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Abstract

Copy number variations (CNVs), as an important source of genetic variation, can affect a
wide range of phenotypes by diverse mechanisms. The somatostatin receptor 2 (SSTR2)
gene plays important roles in cell proliferation and apoptosis. Recently, this gene was mapped
to a CNV region, which encompasses quantitative trait loci of cattle economic traits including
body weight, marbling score, etc. Therefore, SSTR2 CNV may exhibit phenotypic effects on
cattle growth traits. In the current study, distribution of SSTR2 gene CNVs was investigated
in six Chinese cattle breeds (XN, QC, NY, JA, LX and PN), and the results showed higher
CNV polymorphisms in XN, QC and NY cattle. Next, association analysis between growth
traits and SSTR2 CNV was performed for XN, QC and NY cattle. In NY, individuals with
fewer copies showed better performance than those with more copies. Further, the effects
of SSTR2 CNV on the SSTR2 mRNA level were also investigated, but revealed no significant
correlation in either muscle or adipose tissue of adult NY cattle. The results suggested the
potential for use of SSTR2 CNV as a marker for the molecular breeding of NY cattle.

Introduction

Copy number variation (CNV) is a variation in genomic sequence that ranges from 50 bp to
5 Mb. Compared with a reference sequence, CNV includes insertions, deletions and duplica-
tions (Mills et al., 2011; MacDonald et al., 2014). Numerous CNVs have been routinely iden-
tified using various genome analysis platforms, including single nucleotide polymorphism
(SNP) genotyping platforms (Di Gerlando et al., 2019), array comparative genomic hybridiza-
tion (aCGH) (Zhang et al., 2014) and next-generation sequencing (Xu et al., 2017). These
studies have been performed in humans (Altshuler et al., 2010; Mills et al., 2011), mice
(Guryev et al., 2008; Yalcin et al., 2011), pigs (Wang et al., 2013a, 2014), horses (Doan
et al., 2013; Kader et al., 2016; Corbi-Botto et al., 2019), cattle (Jiang et al., 2013; Yang
et al., 2017a), goats (Fontanesi et al., 2010; Liu et al., 2018; Zhang et al., 2019) and chickens
(Wang et al., 2010). Over the past decades, significant progress has been made in mapping
SNPs and insertions/deletions (Indels), the lengths of which are much smaller than those of
CNVs, but there is less comprehensive annotation of CNVs (Pang et al., 2010). Although
SNPs have a disadvantage in quantity, CNVs make up a higher proportion of genomes
compared with SNP (Yang et al., 2017b). Additionally, CNVs can have potential effects on
phenotypic variation through various molecular mechanisms including gene interruption,
gene fusion, gene dosage, position effects, unmasking of recessive alleles or functional poly-
morphisms, and transvection effects (Zhang et al., 2009). Overall, the variations in copy number
distributed in the genome also represent a major source of genetic and phenotypic variation
among individuals (Sebat et al., 2004; Beckmann et al., 2007), and are associated with the occur-
rence of several diseases, especially some cancers (McCarroll and Altshuler, 2007).

Somatostatin receptor 2 (SSTR2), a seven-transmembrane-domain protein receptor, has
two isoforms (SSTR2A and SSTR2B) which belong to the family of transmembrane
G-protein coupled receptors (GPCRs) and play important roles in cell signal pathways by
binding the somatostatin ligand. In detail, GPCRs include five members (SSTR1, SSTR2,
SSTR3, SSTR4 and SSTR5). In the 1990s, the five members were successfully cloned in
humans (Yamada et al., 1992a, b, 1993) and found to share DNA sequence coding for a trans-
membrane region (Heron et al., 1993). Among these five somatostatin receptors, SSTR2 is
mainly expressed in the cerebral cortex, the pituitary and adrenal glands in humans, and it
was reported to exert anti-proliferative and pro-apoptotic effects by the negative regulation
of the Wnt/β-catenin pathway (Buscail et al., 1995; Chen et al., 2009; Wang et al., 2013b).

The bovine SSTR2 gene is located at chr19: 58716920-58723781 (UMD_3.1.1), with an
1107 bp sequence that encodes a 368 amino acid protein. The SSTR2 gene has been identified
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in important quantitative trait loci (QTLs) such as somatic cell
score, milk fat yield, abomasum displacement, marbling score,
calving ease, scrotal circumference and body weight (yearling)
(Fig. 1) (Boichard et al., 2003; Bennewitz et al., 2004; Moemke
et al., 2008; McClure et al., 2010). In a previous study, the
SSTR2 gene was mapped to a CNV region called CNVR317 in
Chinese cattle by application of aCGH (Zhang et al., 2014). The
results suggested that SSTR2 CNV is a phenotype-associated
variation, but this has not been demonstrated conclusively.
In the current study, quantitative polymerase chain reaction
(qPCR) was used to detect the SSTR2 CNV for six Chinese cattle
breeds. Additionally, the significant effects of SSTR2 CNV on the
phenotype were identified in 431 individuals from three breeds.

Materials and methods

Study populations and trait records

The probes used in the previous aCGH experiment are shown in
Fig. 2. In that study, eight individuals including three Qinchuan
cattle, three Nanyang cattle and two Luxi cattle were selected to
detect the CNV of SSTR2 (Zhang et al., 2014). In the current
study, preliminary verification of CNVs was first performed on
the representatives of six cattle breeds, and then the intergroup
distributions of SSTR2 CNVs were examined for six multi-variety
panels. The selected cattle were Jian cattle (JA, n = 30), Qinchuan
cattle (QC, n = 30), Nanyang cattle (NY, n = 30), Luxi cattle (LX,
n = 30), Pinan cattle (PN, n = 30) and Xia’nan cattle (XN, n = 30),
and were reared in Jiangxi, Shaanxi, Henan, Shandong, Henan
and Henan provinces, respectively. Given the CNV polymorph-
isms of the six breeds, three populations, QC, NY and XN breeds,
were scaled up for association analysis. The subject animals were
weaned at 6 months old, fed ad-libitum on concentrated diet and
maize–maize silage diet and given straw until about 2 years old.
The animals used for association analysis were unrelated for at
least the past three generations. Growth records of the XN, QC
and NY animals were collected for association analysis (Gilbert
et al., 1993). In XN cattle (n = 216), the withers height, body
weight, body oblique length, chest girth, hip width, paunch
girth and cannon bone circumference were measured for cows

and oxen (24 months old). In the QC breed (n = 105), withers
height, body weight, body length, hip width, chest girth, chest
width, chest depth, thurl width, hucklebone width and rump
length were measured for adult cows at 2 and 3.5 years old. In
NY cattle (n = 110), withers height, body weight, body oblique
length, chest girth, hucklebone width and average daily gain for
different growth periods (0, 6, 12, 18, 24 and 36 month(s) old)
were determined for cows.

Genomic DNA and total RNA isolation

To perform expression profiling analysis of SSTR2 gene, three
adult NY cattle (24 months old) which exhibited no adverse
health conditions were selected for tissue collection, including
heart, liver, spleen, lung, kidney, skeletal muscle and adipose tis-
sue. To make an association analysis between genotypes and
expression, skeletal muscles and adipose tissue samples of adult
NY cattle (n = 23) were collected for RNA and DNA isolation.

Genomic DNA from blood and tissue samples was isolated
according to standard procedures (Sambrook et al., 2001). The
total RNA was extracted by Trizol reagent according to the man-
ufacturer’s instructions (TaKaRa, Japan). The RNA integrity was
detected by agarose gel electrophoresis and RNA purity was deter-
mined by A260/A280. The synthesis of cDNA was performed
using the PrimeScript RT reagent kit (TaKaRa, Japan). The
diluted standard concentration of DNA and cDNA samples was
50 ng/μl and the samples were stored at −20 °C.

Determination of SSTR2 gene copy numbers

The copy number of SSTR2 was detected by qPCR through com-
parison with the reference gene, ribonuclease P/MRP subunit p30
(RPP30) (Hindson et al., 2011), widely recognized as a reference
gene with two copies, and primers were designed using Primer
5 software (Table 1). The qPCR reactions were performed as
described (Liu et al., 2016). The standard curve method (using
six serial dilution points) indicated similar amplification efficien-
cies of target and housekeeping genes. Finally, 431 animals
including XN (n = 216), QC (n = 105) and NY (n = 110) cattle

Fig. 1. Various QTLs associated with SSTR2. Colour online. Note: Using R software, data from Animal QTLdb and NCBI.
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were used for further analyses. The copy number was calculated
according to 2−ΔΔCt, and data were rounded (Shi et al., 2016).

The effects of SSTR2 copy number variations on gene
expression

Expression profiling of SSTR2 was analysed by qPCR in different
tissues, including heart, liver, spleen, lung, kidney, skeletal muscle
and adipose tissue. The actin beta (ACTB) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) genes were selected as the
reference genes (Olias et al., 2014). The skeletal muscles and adi-
pose tissue of the adult NY cattle (n = 23) were also subjected to
analysis by qPCR, which was done the same way as used for the
expression profiling. Primer information is listed in Table 1, and
relative expression levels were calculated as 2−ΔΔCt.

Statistical analyses

A full statistical model was first used and then a reduced statistical
model was used in the final analysis. The full statistical model
contained fixed effects of copy number, age, sex, management
group, birth season, farm and paternal effects. In the reduced stat-
istical model, management group, birth season, farm and paternal
effects were not used as factors, given their no significant effects
on phenotypic variation. Thus, the reduced model was as follows:

Yijkl = u+ Ai + Sj + CNVk + eijkl

where Yijkl represents the growth measurements, u is the overall
mean of a given trait, Ai is the fixed effect due to ith age, Sj is
the fixed effect due to jth sex, CNVj is the fixed effect of kth

CNV type of SSTR2, and eijkl is the random residual error. The
data for different species gave different parameters in the model
(for XN, Ai = 0; for QC and NY, Sj = 0).

In the current study, CNVs were grouped into three classes:
gain, copy number > 2; median, copy number = 2; loss, copy
number < 2. These assessments allowed the classification of
copy number measurements into discrete values of ‘Gain’, ‘Loss’
or ‘Median’, sometimes referred to as ‘genotypes’ of samples, as
an extremely general form of CNV analysis (Xu et al., 2013; Liu
et al., 2016; Yang et al., 2017b). Raw copy-number measurements
were classified into such general ‘calls’, which can lead to the loss
of important information from the original data (McCarroll and
Altshuler, 2007). Given the rarity of individuals with copy num-
ber ⩾6 compared to the individuals with lower copy number,
copy numbers (0, 1, 2, 3, 4, 5 and ⩾6) were also fitted as genotype
levels in the model for association analysis. The general linear
model in SPSS (Inc., Chicago, IL, USA) was used for association
analysis of SSTR2 CNVs with growth traits. The proportion of
phenotypic variation that was explained by CNV (R2) was deter-
mined by partial correlation analysis using the reduced statistical
model (Rauch et al., 2010).

Results

Copy number variation polymorphisms of SSTR2 in six Chinese
cattle breeds

In a previous study, the cattle SSTR2 gene was mapped to
CNVR317 using aCGH and the customized probes were finely
dispersed in this region (Fig. 2). Signal alterations of five or more
continuous probes were detected and defined the DNA segment
as a CNV. Therefore, as shown in Fig. 3, the SSTR2 CNV

Fig. 2. Schematic diagram of the mapped aCGH probes for cattle SSTR2 gene. Note: The SSTR2 gene sequences were obtained from the cattle UCSC Genome (Bos
Tau 4.0). CHR19FS060519741-Chr 19: 58710608–58710657; CHR19FS060523063-Chr 19: 58713930–58713980; CHR19FS060526494-Chr 19: 58717235–58717293;
CHR19FS060529772-Chr 19: 58720513–58720562; CHR19FS060533197-Chr 19: 58723903–58723952; CHR19FS060536527-Chr 19: 58727233–58727283;
CHR19FS060539941-Chr 19: 58730647–58730696.

Table 1. PCR primer sequences of the cattle SSTR2 gene for qPCR in the current study

Gene Primer number Primers(5′−3′) Fragments

SSTR2 – CNV P1 F：CTCTTCGGTCTCAGTGGC 216

R: CGGGATTTGTCCTGCTTA

RPP30 – CNV P2 F：TGCTTCCATTGTTTCCTGATGA 96

R: TGGGACCAGGTTCCATGATC

SSTR2 – mRNA P3 F：TGCCAACCCTATCCTCTAT 121

R: GTCCTGCTTACTGTCACTCC

ACTB – mRNA P4 F：GTCATCACCATCGGCAATGAG 84

R: AATGCCGCAGGATTCCATG

GAPDH – mRNA P5 F：CGACTTCAACAGCGACACTCAC 119

R: CCCTGTTGCTGTAGCCAAATTC
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polymorphisms were first validated by qPCR in 180 individuals
from six Chinese cattle breeds (30 cattle per breed). In detail,
XN, QC and NY cattle showed higher CNV polymorphisms in
SSTR2 loci than that of JA, LX and PN cattle. Based on this initial
finding, the population sizes of QC, NY and XN were enlarged for
further analysis. As illustrated in Fig. 4, SSTR2 CNV polymorph-
isms exhibited a normal distribution. The highest frequency was
observed for 2, 3 and 4 copies, respectively, in XN (94/216), QC
(42/105) and NY (25/110) breeds, suggesting that the phenotypic
effects of SSTR2 CNVs may be highly variable in these three breeds.

Associations between SSTR2 copy number variations and
growth traits in Chinese cattle

Three Chinese native cattle breeds, XN (n = 216), QC (n = 105)
and NY cattle (n = 110), were used to analyse the association
between SSTR2 CNVs and growth traits. Table 2 shows an over-
view of the association of SSTR2 CNVs with chest girth in NY cat-
tle. In detail, the NY cattle with loss type of CNV had larger chest

girths than those with the medium type (P < 0.05). From the data
presented in Tables 3 and 4, no significant differences were
detected in XN and QC cattle (P > 0.05). Next, the influence of
different copy numbers on growth traits was analysed (Tables 5
and 6). The results presented in Table 5 were generally in agree-
ment with the analysis of CNV types in NY cattle, in which copy
numbers were significantly correlated with growth traits of chest
girth (P < 0.01). Consistently, individuals with 0 copies had larger
chest girths than those with more copies of the CNV. In XN cattle,
the SSTR2 copy numbers also had a significant effect on chest
girth (P < 0.01), but the 4 copy was the advantageous variant
type (Table 6). Above all, the data indicated that SSTR2 CNV
had effects on chest girth in NY and XN cattle. Additionally, as
shown in Table 7, the SSTR2 CNV had no effects on QC growth
traits (P > 0.05). Notably, the CNV explained 6.4% variance of
chest girth in the NY population.

Correlation analysis of SSTR2 copy number variation and
mRNA expression level

The current study firstly investigated the correlation of mRNA
level and SSTR2 CNVs. First, expression profiling was performed
for seven tissues, heart, liver, spleen, lung, kidney, skeletal muscle
and adipose tissue samples from NY cattle. As shown in Fig. 5, the
mRNA of SSTR2 was widely expressed in adult cattle tissues. The
highest abundance was observed in adipose tissue, suggesting that
SSTR2 has great effects on adipose tissue.

Because the quality of beef was an indicator in cattle breeding and
the highest expression of SSTR2 was seen in adipose tissue, muscle
and adipose tissue were selected for sampling. The correlation of
SSTR2 CNVs with mRNA expression levels was analysed based on
data from 23 adult NY cattle. It can be seen from the data presented
in Table 8 that the copy numbers ranged from 1 to 3, with variation
in mRNA expression both in muscle and adipose tissue, ranging
from 0 to 6. However, no correlations were observed by analysis of
these data (Pmuscle = 0.118 and Padipose = 0.209).

Discussion

With improvements in living standards, the demands for beef
quantity and quality continue to grow. Marker-assisted selection
(MAS) could compensate for traditional breeding methods to
help meet the needs of consumers. For MAS, critical molecular
markers need to be discovered and exhibit potent usage in
genomics-assisted breeding programmes. Cao et al. (2018)
reported that extracting causal genes underlying economic traits
from QTL using the candidate gene method is a central strategy
utilized in livestock breeding (Cao et al., 2018). So far, common
DNA sequence variations, such as SNP and Indels, have been
widely used in genome-wide association studies. These
approaches have allowed the identification of both critical and
independent QTLs; these QTLs have enriched a larger variety of
causal effects in the genome (Zheng et al., 2017; Huang et al.,
2019).

In the current study, the SSTR2 CNV was found to be located
in important QTLs (Boichard et al., 2003; Bennewitz et al., 2004;
Moemke et al., 2008; McClure et al., 2010), which implies that
SSTR2 CNV may be an important causal mutation for growth
traits. In a previous CNV study by aCGH, cattle SSTR2, the full
length of which is 6862 bp, was mapped to CNVR317 and located
between probes CHR19FS060526494 and CHR19FS060529772.
The probes in CNVR317 (chr19: 58598786-59376845, UMD

Fig. 3. Copy number distributions of the SSTR2 in detecting panel calculated by
2−ΔΔCt. Note: QC (n = 30), Qinchuan cattle; NY (n = 30), Nanyang cattle; XN (n = 30),
Xia’nan cattle; LX (n = 30), Luxi cattle; JA (n = 30), Jian cattle; PN (n = 30), Pinan cattle.

Fig. 4. Copy number frequencies of the SSTR2 in large experimental groups calcu-
lated by 2−ΔΔCt. Colour online. Note: QC (n = 106), Qinchuan cattle; NY (n = 111),
Nanyang cattle; XN (n = 217), Xia’nan cattle. Histograms show the frequency of indi-
viduals with different copy number. Copy numbers were rounded to the nearest
integer.
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3.1.1) were finely dispersed, with a high density of about 30
probes per million bases. In the current study, specific primers
were designed for SSTR2 to validate the CNVs in six Chinese cat-
tle breeds. The copy numbers in XN, QC and NY cattle were more
dispersed than that in JA, LX and PN cattle. Accordingly, associ-
ation analysis was conducted in XN, QC and NY cattle.
Interestingly, individuals with low copy number showed better

performance than the median and high copy number groups
for chest girth in NY cattle. Although classifying copy number
measurements as discrete values of ‘Gain’, ‘Loss’ or ‘Median’ in
each sample is a standard practice in CNV analysis, this approach
may lose some information that is present in the original mea-
surements. Consequently, the copy numbers (0, 1, 2, 3, 4, 5 and
⩾6) were also fitted as fixed factors with seven levels in the

Table 2. Association between SSTR2 CNV types with cattle stature in NY cattle

Growth traits

CNV types (LSM ± S.E.)

P valueLoss Median Gain

Withers height 119.6 ± 0.76 121 ± 1.0 119.9 ± 0.53 0.497

Body weight 260 ± 3.6 256 ± 4.9 251 ± 2.5 0.125

Body oblique length 126.9 ± 0.84 127 ± 1.1 126.6 ± 0.59 0.817

Chest girth 157a ± 1.1 153b ± 1.5 155.1ab ± 0.76 0.041

Hucklebone width 23.5 ± 0.27 23.5 ± 0.37 23.5 ± 0.19 0.999

Different letters in the same row mean significant difference (a, b: P < 0.05; A, B: P < 0.01). CNV, copy number variation; NY, Nanyang cattle; LSE, least square means; S.E., standard error.

Table 3. Association between SSTR2 CNV types with cattle stature in XN cattle

Growth traits

CNV types (LSM ± S.E.)

P valueLoss Median Gain

Withers height 137.5 ± 0.65 136.9 ± 0.68 135.6 ± 0.71 0.087

Body weight 558 ± 7.9 562 ± 8.2 558 ± 8.5 0.851

Body oblique length 159 ± 1.0 160 ± 1.1 159 ± 1.1 0.501

Chest girth 199 ± 3.7 206 ± 3.8 210 ± 4.0 0.148

Hip width 140.7 ± 0.54 139.7 ± 0.56 139.2 ± 0.58 0.168

Paunch girth 217 ± 3.7 217 ± 2.1 214 ± 2.4 0.685

Cannon bone circumference 25 ± 1.9 24 ± 2.0 24 ± 2.1 0.940

CNV, copy number variation; XN, Xia’nan cattle; LSE, least square means; S.E., standard error.

Table 4. Association between SSTR2 CNV types with cattle stature in QC cattle

Growth traits

CNV types (LSM ± S.E.)

P valueLoss Median Gain

Withers height 130 ± 2.0 129 ± 1.5 130.4 ± 0.99 0.671

Body weight 436 ± 21.9 431 ± 16.0 440 ± 10.7 0.797

Body length 139 ± 2.8 139 ± 2.0 140 ± 1.3 0.771

Hip width 127 ± 2.1 127 ± 1.5 128 ± 1.0 0.740

Chest girth 184 ± 3.6 182 ± 2.6 183 ± 1.7 0.854

Chest width 40 ± 1.6 40 ± 1.2 39.6 ± 0.78 0.977

Chest depth 65 ± 1.6 65 ± 1.2 64.8 ± 0.77 0.993

Thurl width 42 ± 1.3 44.1 ± 0.92 44.2 ± 0.61 0.253

Hucklebone width 24 ± 1.5 24 ± 1.1 23.5 ± 0.73 0.728

Rump length 45 ± 1.0 43.5 ± 0.76 44.1 ± 0.51 0.523

CNV, copy number variation; QC, Qinchuan cattle; LSE, least square means; S.E., standard error.
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Table 5. Association between SSTR2 copy numbers with cattle stature in NY cattle

Growth traits

Copy numbers (LSM ± S.E.)

0 1 2 3 4 5 6 P value

Withers height 117 ± 1.5 120.4 ± 0.85 121 ± 1.0 121.0 ± 0.96 118.9 ± 0.77 121 ± 1.2 119 ± 1.3 0.118

Body weight 255 ± 7.4 262 ± 4.1 256 ± 4.9 261 ± 4.6 245 ± 3.7 252 ± 5.5 253 ± 6.5 0.057

Body oblique length 126ABbc ± 1.6 127.3Aab ± 0.91 127ABab ± 1.1 130Aa ± 1.0 123.9Bc ± 0.82 127ABab ± 1.2 128ABab ± 1.4 0.001

Chest girth 160Aa ± 2.2 157ABa ± 1.2 153ABb ± 1.5 158Aa ± 1.4 153Bb ± 1.1 158ABa ± 1.7 154ABab ± 1.9 0.007

Hucklebone width 24.7 ± 0.54 23.2 ± 0.30 23.6 ± 0.36 23.7 ± 0.34 23.4 ± 0.27 23.7 ± 0.41 23.5 ± 0.48 0.330

Different letters in the same row mean significantly difference (a, b: P < 0.05; A, B: P < 0.01). CNV, copy number variation; NY, Nanyang cattle; LSE, least square means; S.E., standard error.

Table 6. Association between SSTR2 copy numbers with cattle stature in XN cattle

Growth traits

Copy numbers (LSM ± S.E.)

P value0 1 2 3 4 5 > = 6

Withers height 137 ± 1.0 138 ± 1.0 136.99 ± 0.75 135.28 ± 0.888 136 ± 1.3 139 ± 2.1 135 ± 2.1 0.230

Body weight 546 ± 12.2 570 ± 12.2 568 ± 9.0 563 ± 10.6 551 ± 14.9 617 ± 25.2 545 ± 25.2 0.237

Body oblique length 159 ± 1.6 16 ± 1.6 160 ± 1.2 158 ± 1.4 160 ± 2.0 163 ± 3.4 156 ± 3.4 0.565

Chest girth 190Bc ± 5.6 209Bb ± 5.5 209Bb ± 4.1 206Bb ± 4.8 232Aa ± 6.8 212ABabc ± 11.4 208ABabc ± 11.4 0.002

Hip width 140.5 ± 0.84 140.9 ± 0.84 140 ± 0.62 139 ± 0.73 141 ± 1.0 141 ± 1.7 140 ± 1.7 0.211

Paunch girth 205 ± 9.3 219 ± 4.0 217 ± 2.0 210 ± 3.0 221 ± 5.1 231 ± 8.3 207 ± 8.3 0.105

Cannon bone circumference 27 ± 3.0 23 ± 3.0 23 ± 2.2 23 ± 2.6 25 ± 3.7 24 ± 6.3 23 ± 6.3 0.973

Different letters in the same row mean significantly difference (a, b: P < 0.05; A, B: P < 0.01). CNV, copy number variation; XN, Xia’nan cattle; LSE, least square means; S.E., standard error.
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model. Copy number with 0 levels had better chest girth than
others in NY cattle (P < 0.01), which was consistent with the
results above. SSTR2 was reported in previous studies to have anti-
proliferative effects on the Wnt/β-catenin pathway (Buscail et al.,
1995; Chen et al., 2009; Wang et al., 2013b), which may lead to
better growth traits for individuals with low copy number. It
can be seen from the current results that low copy number
improved livestock growth traits, suggesting that the SSTR2
CNV could be used as a molecular marker for NY cattle breeding.
Next, CNV in the model (0, 1, 2, 3, 4, 5 and ⩾6) in XN cattle also
exhibited a significant effect on chest girth. However, four copies
were the advantageous type in XN. This is possibly because XN, a
cultivated breed, has a crossbred genetic background, leading to
the advantageous genotype of four copies. The results reveal
that each breed has a specific genetic background which leads
to various effects of different CNV polymorphisms. Overall, the

Table 7. Association between SSTR2 copy numbers with cattle stature in QC cattle

Growth traits

Copy numbers (LSM ± S.E.)

P value1 2 3 4 5 6

Withers height 130 ± 2.0 129 ± 1.5 131 ± 1.1 131 ± 1.7 130 ± 2.1 125 ± 2.4 0.289

Body weight 435 ± 21.8 429 ± 16.0 447 ± 11.9 432 ± 18.1 437 ± 22.5 398 ± 26.6 0.540

Body length 138 ± 2.8 139 ± 2.0 140 ± 1.5 139 ± 2.3 140 ± 2.3 137 ± 3.4 0.921

Hip width 127 ± 2.1 127 ± 1.5 128 ± 1.1 128 ± 1.7 128 ± 2.1 123 ± 2.5 0.460

Chest girth 183 ± 3.5 182 ± 2.6 184 ± 1.9 182 ± 2.9 183 ± 3.6 176 ± 4.3 0.484

Chest width 40 ± 1.6 39 ± 1.2 39.9 ± 0.87 40 ± 1.3 39 ± 1.7 37 ± 1.9 0.698

Chest depth 64 ± 1.5 64 ± 1.1 65.5 ± 0.83 65 ± 1.3 62 ± 1.6 61 ± 1.9 0.094

Thurl width 42 ± 1.3 44.0 ± 0.93 44.2 ± 0.69 45 ± 1.0 44 ± 1.3 42 ± 1.5 0.467

Hucklebone width 24 ± 1.5 24 ± 1.1 23.8 ± 0.80 24 ± 1.2 21 ± 1.5 20 ± 1.8 0.184

Rump length 45 ± 1.0 43.5 ± 0.77 44.3 ± 0.57 43.8 ± 0.87 44 ± 1.1 43 ± 1.3 0.726

CNV, copy number variation; QC, Qinchuan cattle; LSE, least square means; S.E., standard error.

Fig. 5. Expression profiling of SSTR2 in different tissues of adult NY cattle (n = 3).
Note: Error bars represent the standard error (S.E.) (n = 3). The relative mRNA expres-
sion levels of SSTR2 were normalized to ACTB and GAPDH.

Table 8. Correlation analysis between the SSTR2 CNVs and relative expression
of SSTR2 in adult muscle and adipose tissues in NY cattle (n = 23, F1–F23)

Individual CNV mRNA (muscle) mRNA (adipose)

F1 1 1 0

F2 1 0 1

F3 2 1 3

F4 2 1 3

F5 2 0 3

F6 2 0 0

F7 1 0 1

F8 1 0 4

F9 2 1 0

F10 2 0 1

F11 1 0 1

F12 2 0 1

F13 2 1 2

F14 2 1 5

F15 1 0 1

F16 2 6 6

F17 3 3 2

F18 2 2 5

F19 2 0 1

F20 1 0 1

F21 3 2 3

F22 3 1 4

F23 2 1 4

P 0.118 0.209

CNV, copy number variation; NY, Nanyang cattle.
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CNV in SSTR2 exerted a remarkable effect on chest girth, suggest-
ing the quantity of meat can be improved.

Notably, the lower copy number had more positive effects on
NY chest girth and intricate mechanisms may account for this
unexpected result. Dosage effect is a key mechanism underlying
the phenotypic effects of CNVs (Henrichsen et al., 2009; Karimi
et al., 2018). To determine the potential mechanisms of dosage
effect, expression analyses were performed and revealed that the
mRNA of SSTR2 was widely expressed in the different tissues,
especially adipose. The quality of beef is an indicator of cattle
breeding and the highest expression of SSTR2 is detected in adipose
tissue. Therefore, the correlation was analysed between SSTR2
CNVs and its mRNA abundance in muscle and adipose tissue.
Unfortunately, there were no significant correlations between
SSTR2 mRNA level and CNVs, suggesting that other complex
interactions might contribute to the phenotypic effects of this CNV.

The variation of copy numbers may affect phenotypes through
several different mechanisms. For example, (1) position effects of
CNV: the variation of copy number can affect gene expression by
influencing the relative position of a regulating factor and the
gene. This effect can work even with a 1 Mb distance from the
gene. (2) Fusion effects of CNV: the CNV may lead to the gener-
ation of fusion genes, which may have a new function. (3) Copy
number variation in an encoding region will change the protein
structure domain, thus affecting the structure and function of
the protein (Hollox and Hoh, 2014). (4) A variation of copy num-
bers can also lead to the deletion of dominant alleles, which have
inhibitory effects on recessive alleles, exposing a latent gene and
resulting in the mutant phenotype (Beckmann et al., 2007).

Currently, there is keen interest in the identification of genetic
loci that lead to livestock trait variations. Often, candidate gene
methods are based on rudimentary knowledge about gene function
or some presumed effects of candidate causal variants, which do
not provide comprehensive mechanistic understanding (Karim
et al., 2011). However, in recent decades, advances in integrative
omics technologies such as genomics, transcriptomics, proteomics
and metabolomics have begun to make accurate animal breeding
possible at an extraordinarily detailed molecular level (Ritchie
et al., 2015; Karczewski and Snyder, 2018). The current results
are preliminary and further investigations should provide a mech-
anistic understanding of the genetic causality of SSTR2 CNV.

Conclusion

This is the first analysis of the distribution of SSTR2 CNV in six
Chinese native cattle breeds. The association analysis of SSTR2
CNV and phenotypic traits indicated that the SSTR2 CNV can
be used as a molecular marker for NY cattle breeding programmes.
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