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Abstract. A high-power millimetre wave (ω
"
,k

"
) propagating through a

magnetized plasma at an angle to a density ripple (0,k
!
) produces density

perturbations (ω
"
,k

"
,k

!
). The density perturbations couple with the oscillatory

velocity at (ω
"
,k

"
) to produce a nonlinear current at (2ω

"
, 2k

"
­k

!
) driving

second-harmonic electromagnetic radiation. The efficiency of the process is
sensitive to the angle between the density ripple and the millimetre wave.

Coherent radiation sources have been an active area of research for the past few
decades. The free-electron laser (FEL) (Marshall 1985; Roberson and Sprangle
1989; Liu and Tripathi 1994), the gyrotron (Nasinovich 1992a, b; Singh et al.
1992), the C) erenkov free-electron laser (Tripathi and Liu 1989) and the
backward-wave oscillator (Carmel et al. 1990) are a few of these devices that
operate at millimetre wavelengths with high powers. The introduction of a
plasma in the interaction region of these devices has shown some exciting
results on efficiency enhancement (Carmel et al. 1990), radiation guiding
(Tripathi and Liu 1990) and the use of plasma eigenmodes as wigglers in the
FEL (Joshi et al. 1987; Tran et al. 1987). Chen and Dawson (1992a, 1993) have
proposed an ion ripple laser to generate tunable coherent radiation from the
microwave to the ultraviolet wavelength region. In their scheme, a relativistic
electron beam propagating obliquely to an ion ripple generates electromagnetic
radiation via the Raman scattering process. They have shown that on going to
higher frequencies, the efficiency of the device decreases. Therefore it is
worthwhile studying the generation of harmonics of the fundamental frequency
of the device (Nusinovich 1992a, b).

In the second-harmonic generation process, two photons of energy hω
"

and
momentum hk

"
each combine to generate a photon of energy hω

#
and

momentum hk
#
, where (ω

"
,k

"
) and (ω

#
,k

#
) satisfy the linear dispersion relation

for electromagnetic waves (Bloembergen 1965; Grebogi et al. 1983). Energy and
momentum conservation in a second-harmonic process demand that ω

#
¯ 2ω

"
and k

#
¯ 2k

"
. However, since a plasma is a dispersive medium with refractive

index increasing with wave frequency, the wave vector of the second harmonic
is more than twice the wave vector of the fundamental millimetre wave, i.e. k

#
" 2k

"
. This implies that the process is only a weak one. It can be important only
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Figure 1. Schematic of the process.

when an additional momentum hk
#
®2hk

"
is made available for each second-

harmonic photon in the system. A density ripple or a wiggler magnetic field can
be used to provide the additional momentum to make the process a resonant
one (Parashar and Pandey 1992, 1993). In the present paper, we study second-
harmonic generation in a magnetized plasma with a density ripple. The scheme
could be useful in frequency upconversion of an ion ripple laser.

Consider the propagation of an x-polarized millimetre wave

E
"
¯ (x# ­iy# )E

"
exp[®i(ω

"
t®k

"
z)], (1a)

B
"
¯

ck
"
¬E

"

ω
"

, (1b)

k
"
¯

ω
"

c 91®
ω#
p

ω
"
(ω

"
®ω

c
­iν):

"/#

(1c)

in a cold plasma in the presence of a static magnetic field B
s
z# , where

ω
c
¯

eB
s

mc
, ω

p
¯ 04πn!

!
e#

m 1"/#,
ν is the electron–ion collision frequency, and n!

!
, ®e and m are the plasma

equilibrium density, charge and mass respectively. The plasma also contains a
density ripple

n
!
¯n

!
exp (ik

!
[r), (2)

where the wave vector k
!

is in the (x, z) plane, making an angle θ
!

with the z
axis. The nonlinear coupling of the millimetre wave and the density ripple
produces a second-harmonic wave

E
#
¯E

#
exp[®i(ω

#
t®k

#
[r)],
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where
ω
#
¯ 2ω

"
, k

#
¯ 2k

"
­k

!
,

and k
#
makes an angle θ

#
with the z axis (see Fig. 1). The value of k

!
is chosen

such that the second-harmonic electromagnetic wave of frequency ω
#

satisfies
the dispersion relation

)ε#®k#
#
c#

ω#
#

I­
c#

ω#
#

k
#
k
#)¯ 0,

which can be written as
aη%

#
­bη#

#
­c¯ 0, (3)

where η
#
3 ck

#
}ω

#
, ε

#
is the plasma permittivity tensor at ω

#
, and

a¯ ε
#xx

sin# θ
#
­ε

#zz
cos# θ

#
,

b¯®ε
#xx

ε
#zz

(1­cos# θ
#
)®ε

#+
ε
#−

sin# θ
#
,

c¯ ε
#zz

ε
#+

ε
#−

,

ε
#
³ ¯ ε

#xx
³iε

#xy
,

ε
#xx

¯ 1®
ω#
p

ω#
#
®ω#

c

,

ε
#xy

¯
iω

c
ω#
p

ω
#
(ω#

#
®ω#

c
)
,

ε
#zz

¯ 1®
ω#
p

ω#
#

.

For one value of θ
#
, with given plasma parameters, the value of η

#
can be

obtained. Using this value of η
#
, one obtains k

!
¯k

#
®2k

"
:

k#
!
¯ k#

#
­4k#

"
®4k

"
[k

#
¯

4ω#
"

c#
(η#

#
­η#

"
®2η

"
η
#
cos θ

#
),

θ
!
¯ tan−"0 η

#
sin θ

#

η
#
cos θ

#
®2η

"

1 ,
where

η#
"
¯

c# k#
"

ω#
"

¯ 1®
ω#
p

ω
"
(ω

"
®ω

c
)
.

For 4ω#
"
(ω#

c
, one obtains from (3) η#

#
E 1®ω#

p
}ω#

#
. We have plotted in Fig. 2 the

variation of the density ripple wave vector k
!
, required for resonant second-

harmonic generation, as a function of θ
#
, the direction of propagation of the

second-harmonic wave for the following parameters:

ω#
p

ω#
"

¯ 0.3,
ω#
c

ω#
"

¯ 0.2 and 0.4.

The lowest value of k
!

is required at θ
#
E 45°.
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Figure 2. Density ripple wavenumber versus the angle θ
#

(the angle between k
"

and k
#
)

for ω#
p
}ω#

"
¯ 0.3, and ω#

c
}ω#

"
¯ 0.2 (– – –) and 0.4 (——).

The millimetre wave induces an oscillatory velocity v
"

of the electrons.
Solving the equation of motion

m
dv

"

dt
¯®e0E"

­
1

c
v
"
¬B

s1®mνv
"
, (4)

we obtain

v
"x

¯®iv
"y

¯
eE

"

mi(ω
"
®ω

c
­iν)

, (5a)

v
"z

¯ 0. (5b)

v
"

in conjunction with the density ripple produces a density perturbation

n!

"
¯n!

"
e−i[ω"t−(k"−

k
!)

[z# ],

which, on solving the equation of continuity, can be written as

n!

"
¯

k
!
[v

"

2ω
"

n
!
. (6)

v
"

beats with n!

"
to produce the nonlinear component of the second-harmonic

current density at (2ω
"
, 2k

"
­k

!
) :

JNL

#
¯®"

#
n!

"
ev

"
. (7)

The self-consistent second-harmonic field E
#

produces a second-harmonic
current density JL

#
¯σ

#
[E

#
, where σ

#
is the second-harmonic conductivity

tensor. In the limit when 4ω#
"
(ω#

c
, σ

#
reduces to a diagonal tensor,

σ
#
E

n!
!
e#

imω
#

I.

Using (7) and (8) in the continuity equation, one obtains the second-harmonic
density perturbation

n
#
¯n

#
e−i[ω#t−(#

k
"+

k
!)

[z# ]¯®
1

2ω
"
ie

¡[J
#
, (9)
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where
J
#
¯ JL

#
­JNL

#
.

The wave equation for the second-harmonic field is written as

~#E
#
®¡(¡[E

#
)¯®

8π

c#
iω

"
J
#
®

4ω#
"

c#
ε
#
[E

#
. (10)

where

ε
#
¯ I­

4πiσ
#

ω
#

.

We solve (10) in the limit when 4ω#
"
(ω#

c
, i.e. we retain the effect of the magnetic

field on the fundamental wave but ignore it on the second harmonic. Then

ε
#
¯ 01®ω#

p

ω#
#

1 I.

On using (9), Poisson’s equation gives

¡[E
#
¯®4πen

#
¯

πe

iω
"

n!

"
k
!x

v
"x

ε
#

.

Substituting for ¡[E
#

in (10) and introducing a distance variable

ξ¯ x sin θ
#
­z cos θ

#
,

we can write (10) as

¦#E
#

¦ξ #

­
(4ω#

"
®ω#

p
)E

#

c#
¯R, (11)

where

R¯
8πiω

"

c#
JNL

#
­¡0 πe

iω
"

n!

"
k
!x

v
"x

ε
#

1 .
R can be resolved into two components, R¯Rs­Rv, where Rs is parallel to
ξ and Rv is perpendicular to ξ :

Rv ¯R®Rs ¯R®
R[k

#

k
#

k
#

k
#

.

In the WKB approximation, we substitute

E
#
¯A

#
eik#

ξ into (11), and ignore ¦#A
#
}¦ξ #, to obtain

A
#
¯

Rv

2ik
#

L, (12)

where

Rv ¯®
4πω

"

c#
n!

"
v
"x

e(iyW ­cos θ
#
η# ),

η# vk
#
in the (x, z) plane, and L is the length of the interaction region. The power

of the incident millimetre wave is given by

P
"
¯

c#k
"
E#

"

8πω
"

, (13)
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Figure 3. Power conversion efficiency rP
#
}P

"
r versus θ

#
.

and that of the generated wave is given by

P
#
¯

c# k
#
E#

#

8πω
#

E
c

8π

Rv[R$v

4k#
#

L#. (14)

The ratio of the generated power P
#

to the incident power P
"

is given by

)P#

P
"

)Eπ#ω
"
k#
!x

rn
!
r# rv

"x
r% e#L#(1­cos# θ

#
)

c& k#
#
k
"
E#

"

. (15)

The variation of rP
#
}P

"
r with θ

#
is shown in Fig. 3 for the following typical

parameter: a millimetre-wave power density of 3 MW cm−# at 1 mm wavelength
(Kartunen et al. 1991), a plasma density fluctuation level n

!
}n!

!
E 10%,

ω
p
}ω

"
¯ 0.56, ω

c
}ω

"
¯ 0.66 and LE 4 cm. We have used Fig. 2 to obtain the

corresponding value of k
!
for phase matching for each θ

#
. We observe that the

second-harmonic power conversion efficiency peaks at around 8% at θ
#
¯ 45

(see Fig. 3). The power conversion efficiency is quite sensitive to ω
c
}ω

"
, which

for Fig. 3 has been chosen as 0.66. As one moves ω
c
}ω

"
closer to 1, one must keep

the electron density below the right-hand cut-off, ω#
p
}ω#

"
! 1®ω

c
}ω

"
, so that the

fundamental electromagnetic wave can propagate through the plasma. For a
fixed ratio ω#

p
}[ω

"
(ω

"
®ω

c
)], P

#
}P

"
scales as (1®ω

c
}ω

"
)−$/#. However, as ω

c
}ω

"
U

1, the requisite value of k
!

goes up to unrealistic values. A large-amplitude
electron density ripple can be produced by:

(i) shining two crossed electromagnetic beams to form a static interference
pattern, exert a ponderomotive force on the electrons and cause ambipolar
diffusion of the plasma to produce a static density ripple ;

(ii) generating ion acoustic waves using two parallel grids and applying a
periodic potential difference between them (Chen and Dawson 1992b; Liu
and Tripathi 1994);

(iii) modulating the density of a neutral gas by a sound wave and then ionizing
it with a laser pulse (Marshall 1985; Chen and Dawson 1992b).

In a plasma-filled cavity, one may create a standing wave that pushes plasma
from the antinodes to nodal regions owing to the ponderomotive force.
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Experiments on backward-wave oscillators have shown strong modulations of
density (Botton and Ron 1991). Linear scattering of the pump electromagnetic
wave would be important when (ω

"
,k

"
­k

!
) satisfy the dispersion relation for an

obliquely propagating electromagnetic wave

)ε"®c#

ω#
"

(k
"
­k

!
)# I­

c#

ω#
"

(k
"
­k

!
) (k

"
­k

!
))¯ 0, (16)

where ε is the dielectric tensor at the frequency ω
"
and can be recovered from

ε
#

by replacing ω
#

by ω
"
. One must avoid values of k

!
that satisfy (16).
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