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Snow avalanches and other hazardous geophysical granular flows, such as debris
flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a
slope, generating rapid changes in the flow height and velocity in their vicinity. It
is important to understand how a granular material flows around such obstacles to
improve the design of deflecting and catching dams, and to correctly interpret field
observations. In this paper small-scale experiments and numerical simulations are used
to investigate the supercritical gravity-driven free-surface flow of a granular avalanche
around a circular cylinder. Our experiments show that a very sharp bow shock wave
and a stagnation point are generated in front of the cylinder. The shock standoff
distance is accurately reproduced by shock-capturing numerical simulations and is
approximately equal to the reciprocal of the Froude number, consistent with previous
approximate results for shallow-water flows. As the grains move around the cylinder
the flow expands and the pressure gradients rapidly accelerate the particles up to
supercritical speeds again. The internal pressure is not strong enough to immediately
push the grains into the space behind the cylinder and instead a grain-free region,
or granular vacuum, forms on the lee side. For moderate upstream Froude numbers
and slope inclinations, the granular vacuum closes up rapidly to form a triangular
region, but on steeper slopes both experiments and numerical simulations show that
the pinch-off distance moves far downstream.

Key words: compressible flows, granular media, shock waves

1. Introduction
Gravity-driven granular free-surface flows, or granular avalanches, are more common

than one might imagine. They occur whenever grains are poured (Boudet et al. 2007;
Johnson & Gray 2011), flow in chutes (Savage 1979; Akers & Bokhove 2008) or
are rotated in drums and industrial mixers (Shinbrot & Muzzio 1998; Gray 2001).
Hazardous geophysical mass flows, such as snow avalanches (Savage & Hutter 1989;
Jóhannesson 2001; Jomelli & Bertran 2001), debris flows (Iverson & Denlinger 2001;
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Bow shock

Granular vacuum

FIGURE 1. Experimental set-up showing the flow of non-pareille grains (commonly known
as 100s and 1000s or sprinkles) past a circular cylinder on a chute inclined at an angle ζ to
the horizontal. The x-coordinate is aligned with the downslope direction, the y-coordinate is
across the chute and z is the upward pointing normal.

Johnson et al. 2012), lahars (Vallance 2000) and pyroclastic flows (Branney &
Kokelaar 1992; Cole et al. 1998; Mangeney et al. 2007) are all forms of granular free-
surface flows that occur regularly in our natural environment. Despite the enormous
difference in scales these examples are all commonly modelled using depth-averaged
shallow-water type theories that have additional momentum source terms (Grigourian,
Eglit & Iakimov 1967; Savage & Hutter 1989; Iverson 1997; Gray, Wieland & Hutter
1999; Gray, Tai & Noelle 2003; Mangeney-Castelnau et al. 2003). These relatively
simple theories have proved to be particularly effective at modelling geophysical
flows as well as being able to accurately reproduce carefully controlled small-scale
experiments.

The study of granular flows past obstacles, see for example figure 1, has attracted
much attention in recent years, because of its importance in the design of deflecting
and catching dams (Sigurdsson, Tomasson & Sandersen 1998; Tai et al. 1999; Cui,
Gray & Johannesson 2007; Hauksson et al. 2007; Jóhannesson et al. 2009). These
are used extensively in mountainous regions to protect people and infrastructure from
geophysical mass flows. As well as being able to fly over, or overtop, these defensive
structures (Hákonardóttir et al. 2003; Faug et al. 2008) they also generate shock waves
in front of, or adjacent to, them, at which there are rapid changes in the avalanche
thickness and flow velocity (e.g. Tai et al. 2001; Gray et al. 2003). Shock waves
arise naturally from the hyperbolic structure of the shallow-water equations. In two
dimensions there are stationary granular jumps, that are analogous to hydraulic jumps
in open channel flows (Savage 1979; Brennen, Sieck & Paslaski 1983), as well as
propagating granular bores that bring material rapidly to rest (Gray & Hutter 1997;
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Gray & Tai 1998). In three dimensions, weak, strong and detached oblique shocks
develop when the oncoming flow is deflected by a sharp tipped wedge (Gray et al.
2003; Hákonardóttir & Hogg 2005; Cui et al. 2007; Gray & Cui 2007; Vreman
et al. 2007; Akers & Bokhove 2008), which are analogous to oblique shocks in
shallow water (Preiswerk 1938; Rouse 1938; Ippen 1949) and gas dynamic flows
(Ames Research Staff 1953). Unsteady inward-propagating granular jumps form when
a jet of grains hits a flat plate (Boudet et al. 2007) and when the plate is inclined,
a rich variety of steady and unsteady shock waves form (Johnson & Gray 2011).
In dilute granular flows, shock waves in density and velocity develop instead, and
highly agitated low solids volume fraction flows past wedges (Rericha et al. 2002)
and cylinders (Buchholtz & Pöschel 1998; Wassgren et al. 2003; Boudet & Kellay
2010) have also been investigated in this context. High-speed dilute and dense granular
flows exhibit similar shock waves to those observed in gas dynamics and shallow
water flow; which themselves have a well-known relationship between them (Preiswerk
1938; Courant & Friedrichs 1948).

The aim of this paper is to investigate what happens when a dense granular
avalanche impacts on a blunt body, described by a wall boundary, rather than a
sharp tipped wedge (e.g. Gray & Cui 2007) or a topographic feature with a finite
slope, such as a pyramidal obstacle (Gray et al. 2003). It is shown how a body-fitted
grid (Vinokur 1974; Viviand 1974) combined with shock-capturing numerical methods
(e.g. Godunov 1959; Nessyahu & Tadmor 1990; LeVeque 2002) can be used to solve
for the motion around an arbitrarily shaped walled obstacle. The particular case that
we focus on is that of a circular cylinder, which is not only a classical shape, but is
of fundamental practical interest for the design of pylons that are able to withstand
such flows (Sovilla et al. 2008), as well as being representative of common obstacles
such as tree trunks. To provide basic physical insight into the problem as well as
quantitative data to compare the model against, we begin by performing a series of
small-scale experiments.

2. Small-scale experiments

The experimental set-up is shown in figure 1. It consists of a smooth Plexiglas
chute that is 300 mm wide and 600 mm long and is inclined at an angle ζ to the
horizontal. At the top of the chute is a hopper, where the grains are loaded, and there
is a gate mechanism that controls the height and flux of material entering the chute. A
30 mm diameter circular metal cylinder is attached in the centre of the chute 300 mm
downstream of the inflow gate, so that its axis of revolution is normal to the inclined
plane. The flow in figure 1 shows a thin, rapidly moving, avalanche of non-pareille
(commonly known as hundreds and thousands or sprinkles) on a slope inclined at
ζ = 38◦. The grains are approximately 1 mm in diameter and are coloured red and
white. Individual grains can be identified in the hopper where there is relatively
little motion adjacent to most of the transparent sidewalls. A relatively long exposure
is used to produce surface streaks and help visualize the particle trajectories. Just
upstream of the cylinder there is a strong jump in the flow thickness and velocity,
which is termed a ‘bow shock wave’. On the lee side a particle-free region forms,
which is termed a ‘granular vacuum’ by direct analogy with vacuum boundaries in gas
dynamics, where the density, ρ, is zero, rather than the avalanche thickness, h. Grains
run freely off the end of the chute into a collecting box, so there is no significant
upstream influence by the outflow conditions.
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Gravity-driven granular free-surface flow around a circular cylinder 317

FIGURE 2. Perspective view of a bow shock, stagnation point and particle-free granular
vacuum, generated when a sand avalanche flows around a circular cylinder. The chute is
inclined at ζ = 36◦ to the horizontal and the Froude number just upstream of the shock is
approximately equal to six. The flow is from top left to bottom right. Individual grains can be
seen near the stagnation point.

The formation of shock waves is insensitive to the particular type of granular
material used, although the resolution of the shocks is better if the grains are
small relative to the typical scale of flow features. Figures 2 and 3 show closeup
oblique and overhead views of the steady fully developed flow of a soft masonry sand
avalanche around the circular cylinder on a ζ = 36◦ slope. The sand is polydisperse,
but the majority of grains lie in the range 100–400 µm and although they are not
of contrasting colour, they still produced subtle streak lines in the photographs that
reveal the particle paths. The bow shock starts just upstream of the obstacle and is
very abrupt, appearing as a sharp line in the overhead view in figure 3, which wraps
around on either side of the cylinder. It separates the oncoming supercritical flow
(where the Froude number Fr > 1) from the deflected flow on the downstream side,
which has regions of both subcritical (Fr < 1) and supercritical flow. The deflected
flow appears slightly lighter than the oncoming flow, in figure 3, due to the lighting.
The avalanche thickens significantly across the shock, rising to a maximum height
immediately above the furthest upstream point on the cylinder wall. This is also where
the stagnation point is located. The flow is slowed so much near the stagnation point
that it is possible to just see some of the individual particles in the photographs in
figures 2 and 3.

As the grains move around the top side of the cylinder the flow expands, causing the
thickness to decrease and the grains to rapidly accelerate reaching supercritical speeds
again. The dividing line between subcritical and supercritical flow is called the ‘critical
line’ and is where Fr = 1. Close to the wall the avalanche develops steep sides that
cast a shadow on either side of the cylinder as shown in figure 3. This part of the
expansion is so strong that the avalanche reaches zero thickness before the two streams
meet and the flow detaches from the wall. Downstream the grains are pushed inwards
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Vacuum boundary

Bow shockStagnation point

Secondary jumps

FIGURE 3. Overhead view of the bow shock, stagnation point and particle free-granular
vacuum, under the same conditions as in figure 2. The flow is from top to bottom. Individual
sand grains can be seen near the stagnation point.

on either side by the lateral pressure gradients, and the zero thickness boundary moves
inwards and eventually intersects at a sharp point some distance downstream. The
sides of this grain-free region are almost straight, so the granular vacuum on the
lee side looks triangular in shape. The point of intersection of the two streams, or
pinch-off point, is similar to those observed by Johnson & Gray (2011) during jet
impingement on a plane. In this case, however, there is no flux of grains from the
vacuum region.

3. Governing equations
We use the dimensionless model formulated by Gray et al. (2003) in our discussion.

It is set up in a coordinate system, Oxyz, with the x-axis pointing down a plane
inclined at ζ to the horizontal, the y-axis pointing across the slope and z-axis being
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the upward pointing normal, as shown in figure 1. The depth-integrated mass and
momentum balance equations are

∂h

∂t
+ ∂

∂x
(hū)+ ∂

∂y
(hv̄)= 0, (3.1)

∂

∂t
(hū)+ ∂

∂x
(λhū2)+ ∂

∂y
(λhūv̄)+ ∂

∂x

(
1
2

h2 cos ζ
)
= hS1, (3.2)

∂

∂t
(hv̄)+ ∂

∂x
(λhūv̄)+ ∂

∂y
(λhv̄2)+ ∂

∂y

(
1
2

h2 cos ζ
)
= hS2, (3.3)

respectively. The avalanche thickness, h, and the depth-averaged velocity, ū = (ū, v̄),
in the downslope and cross-slope directions have been non-dimensionalized using the
scalings

h̃= Lh, (x̃, ỹ)= L (x, y), ( ˜̄u, ˜̄v)=√Lg (ū, v̄), t̃ =√(L/g) t, (3.4)

where the tildered variables are dimensional, g is the constant of gravitational
acceleration and L is the diameter of the cylinder. For the experiments in this paper,
L= 0.03 m, which implies that the velocities are scaled by

√
Lg= 0.54 m s−1 and time

is scaled by
√

L/g = 0.055 s. The source terms S1 and S2 on the right-hand side of
(3.2) and (3.3) are composed of the downslope component of gravity, which drives the
avalanche downslope, and Coulomb basal friction, which resists the motion

S1 = sin ζ − µ(ū/|ū|) cos ζ, (3.5)
S2 =−µ(v̄/|ū|) cos ζ, (3.6)

where µ = tan δ is the coefficient of friction and δ is the dynamic basal angle of
friction. The parameter λ arises during depth integration of the momentum transport
terms, since the average of the product of two velocity components is not equal to
the product of the average of those velocity components. Usually these factors are
assumed to be unity, which is equivalent to the assumption that velocity profiles are
uniform with depth. Assuming that the lateral and downslope velocity profiles, (u, v),
are of the same form, the parameter λ is the same for each product, and is defined as

λ= 1
hū2

∫ h

0
u2 dz= 1

hūv̄

∫ h

0
uv dz= 1

hv̄2

∫ h

0
v2 dz. (3.7)

Various authors have considered the effect of other assumed profiles. Savage & Hutter
(1989) showed that λ = 6/5 for a parabolic velocity profile, Pouliquen & Forterre
(2002) obtained the value of 4/3 for a linear profile (with no basal slip), and
Börzsönyi, Halsey & Ecke (2008) showed that for a convex Bagnold profile, λ = 5/4.
On rough beds Pouliquen & Forterre (2002) showed that numerical computations are
relatively insensitive to the value of λ because the flows are sufficiently slow that
the momentum transport terms do not play a large role. Nevertheless, deviations of λ
away from unity can cause difficulties near vacuum boundaries, since the characteristic
surface no longer coincides with the motion of the boundary and the degenerate nature
of the equations is lost. Such problems are often circumvented by requiring the shape
factor λ−→ 1 as h−→ 0.

In this paper, the flows are strongly accelerated, which implies that the momentum
transport terms play a much more important role than for slow flows on rough beds.
However, there is also a greater degree of basal slip. The lateral velocities may
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reasonably be approximated by the linear profiles

u= ū
(
α + 2(1− α) z

h

)
, v = v̄

(
α + 2(1− α) z

h

)
, (3.8)

which give plug flow (α = 1), simple shear (α = 0) and linear shear with basal slip for
α ∈ (0, 1). For these profiles the parameter

λ= 1
3(4− 2α + α2). (3.9)

For a typical value of α = 0.75, the shape factor λ = 1.0208, which is sufficiently
close to unity that we shall assume λ= 1. In this case the Froude number

Fr = |ū|/c, (3.10)

is defined as the ratio of the flow speed |ū| to the wavespeed c=√h cos ζ . The major
difference of the avalanche equations (3.1)–(3.3) to standard shallow-water flows is the
presence of the source terms on the right-hand side.

4. Steady state accelerating flows on a smooth bed
In the chute flow experiments, shown in figures 1–3, the base is relatively smooth

and the grains are able to accelerate downslope rather than attaining a steady uniform
velocity, as they might on a rough bed (Pouliquen 1999; Pouliquen & Forterre 2002).
This leads to a considerable thinning of the flow as it exits the gate as shown in
figure 4. The acceleration is controlled by the dynamic angle of friction δ, which
characterizes the rate-independent Coulomb friction that is generated at the base by the
slightly dilated agitated flow of grains above. It is usually several degrees less than the
microscopic static basal friction angle. In this section a new method for determining δ
is described, which is based on constructing a one-dimensional exact solutions for the
accelerating flow. Assuming that the flow is steady, and v̄ is identically zero, the mass
balance equation (3.1) and the downslope momentum balance equation (3.2) reduce to

∂

∂x
(hū)= 0, (4.1)

∂

∂x

(
hū2 + 1

2
h2 cos ζ

)
= hS1, (4.2)

where the source term S1 is now constant, i.e.

S1 = sin ζ − tan δ cos ζ = sec δ sinβ, (4.3)

and the angle

β = ζ − δ, (4.4)

is the difference between the slope inclination and the basal angle of friction. The
mass balance equation (4.1) can be integrated directly, subject to the boundary
condition that the avalanche velocity and thickness at the inflow are ū0 and h0,
respectively, to give a relation between the flow thickness and the velocity

hū= h0ū0. (4.5)

The momentum balance equation (4.2) can be simplified by expanding out the
derivatives, using (4.1) and then dividing through by h to give

ū
∂ ū

∂x
+ cos ζ

∂h

∂x
= S1. (4.6)
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FIGURE 4. (a) A photograph through the transparent sidewall of the chute showing how an
avalanche of non-pareille exits under a control gate at a Froude number of approximately
Fr = 1.42 and dramatically thins as it accelerates downslope. The camera and the chute are
both inclined at an angle of 38◦ to the horizontal. (b) A PIV measurement of the velocity
vectors overlapped with the contour lines of the downslope velocity u in metres per second.

Using (4.5) to substitute for the avalanche thickness, (4.6) can be integrated, subject to
the condition that the inflow lies at x = 0, to give a cubic equation for the avalanche
velocity

ū3 − (2S1x+ ū2
0 + 2h0 cos ζ )ū+ 2h0ū0 cos ζ = 0. (4.7)

This can either be solved by numerical root finding techniques or by using Cardano’s
formula for ū = ū(x). For inflow Froude numbers above unity there are three real
solutions for x > 0. One is strictly negative, the other two are positive, by Descartes’
rule of signs, and correspond to an accelerating and a decelerating flow, respectively.
The decelerating solution can be physically realized by using downstream control gates
(see, e.g., Gray & Cui 2007), but normally the accelerating solution is selected. This
necessarily has a decreasing thickness distribution, which can be calculated from (4.5).

The solution provides two very simple ways of determining the dynamic basal
angle of friction, δ. One strategy is to measure the thickness of the flow as a
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FIGURE 5. A comparison between the exact solution (solid lines) for ū(x) and surface
PIV measurements for non-pareille (circles) and sand (triangles). The experiment with non-
pareille was performed on a chute inclined at ζ = 38◦ and an inflow gate height h0 = 0.43.
The best fit was obtained with an inflow velocity ū0 = 1.24 and basal angle of friction δ = 23◦.
The sand experiments were performed with an inflow height of h0 = 0.4 and a slope of
ζ = 36◦ and the best fit was found with δ = 26◦ for ū0 = 0.8.

function of x and the steady-state mass flux, mexit, per unit width at the end of
the chute. For an inflow gate height, h0, the depth-averaged velocity at the inflow
is ū0 = mexit/h0, provided (4.1) holds. The value of δ can then be determined by
fitting the exact solution to the measured thickness h. This approach relies on being
able to measure small height variations very accurately. Alternatively, particle image
velocimetry (PIV) can be used to measure the surface velocity as a function of
x. Figure 5 shows two sets of surface velocity measurements for non-pareille (also
known as 100s and 1000s or sprinkles) and for sand. This has the advantage that
the surface velocity is considerably easier to measure and has larger variation than
the thickness. However, this is not the depth-averaged velocity, ū, and an assumption
about the downslope velocity profile with depth (3.8) needs to be made to relate the
two. Figure 4(b) shows PIV measurements through the sidewall of the chute for a
relatively thick flow exiting the hopper. While these velocities may be effected by
the sidewall friction they indicate that the velocity profile is plug-like with only a
relatively small amount of vertical shear. For simplicity, we shall therefore assume
plug flow, i.e. the surface velocity is equal to the depth-averaged velocity, which
may lead to a small overestimate of the depth-averaged velocity. Setting the inflow
velocity, ū0, and then matching the solution ū(x) to the data yields the dynamic
basal angle of friction. For non-pareille δ = 23◦. While for fine sand δ = 26◦. This
approach is a considerable improvement on previous measurement techniques for δ
(Hungr & Morgenstern 1984a,b; Savage & Hutter 1989; Wieland, Gray & Hutter
1999). Furthermore, the two methods can also be used in combination to constrain the
solution even further. For instance, it may yield useful information on the degree of
shear through the layer or changes in bulk density.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.42


Gravity-driven granular free-surface flow around a circular cylinder 323

x

y

 

r

4 8 12 16
x

0 20

–6

–2

2

6

y

–10

10(a) (b)

FIGURE 6. Coordinate mapping (a) between rectangular Oxy and polar O′rθ coordinates,
with the origin O at the hopper gate and O′ centred on the cylindrical obstacle. An O-type grid
(b) is used in the computation, where i denotes the radial coordinate from 1 (cylinder wall) to
ni (outer boundary) and j denotes the circumferential grid points anti-clockwise from 1 to nj.

5. Numerical method
The boundary conditions on the wall of the cylinder are more easily applied

by solving the governing equations in a body fitted coordinate system. This
transformation is achieved by using the conservative variables h, m= hū and n= hv̄ to
write the system of equations (3.1)–(3.3) in vector form as

∂U
∂t
+ ∂E
∂x
+ ∂F
∂y
= S, (5.1)

where U = (h,m, n)T is the vector of conservative variables and the superscript T
denotes the matrix transpose. The respective flux and source term vectors are

E= (m,m2/h+ h2 cos ζ/2,mn/h)
T
, (5.2a)

F= (n,mn/h, n2/h+ h2 cos ζ/2)
T
, (5.2b)

S= (0, hS1, hS2)
T . (5.2c)

For computing the flow around a circular cylinder the body fitted coordinates reduce to
a polar coordinate system O′rθ defined by

r =
√
(x− 10)2+y2, θ = tan−1

(
y

x− 10

)
, τ = t, (5.3)

as shown in figure 6. Note that the origin O′ is centred on the cylinder and there
is therefore an offset of 10 non-dimensional units (30 cm) from the outflow gate
at x = 0. The transformed equations are not in conservative form, but they can be
written in conservative form (see, e.g., Vinokur 1974; Viviand 1974; Anderson 1995,
pp. 183–186)

∂Û
∂τ
+ ∂Ê
∂r
+ ∂F̂
∂θ
= Ŝ, (5.4)
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by defining the new conservative variables, fluxes and the source terms as

Û = J−1U, Ê= J−1(rxE+ ryF), F̂= J−1(θxE+ θyF), Ŝ= J−1S, (5.5)

where the unbracketed subscripts denote differentiation with respect to that subscript
and the Jacobian coefficient J = rxθy − ryθx = (xryθ − xθyr)

−1. The major advantage of
this method is that it works for any smoothly varying body surface, not just a circular
cylinder. For instance, Gray & Cui (2007) used this method to compute the flow past
an obliquely inclined wedge.

The system of equations (5.4) is solved numerically by a non-oscillatory central
(NOC) scheme, which is a high-resolution shock-capturing method that does not
require Riemann solvers. The original NOC scheme (Nessyahu & Tadmor 1990)
switches between a grid, and a grid offset by half a grid cell in each direction, at
alternate time steps, which can make application of the wall boundary conditions
difficult. We therefore use the NOC scheme of Jiang et al. (1998) that uses a single
grid. Figure 6(b) shows a typical computational domain, with a uniform distribution
of circumferential grid points and a stretched radial distribution to allow a higher
resolution close to the cylinder. In the experiments the radius of the cylinder R̃ was
equal to 15 mm, which is equivalent to R= 0.5 dimensionless units, since the diameter
L = 30 mm is used in the scalings (3.4). The grid covers a range from r = 0.5 to
r = 10 units, with r = 0 at the centre of the cylinder and (r, θ)= (10,π) corresponding
to the position of the inflow gate. The simulations can either be performed on a half
grid, 0 6 θ 6 π, with a symmetry condition along y = 0 or on a full grid, 0 6 θ 6 2π,
with a wrapping condition along the grid lines j = 1 and j = nj. Both methods have
been tested and give the same results up to numerical accuracy. The results from the
full-grid simulations are presented for ease of comparison with the experiments.

Initially the chute is assumed to be grain free, i.e.

h≡ 0 at t = 0. (5.6)

The gate then opens instantaneously, so that the supercritical inflow condition is

h= h0, ū= ū0, v = 0 at x= 0, t > 0, (5.7)

where h0 is determined by the gate height and ū0 is measured by PIV. In order
to apply the inflow condition (5.7) on the O-type grid, a one-dimensional solution
without an obstacle is precomputed on a rectangular grid to determine the upstream
values of h(x, t) and ū(x, t) as the avalanche enters through the outermost upstream
grid cells, i.e. j ∈ [nj1, nj3] on i = ni in figure 6. The fact that the flow front
remained one-dimensional, in regions that were not influenced by the cylinder, as
the front propagated through the domain provided a strong test of the method. For
the experiments and computations presented in this paper the downstream outflow
is also supercritical, so no physical boundary conditions need to be applied for
j ∈ [1, nj1] ∪ [nj3, nj] on i= ni. On the cylinder wall (i = 1) a no normal flux condition
is applied

hu ·n= 0 at r = 0.5. (5.8)

This condition is satisfied when either: (i) the flow is parallel to the wall, u · n= 0; or
(ii) the flow thickness is zero, h = 0. The later condition allows the grain-free vacuum
boundary to detach from the wall. A cutoff threshold of h = 10−3 non-dimensional
units is used to prevent division by zero when the momentum transport terms (5.2)
are computed. Following Gray et al. (2003) the results are plotted with the lowest
contour at h = 10−2 non-dimensional units or 300 µm, which is approximately equal
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to the average diameter of a grain of sand. This mirrors the finite grain size in the
experiments and prevents spurious zero thickness contour lines being depicted in the
grain-free regions.

6. Time-dependent evolution of the avalanche
A series of photographs of the avalanche impinging on the circular cylinder on a

slope inclined at ζ = 36◦ are shown in (a,c,e,g) of figures 7 and 8. A supplementary
movie of the experiment is available at http://dx.doi.org/10.1017/jfm.2013.42. The
pictures were taken with a shutter speed of 1/20 of a second, a frame rate of 25
frames per second and show how the bow shock and the granular vacuum are formed
in a close-up region near the cylinder (18.6 cm× 13.8 cm). The right-hand side panels
(b,d,f,h) in figures 7 and 8 show contours of the evolving avalanche thickness from
a corresponding numerical simulation. The time intervals between frames are equal to
0.72 non-dimensional units. The initial conditions h0 = 0.4 and ū0 = 0.8 and the basal
angle of friction δ = 26◦ for the simulation were determined by the method described
in § 4. The computations were performed on an O-grid with 501 × 251 grid points in
the circumferential and radial directions, respectively.

The position of the evolving vacuum boundary, which separates the avalanching
grains from grain-free region, provides a very sensitive test of the numerical
simulations as its position is strongly influenced by the local velocity field, pressure
gradients and source terms. The position of the boundary is superimposed on the
experimental images to provide a quantitative comparison between the experiments and
the simulations. Figure 7(a,b) show the avalanche front just upstream of the cylinder
prior to impingement. In the experiments the front is diffuse, this is partly due to
motion blur, and partly because as the depth of the flow reaches that of a single grain,
the particles can start to bounce down the slope rather than avalanching en masse. In
the numerical computations neither of these effects occur and there is a sharp front
that is still uniform in the cross-slope direction. Since the gate release was out of
camera shot, the simulation and the experiment were synchronized by using the front
position of approximately x= 8 units at time t = 7.4 units.

As the avalanche first impinges on the obstacle (figure 7c,d) it is quite thin and
travelling very fast. As a result only those particles that collide with the cylinder wall
are significantly affected by the obstacle, and away from this region the flow front
continues to propagate uniformly downstream. By t = 8.84 units the bow shock in
front of the cylinder is already quite well developed (figure 7e,f ) and the uniform
part of the avalanche front has propagated out of camera shot. The granular vacuum
lies immediately downstream of the cylinder and still has almost straight sides in
the experiment, which are now much sharper and well-defined than the initial diffuse
front. The computed position of this moving boundary agrees extremely well with the
experiments. The bow shock continues to strengthen (figure 7g,h) growing slightly in
height and moving only slightly upstream until the oblique shocks on either side of
the obstacle are almost fully developed by t = 10.28 in figure 8(a,b). In contrast the
vacuum boundary takes longer to develop. It slowly closes (figures 7g,h and 8a,b) in
response to the lithostatic pressure within the body that pushes the grains sideways,
before it finally pinches off just before t = 11 in figure 8(c,d). The pinch-off point then
propagates upstream until it reaches an almost steady configuration by t = 12.44 in
figure 8(g,h). The grain-free vacuum region therefore forms a triangular shape on the
lee side of the cylinder. At all stages of the computation the spatially, temporally and
topologically evolving vacuum boundary agrees extremely well with what is observed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
http://dx.doi.org/10.1017/jfm.2013.42
https://doi.org/10.1017/jfm.2013.42


326 X. Cui and J. M. N. T. Gray

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

–1

0

1

–1

0

1

–1

0

1

–1

0

1

10 11 128 9
x

7 13

–2

2

y

–2

2

y

–2

2

y

–2

2

y

0.01 0.20 0.40 0.60 0.80 1.00

FIGURE 7. (a,c,e,g) Photographs and superimposed computed boundary showing the time-
dependent development of a bow shock and a vacuum boundary as a sand avalanche flows
around a circular cylinder on a chute inclined at ζ = 36◦. Consecutive images are 0.04 s
apart. (b,d,f,h) Numerical solutions for the avalanche thickness h at corresponding times. The
simulations are performed with h0 = 0.4, ū0 = 0.8, δ = 26◦ and all units are dimensionless.
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FIGURE 8. (a,c,e,g) Photographs and superimposed computed boundary and (b,d,f,h)
numerical solutions showing the continuation of the time-dependent development of a bow
shock and a vacuum boundary shown in figure 7. Consecutive images are 0.04 s apart, which
corresponds to 0.72 non-dimensional units. A movie showing the time-dependent evolution of
the experiment is available at http://dx.doi.org/10.1017/jfm.2013.42.
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FIGURE 9. Photographs of steady-state avalanches of sand (a) and non-pareille grains (c)
past a circular cylinder. The equivalent steady-state computational contours of the avalanche
thickness h are shown in (b,d), respectively, together with particle paths (dashed lines). The
parameters for the simulations are given in figure 5 and movies showing the time-dependent
evolution of both experiments are available at http://dx.doi.org/10.1017/jfm.2013.42.

in experiments, indicating that this simple two-parameter model captures all of the
essential physics.

7. Steady-state solution
At later times the experimental flow reaches a steady-state regime with no further

evolution within the field of view, apart from some small fluctuations due to the
slightly unsteady nature of the hopper flow. The time to reach steady state (in the
field of view) after the initial impingement on the cylinder (i.e. between figures 7a and
8g) is approximately five non-dimensional time units or 0.277 s. The vacuum pinch-off
occurs at a distance x = 11.8 in the final steady state for the sand avalanche, shown
in figure 9(a,b), which is very slightly shorter than at t = 12.44. For comparison,
the steady state experiment and numerical simulation for non-pareille on a slope of
ζ = 38◦ is shown in figure 9(c,d). The parameters for the simulation are given in
figure 5 and a movie of the experiment is available at http://dx.doi.org/10.1017/jfm.
2013.42. This is particularly revealing, as one can clearly see the particles upwelling
between the bow shock and the stagnation point and then being accelerated strongly
in the cross-slope direction on either side of the symmetry line. The bow shock
wave in the non-pareille is very similar to that in sand, but the shape and extent of
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FIGURE 10. The non-dimensional detachment, or standoff, distance xs of the bow shock as
a function of the incoming Froude number Fr1 obtained in computation (solid-line with open
circles), experiment (filled diamonds) and the approximate series solution, 1/Fr1, of Forbes
& Schwartz (1981) (dot-dash line). The upper schematic diagram shows xs and the cylinder
radius R= 0.5, the lower inset shows the computed and series approximation for the standoff
distance for Froude numbers 5 to 13.

the granular vacuum is markedly different. These similarities and differences will be
investigated below.

7.1. Standoff distance of the bow shock
The upstream Froude number, Fr1, is an important parameter in the theory, which
increases strongly with downstream distance due to the net acceleration of the slope.
The Froude number at the inflow is approximately Fr0 = 2.1 for sand and Fr0 = 1.4
for non-pareille grains, but by x = 9, just upstream of the shock, the one-dimensional
solution and parameters derived in § 4 imply that Fr1 = 6.04 (sand) and Fr1 = 6.87
(non-pareille), respectively. Both of these are high and equivalent problems in gas
dynamics would be classed as hypersonic flows (e.g. Hayes & Probstein 1966). The
jump conditions for the system of avalanche equations (3.1)–(3.3) are independent of
the source terms (see e.g Gray & Cui 2007), which implies that the jumps in h and
ū across the shocks are not directly influenced by the acceleration, although they are
influenced indirectly by the changing local value of the Froude number. As the Froude
numbers of the sand and the non-pareille grains are comparable at x = 9 the size and
shape of the bow shocks are also comparable. The slightly higher value of Fr1 for
non-pareille grains produces a larger jump in height across the shock, but the standoff
distance xs of the bow shock in front of the cylinder is almost the same as that for
sand.

Figure 10 shows a graph of the standoff distance, xs, as a function of the
upstream Froude number, Fr1. The experimental values are determined by performing
experiments at different slope angles and gate heights and measuring the velocity, ū1,
just upstream of the shock with PIV and reading off the flow height h1 through the
transparent sidewall. For Fr1 > 2, the bow shock forms and has a sharp jump in
thickness. The experiments show that the standoff distance decreases with increasing
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Froude number, Fr1, becoming equal to approximately one quarter of the cylinder
diameter by Froude number six. For upstream Froude numbers below about two, the
shocks are so diffuse that the standoff distance cannot be accurately defined. This
is consistent with previous observations (Gray & Cui 2007; Johnson & Gray 2011)
and suggests that the effects of the depth-averaged rheology (e.g. Forterre 2006) are
sufficiently strong to prevent wave steepening.

There have been a large number of studies that have developed approximate
solutions or practical empirical relations for the shock standoff distance in gas
dynamics and hypersonics (e.g. Lin & Rubinov 1948; Hida 1953; Kim 1956;
Lighthill 1957; Lobb 1964; Hayes & Probstein 1966; Louie & Ockendon 1991;
Belouaggadia, Olivier & Brun 2008). However, despite the isomorphism between
smooth shallow-water and isentropic gas dynamic flows when the ratio of specific
heats γ = 2 (Preiswerk 1938; Courant & Hilbert 1962) these relations cannot be
used for granular avalanches, because energy is not conserved across shocks. There
are comparatively few studies for shallow-water flows. Forbes & Schwartz (1981)
considered the supercritical shallow water flow past a blunt body, such as a bridge
pier, that supports a detached bow shock. The problem is formulated inversely, by
prescribing the upstream Froude number and the shock to be a conic section, and
then calculating the location of the body by using Padé approximants to analytically
continue Taylor series expansions. For a parabolic shock, Forbes & Schwartz (1981)
showed that for large Fr1, the standoff distance, xs, is approximately equal to the
reciprocal of the upstream Froude number

xs ∼ 1
Fr1

as Fr1 −→∞. (7.1)

This is shown by the dot-dash line in figure 10 and provides a reasonable
approximation to the experimental data even at low Froude numbers. Numerical
computations for the standoff distance at higher Froude numbers (figure 10 inset) also
show good agreement with Forbes & Schwartz’s (1981) approximation (7.1), although
it becomes increasingly difficult to calculate solutions, because the magnitude of the
jumps increase at the same time as the shock detachment distance becomes closer to
the wall. The results suggest that at Froude number six the standoff distance should
be one sixth, but measured values are closer to one quarter. There are two possible
explanations for this disagreement. One possibility is that we have overestimated the
experimental Froude number, Fr1, from the PIV measurements by assuming that the
flow is plug-like. An alternative possibility is that new physics comes into play, as
in shallow-water flows (Mignot & Riviere 2010), where horseshoe vortices form. In
the case of granular flows, a small deposit is left upstream of the cylinder when the
flow ceases. The deposit looks similar to that observed by Gray et al. (2003) on the
upstream facing side of a pyramid, but in contrast there is no evidence of it from
free-surface observations during the flow. There may, however, be a subsurface static,
or very slowly moving, zone adjacent to the cylinder, which would effectively change
its shape, and tend to move the standoff distance further upstream.

The source terms do not significantly affect the position of the bow shock or the
thickness at the stagnation point. To see this we consider the motion along the central
streamline from the bow shock to the stagnation point. The mass and momentum jump
conditions (see e.g. Gray & Cui 2007) across a normal shock imply that

h1ū1 = h2ū2, (7.2)

h1ū2
1 + 1

2 h2
1 cos ζ = h2ū2

2 + 1
2 h2

2 cos ζ, (7.3)
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where the subscripts ‘1’ and ‘2’ indicate the value on the rearward and forward side
of the shock, respectively. Using (7.3) to eliminate ū2 in (7.3) implies that the ratio of
thicknesses across the shock satisfies

h2

h1
=
√

1+ 8Fr2
1 − 1

2
. (7.4)

For a steady flow with shape factor λ = 1 the downstream momentum balance
equation (3.2) can be reduced to the one-dimensional steady-state equation (4.6),
irrespective of the fact that both ∂ ū/∂y 6= 0 and ∂v̄/∂y 6= 0. This is because the
mass balance equation (3.1) can be used to simplify the momentum transport terms
and the cross-slope velocity v̄ is equal to zero on the central streamline. Equation (4.6)
can then be integrated from the shock to the stagnation point, where the downstream
velocity ūstag is by definition zero, and the corresponding stagnation thickness is

hstag = xs cos ζ(tan ζ − tan δ)+ h2 + ū2
2

2 cos ζ
. (7.5)

For typical chute parameters and standoff distances, the first term on the right-hand
side is approximately 0.04 units, which is much smaller than typical stagnation point
heights, which are order unity, so the source terms play a negligible role. Substituting
(4.3) and using (7.3) and (7.4) to eliminate h2 and ū2, allows the ratio of the stagnation
depth to the inflow depth to be expressed in terms of the upstream Froude number

hstag

h1
= xs

h1
sec δ sinβ + 1+ 1

2
Fr2

1 −
1

16
([1+ 8Fr2

1]1/2−3)
3

([1+ 8Fr2
1]1/2−1)

, (7.6)

which is the generalization of Forbes & Schwartz’s (1981) result. The additional
contribution from the source terms is usually very small because both sinβ and the
standoff distance xs are small. To emphasize this point, the standoff distance for the
numerical computations in figure 10 are calculated by assuming that S= 0. This shows
that the source terms play a negligible role for the position of the bow shock, but they
do play an important role when they act over longer distances. Given the upstream
flow thickness h1 and Froude number Fr1, (7.6) places a constraint on the minimum
height of the obstacle to prevent overtopping by an avalanche. This therefore provides
a very useful engineering approximation that can be used for the design of avalanche
protection structures.

7.2. Pinch-off distance of the granular vacuum
Since the Froude numbers just upstream of the cylinder are comparable in the steady-
state experiments shown in figure 9(a,c), the major difference between them is the
acceleration that the grains experience. The parameter β = ζ − δ introduced in (4.4) is
useful, as it determines the net acceleration of an avalanche down an incline. Slopes
are described as being accelerative if β > 0, non-accelerative if β = 0 and decelerative
if β < 0. For typical basal angles of friction, sec δ is just above unity and therefore the
term sinβ in the source term (4.3) controls the effective acceleration in the downslope
momentum balance equation (4.2). The slopes in figure 9 are both accelerative, with
β = 10◦ for sand and β = 15◦ for non-pareille grains. While a five-degree difference in
β may not seem much, it represents a 50 % increase, and it is sufficient to significantly
affect the position and shape of the vacuum boundary. Indeed the non-pareille vacuum
boundary is still almost the same width as the cylinder at the edge of the photograph
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FIGURE 11. The non-dimensional vacuum pinch-off distance xv for fixed inflow height
h0 = 0.43 as a function of the net acceleration angle β = ζ − δ obtained from computation
(solid line with open circles) and experiment (filled diamonds). The inset is a schematic
showing xv . Note that these experiments and computations have been performed by changing
the angle ζ of the chute. This alters both the inflow Froude number and evolution of the
Froude number along the chute.

in figure 9(c), which contrasts with the short triangular vacuum in sand (figure 9a).
This sensitivity of the position of the vacuum boundary, therefore provides an exacting
test for theoretical models.

For the non-pareille experiments the upstream Froude number (Fr1 = 6.87) is higher
than that for sand (Fr1 = 6.04) and as the grains move around the cylinder they have
more momentum. The expansion is therefore not quite as strong. As a result the
vacuum boundary detaches from either side of the cylinder slightly higher upstream
and the initial angle of closure is significantly less. The simple avalanche model
described in § 3 suggests that the vacuum will always close. This is because if the
lateral velocity, v = 0, the cross-slope source term, S2, defined in (3.6), is zero, and
hence the lateral pressure gradients in (3.3) will apply a force that drives particles into
the vacuum. Evidence for this is provided by the streak lines in figure 9(c). Close
to the vacuum-detachment point the particle paths are initially directed outwards, but
slowly bend inwards and begin to converge, although the pinch-off point lies out of
shot. A numerical simulation of the avalanche using the parameters determined in § 4
accurately reproduces the slow closure of the non-pareille vacuum (figure 9d) as well
as the triangular shape for sand (figure 9b).

Figure 11 shows the pinch-off distance xv, which is defined as the distance from
the rear of the cylinder to the pinch-off point, as a function of the net acceleration
angle β for a fixed inflow height h0 = 0.43. The experimental data points were
determined by varying the slope angle from ζ = 23–40◦ for the non-pareille grains
(i.e. β = 0–17◦) and measuring the pinch-off distance xv. The initial velocity, ū0,
was also measured for each increment in ζ and a series of corresponding numerical
simulations were performed. From figure 11 it can be seen that the pinch-off distance
between the experiment (filled diamonds) and the computation (open circles line)
agrees well for a broad range of the accelerating angle β. When β tends to zero,
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the pinch-off distance approaches zero too, indicating that the granular vacuum closes
up almost immediately behind the cylinder. For larger values of β the extent of
the vacuum increases nonlinearly rising rapidly to about eight non-dimensional units
at a slope angle ζ = 40◦. As the inclination angle is increased the average Froude
number increases as well as its variation along the chute. Higher Froude numbers
suggest thinner faster moving flows, where the pressure gradients play less of a role,
the vacuum closes more slowly and the pinch-off distance therefore extends further
downstream.

7.3. Wake development

Heil et al. (2004) investigated the ‘V’-shaped Mach cone that developed as a thin
cylindrical rod was moved rapidly horizontally through a thin layer of vibro-fluidized
granular material. They drew a parallel with gas dynamics and shallow water theory
and experimentally verified that the half-angle of the Mach cone θ satisfied the
classical relation sin θ = c/urod, where c = √gh. They also identified a scaling law
(Landau & Lifshitz 1959) for the decay of the shock height h̃max with increasing
cross-slope distance y, which should be h̃max ∝ y−3/2. Heil et al. (2004) showed that
their experiments were in good agreement with this scaling in the range ỹ/D = 3 and
15. We have been unable to test this hypothesis against our simulations, because our
grid is simply not big enough, but we anticipate deviations away from this relation,
because our flow continues to be accelerated with increasing downstream distance.

8. Discussion and conclusions
Small-scale experiments with sand and non-pareille grains have been used to show

that when a granular avalanche flows around a circular cylinder, a bow shock wave
is generated in front of it, and on the lee side there is a grain-free granular vacuum.
Numerical simulations are used to show that a simple two-parameter depth-averaged
avalanche model (e.g. Gray et al. 2003) is able to accurately predict the position of
the bow shock and the granular vacuum. The simulations rely on a boundary fitted
coordinate system (Vinokur 1974; Viviand 1974) and the use of a high-resolution
shock-capturing numerical method (Nessyahu & Tadmor 1990; Jiang et al. 1998). It is
sufficiently general to be able to calculate the flow around any smooth walled obstacle
(with the wall normal to the slope). In order to prescribe the upstream boundary
conditions correctly, it is necessary to calculate a one-dimensional solution for the
undisturbed flow, as it enters the body-fitted mesh. The results for the temporal and
spatial development of the bow shock and the vacuum boundary are in very good
agreement with the experiments (see figures 7 and 8). Indeed even the slow upstream
propagation of the vacuum pinch-off point (figure 8) before steady state is reached,
is reproduced accurately by the scheme. Experimentally the shock standoff distance
is seen to decrease with increasing upstream Froude number, reaching approximately
a quarter of the cylinder diameter at Froude number six (figure 10). Our numerical
simulations and previous approximate solutions (Forbes & Schwartz 1981) imply that
as the Froude number tends to infinity the standoff distance continues to reduce as
the reciprocal of the Froude number (7.1). This leads to a small discrepancy with
the experimental data near Fr1 = 6, which might be due to the formation of a
subsurface dead zone. The position of the bow shock is not strongly influenced by
the source terms, but the closure rate of the vacuum is very sensitive to the net
acceleration β = ζ − δ. As the difference between the slope inclination angle ζ and the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.42


334 X. Cui and J. M. N. T. Gray

dynamic basal angle of friction δ increases, the pinch-off point moves far downstream
(figure 11).

These results are of practical importance for natural hazards, such as snow
avalanches, rockfalls, debris flows, lahars and pyroclastic flows, which frequently
impinge on obstacles such as trees (Cole et al. 1998; Gray & Kokelaar 2010) or
pylons (Hauksson et al. 2007; Sovilla et al. 2008; Hu, Wei & Li 2011). For engineers
a fundamental task is to determine the impact pressures and dynamic loadings that
man-made structures need to be able to withstand, as well as the necessary height of
the obstacles to prevent overtopping by an avalanche. The shape of the obstacle and
the angle that the avalanche impinges upon it have an important effect on whether
shock waves will detach to form bow waves or not (Cui et al. 2007; Gray & Cui
2007; Baroudi, Sovilla & Thibert 2011). However, when detached shocks do form, the
simple relation (7.6) for the ratio of the stagnation height to the inflow height at a
given Froude number, may provide a useful engineering approximation for optimizing
the height of the obstacle.

At the European avalanche test site at the Vallée de la Sionne in Switzerland an
instrumented mast is used to make measurements of the flow velocity in the dense
basal avalanche. The measurements are made by cross-correlation of optical sensors
that are placed on an obliquely inclined wedge. Understanding the flow around such
masts is of crucial importance in interpreting the resulting data. For instance, if
an oblique shock wave is generated by the wedge, then the undisturbed upstream
conditions can be inferred by using the oblique shock relations (e.g. Gray et al. 2003;
Hákonardóttir & Hogg 2005; Cui et al. 2007; Gray & Cui 2007; Jóhannesson et al.
2009). This has not yet been done at the Vallée de la Sionne, although measured
velocities seem consistent with order of magnitude estimates of the avalanche flow
speed, and are probably at most 20 % smaller than the undisturbed upstream values.
The flow thickness at the mast is measured by the depression of switches, and can
be significantly thicker than the upstream flow, suggesting that inferred downstream
Froude numbers (1 6 Fr2 < 6) may be considerably less than the real upstream values.
The mast also has a number of blunt surfaces, which suggest that it is possible for
a bow shock to form. If this is the case then it becomes almost impossible to relate
downstream velocity data to the upstream conditions, because the flow velocity varies
from zero near the stagnation point to quite large values over a very short distance.
There is therefore still scope to optimize the design of instrumented masts in order
to reliably relate upstream flow conditions to measurements made adjacent to the
obstacle wall, i.e. to eliminate all possibility of shock detachment. Conversely, in
order to optimize the design of avalanche protection structures, not used for velocity
measurement, it may be beneficial to promote the formation of detached bow shocks,
because much more energy is dissipated in strong shocks than in weak shocks (Gray &
Cui 2007).
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Supplementary movies

Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2013.42.
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