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SUMMARY
Joints of space manipulators are usually simplified as torsional springs in modeling motion equations,
and the nonlinear behaviors of the reducer in the joints are generally neglected. In this study, a
dynamic model of a space manipulator that considers the joints that are transmitted through a typical
2K-H planetary gear reducer is developed using the Lagrangian method. The backlash clearances,
gear tooth profile error, and time-variant meshing stiffness are integrated into the process. The
simulation results show that the backlash clearances lead to the accumulation of positioning errors in
the space manipulator when the joints rotate back and forth. The tooth profile error is the main cause
of severe acceleration fluctuations and meshing force impacts. These fluctuations influence torque
instability, which may accelerate gear system failure.

KEYWORDS: Robot dynamics; Space robotics; Manipulator joint; Planetary gear train; Backlash
clearance; Tooth profile error.

1. Introduction
Precision robotic manipulators are widely used in the industrial, medical, and aerospace fields.
Although these manipulators have been investigated for many decades, the accuracy of the modeling
remains unsatisfactory under certain working circumstances.1 Although some countries, such as
Canada and Japan, have already launched space manipulators,2 the precise modeling of these large-
scale manipulators continues to be a challenge especially in the complex space environment.

Traditional research approaches focus on the flexibility of long robotic arms and ignore the
influence of joints. The simplification of the manipulator joint modeling and the neglect for nonlinear
factors result in an irrational and unpredictable manipulator response. Early studies have modeled
these joints as ideal revolute hinges.3 Komatsu et al.4 constructed a two-link flexible SCARA
manipulator system and studied the influence of arm deflection on positioning accuracy. Morris et al.5

discussed the coupling and interactions between the links of a manipulator system as well as combined
elastic and rigid link motions according to the superposition principle. He et al.6 investigated joint
clearance on the basis of ideal hinge. Nevertheless, all these models have neglected the importance
of joint dynamics, which is a key to attaining accurate prediction of dynamic behaviors.

Joint errors in large-scale space manipulators are amplified, which results in a considerable tip-
positioning inaccuracy. These errors will even accumulate for serial manipulators. Therefore, joint
dynamics must be modeled precisely for large-scale serial space manipulators. In a study on the
dynamic properties of SRMS, Nguyen et al.7 pointed out that aside from arm flexibility, the flexibility
of joint transmission components is a significant factor that influences system response.

Spong et al.8 were the first to derive a simple elastic joint model of a robotic manipulator, which
was significantly more tractable in terms of controller design compared with previous nonlinear
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Fig. 1. A typical space manipulator joint.

models that were used for elastic joint manipulators. Ghorbel et al.9 developed an adaptive control
method with a simple correction term for joint elasticity based on the theory of Spong et al. Korayem
et al.10 compared the effects of flexibility on the maximum and rigid payload values. Simulation
was performed on a rigid-joint three-link manipulator, and a reasonable agreement was observed.
Salmisi et al.11 designed a controller with a friction-compensating torque based on the torsional
spring model. Liu et al.12 modeled a cubic model friction in joints. Ciliz13 and Subudhi et al.14 also
developed novel control strategies based on the torsional spring model. Zhao et al.15–17 and Wang
et al. investigated a redundant manipulator with linear spring elastic joints, which demonstrated
rich dynamic behaviors. Gan et al.18 introduced a 3-DOF serial manipulator model that considered
reducer and actuator compliance as well as proposed a stiffness design method to protect the actuator.
However, the configuration of the reducer was incomplete, which could pose problems because the
joint configuration is more complicated in an actual space manipulator. A typical space manipulator
joint comprises a servo motor, reducer, bearings, sensors, and circuit (Fig. 1), among which the
reducer is a major transmission component that affects the dynamic properties. The joint dynamic
model must be more complex and take the reducers into account, particularly when the transmission
reduction ratio of a large-scale manipulator is considerably high, to guarantee low-speed operation
stability.19

Du et al.20 considered the friction, backlash, and hysteresis of harmonic gearing in their model,
which effectively reflected the nonlinear features of robot joints. Thus, the model can be used to
describe the characteristics and to improve the accuracy of the modeling of robot joints. Aside from
harmonic gearing, planetary gear train is a major type of reducer that is often used in space manipulator
joints. The former is usually installed in light robotic manipulators, whereas the latter is installed in
large and heavy-duty robotic manipulators. However, investigations on the influence of planetary gear
reducer on robotic manipulators have been minimal.21 A planetary gear train is a complex system that
includes multiple pairs of meshing teeth during transmission. The micro meshing displacements are
coupled with the rotation of rigid links and may produce unexpected effects on the dynamic behaviors
of the manipulators.

A coupled model of two-link planar manipulators that are transmitted through a 2K-H planetary
gear train is developed in this study. First, the modeling method of nonlinear factors, backlash
clearance, tooth profile error, and time-variant stiffness is presented. Subsequently, the dynamic
equations of the space manipulator system are derived using the Lagrangian method. Second,
numerical simulations are performed to predict the dynamic characteristics of the space manipulator.
Finally, the effects of some nonlinear parameters, such as backlash clearance and tooth profile error,
on the dynamic behaviors of the manipulator are analyzed. By performing a simulation analysis, the
positioning errors that accumulate when joints rotate back and forth have been identified as the main
cause of severe acceleration fluctuations and meshing force impacts.

2. Dynamic Modeling
A typical two-link space manipulator mounted on a space craft is presented in Fig. 2. The ideal
dynamic model for the manipulator comprises a shoulder joint, elbow joint, main arms, and small
fine arms. Given that this study primarily analyzes the main arm joints, the links are modeled as rigid
bodies. Moreover, given that the manipulator is used in gravity-free environment, gravity is neglected.
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Fig. 2. A space manipulator on a space craft.

Fig. 3. Flexible joint model that integrates a gearbox.

The mass of the floated base is larger than that of the manipulator, which indicates that the movement
of the base is not obvious. Therefore, a fixed base is hypothesized. The dynamic equation of a typical
rigid link manipulator is expressed as follows:

Mq̈ + [C(q, q̇) + D] · q̇ = T, (1)

where M denotes the inertia matrix of links, C(q, q̇) denotes the Coriolis forces and the centripetal
forces matrix, and D denotes the damping matrix. The rigid model is used as the basis for the detailed
manipulator model that is transmitted through the planetary gear trains. Simulation is performed to
compare the model with the detailed model with planetary gear trains.

The detailed model considers the configuration of the planetary gear trains. A typical driving unit
with 2K-H planetary gearbox is shown in Fig. 3. The motor shaft is rigidly connected to the input side
of gearbox, and the output side is also rigidly attached to the link. The planetary gear train comprises
a sun gear, three planet gears, a ring gear, and a carrier. The reduction ratio depends on the number
of teeth. As a reducer, the ring gear must be fixed and the sun gear must work as an input shaft for
the carrier to deliver a reduction rotation in the reduction ratio of n = zr/zs + 1, where zr and zs

represent the gear tooth number of the ring and sun gears, respectively.
During the modeling of the gearbox, we assumed that all of the gears are spur gears, that the three

plant gears have the same material, size, and other structural parameters, and that the influence of the
gear on gear friction and lubrication is negligible.

Several nonlinear effects, such as backlash clearance, tooth profile error, and time-variant meshing
stiffness, are considered in the planetary gear train model. The modeling method is described in the
following sections.
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2.1. Backlash clearance
The backlash clearance ensures the proper assembly of gears or identifies the need to modify the
gears. Given that the clearance effect is neglected in most models, the effect and inaccuracy from
the backlash are omitted. The rotation is transmitted via gear meshing, and the meshing contact
forces are modeled as linear springs. The spring force becomes a nonlinear factor when the backlash
is considered. The existence of backlash clearances discontinues the meshing force and excites
fluctuation, which may eventually result in instability. The planetary gearbox consists of multiple
pairs of gears that are meshing simultaneously, which exacerbates the effect of backlash clearances.
Therefore, the meshing clearance cannot be ignored in the modeling of the planetary gear train.

The rotations must be converted into linear displacements in meshing lines to enable the calculation
of the meshing force. The following equation is used:

⎧⎨
⎩

xs = rsθs

xp = rpθp

xc = rcθc cos α

, (2)

where rs and rp denote the base radii of the sun and planet gears, respectively, rc denotes carrier
radius, θs , θp, and θc are the rotational angles of the sun gear, planet gear, and carrier, respectively,
and α refers to the meshing pressure angle.

During the meshing process, the gear tooth surface generates a micro deformation and the
displacements of the meshing pair begin to deviate. Let the error of the displacements between
the meshing be expressed as follows:

{
xsp = xs − xp − xc

xpr = xp − xc
, (3)

where the subscripts sp and pr represent the errors between the sun and planet gears and between the
planet and ring gears, respectively.

As mentioned above, the meshing forces are modeled as nonlinear springs. The meshing forces
for the meshing pairs with a backlash clearance of 2b are expressed as follows:

{
Fsp = ksp(t) · fk(xsp, b)
Fpr = kpr (t) · fk(xpr, b) , (4)

where k(t) is the stiffness coefficient and fk(x, b) is a piecewise linear function that simulates a
backlash clearance effect, which in turn is computed as follows:

fk(x, b) =
⎧⎨
⎩

x − b x > b

0 −b < x ≤ b

x + b x ≤ −b

. (5)

The use of Eq. (5) is inconvenient for numerical calculation. The function is used repeatedly during
the calculation, which significantly extends the calculation time. The discontinuous points may lead
to divergence and result in the failure of the numerical solution. The function is usually replaced by
another function that is composed of hyperbolic tangent functions, which is expressed as follows:

fk(x, b) = x + x

2
[tanh(σ · (x − b)) − tanh(σ · (x + b))]

− b

2
[tanh(σ · (x − b)) + tanh(σ · (x + b))], (6)

where σ is a parameter that adjusts the shape of the function curve. As illustrated in Fig. 4, the
approximation is sufficiently accurate when σ is large enough.
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Fig. 4. Clearance function of tanh with different σ .

Fig. 5. Time-variant stiffness.

2.2. Time-variant meshing stiffness
Meshing stiffness k(t) in Eq. (4) is time variant because the number of pairs and their equivalent
stiffness varies throughout the meshing period. The meshing force increases when multiple pairs of
teeth are involved in the meshing, but decreases when only a single pair of teeth is used. The time-
variant stiffness also acts as the fluctuation motivation of the system, which must also be considered
in the dynamic modeling.

In most of the cases where a pair of gears has a contact ratio of less than 2, the meshing stiffness
of the spur gear is simplified as a square wave as shown in Fig. 5. kmax is the meshing stiffness with
double pairs of teeth meshing, kmin is the meshing stiffness with a single pair of teeth meshing, T
denotes the meshing period, γ is the phase difference among various pairs, and e denotes the contact
ratio.

The meshing stiffness is processed via Fourier transform, which is expressed as follows:

k = kmin + (kmax − kmin) (e − 1) +
n∑

i=1

kmax − kmin

iπ

[
sin 2πi

(
e − 1 − t

T

)
+ sin 2πi

(
t

T

)]
. (7)

For the convenience, the high-frequency components are ignored and only the fundamental
frequency component is deemed sufficient for time-variant stiffness estimation. The meshing stiffness
is expressed as follows:

k(t) = km + ka sin(ωet), (8)

where km denotes the mean meshing stiffness, ka denotes the time-variant meshing stiffness, and ωe

denotes the meshing circle frequency.
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The meshing circle frequency is determined by the rotational speed and the tooth number of the
meshing pair as expressed in the following equation:

ωe = ωz, (9)

where ω denotes the circular frequency of the specified gear and z denotes its tooth number. Two
types of meshing exist in a planetary gearbox, namely, sun-planet meshing and ring-planet meshing.
By hypothesizing that the carrier is fixed and that the ring gear is rotational, both pairs of meshing
become fixed-axis gear trains. In the actual system, ω should be transformed into the relative circular
frequency between the specified gear and the carrier. Therefore, the actual meshing circular frequency
is expressed as follows:

ωie = (ωi − ωc) zi, i = s, p, r. (10)

By taking the sun gear as example, we substitute xsp, xpr , and θ̇c into Eq. (10) and evaluate
rotational circular frequency as follows:

ωspe =
(

ẋsp + ẋpr + 2θ̇crccosα

rs

− θ̇c

)
zs, (11)

where ẋsp and ẋpr are several orders of magnitude less than θ̇c and thus, are ignorable in Eq. (11).
Therefore, the rotational circular frequency of the sun-planet meshing circular frequency is expressed
as follows:

ωspe = θ̇czs

(
2rccosα

rs

− 1

)
. (12)

Similarly, the ring-planet meshing circular frequency is expressed as follows:

ωpre = θ̇czp

(
rccosα

rp

− 1

)
. (13)

2.3. Tooth profile error
Tooth profile error is the summation of the deviation between the actual tooth profile and the correct
involute curve that passes through the pitch point that is measured perpendicular to the actual profile.
The causes of the tooth error are diverse, such as the misalignment of work pieces, the inaccurate
profile of the cutting tool, and the inappropriate machining process, which are unavoidable during
the manufacturing process. Although improving the machining precision will reduce the tooth profile
error, such improvement is limited and the advancement of the precision grade inevitably increases
the manufacturing costs. Therefore, if the error is modeled accurately in the dynamic model, the
influence of such error can be avoided.

This kind of error is also time variant and related to the meshing frequency. The deviation is also
capable of exciting the fluctuation in the meshing process. When analyzing gear dynamics, the gear
meshing error is usually decomposed into Fourier series because the time-variant stiffness neglects
the high-order components to maintain the convenience of numerical calculation of the fundamental
component.

e(t) = E sin (ωet) , (14)

where E denotes the error magnitude that is determined by the machining precision requirement. The
meshing circular frequency ωe is similar to time-variant stiffness, which is calculated in Eq. (10).
Thus, the meshing forces can be expressed as follows:

{
Fspi = kspi(t) · (xspi − espi(t))

Fpri = kpri(t) · (xpri − epri(t))
. (15)
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2.4. Dynamic equations
After deriving the nonlinear factors in the gear train, the detailed dynamic model of the two-link
manipulator becomes accessible. The detailed model is derived using the Lagrangian method. The
kinetic energy of each link and joint is calculated.

The kinetic energy of the shoulder joint is computed as follows:

Tj1 = 1

2
Is1θ̇

2
s1 + 3

2
Ip1θ̇

2
p1 + 1

2

(
Ic1 + 3mp1r

2
c1

)
θ̇2

1 . (16)

The kinetic energy of link-1 is computed as follows:

TL1 = 1

2

(
I1 + m1d

2
1

)
θ̇2

1 + 1

2
mjL

2
1θ̇

2
1 . (17)

The kinetic energy of the elbow joint is computed as follows:

Tj1 = 1

2
Is2(θ̇1 + θ̇s2)2 + 3

2
Ipi2θ̇

2
pi2 + 1

2

(
Ic2 + 3mp2r

2
c2

)
(θ̇1 + θ̇2)2. (18)

The kinetic energy of link-2 with payload is computed as follows:

TL2 = 1

2
I2

(
θ̇1 + θ̇2

)2 + 1

2
m2

{[
L1θ̇1 cos θ2 + (θ̇1 + θ̇2)d2

]2 + (
L1θ̇1 sin θ2

)2
}

+ 1

2
mp

{[
L1θ̇1 cos θ2 + (

θ̇1 + θ̇2
)
L2

]2 + (
L1θ̇1 sin θ2

)2
}

, (19)

where the single and double dots represent the first and second derivatives, respectively, with respect
to time. The subscripts si, pi, and ci denote the sun gear, planet gear, and carrier of the ith joint,
respectively. θ1 and θ2 denote the output angles of the shoulder and elbow joints, respectively, which
are rigidly attached to the carriers. Therefore, these variables also represent the rotational angle of
the carriers. The other parameters are similarly defined as the rigid model parameters.

Gravity force is neglected because the manipulator is in orbit. Given that spring potential energy is
included in the nonlinear meshing force, no other potential energy needs to be calculated. This model
represents a large gross motion and a small elastic deformation of the gear teeth coupling system.
In order to analyze both the rigid angular movement and the fluctuation characteristics conveniently,
generalized coordinates are set as linear displacement errors in the meshing line and in the rotational
angle of both joints as shown in the following equation:

q = [xsp1 xpr1 θ1 xsp2 xpr2 θ2 ]T . (20)

By substituting Eqs. (16) to (19) into the Lagrangian equations, the final dynamic model of the
manipulator system can be summarized as follows:

M(q)q̈ + [C(q, q̇) + D] q̇ = F(q, q̇), (21)

where M(q) denotes the inertia matrix, C(q, q̇) denotes the velocity quadratic coupling matrix, D
denotes the diagonal positive definite damping matrix, and F(q, q̇) denotes the generalized force
vector. The elements in the matrixes and vectors of Eq. (21) are listed below, whereas the other
unlisted elements are equal to zero:

M11 = Ms1, M12 = M21 = Ms1, M13 = M31 = 2Ms1rc1p,

M22 = Ms1 + 3Mp1, M23 = M32 = (2Ms1 + 3Mp1)rc1p;

M33 = a11 + a2 + Ms2r
2
c1p + a3 + 2a4 cos θ2, M34 = M43 = Ms2rc1p, M35 = M53 = Ms2rc1p,

M36 = M63 = 2Ms2rs2rc2p + a3 + a4 cos θ2, M44 = M45 = M54 = Ms2, M46 = M64 = 2Ms2rc2p,
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M55 = Ms2 + 3Mp2, M56 = M65 = (2Ms2 + 3Mp2)rc2p, M66 = a12 + a3;

C33 = −2a4 sin θ2 · θ̇2, C36 = −a4 sin θ2 · θ̇2, C63 = a4 sin θ2 · θ̇1;

rcip = rc cos α, Icip = Ici + 3mpir
2
ci + Ii, Msi = Isi/r2

si , Mpi = Ipi/r2
pi, Mci = Ici/r2

cip, (i = 1, 2),

mj = ms2 + 3mp + mc2 + mr2, a1i = (4Msi + 3Mpi)r
2
cip, a2 = I ′

c1 + m1d
2
1 + (m2 + mj + mp)L2

1,

a3 = I ′
c2 + m2d

2
2 + mpL2

2, a4 = L1 · a6, a5 = m1d1 + (m2 + mj + mp)L1, a6 = m2d2 + mpL2.

where l denotes arm length and d denotes the arms’ center of mass position. Subscripts 1 and 2
represent the first and second arms, respectively, z denotes the gear tooth number, and m denotes
mass, which is computed as M = J/r2, where J and r denote the rotary inertia and radius of gears,
respectively. The subscripts s, p, c, and r correspond to sun gear, planet gear, carrier, and ring gear,
respectively.

The meshing force and driving torque are modeled as a generalized force F(q, q̇) that is
derived based on the virtual work principle. Some generalized coordinates are considered as
translational displacements in the meshing line, and the driving torque is coupled with all the
generalized coordinates. The torque must be converted into force in the meshing lines. By substituting
Eq. (15) and driving torque T1 and T2 into the dynamic equation, the generalized force vector can be
written as follows:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3Fsp1 + T1/rs1

−3Fpr1 + T1/rs1

2T1rc1p/rs1

−3Fsp2 + T2/rs2

−3Fpr2 + T2/rs2

2T2rc2p/rs2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

The dynamics of the manipulator is simulated based on the derived model. Numerical integration
is performed with a fourth-order Runge-Kutta algorithm. The numerical simulations are performed
on a Xeon E5620 workstation. The results are presented in the next section.

3. Dynamic Simulations
In order to determine the influence of the planetary gear train, the rigid model is simulated under the
same payload and driving conditions that are mentioned above. The results of the rigid model are
used as a ‘baseline’ for the comparison with the detailed model. Owing to the torque amplitude effect
of the reduction gearbox, the output torque that is loaded on the link is amplified by the N (reduction
ratio) times. Therefore, the torque mentioned in the following sections refers to the torque in the rigid
model. The torque of the detailed model must be divided by the reduction ratio.

The starting positions of the joints are set to zero, the displacement error of the gear pairs must be
out of contact or just initiating contact provided that the displacement error of the gear pairs is out of
contact or just beginning to make contact. The initial velocities are set to zero. Therefore, the initial
values for the detailed model are set to [b b 0 b b 0 0 0 0 0 0 0 ]T , whereas the initial values for the
rigid model are set to zero.

The other parameters that are used in this section are listed in Table I. a1 and a2 denote the cross-
sectional area of arms, ρlink denotes the density of arms, and mpayload denotes the payload mass. The
other parameters have been defined in the preceding paragraphs.

3.1. Constant torque driving response
A constant driving torque of 100 Nm is loaded on both joints at 0.5 s. The output angular displacement
deviation 	θ and velocity deviation 	ω from the rigid and detailed models are illustrated in
Figs. 6 and 7, respectively. The errors appear tolerable compared with those of the half-circle working
stroke of arm. Nevertheless, given that the length of the links is of meter degree, a 0.02 rad deviation
of the first link and a 0.01 rad deviation of the second link will result in an approximately 30 mm
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Table I. Simulation parameters (i = 1,2).

Parameters Value Unit Parameters Value Unit Parameters Value Unit

l1 1 m zr 99 Mci 5.8 kg
l2 0.7 m m 3 mm Mri 10 kg
d1 0.5 m b 50 μm msi 0.39 kg
d2 0.35 m α 24.6 ◦ mpi 0.61 kg
a1 0.01 m2 km 1e8 N/m mci 6.29 kg
a2 0.01 m2 ka 2e7 N/m ρlink 2700 kg/m3

zs 27 Msi 0.5 kg E 5 μm
zp 36 Mpi 0.66 kg mpayload 10 kg

Fig. 6. Angular displacements that are driven by constant torque.

Fig. 7. Angular velocities that are driven by constant torque.

tip-positioning inaccuracy, which is deemed considerable under specific precision positioning control
circumstances. Moreover, these errors accumulate over time, which makes the model suitable for
long-time, long-stroke work.,

Figures 8 and 9 show the sun-planet meshing displacement error xsp1 and force Fsp1, respectively.
Given that the results of the other pairs follow the same trend, the abovementioned pair is taken
as an example. The displacement error xsp1 vibrates at the beginning and then rapidly converges to
52 μ m. The same trend is demonstrated by the meshing force Fsp1, which is caused by the starting
impact when the gear pairs begin to approach each other (Fig. 9). The fluctuation of xsp that follows is
caused by the tooth profile error because the magnitude is approximately 10 μ m, which is similar to
that of the given tooth error. The frequency increases over time because the rotational velocity of the
shoulder joint increases and the tooth error is related to the joint velocity. As expected, the dynamic
response of the detailed model shows a slight difference with that of the rigid model and gear mesh
behavior. Thus, the system dynamic equations are validated.
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Fig. 8. Sun-planet meshing displacement error of the shoulder joint.

Fig. 9. Sun-planet meshing force of the shoulder joint.

3.2. PD control response
The manipulator is rarely driven by constant torque in an actual space manipulator system. The
manipulator is commonly used to reach a certain position. In this section, the manipulator is simulated
to rotate 30 degrees for θ1 and θ2. The driving torque is controlled using the regular PD controlling
method. For both joints to rotate 30 degrees, the controlling torque is set as follows:

Ti = P ·
(π

6
− θi

)
− D · θ̇i (i = 1, 2). (23)

The angular displacements of θ1 and θ2 with different proportional and differential gains are
illustrated in Fig. 10. A proportional gain of P = 1000 and a differential gain of D = 400 are deemed
suitable to drive the manipulator to its desired position without generating considerable overshoot.
Therefore, the following analyses are all based on this set of parameters. As illustrated in Fig. 10,
both θ1 and θ2 go up directly to 30 degrees and stabilize after 2.6 s. The angular displacement does
not fluctuate in the process. However, the driving torque of both joints fluctuates in high frequency
during the process as shown in Fig. 11. Therefore, the angular displacement error can be eliminated
using the closed-loop controlling method, which requires the high-frequency response of the servo
motor to ensure a stable output displacement. Given that the motor torque fluctuation follows the
same trend as that of the angular acceleration in Fig. 14, the following fluctuation analysis is based
on acceleration to reflect the motor torque fluctuation indirectly.

The angular acceleration of the shoulder joint shows severe fluctuations in Fig. 14. The acceleration
of the ‘baseline model’ is plotted with dashed line that corresponds to the Y axis on the right, whereas
the acceleration of the rigid model is plotted with solid line that corresponds to the Y axis on the left.
In all three instances of fluctuation, the acceleration is occasionally reduced to zero, which means
that the gear pairs are in a non-contact situation.
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Fig. 10. Angular displacements with different proportional and differential gains. (a) Shoulder joint angular
displacements with different proportional gains. (b) Elbow joint angular displacements with different
proportional gains. (c) Shoulder joint angular displacements with different differential gains. (d) Elbow joint
angular displacements with different differential gains.

Fig. 11. PD-controlling driving torques.

The first fluctuation is excited by the starting impact. Based on the meshing displacements and
forces in Figs. 12 and 13, the second fluctuation occurs when the meshing displacement error and
force change their signs after 0.3 s, which indicates that the gear pairs are meshing on the opposite
side. The sudden change in meshing displacement is caused by the backlash clearance. The velocity
gradually decreases to zero when the gear pair returns to its origin side in 1.5 s, which produces
the fourth fluctuation, one that is smaller than the previous three fluctuations. Given that the first
three fluctuations are all excited by the meshing impact, these cannot converge quickly because
of the effect of gear teeth deformation damping. However, the third fluctuation does not occur after
sudden excitations and shows a trend of instability. This fluctuation, which is deemed as a self-excited
vibration, may be attributed to the tooth profile error and time-variant stiffness. The maximum value
of the acceleration deviation of the first two fluctuations ranges between 10 rad/s2 and 40 rad/s2 ,
whereas that of the third fluctuation reaches up to 300 rad/s2 , which indicates that the fluctuation
caused by internal excitation is more severe than the fluctuation caused by the normal gear pair
meshing impact.
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Fig. 12. Sun-planet meshing displacement of the shoulder joint.

Fig. 13. Sun-planet meshing force of the shoulder joint.

The detailed manipulator model with the planetary gear train presents richer phenomena. Although
backlash clearance and tooth error have limited influence on positioning accuracy, these factors cause
a considerable acceleration fluctuation. The models that neglect one of these three nonlinear factors
are also calculated to verify the main cause of the fluctuations. The second fluctuation disappears and
the third fluctuation is amplified when the backlash clearance is neglected, which conforms to the
inference that the second fluctuation is caused by the gear pairs that turn to the opposite meshing side.
The third fluctuation vanishes when tooth error is neglected, and all three fluctuations occur, with
the third fluctuation having a lesser magnitude, when time-variant stiffness is neglected. Therefore,
tooth error is the main source of internal excitation, whereas time-variant stiffness is the cause of the
intensification of the fluctuation magnitude. The tiny clearance and manufacturing error will generate
an evident fluctuation of rational acceleration and result in an uncontrollable output velocity.

4. Parametric Analysis
The dynamic model of the manipulator is complex, and the effects of different nonlinear factors are
difficult to distinguish. The fluctuations that are caused by the starting and meshing impacts cannot be
avoided, but self-excited fluctuations must be controlled. As indicated in the previous section, tooth
error is the main cause of these fluctuations, the magnitudes of which are weakened by the existence
of backlash clearance. The effects of backlash clearance size and tooth error size are thoroughly
discussed in this section.

4.1. Influence of backlash clearance size
Backlash clearance, which is micron-scaled, has been verified to have a limited influence on rotational
precision. The error of angular displacements can be neglected when the backlash clearance is 100 μ m
and 6 mm. The latter value is nearly one-third of the tooth thickness, which is considered an extreme
value in the actual design. The positioning error stays in a 0.001 rad scale. The final error eventually
converges to zero, particularly for a closed-loop controlling method.

However, the displacement error will accumulate if the links are repeatedly driven back and forth.
Figure 15 shows the accumulated error when both joints are driven by torque T = 2000 sin(20π

√
t).

The error apparently increases with the increase in the backlash size. Space manipulators rarely work
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Fig. 14. Angular acceleration of the shoulder joint in the first 1.2 s; the dashed line is the rigid model, whereas
the solid line is the detailed model.

Fig. 15. Accumulated error of the shoulder joint when rotating back and forth.

under such critical circumstance. Moreover, a closed-loop controlling method with encoder feedback
will erase the error every time the links rotate backwards. Therefore, the backlash clearance error also
accumulates when the manipulator repeatedly goes back and forth, which rarely happens in actual
situations.

As discussed in the previous section, the backlash size produces a strong effect on the fluctuation
magnitude. To study such phenomenon, a set of different backlash clearance models is simulated, in
which parameter b is set to 5, 10, 25, 50, 500, 1000, and 3000 μ m. Figures 16 and 17 show the results
of the shoulder joint sun-planet meshing force during the meshing and self-excited impacts. Although
an increase in the backlash clearance size enhances the severity of the meshing force impact, such
impact occurs at a later time and in a shorter duration because a larger clearance requires more time
to re-contact when the gear pair changes its contacting side.

The result in Fig. 17 is similar to that presented in the previous section, which was derived when
the backlash clearance is set to zero. The fluctuation magnitude of the internal excitation obviously
recedes when the backlash clearance size increases. A smaller backlash clearance causes a small-
range gear pair vibration, and the contact of the adjacent pair changes the meshing side back and
forth, which results in continuous excitation. Therefore, the size of backlash clearance is not the
smaller the better, and a suitable backlash clearance size is the key to suppressing severe fluctuation.

Figure 18 shows the FFT analysis results of the joint angular accelerations during self-excited
fluctuation. The fundamental frequency of the fluctuation is approximately 1500 Hz, and several
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Fig. 16. Fsp1 of different clearances during impact.

doubling frequencies also appear. The magnitude of the elbow joint acceleration is much greater than
that of the shoulder joint because the motion of the first link is coupled with that of the second link.
The fundamental frequency drifts into the low frequency stage as the clearance size increases. A
chaotic fluctuation is observed when the backlash clearance increases to a value larger than 500 μ m,
and the FFT result is a continuous spectrum in the low frequency area. Given that the meshing impact
is also affected by the backlash clearance, neither an oversized nor undersized backlash clearance
is considered suitable for attaining a steady transmission. A backlash clearance of approximately
50 μ m is deemed suitable for the simulated system in this study.

4.2. Influence of the tooth profile error
Tooth profile error is mainly composed of surface roughness error and manufacturing error. Given that
the gear surface is usually machined by ground finish, the roughness error is generally micron-scaled.
Manufacturing errors include misaligned work pieces or cutters as well as measurement errors, which
are controllable. Therefore, a tooth error magnitude of 10 μ m is considered extreme to a certain
degree. The tooth errors of 1.6, 3.2, 5, and 6.3 μ m are simulated in this section. The tooth error
size barely affects positioning error, which is not difficult to explain. The error size, which basically
includes irregularities in the tooth surface profile, is smaller than the backlash size by one order
of magnitude. The angular displacement error is mostly unchanged when the tooth error increases.
The meshing and starting impacts rapidly converge when the backlash clearance grows larger than
the error magnitude and the impact energy release after tooth surface deformation. Therefore, these
results are not displayed in this article, and this section mainly focuses on the self-excited fluctuation
that is caused by tooth error.

Figure 19 shows the highly remarkable influence of error size on the self-excited fluctuation. The
internal excitement is not strong enough to excite a fluctuation when the tooth error size is smaller
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Fig. 17. Fsp1 of different clearances during self-excited fluctuation.

Fig. 18. (a) Shoulder joint and (b) elbow joint angular acceleration in the frequency domain.
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Fig. 19. Fsp1 during self-excited fluctuation.

Fig. 20. (a) Shoulder joint and (b) elbow joint angular acceleration in the frequency domain.

than 1 μ m, whereas minor fluctuations appear when the error size reaches 1.6 μ m. The meshing
contact force evidently increases when the error becomes larger.

Joint acceleration is analyzed in frequency domain as illustrated in Fig. 20. The shoulder joint
displays a 0 Hz magnitude, which represents the rigid rotation of the joint, and some chaotic high-
frequency components, which represents a minor fluctuation, when the tooth error is less than
5 μ m. The high-frequency component magnitude of the elbow joint is larger compared with the
0 Hz component because the fluctuation of link 1 is transmitted to the elbow joint. The self-excited
fluctuation becomes more observable when the tooth error is greater than 5 μ m. The composed
components are basically the same as those that are shown in Fig. 18. Given that the magnitude
dramatically increases even when the error only increases by 1.3 μ m, the tooth error is identified as
the reason behind the occurrence of self-excited impacts, and tiny errors will result in tremendous
fluctuations.

5. Conclusion
A new model for a two-link space manipulator system is developed in this study. The manipulator
joint is transmitted through a planetary gear train, and the detailed model of the 2K-H planetary gear
train is completed. The backlash clearance, gear tooth error, and time-variant meshing stiffness are
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all considered in the model. Examples of the constant torque driving and PD driving method are
simulated. Gear meshing results in fluctuation during processing, and backlash clearance is the cause
of excitation. The fluctuation magnitude becomes more severe when the backlash clearance increases.
The tooth error results in a self-excited fluctuation, whereas a small backlash clearance intensifies
such fluctuation. Given that backlash clearance is unavoidable in the planetary gear train, a suitable
backlash size is needed in the system and the tooth profile error must be kept as small as possible to
enhance manufacturing precision.

Acknowledgements
This work was supported by the National Science Foundation of China under Contract No. 11272171,
Beijing Natural Science Foundation under Contract No. 3132030 and Education Ministry Doctoral
Fund of China under Contract No. 20120002110070.

References
1. S. Yu and M. A. Elbestawi, “Modelling and dynamic analysis of a two-link manipulator with both joint and

link flexibilities,” J. Sound Vib. 179(5), 839–854 (1995).
2. G. Gibbs and S. Sachdev, “Canada and the international space station program: overview and status,” Acta

Astronautica 51(1–9), 591–600 (2002).
3. J. J. Yu, J. S. Dai, T. S. Zhao, S. S. Bi and G. H. Zong, “Mobility analysis of complex joints by means of

screw theory,” Robotica 27, 915–927 (2009).
4. T. Komatsu, M. Uenohara, S. Iikura, H. Miura and I. Shimoyama, “Dynamic control for two-link flexible

manipulator,” Nippon Kikai Gakkai Ronbunshu, C Hen/Trans. Japan Soc. Mech. Eng. C 55(516), 2022–2028
(1989).

5. A. S. Morris and A. Madani, “Static and dynamic modelling of a two-flexible-link robot manipulator,”
Robotica 14(pt 3), 289–300 (1996).

6. B. He, F. Gao and S. Wang, “Modeling and simulation of a mechanical arm with joint clearance,” J. Tianjin
Univ. Sci. Technol. 38(9), 795–799 (2005). (In Chinese)

7. P. K. Nguyen, R. Ravindran, R. Carr, D. M. Gossain and K. H. Doetsch, “Structural Flexibility of the Shuttle
Remote Manipulator System Mechanical Arm,” Proceedings of the Guidance and Control Conference, San
Diego, CA, USA (1982) pp. 246–256.

8. M. W. Spong, “Modeling and control of elastic joint robots,” J. Dyn. Syst., Meas. Control 109(4), 310–318
(1987).

9. F. Ghorbel, J. Y. Hung and M. W. Spong, “Adaptive Control of Flexible-Joint Manipulators,” Proceedings of
the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA (May 14–19,
1989) pp. 9–13.

10. M. H. Korayem and A. Nikoobin, “Maximum payload for flexible joint manipulators in point-to-point task
using optimal control approach,” Int. J. Adv. Manuf. Technol. 38(9–10), 1045–1060 (2008).

11. H. Salmasi, R. Fotouhi and P. N. Nikiforuk, “A biologically inspired controller for trajectory tracking of
flexible-joint manipulators,” Int. J. Robot. Autom. 27(2), 151–162 (2012).

12. L. Hong, Y. Liu, J. Minghe, K. Sun and J. B. Huang, “An experimental study on Cartesian impedance
control for a joint torque-based manipulator,” Adv. Robot. 22(11), 1155–1180 (2008).

13. M. K. Ciliz, “Adaptive control of robot manipulators with neural network based compensation of frictional
uncertainties,” Robotica 23(2), 159–167 (2005).

14. B. Subudhi and A. S. Morris, “Singular perturbation based neuro-H-infinity control scheme for a manipulator
with flexible links and joints,” Robotica 24(2), 151–161 (2006).

15. J. Zhao and C. Fang, “On the joint velocity jump during fault tolerant operations for manipulators with
multiple degrees of redundancy,” Mech. Mach. Theory 44(6), 1201–1210 (2009).

16. J. Zhao and Q. Li, “On the joint velocity jump for redundant robots in the presence of locked-joint failures,”
J. Mech. Des. 130(10230510), (2008).

17. J. Zhao and S. Bai, “The study of coordinated manipulation of two redundant robots with elastic joints,”
Mech. Mach. Theory 35(7), 895–909 (2000).

18. D. M. Gan, N. G. Tsagarakis, J. S. Dai, D. G. Caldwell and L. D. Seneviratne, “Stiffness design for a
spatial 3-DOF compliant manipulator based on impact configuration decomposition,” Trans. ASME, J.
Mech. Robot. 5(1), 2013, pp. 011002(1–10).

19. Y. Woosoon, “Adaptive Control of a Flexible Joint Manipulator,” Proceedings of the 2001 ICRA. IEEE
International Conference on Robotics and Automation, Seoul, South Korea (2001) pp. 3441–3446.

20. Z. Du, Y. Xiao and W. Dong, “Modeling of robot joints with friction, backlash and hysteresis,” Robot 33(5),
539–545 (2011). (In Chinese)

21. B. O. Al-Bedoor and A. A. Almusallam, “Dynamics of flexible-link and flexible-joint manipulator carrying
a payload with rotary inertia,” Mech. Mach. Theory 35(6), 785–820 (2000).

https://doi.org/10.1017/S0263574714002045 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002045

