group G of finite Morley
rank of even type, all of whose proper definable simple sections of even type are algebraic,
and one has in addition a proper definable subgroup M which is weakly embedded in the
sense that for g ∈ G:

M ∩ Mg has an infinite Sylow 2-subgroup if and only if g ∈ M.

The aim of the four articles is to show that G ∼= SL2 (with M a Borel subgroup).
Now a weakly embedded subgroup has the following property: for any non-trivial 2-

unipotent subgroup U of M , the normalizer N(U) is contained in M . This sort of condi-
tion has been referred to as a ‘black hole’ property. It tends to nerf standard approaches
to analysing group theoretic configurations, and one needs to prepare special tools to
deal with such extreme situations.
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At the stage of analysis that concerns us, we already have a normal definable ele-
mentary abelian subgroup A � M with M/C◦(A) containing no involutions. This is
compatible with what is expected in the target group but leaves the structure of C◦(A)
completely up in the air.

One expects in a general way to build a copy of SL2 inside the group G, after which
one would show this group is in fact all of G. This suggests that we would be spending
some time on the particular configuration in which SL2 occurs as a proper subgroup of
G. As so often happens, it is convenient to choose the case division a little subtly. The
case at which one arrives, at the end, is actually the following:

There are two distinct conjugates A1, A2 of A in G for which H = C◦(A1, A2) > 1. (∗)

In this situation we set L = 〈A1, A2〉 � C◦(H) < G and then we find easily that
L ∼= SL2 (essentially, by induction). It is this more tightly constrained configuration
that needs to be handled separately—and at this point we are no longer looking for an
identification of G, but for an outright contradiction.

Now in looking at the treatment of this in [14], one notices that a key point is to
consider a maximal torus T of L, its conjugates in G, and more particularly those of
its conjugates lying in M . The latter turn out to be conjugate also under the action
of M . This part of the argument originally made use of the fact that M was known to be
solvable, a point which is no longer available at our current level of generality. However
the tori we are looking at are good tori, and so we have a problem relating to conjugacy
of good tori. In particular we know on completely general grounds, namely Corollary 2.9,
that this family breaks up into finitely many conjugacy classes under the action of M .
As mentioned earlier, the arguments given for this in the first draft, in fact the first
n − 1 drafts, of ‘Limoncello’ were more ad hoc, but pointed in the direction of the more
abstract result.

The various rank computations that take place afterward, with this finiteness result
in hand, will not be rehearsed here. For a while one can use the finiteness result to get
slightly weakened forms of the estimates in [14]. These are not actually strong enough
to take us to the end of the analysis, but they are strong enough to allow us to show
ultimately that the number of conjugacy classes of the relevant tori under the action of
M is in fact just 1, after which one more or less returns to the main line of the older
analysis, mutatis mutandis.

This is of course a highly technical business, but we have the advantage at the outset of
knowing the role played by similar results in finite group theory, as well as the experience
gained in two previous waves of analysis in the context of groups of finite Morley rank.

6.3. Toricity

The fact that connected degenerate type groups have no involutions turns out to be
the leading edge of the study of p-torsion in groups of ‘p⊥ type’: by this, we mean groups
containing no non-trivial p-unipotent subgroups. For p = 2, these are the odd type and
degenerate groups, and that is the case which most concerns us.
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A p-element is called ‘toral’ if it belongs to a p-torus. In a number of concrete configu-
rations in simple groups of finite Morley rank, one prefers to work with toral involutions,
and the others play a ghostly role in that they never actually appear inside proper con-
nected subgroups of the ambient group (where most of the analysis actually takes place).
Needless to say, this leads to technical issues, and as it turns out they can all be avoided
in the configurations that actually arise.

Theorem 6.2 (Burdges and Cherlin [10]). Let G be a connected group of finite
Morley rank and p⊥ type. Then every p-element is toral.

One gets as a corollary the useful Lemma 4.6, which came up in our discussion of
definably primitive groups of finite Morley rank, in its general form.

Corollary 6.3. Let G be a connected group of finite Morley rank and p⊥ type, and let
T be a maximal p-torus of G. Then T contains all the p-elements in C(T ).

Proof. Let a ∈ C(T ) be a p-element, and T0 a maximal p-torus of G containing a. Then
T and T0 are maximal p-tori of C(a), and are therefore conjugate under the action of
C(a). As a ∈ T0 it follows that a ∈ T . �

The point of this discussion is that once more generosity arguments play a large role
in the proof of the toricity theorem (Theorem 6.2). This time we proceed as follows. We
have a p-element a ∈ G, and we consider a generic maximal p-torus of C◦(a), and the
group H = C◦(a, T ) = C◦(〈a, T 〉).

If a ∈ H then one looks at the image of a in H̄ = H/T , where H̄ is ‘p-degenerate’
(which for p = 2 is the degenerate case). As in the case p = 2, something quite special has
to be done in that base case, but at the moment we are more interested in the induction
that moves us onward to the general case, so we will let that go.

So suppose a /∈ H. The claim then is that

the coset Ha is generous in G. (∗∗)

Now for any element g ∈ Ha, the group d(g) is not p-divisible. On the other hand,
one can show using our previous generosity results for centralizers of p-tori that exactly
the opposite holds in any group of p⊥ type. So the generosity statement (∗∗) suffices to
conclude the proof of the toricity theorem.

This generosity statement should have a familiar look to it by now, and the proof runs
much as usual: the coset Ha is almost self-normalizing and generically disjoint from its
conjugates, in the appropriate sense, as in the last subsection. We will not run through
the details here, and accordingly the choices we have made with some precision in our
set-up will not be justified here. Needless to say, such choices need to be managed with
care, and tend to reflect specific features of the configuration under consideration.

7. Conclusion

I would like to stress once more what this article is, and is not, about. It is certainly
not about the algebraicity conjecture as such, though most of our discussion is firmly
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anchored in work originally undertaken in the light of that conjecture. Along the way, and
mainly in the last few years, results of considerable generality have been brought to the
table, sometimes by judicious improvement on a known recipe, as in the case of Altınel’s
habilitation, with a dash of new model theoretic ingredients (Wagner), and sometimes
by elaborating on improvisations which appeared first as responses to the needs of the
moment.

There is a large body of work on groups on odd type which has been undergoing
transformations of a very similar kind. While the issue of ‘bad fields’ was more or less
eliminated from the scene in groups of even type at an early stage, it is only with Burdges’s
thesis [9], that this issue began to come under control in the odd type setting, and it
still simmers on as something of a challenge at each further step in this direction. And a
strategy to provide ‘absolute’ results on groups of odd type without first clearing up the
situation in degenerate type is not presently in sight (at least, not during one’s waking
moments).

As I have said, I chose to focus here on what is for me the least expected side of
the theory: the possibility of cooking up some very general conclusions, taking a very
incomplete structure theory as the source of all ingredients. In this casserole, it may be
observed, there lingers the distinct aroma of three generations of Lyonnaise cuisine.
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12. O. Frécon, Carter subgroups in tame groups of finite Morley rank, J. Group Theory
9(3) (2006), 361–367.
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