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MARSHALLIAN MACROECONOMIC
MODEL: A PROGRESS REPORT

ARNOLD ZELLNER AND GUILLERMO ISRAILEVICH
University of Chicago

In this progress report, we first indicate the origins and early development of the
Marshallian Macroeconomic Model and briefly review some of our past empirical
forecasting experiments with the model. Then we present recently developed one-sector,
two-sector and n-sector models of an economy that can be employed to explain past
experience, predict future outcomes, and analyze policy problems. The results of
simulation experiments with various versions of the model are provided to illustrate some
of its dynamic properties that include “chaotic” features. Last, we present comments on
planned future work with the model.
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1. ORIGINS AND EARLY DEVELOPMENT OF THE MMM

In the early 1970’s, the structural econometric modeling, time-series analysis
(SEMTSA) approach that provides methods for checking existing dynamic econo-
metric models and for constructing new econometric models was put forward; see
Zellner and Palm (1974, 1975, 2004), Palm (1976, 1977, 1983), and Zellner (1997,
p. IV; 2004). In Zellner and Palm (2004), many applications of the SEMTSA ap-
proach are reported, including some that began in the mid-1980’s that involved
an effort by Garcia-Ferrer, Highfield, Palm, Hong, Min, Ryu, Zellner, and others
to build a macroeconometric model that works well in explaining the past, pre-
diction, and policymaking. In line with the SEMTSA approach, we started the
model-building process by developing dynamic equations for individual variables
and tested them with past data and in forecasting experiments. The objective is to
develop a set of tested components that can be combined to form a model and to
rationalize the model in terms of old or new economic theory.

The first variable that we considered was the rate of growth of real gross domestic
product (GDP). After some experimentation, we found that various variants of an
AR(3) model, including lagged leading indicator variables—namely the rates of
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growth of real money and of real stock prices—called an autoregressive-leading
indicator (ARLI) model worked reasonably well in point forecasting and turning
point forecasting experiments using data first for 9 industrialized countries and
then for 18 industrialized nations. Later, a world income variable, the median
growth rate of the 18 countries’ growth rates was introduced in each country’s
equation and an additional ARLI equation for the median growth rate was added
to give us our ARLI/WI model. The variants of the ARLI and ARLI/WI models
that we employed included fixed-parameter and time-varying parameter state-
space models. Further, Bayesian shrinkage and model-combining techniques were
formulated and applied that produced gains in forecasting precision. See Zellner
and Palm (2004) and Zellner (1997, p. IV) for empirical results. It was found that
use of Bayesian shrinkage techniques produced notable improvements in forecast
precision and in turning-point forecasting with about 70% of 211 turning-point
episodes forecasted correctly; see Zellner and Min (1999).

Given these ARLI and ARLI/WI models that worked reasonably well in fore-
casting experiments using data for 18 industrialized countries, the next step in
our work was to rationalize these models using economic theory. It was found
possible to derive our empirical forecasting equations from variants of an aggre-
gate demand and supply model in Zellner (2000). Further, Hong (1989) derived
our ARLI/WI model from a Hicksian IS-LM macroeconomic theoretical model
while Min (1992) derived it from a generalized real-business-cycle model that
he formulated. Although these results were satisfying, it was recognized that the
root mean squared errors of the models’ forecasts of annual growth rates of real
GDP, in the vicinity of 1.7 to 2.0 percentage points, while similar to those of some
OECD macroeconometric models, were rather large. Thus, we thought about ways
to improve the accuracy of our forecasts.

In considering this problem, it occurred to us that perhaps using disaggregated
data would be useful. For an example illustrating the effects of disaggregation
on forecasting precision, see Zellner and Tobias (2000). The question was how
to disaggregate. After much thought and consideration of ways in which oth-
ers, including Leontief, Stone, Orcutt, the Federal Reserve-MIT-PENN model
builders, had disaggregated, we decided to disaggregate by industrial sectors and
to use Marshallian competitive models for each sector. In earlier work by Veloce
and Zellner (1985), a Marshallian model of the Canadian furniture industry was
formulated to illustrate the importance of including not only demand and supply
equations in analyzing industries’ behavior but also an entry/exit relation. It was
pointed out that on aggregating supply functions over producers, the industry
supply equation includes the variable, the number of firms in operation at time t ,
N (t). Thus, there are three endogenous variables in the system, price p(t), quantity
q(t), and N (t), and, as Marshall emphasized, the process of entry and exit of firms
is instrumental in producing a long-run, zero-profit industry equilibrium. Further,
given that producers were assumed to be identical, profit maximizers with Cobb-
Douglas production functions and selling in competitive markets with “log-log”
demand functions and a partial-adjustment entry/exit relation, it was not difficult
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to solve the system for a reduced-form equation for industry sales. As will be
shown below, this system yielded a reduced-form logistic differential equation
for industry sales, including a linear combination of “forcing” variables, namely,
rates of growth of exogenous variables that affect demand and supply (e.g., real
income, real factor prices and real money).

Given this past work on a sector model of the Canadian furniture industry, it
was thought worthwhile to consider similar models, involving demand, supply,
and entry/exit relations for various sectors of the U.S. economy, namely, agricul-
ture, mining, construction, durables, wholesale, retail, etc., and to sum forecasts
across sectors to get forecasts of aggregate variables. Whether such “disaggregate”
forecasts of aggregate variables would be better than forecasts of the aggregate
variables derived from aggregate data was a basic issue. Earlier, these aggregation/
disaggregation issues had been considered by many, including Zellner (1962),
Lütkepohl (1986) and de Alba and Zellner (1991), with the general analytical
finding that many times, but not always, it pays to disaggregate. In addition, we
were quite curious about whether inclusion of entry/exit relations in our model
that do not appear generally in other macroeconomic models would affect its
performance.

To summarize some of the positive aspects of disaggregation by sectors of
an economy, note that these sectors, for example, agriculture, mining, durables,
construction, and services, exhibit very different seasonal, cyclical, and trend
behavior and that there is great interest in predicting the behavior of these im-
portant sectors. Further, sectors have relations involving both sector-specific and
aggregate variables, with the sector-specific variables (e.g., prices, weather) giving
rise to sector-specific effects. Since sector relations have error terms with differing
variances and that are correlated across sectors, it is possible not only to use joint
estimation and prediction techniques to obtain improved estimation and predictive
precision but also to combine such techniques with the use of Stein-like shrink-
age techniques to produce improved estimates of parameters and predictions of
both sector and aggregate variables. In the literature, such approaches have been
implemented successfully using time-varying parameter, state-space models to
allow for possible “structural breaks” and other effects leading to parameters’
values changing through time. See, Zellner et al. (1991) and Quintana et al. (1997)
for examples of such applied analyses, the former in connection with predicting
output growth rates and turning points in them for 18 industrialized countries and
the latter in connection with formation of stock portfolios utilizing multivariate
state-space models for individual stock returns, predictive densities for future
returns, and Bayesian portfolio formation techniques.

To illustrate some of the points made in the preceding paragraph, in Figure 1,
taken from Zellner and Chen (2001), the annual output growth rates of 11 sectors
of the U.S. economy, 1949–1997, are plotted. It is evident that sectors’ growth rates
behave quite differently. For example, note the extreme volatility of the growth
rates of agriculture, mining, durables, and construction; see the box plots presented
in Zellner and Chen (2001, Fig. 1C) paper for further evidence of differences in
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FIGURE 1. U.S. sectoral real output growth rates.

dispersion of growth rates across sectors. Also, it is clearly the case that sector
output growth rates are not exactly synchronized. With such disparate behavior of
growth rates of different sectors, much information is lost in using aggregate data
and models for forecasting and policy analysis.

In Table 1, MAEs and RMSEs of forecast are presented for AR(3) and
Marshallian macroeconomic models (MMMs) implemented with aggregate data.
The AR(3) model has previously been employed as a benchmark model in many
studies. In this case, in forecasting annual U.S. rates of growth of real GDP,

TABLE 1. RMSEs and MAEs for forecasts of annual rates of
growth of U.S. real GDP, 1980–1997, employing aggregate
models and dataa

Models (percentage points)

AR(3) MMM(A)

MAE 1.71 1.48
RMSE 2.32 1.72

a Data from 1952 to 1979 were employed for fitting the models us-
ing least-squares techniques, and estimates were updated year by year.
The AR(3) model is given by yt =α0 +α1yt−1 +α2yt−2 + α3yt−3 + ut where
yt = 1og(Yt /Yt−1) with Yt annual, real U.S. GDP in year t and ut is an er-
ror term. The MMM(A) model is the reduced-form equation from a one-
sector Marshallian macroeconomic model, yt = α0 +α1yt−1 +α2yt−2 +α3yt−3 +
α4Yt−1 +α5Yt−2 + α6t +α7mt−1 + α8zt−1 + εt where mt−1 = log(Ct−1/Ct−2),
with Ct−1 = real currency at end of year t − 1 and zt−1 = log(SRt−1/SRt−2)

with SRt−1 = real stock prices at end of year t − 1 and εt is an error term.
Source: Zellner and Chen (2001).
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TABLE 2. RMSEs and MAEs for forecasts of annual rates
of growth of U.S. real GDP, 1980–1997, employing sector
models and dataa

Models (percentage points)

AR(3)b MMM(DA)c

MAE 1.52 1.17
RMSE 2.21 1.40

a Annual data for 11 sectors of the U.S. economy, agriculture, mining, construc-
tion, durables, etc., 1952–1979, and SUR estimation techniques were employed to
estimate the models and to obtain one-year-ahead forecasts of annual growth rates
of U.S. real GDP, 1980–1997, derived from annual sector forecasts with estimates
updated year by year.
b Linear AR(3) models for sectors’ output growth rates with sector-specific co-
efficients and error terms were employed using SUR estimation and forecasting
techniques to obtain one-year-ahead annual sector output forecasts. These were
then utilized to obtain one-year-ahead forecasts of total U.S. real GDP and its
growth rate.
c For each of the 11 sectors’ Marshallian models, the following reduced-form
equations were jointly estimated and utilized to provide annual forecasts of
sectors’ outputs, (Sit , i = 1, 2, . . . , 11), which were added to yield a fore-
cast of total U.S. real GDP and its growth rate year by year: log(Sit /Sit−1) =
β0i + β1i Sit−1 + β2iSit−2 + β3i Sit−3 + β4i zt−1 + β5imt−1 + β6iwt + β7i yt + vit

where, as in Table 1, zt is the rate of change of real stock prices and mt is the
rate of change of real currency and wt and yt are the rates of change of the
real wage rate and of total real GDP, respectively. The variables wt and yt were
treated as stochastic exogenous variables in fitting the 11-equation system using
SUR techniques. In forecasting, reduced-form equations from an aggregate MMM
model for wt and yt were employed to obtain one-year-ahead forecasts for these
variables.
Source: Zellner and Chen (2001).

1980–1997, with estimates updated year by year, the MAE = 1.71 percentage
points and the RMSE = 2.32 percentage points, both considerably larger than
similar measures for the reduced-form equation of an aggregate MMM model,
namely MAE = 1.48 and RMSE = 1.72. This improved performance associated
with the MMM aggregate model flows from the theoretical aspects of the MMM
model that led to incorporation of level variables and leading indicator variables
(e.g., money and stock prices) in the reduced-form equation for the annual growth
rate of real GDP.

Table 2 displays the effects of disaggregation on forecasting precision. When
AR(3) models are employed for each of 11 sectors of the U.S. economy and
SUR techniques are employed for estimation and forecasting, the MAE = 1.52
percentage points and RMSE = 2.21, both slightly below those obtained using an
AR(3) model implemented with aggregate data shown in Table 1. However, on
using reduced-form sector output growth rate equations associated with demand,
supply, and entry/exit relations for each sector and SUR estimation and forecasting
techniques, one-year-ahead forecasts of the outputs of each sector were obtained
and totaled to provide forecasts of next year’s total real GDP and its growth rate.
It was found that the MAE = 1.17 percentage points and the RMSE = 1.40, both
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of which are considerably smaller than those for the MMM aggregate forecasts,
MAE = 1.48 and RMSE = 1.72 and for the AR(3) model. Thus, in this case,
use of the MMM’s theory along with disaggregation has resulted in improved
forecasting performance. For more results based on other methods and variants of
the MMM, see Zellner and Chen (2001).

These positive empirical results encouraged us to proceed to analyze the prop-
erties of our models further and to add factor markets and a government sector to
close the model. Further, we discovered that discrete versions of our MMM are
in the form of chaotic models that, as is well known, have solutions with a wide
range of possible forms, depending on values of parameters and initial conditions.

2. DEVELOPMENT OF A COMPLETE ONE-SECTOR MMM

In this section, we indicate how to formulate a complete one-sector MMM. Ex-
tending the work of Veloce and Zellner (1985) and Zellner (2001), we introduce
demand, supply, and entry/exit equations. The supply equation is derived by aggre-
gating the supply functions of individual, identical, competitive, profit-maximizing
firms operating with Cobb-Douglas production functions. Further, firms’ factor
demand functions for labor and capital services are aggregated over firms to obtain
market factor demand functions. Given a demand function for output and factor
supply functions for labor and capital services, we have a complete one-sector,
seven-equation MMM. Further, with the introduction of government and money
sectors, an expanded one-sector MMM model with government and money is
obtained and is described below. Results of some simulation experiments with
these models are presented and discussed.

2.1. Product Market Supply, Demand, and Entry/Exit Equations

We assume a competitive Marshallian industry with N = N (t) firms in operation
at time t , each with a Cobb-Douglas production function, q = A∗LαKβ, where
A∗ = A∗(t) = AN(t)AL(t)AK(t), the product of a neutral technological change
factor and labor and capital augmentation factors that reflect changes in the quali-
ties of labor and capital inputs. Later, we introduce money services as another factor
input. Additional inputs, for example, raw materials and inventory service inputs,
can be added without much difficulty. The production function exhibits decreasing
returns to scale with respect to labor and capital. This could be interpreted as the
result of missing factors, for example, entrepreneurial skills that are not included
in the model. Note that our Cobb-Douglas production function with decreasing
returns to scale, combined with fixed entry costs introduced below, yields a U -
shaped long-run average cost function. Given the nominal wage rate w = w(t),
the nominal price for capital services r = r(t), and the product price p =
p(t), and assuming profit maximization, the sector’s nominal sales supply func-
tion is S = NAp1/θw−α/θ r−β/θ , where A = A∗1/θ , and 0 < θ = 1 − α − β < 1.

On logging both sides of the equation for nominal sales S, and differentiating with
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respect to time, we obtain the industry nominal sales equation

Ṡ/S = Ṅ/N + Ȧ/A+ (1/θ)ṗ/p − (α/θ)ẇ/w − (β/θ)ṙ/r (Product Supply),

(1)

where ẋ/x ≡ (1/x)dx/dt. Note that with no entry or exit (Ṅ/N = 0) and no tech-
nical change (Ȧ/A= 0), an equal proportionate change in the prices for product
and for factors will not affect real sales. That is, from (1), Ṡ/S − ṗ/p = 0.

On multiplying both sides of the industry output demand function by p, we
obtain an expression for nominal sales, S = pQ = Bp1−ηY ηs Hηhx

η1
1 x

η2
2 . . . x

ηd

d ,

where Y is nominal disposable income, H is the number of households, and the x

variables are demand shift variables such as money balances, demand trends, etc.
On logging and differentiating this last equation with respect to time, the result is

Ṡ/S = (1 − η)ṗ/p + ηsṠ/S + ηhḢ/H +
d∑

i=1

ηiẋi/xi (Product Demand).

(2)

In a one-sector economy without taxes, we can replace nominal disposable
income Y with nominal sales S. Ceteris paribus, an equal change in prices and
nominal income will not affect real demand. That is, from (2), Ṡ/S − ṗ/p = 0,

provided that η = ηs , implying no money illusion. Note that money illusion might
arise from psychological reasons and/or systematic lack of information regarding
relative prices and systematic errors in anticipations. Also, equation (2) can be
expanded to include costs of adjustment, habit persistence, and expectation effects.

The following entry/exit equation completes the product market model:

Ṅ/N = γ ′(� − Fe) = γ (S − F) (Entry/Exit) (3)

with nominal profits given by � = θS used in going from the first equal-
ity to the second in (3). Also in going from the first equality to the second,
F = F(t)=Fe(t)/θ, with Fe(t) the equilibrium level of profits at time t taking
account of discounted entry costs and γ = γ ′θ, with γ = γ (t) and γ ′ = γ ′(t). Such
fixed costs make the long-run average cost function U -shaped for a firm operating
with decreasing returns to scale, as assumed above. Equation (3), with γ = γ (t),

where t is time, represents firm entry/exit behavior as a time-varying function of
industry profits relative to the equilibrium level of profits. Further, equation (3)
can be elaborated to take account of possible asymmetries, expectations, and lags
in entry and exit behavior. For example, exit may not occur immediately if fixed
costs incorporated in Fe are sunk.

2.2. Factor Market Demand and Supply Equations

Now we extend the model to include demand and supply equations for labor and
capital. From assumed profit maximization, with N competitive firms operating
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with Cobb-Douglas production functions, as described above, the aggregate de-
mand for labor input is L = αNpq/w = αS/w. Similarly, the aggregate demand
for capital services is K = βNpq/r = βS/r. Logging and differentiating these
last two equations with respect to time, we obtain

L̇/L = Ṡ/S − ẇ/w (Labor Demand) (4)

K̇/K = Ṡ/S − ṙ/r (Capital Demand). (5)

As regards labor supply, we assume L= D(w/p)δ(Y/p)δs H δhz
δ1
1 z

δ2
2 . . . z

δl

l .
Also, with respect to capital service supply, we assume K = E(r/p)φ(Y/

p)φs Hφhv
φ1
1 v

φ2
2 . . . v

φk

k where the z and v variables are “supply shifters.” As before,
we replace nominal income by nominal sales, and logging and differentiating with
respect to time, we obtain

L̇/L = δ(ẇ/w − ṗ/p) + δs(Ṡ/S − ṗ/p)+ δhḢ/H

+
l∑

i=1

δi żi/zi (Labor Supply), (6)

K̇/K = φ(ṙ/r − ṗ/p) + φs(Ṡ/S − ṗ/p)+ φhḢ/H

+
k∑

i=1

φiv̇i/vi (Capital Supply). (7)

Above, Ḣ /H is the rate of change of the number of households.
The above seven-equation model is complete for the seven endogenous variables

N , L, K , p, w, r , and S with the variables H , A∗, γ ′, Fe, x, z, and v assumed
exogenously determined. The model can be solved analytically (see Appendix A
for details) for the reduced-form equation for Ṡ/S that is given by

Ṡ/S = a(S − F) + bg, (8)

where a and b are parameters and g is a linear function of the rates of change of
the exogenous variables given above. If a, b, F , and g have constant values, (8)
is the differential equation for the well-known and widely used logistic function.
Further, if g = g(t), a given function of time, as noted by Veloce and Zellner (1985,
p. 463) the equation is a variant of Bernoulli’s differential equation. Note that g may
change through time because of changes in the rates of growth of technological
factors, households, etc.; for an explicit expression for g(t), see equation (A.5) in
Appendix A. Further, the logistic equation in (8) can be expressed as

dS

dt
= k1S[1 − (k2/k1)S] (9)

where k1 = (g − γF)/(1 − f ) and k2 = −γ/(1 − f ).
The solution to (9) is given by S(t)= (k1/k2)/[1 − ce−k1t ] where c = (1 +

k1/k2S0) with S0 the initial value. Also, from (9), it is seen that there are two
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equilibrium values, namely, S = 0 and S = k1/k2, with the former unstable for
positive values of the k parameters. Note that for constant values of the parameters,
(9) cannot generate cyclical movements. However, if the parameters are allowed
to vary, the output of (9) can be quite variable. Further, in some cases, there may be
a discrete lag in (9) and then the equation becomes a mixed differential-difference
equation that can have cyclical solutions; see, for example, Cunningham (1958).
Whether the economy is best modeled using continuous-time, discrete-time, or
mixed models is an open issue that deserves further theoretical and empirical
attention.

The following are discrete approximations to equation (9) that are well known
to be chaotic processes; see, for example, Day (1982, 1994), Brock and Malliaris
(1989), Kahn (1989), and Koop et al. (1996). That is, the solutions to these
deterministic processes, even with the parameters constant in value, can resem-
ble the erratic output of stochastic processes. We have considered two discrete
approximations to (9):

St+1 − St = k1St [1 − (k2/k1)St ], (10)

ln St+1 − ln St = k1[1 − (k2/k1)St ]. (11)

While the differential equation in (9) with constant parameters exhibits a smooth
convergence to its limiting value, the processes in (10) and (11) can exhibit
oscillatory behavior. Further, in computed examples, the paths associated with
(10) and (11) differed considerably in many cases. For example, it was found that
the equations in (10) and (11) gave rise to a smooth approach to an equilibrium
value when 0 < k1 < 1 and k2 > 0 and oscillatory approaches to equilibrium when
k1 > 1. See plots of solutions to (9), (10), and (11) in Figures 2 and 3 for different
values of the parameter k1. Note that (10) and (11) can yield quite different
solutions for the same value of the parameter. Also, if the measured values of
S have additive or multiplicative biases, the properties of (10) and (11) will be
further affected. Last, note that since the coefficients of (9), (10), and (11) are
functions of the rates of change of the exogenous variables, it is probable that they
are not constant in value but vary with time. It is thus fortunate that data can be
brought to bear on, for example, discrete versions of equation (8) that allow for
variation in the exogenous variables; see, for example, Veloce and Zellner (1985)
and Zellner and Chen (2001) for examples of such fitted functions. Also, discrete
versions of the structural equation system presented above can be estimated using
data.

Various simulation experiments have been done with the seven-equation model
described above that indicate that it can produce a rich range of possible solutions,
depending on the values of parameters and properties of input variables. For
example, in Figures 4–7 are shown the outputs of the seven-equation model under
various conditions. In Figures 4 and 5, the paths of the nominal and real vari-
ables are shown when the model is started up at nonequilibrium initial values.
Figures 6 and 7 show how shocks to demand and to factor supplies affect the
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FIGURE 2. Discrete approximations to the logistic equation: k1 = 1.93, k2 = 0.193, S0 = 0.5.

system. In these continuous-time, differential equation versions of the model,
the paths are relatively smooth and nonoscillatory, given that exogenous variables’
paths are smooth. As was seen above and will be shown further below, discrete
versions of the model can exhibit various types of oscillatory behavior.

FIGURE 3. Difference equation (10): k1 = 2.8, k2 = 0.28, S0 = 0.5.
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FIGURE 4. Simulation of the one-sector model, nominal variables. Rates of growth of
exogenous variables are assumed equal to zero.

FIGURE 5. Simulation of the one-sector model, real variables. Variables S, w, and r deflated
by p (nominal), and there is zero growth in exogenous variables.
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FIGURE 6. One-sector model (real variables), with demand shock from t = 25 to t = 30.
Exogenous demand increases by 2% in periods 25 though 30 (ẋi/xi = 0.02) Variables S, w,
and r are deflated by p (nominal), and there is zero growth in other exogenous variables.

FIGURE 7. One-sector model (real variables), with labor supply shock from t = 25 to t = 30.
Exogenous labor supply increases by 10% in periods 25 though 30 (żi/zi = 0.1). Variables
S, w, and r are deflated by p (nominal), and there is zero growth in other exogenous
variables.
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2.3. One-Sector Model with Government and Monetary Sectors

Now we shall add government and money sectors to the above model. We assume
that government collects taxes and buys goods and services in both the final product
market and in the market for factors of production. For simplicity, we assume that
there are taxes on sales and corporate profits, an exogenously determined budget
deficit or surplus and a fixed composition of government expenditure. To model
the money market, we consider the services of money as a factor of production,
demanded by firms and government. In addition, we assume that households
demand money services, include money balances in the demand for final product
and assume that the money supply is exogenously determined.

A discrete-time version of this expanded one-sector model that includes a
money market and a government sector has been formulated; see Appendix B
for its equations. It can be solved readily and has been employed in simulation
experiments designed to study the impacts of changes in monetary policy, the
corporate income tax, the sales tax, and the government deficit on other variables.
See, for example, Figure 8 in which the effects of a decrease in the corporate
profit tax rate from 40% to 20% are shown. It is seen that there are substantial
increases in employment and output and reductions in government expenditures
and receipts. In addition there is a large impact on the interest rate and smaller
changes in factor prices and the price level.

FIGURE 8. Simulation of a corporate tax cut in the one-sector model. At period 25, the cor-
porate tax rate drops from 0.4 to 0.2. Government expenditures are adjusted to government
revenues, and there is zero growth in exogenous variables.
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3. TWO- AND n-SECTOR MODELS

In addition to the one-sector MMM with a money market and a government
sector, similar two- and n-sector models have been formulated and studied; see
Appendix C for details. For such an n-sector model, there are 7n+ 12 equations.
Thus, for n= 1, there are 19 equations and for n= 2, 26 equations, etc.

For the two-sector MMM, n= 2, the 26 equations have been solved to
yield the following equations for the sales and number of firms in operation for
sectors 1 and 2:

(S1t − S1t−1)/S1t−1 = AS1t−1 + BS2t−1 + DN1t−1 + EN2t−1 + C, (12)

(S2t − S2t−1)/S2t−1 = FS1t−1 + GS2t−1 + IN1t−1 + JN2t−1 + H, (13)

(N1t − N1t−1)/N1t−1 = γ1(S1t−1 − F1N1t−1), (14)

(N2t − N2t−1)/N2t−1 = γ2(S2t−1 − F2N2t−1), (15)

where the coefficients, A, B, . . . , J are functions of lagged endogenous vari-
ables and rates of change of exogenous variables, and the gammas have constant
values.

Simulation experiments using the nonlinear difference equations in (12)–(15)
with constant parameters indicate that solutions can have a rich range of properties.
For some examples, see Figures 9–13. In Figure 9, the variables, namely, numbers

FIGURE 9. Simulation for the two-sector model (smooth path), where A= G = −0.07,
B = F = 0.05, D = J = 0.01, E = I = 0.01, C = 0.2, H = 0.1, γ 1 = γ 2 = 0.1, F1 = F2 =
−2. Initial values are N 0

1 = N 0
2 = 1, S0

1 = S0
2 = 0.1. All coefficients are assumed constant.
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FIGURE 10. Simulation for the two-sector model (cyclical path), where A= G = −0.08,
B = F = 0.06, C = H = 0.2, D = J = 0.01, E = I = 0.01, γ 1 = γ 2 = 0.1, F1 = F2 = −2.
Initial values are N 0

1 = N 0
2 = 1, S0

1 = S0
2 = 0.1. All coefficients are assumed constant.

FIGURE 11. Simulation for the two-sector model (“bubbles and busts”), where A= G =
−0.08, B = F = 0.05, C = 0.2, H = 0.1, D = 0.035, J = 0.01, E = 0.03 I = 0.01, γ 1 =
γ 2 = 0.1, F1 = F2 = −2. Initial values are N0

1 = N 0
2 = 1, S0

1 = S0
2 = 0.1. All coefficients are

assumed constant.
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FIGURE 12. Simulation for the two-sector model (“bubbles and busts”), where A=−0.07,
G = −0.069988, B = 0.0964, F = 0.025, C = 0.1, H = 0.2, D = E = I = J = 0.01,
γ 1 = γ 2 = 0.1, F1 = F2 = −2. Initial values are N0

1 = N 0
2 = 1, S0

1 = S0
2 = 0.1. All coeffi-

cients are assumed constant.

FIGURE 13. Simulation for the two-sector model (“bubbles and busts”), where A= −0.08,
G = −0.0208, B = F = 0.09, C = 0.1, H = 0.2, D = 0.035, E = 0.0324872, I = J = 0.01,
γ 1 = γ 2 = 0.1, F1 = F2 = −2. Initial values are N0

1 = N 0
2 = 1, S0

1 = S0
2 = 0.1. All coeffi-

cients are assumed constant.
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of firms in operation in the two-sectors and sales of the two-sectors follow rather
smooth paths to their equilibrium values. However, with the parameter values used
for the experiments described in Figure 10, the paths of the variables in the two
sectors show systematic, recurrent, cyclical properties. In contrast to the relatively
smooth and systematic features shown in Figures 9 and 10, with the parameter
values employed in experiments reported in Figures 11–13, it is seen that various
types of “bubbles and busts” behavior are exhibited by the two-sector MMM. It
is thus apparent that this relatively simple model has a broad range of possible
solutions, even when the rates of change of the exogenous variables are assumed
to have constant values. Allowing for changes in the exogenous variables’ growth
rates of course enlarges the range of possible solutions to this two-sector model
and MMMs containing more than two sectors.

4. SUMMARY AND CONCLUSIONS

In this report, we have briefly reported our progress in producing one-, two- and n-
sector versions of the MMM that are rooted in traditional economic theory and yet
provide a rich range of possible forms that can be implemented with sector data.
For example, Zellner and Chen (2001) implemented the MMM’s reduced-form
equations in forecasting 11 U.S. industrial sectors’ annual outputs and their total
using various estimation and forecasting techniques with encouraging results, as
mentioned in Section 1. These results indicate that it pays to disaggregate to obtain
improved forecasts of aggregate, real GDP growth rates as well as sector forecasts.
Of course, such results may be improved by using the structural equations for
sectors rather than just one reduced-form equation per sector.

Further, there are many ways to improve the “bare bones” MMMs that we
presented above by drawing on the vast economic literature dealing with entry
and exit behavior, anticipations, various industrial structures, alternative forms of
production and demand relations, dynamic optimization procedures, introduction
of stochastic elements, etc. In addition, there is a need to consider inventory
investment, intermediate goods, vintage effects on capital formation, imports and
exports, etc. Although the list of extensions is long, just as in the case of the
Model T Ford, we believe that our MMM is a fruitful initial model that will
be developed further to yield improved, future models in the spirit of Deming’s
emphasis on continuous improvement. Most satisfying to us is the fact that we have
an operational, rich, dynamic “core” model that is rationalized by basic economic
theory. This case of “theory with measurement” is, in our opinion, much to be
preferred to “measurement without theory” or “theory without measurement.”
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APPENDIX A. SOLUTION OF ONE-SECTOR MODEL
FOR REDUCED-FORM EQUATION

In this appendix, we indicate how the seven-equation MMM in the text has been solved to
yield the differential equation for sales, S(t), shown in equation (8) in the text. First, solve
equations (4) and (6) for the rate of change of w, ẇ/w:

ẇ/w =
[
(1 − δs)Ṡ/S + (δ + δS)ṗ/p − δhḢ/H −

l∑
1

żi/zi

]/
(1 + δ). (A.1)

Then solve equations (5) and (7) for the rate of change of r , ṙ/r:

ṙ/r =
[
(1 − φs)Ṡ/S + (φ + φs)ṗ/p − φhḢ/H −

k∑
1

φi v̇i/vi

]/
(1 + φ). (A.2)

Further, from the product demand equation (2) in the text, we obtain

ṗ/p =
[
(1 − ηs)Ṡ/S − ηhḢ/H −

d∑
1

ηi ẋi/xi

]/
(1 − η). (A.3)

On substituting from (A.3) in (A.1) and (A.2) and then substituting from (3), (A.1), (A.2),
and (A.3) in (1) and solving for Ṡ/S, the result is

Ṡ/S = f Ṡ/S + γ (S − F) + g, (A.4)

where g represents a linear combination of the rates of growth of the exogenous variables,
given by

g = Ȧ

A
+ {α[δh(1 − η) + δ + δs]/(1 + δ) + β[φh(1 − η) + φ + φs]/(1 + φ)− ηh}/

θ(1 − η) + α

l∑
1

δi żi/zi/θ(1 + δ) + β

k∑
1

φiv̇i/vi/θ(1 + φ)

+
d∑
1

[ηi/θ(1 − η)](ẋi/xi)[α(δ + δs)/(1 + δ) + β(φ + φs)/(1 + φ) − 1] (A.5)

and

f = {1 − ηs − α[(1 − η)(1 − δs) + (1 − ηs)(δ + δs)]/(1 + δ) − β[(1 − η)(1 − φs)

+ (1 − ηs)(φ + φs)]/(1 + φ)}/θ(1 − η). (A.6)

Note that with η = ηs , that is, no money illusion, f = 1 and (A.4) reduces to S = F −g/γ.
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APPENDIX B. A DISCRETE-TIME ONE-SECTOR
MMM WITH MONETARY AND

GOVERNMENT SECTORS

In this MMM with monetary and government sectors, we assume that the government
collects taxes, produces government output, and buys goods in the product market and
factor services in the factor markets. For simplicity, we assume that the only taxes are taxes
on sales and profits, an exogenously determined deficit/surplus and a fixed composition of
government expenditures. Herein, we find it convenient to express the model in terms of
discrete time and denote the rate of change of a variable, say X, from period t − 1 to t as
Xrt ≡ (Xt − Xt−1)/Xt−1.

Given profit maximization under competitive conditions, using a Cobb-Douglas produc-
tion function, as above, but with the addition of a money service factor input, the nominal
sales supply function, expressed in terms of rates of change, with the nominal interest rate
representing the price for monetary services, is given by

Srt = Nrt + Art + (prt − αwrt − βrrt − λτrt )/θ (Supply), (B.1)

where τrt is the rate of change of the nominal interest rate, λ is the exponent of money
services in the production function, and 0 < 1 − α − β − λ < 1.

The demand function for the final product includes the rate of change of government
expenditure on final product Grgt , as well as a tax on nominal income. To obtain the rate
of change in total sales Srt , rates of change of governmental and private expenditures are
weighted by their share in total expenditure at time t − 1 as follows:

Srt = [Ggt−1/St−1]Grgt + [1 − Ggt−1/St−1]

[
(1 − η)prt + ηs

(
Srt − T s′

rt

)

+ ηmMrht + ηhHrt +
d∑
1

ηixrit

]
(Demand), (B.2)

where T s′
rt = (1 + T s

rt ) with T s
rt the rate of change of the sales tax. The rate of change of

nominal government expenditures is given by Grgt = Grt , the rate of change in total govern-
ment expenditures, defined below. Also, Mrht represents the rate of change of households’
demand for real money balances, as discussed below.

The entry/exit equation in this discrete-time version of the model is an elaboration of
that used in the continuous-time version, namely,

Nrt = γt

[
θSt−1

(
1 − T c

t−1

) /
Nt−1pt−1 − Ft−1

/
pI

t−1

]
(Entry/Exit). (B.3)

In (B.3), there is an allowance for corporate taxation on profits T c
t−1, time-varying entry

costs Ft−1 nominal sales deflated by the price level pt−1, and entry costs deflated by a price
index for the cost of factors pl

t−1. Also, here firm entry is proportional to profits at the firm
level and thus we divide the total sector’s profits by the number of firms Nt−1.
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Further, in this model we assume that government expenditure affects firms’ productivity
as shown in the expression for the technological change factor,

Art = ωg(Grt − prt ) +
B∑
1

ωibrit , (B.4)

where Grt −prt is the rate of change of real government expenditure and the brit variables are
technology shift variables such as those described above in formulation of our initial model.
The parameter ωg reflects the impact of the rate of change of real government expenditure
on the rate of change of the technological factor, Art ′ perhaps the result of government-
financed research since government expenditure does not include only expenditures on
consumption goods but also expenditures that may affect firms’ productivity by providing
public services, infrastructure, and R&D.

For each factor market, the model includes firms’ and government demand equations, a
supply equation, and an equilibrium equation. The money market includes also a household
demand equation. In terms of rates of change, firms’ demands for labor and capital services
are denoted by Lrf t and Krf t , respectively. Since we fix the composition of government
expenditure, the government’s demands, Lrgt and Krgt , equal the rate of change of gov-
ernment total expenditure minus the rates of change of the prices of factors, as shown
below:

Lrf t = Srt − wrt and Lrgt = Grt − wrt (Labor Demands), (B.5)

Krf t = Srt − rrt and Krgt = Grt − rrt (Capital Demands). (B.6)

Firms and the government demand real money balances as a factor of production whereas
households’ demand for the services of real balance depends on the real interest rate
τrt − prt , real income, the number of households, and other variables, denoted by yrit , that
shift households’ demand for real money balances. The equations for money demand are

Mrf t = Srt − τrt , Mrgt = Grt − τrt (Money Demands Firms & Govt) (B.7)

Mrht = µ(τrt − prt ) + µs(Srt − prt ) + µhHrt +
m∑
1

µiyrit (Households). (B.8)

Discrete versions of labor and capital supply functions are

Lrt = δ(wrt − prt ) + δs(Srt − prt ) + δhHrt +
l∑
1

δizrit (Labor Supply) (B.9)

and

Krt = φ(rrt − prt ) + φs(Srt − prt ) + φhHrt +
k∑
1

φiνrit (Capital Supply). (B.10)

In terms of rates of change, the supply of real money balances equals the supply of
nominal balances, assumed exogenously determined, corrected for the change in the price
level; that is,

Mrt = Mrot − prt (Money Supply). (B.11)
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Equilibrium conditions for factor markets involve equating factor supplies to weighted
firm, government, and household demands for factors as follows:

Lrt = [Lf t−1/Lt−1]Lrf t + [Lgt−1/Lt−1]Lrgt (Labor Mkt. Equilib.), (B.12)

Krt = [Kf t−1/Kt−1]Krf t + [Kgt−1/Kt−1]Krgt (Capital Mkt. Equilib.), (B.13)

Mrt = [Mf t−1
/Mt−1]Mrf t + [Mht−1/Mt−1]Mrht+ [Mgt−1/Mt−1]Mrgt

(Money Mkt. Equilib.). (B.14)

Government nominal revenues are given by Rt = St (T
s
t + T c

t θ). By defining T ∗
t =

(T s
t + T c

t θ), the rate of change of government revenue is given by

Rrt = Srt + T ∗
rt . (Tax Revenues). (B.15)

The rate of change in nominal government expenditure is assumed to be tied to tax
revenues plus an exogenously determined deficit/surplus, denoted by Deft (as a percentage
of total revenues) as follows:

Grt = Rrt + Deft (Total Govt. Expenditure). (B.16)

Finally, the price index for production costs is a weighted average of the prices of the
three inputs, given by

pI
rt = (wt−1Lt−1)wrt + (rt−1Kt−1)rrt + (τt−1Mt−1)τrt

wt−1Lt−1 + rt−1Kt−1 + τt−1Mt−1
(Input Price Index). (B.17)

The above equations constitute the MMM incorporating money and government sectors.
Several simulation experiments have been performed using the above model to study its
responses to changes in tax rates, money supply, etc., that indicate it is operational. See
Figure 7 for the effects of a temporary labor supply shock. Also, since monetary balances
enter the model as an additional input factor, the effects of a monetary expansion/contraction
are analogous in certain respects to the effects of a shock to labor or capital supply, except
for the fact that there are also demand effects resulting from an increase or decrease in
money balances.

APPENDIX C. DISCRETE-TIME n-SECTOR MMM
WITH GOVERNMENT AND MONEY SECTORS

In this appendix, the one-sector model described in Appendix B is extended to n sectors.
Although there are no intermediate products, the n sectors are related to each other through
interdependent demand and supply relations in factor and product markets and are indi-
vidually and jointly affected by government expenditures and taxes. That is, (i) there is
competition in the market for final products and services with demand functions, shown in
(C.2), that are functions of a vector of prices allowing for direct and indirect effects of price
changes on individual sectors’ demands and similarly with respect to industries’ product
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supply and individuals’ labor supply functions; (ii) there is competition in factor markets
for labor, capital, and money services with interdependencies shown in demand and supply
relations in equations (C.5–C.7); and (iii) the model allows the government to affect indi-
vidual sectors through purchases of final products (see equations C.2), to provide services
that affect sectors’ productivity (equations C.4), demands for inputs (equations C.5–C.7)
and by taxing (C.15). Thus, the model allows for many types of important interactions
among individuals, economic entities, and government.

As in Appendix B, we denote the rate of change of the ith variable from period t − 1
to t by a subscript rit, that is, Xrit ≡ [Xit − Xit−1]/Xit−1, where the subscript i denotes
the ith sector. Nominal supplies for each sector’s products, assuming use of Cobb-Douglas
production functions and profit maximization under competitive conditions, are given by

Srit = Nrit + Arit + [prit − αwrt − βrrt − λτrt ]/θi i = 1, 2, . . . , n (Supply). (C.1)

The demand functions for final products include the rate of change of nominal govern-
ment expenditure, as follows:

Srit = [Git−1/Sit−1]Grit + [1 − Git/Sit−1]

[
(1 − ηii)prit +

n∑
1

ηijprjt + �is

(
Srt − T s′

rt

)

+ �imMrht + �ihHrt +
d∑
1

�ijxrjt

]
(Demand), (C.2)

where Grit = Grt for i = 1, 2, . . . , n and ηij is the cross-price elasticity of demand for
product i relative to product j .

Sectors are permitted to have different technologies and entry and exit conditions, and
thus the following individual entry and technology equations are employed:

Nrit = γit

[
Sit−1θi

(
1 − T c

t−1

)
Nit−1pt−1

− Fit−1

pI
t−1

]
i = 1, 2, . . . , n (Entry), (C.3)

Arit = ωig(Grt − prt ) +
B∑

j=1

ωij brjt i = 1, 2, . . . , n (Technology). (C.4)

For each factor market, the model includes the demands from n sectors and government, a
supply equation, and an equilibrium condition. The money market also includes household
demand.

Lrit = Srit − wrt , i = 1, 2, . . . , n, Lrgt = Grt − wrt

(Labor Demands), (C.5)

Krit = Srit − rrt , i = 1, 2, . . . , n, Krgt = Grt − rrt

(Capal Demands), (C.6)

Mrit = Srit − τrt , i = 1, 2, . . . , n Mrgt = Grt − τrt

(Money Demands: Firms & Govt), (C.7)
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Mrht = µ(τrt − prt ) + µs(Srt − prt ) + µhHrt +
m∑

i=1

µiyrit

(Money Demands: Households), (C.8)

Lrt = δ(wrt − prt ) + δs(Srt − prt ) + δhHrt +
l∑

i=1

δizrit (Labor Supply), (C.9)

Krt = φ(rrt − prt ) + φs(Srt − prt ) + φhHrt +
k∑

i=1

φiνrit (Capital Supply), (C.10)

Mrt = Mrot − prt (Money Supply), (C.11)

Lrt =
n∑

i=1

Lit−1

Lt−1
Lrit + Lgt−1

Lt−1
Lrgt (Labor Equilibrium), (C.12)

Krt =
n∑

i=1

Kit−1

Kt−1
Krit + Kgt−1

Kt−1
Krgt (Capital Equilibrium), (C.13)

Mrt =
n∑

i=1

Mit−1

Mt−1
Mrit + Mht−1

Mt−1
Mrht + Mgt−1

Mt−1
Mrgt (Money Equilibrium), (C.14)

Rrt =
n∑

i=1

Sit−1T
∗
it−1

Rt−1
(Srit + T ∗

rit ) (Tax Revenues), (C.15)

Grt = Rrt + Deft (Total Expenditures), (C.16)

pI
rt = (wt−1Lt−1)wrt + (rt−1Kt−1)rrt + (τt−1Mt−1)τrt

wt−1Lt−1 + rt−1Kt−1 + τt−1Mt−1
(Factor Price Index), (C.17)

prt =
n∑

i=1

Sit−1

St−1
prit (Product Price Index), (C.18)

Srt =
n∑

i=1

Sit−1

St−1
Srit (Total Economy Sales). (C.19)
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