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1. Introduction

1.1.

In [4, Theorem 0.1], Drinfeld proved the following statement (which was conjectured,

under a weaker form, by Drinfeld himself in private communication; see [5, Introduction]):

Theorem 1.1. Let k be a field. Let V be an integral k-variety with dim(V ) > 1. Let γ ∈

L∞(V )(k) be a rational point of the associated arc scheme, not contained in L∞(Vsing). If

(L∞(V ))γ denotes the formal neighborhood of the k-scheme L∞(V ) at the point γ , there

exist an affine k-scheme S of finite type, with s ∈ S(k), and an isomorphism of formal

k-schemes:

L∞(V )γ ∼= Ss⊗̂kk[[(Ti )i∈N]]. (1)

This theorem generalizes an earlier result, due to Grinberg and Kazhdan, for fields of

characteristic zero (see [5]).

1.2.

In the statement of Theorem 1.1, the assumption that the arc γ is not contained in

L∞(Vsing) is a crucial argument of its proof (see [4], or, for example, [1]). The main

result of the present article is to prove that such a statement does not extend when

γ ∈ L∞(Vsing). Let us introduce the following terminology: if V is a k-variety, with γ ∈

L∞(V )(k), then we say that the pair (V, γ ) does not satisfy the statement of Theorem 1.1

if there exists no isomorphism such as (1).
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In this article, we show that, if v ∈ Vsing(k) (considered as a constant arc), the pair

(V, v) does not satisfy in general the statement of Theorem 1.1.

More precisely, the following statement provides an explicit example of such a pair.

Example 1.1. Let k be a field of characteristic zero which does not contain a root of the

equation T 2
+ 1 = 0. Let f ∈ k[X, Y ] be the polynomial X2

+ Y 2. Let us denote by C f
the affine plane curve defined by the datum of f , and by o ∈ C f (k) the origin of A2

k .

Then, the pair (C f , o) does not satisfy the statement of Theorem 1.1.

Remark 1.2. The above example gives rise to examples of pairs (V, γ ) which do not

satisfy the statement of Theorem 1.1 with dim(V ) arbitrary, and the arc γ not necessarily

constant. More precisely, if W is a k-variety of arbitrary dimension, with γW ∈ L∞(W )(k),
the pair (W ×k C f , (γW , o)) has the required property.

1.3. Notation

Let k be a field of characteristic zero. As usual, if I is a set, the ring k[(Ti )i∈I ] is

the ring of polynomials in the indeterminates Ti , with i ∈ I , and with coefficients in

k. Let us denote by k{X, Y } the k-algebra k{X, Y } := k[(X i , Yi )i∈N] endowed with the

k-derivation 1 : k{X, Y } → k{X, Y } defined by †i 7→ †i+1 for every symbol † ∈ {X, Y }. It

comes equipped with a structure of k[X, Y ]-algebra by considering the injective morphism

of k-algebras defined by X 7→ X0, Y 7→ Y0. If S is a subset of k{X, Y }, the differential ideal

of k{X, Y } generated by S is denoted [S], and the radical
√
[S] by {S}. We define similarly

the differential ring k{X} and the notation [S], {S} for any subset S of k{X}.

2. Nilpotent elements in the ring k{X, Y }/[X2
+ Y 2
]

In this section, we develop key ingredients of the proof of our main statement. In the

next statements, we assume that the field k is of characteristic zero and does not contain

a root of the equation T 2
+ 1 = 0. Let f ∈ k[X, Y ] be a polynomial. For every integer

n > 1, we denote by Qn( f ) the polynomial defined as follows:

Qn( f ) := 1(n)( f )− (∂X0( f )Xn + ∂Y0( f )Yn). (2)

We observe in particular that, for every integer n > 1, the polynomial Qn( f ) belongs

to the ring k[(X i , Yi )i∈{0,...,n−1}]; in other words, the polynomial Qn( f ) is obtained by

removing from the expression of 1(n)( f ) the terms containing Xn or Yn . We assume from

now on that f = X2
+ Y 2.

Remark 2.1. In the proofs of this section, we will use the following consequence of

[9, Lemma 2.7]. For every g ∈ k{X, Y }, the following three assertions are equivalent:

(1) g ∈ { f }, (2) there exists an integer m such that Xm
0 g ∈ { f }, and (3) there exists

an integer n such that Y n
0 g ∈ { f }.

Lemma 2.2. For every integer n > 1, we have the following properties.

(1) The polynomial Qn( f ) belongs to the ideal { f }.
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(2) The polynomial X0 Xn + Y0Yn belongs to the ideal { f }.

(3) The polynomial X0Yn − XnY0 belongs to the ideal { f }.

Proof. It follows from definition (2) that 1⇔ 2.

Let us show 1⇔ 3. We have

X0(X0Yn − XnY0) ≡ Yn(X2
0 + Y 2

0 )+ Y0 Qn( f ) mod [ f ]

≡ Y0 Qn( f ) mod [ f ].

Then, we conclude that X0Yn − XnY0 ∈ { f } if and only if Y0 Qn( f ) ∈ { f }, which concludes

the proof of 1⇔ 3 by Remark 2.1.

So, we only have to prove assertion 1 of the lemma. We show it by induction on the

integer n. We have Q1( f ) = 0; hence, in particular, −Y0 X1+ X0Y1 ∈ { f }.
Let n > 2. We assume that, for every integer 1 6 m < n, the polynomial Qm( f ) belongs

to { f }. By definition, we have

1(n−1)( f ) = 2(Xn−1 X0+ Yn−1Y0)+ Qn−1( f ). (3)

Differentiating formula (3), we deduce that

Qn( f ) = 2(Xn−1 X1+ Yn−1Y1)+1(Qn−1( f )). (4)

By the induction hypothesis, we know that Qn−1( f ) ∈ { f }; hence, 1(Qn−1( f )) ∈ { f }. So,

we only have to prove that the polynomial Tn := Xn−1 X1+ Yn−1Y1 belongs to the ideal

{ f }. But, setting Un := X0Tn − Yn−1 (−Y0 X1+ X0Y1), we see that

Un = (Xn−1 X0+ Yn−1Y0)X1+ X0Y1(Yn−1− Yn−1)

= (1(n−1)( f )− Qn−1( f ))X1.

By the induction hypothesis, we conclude that Un ∈ { f }. Since −Y0 X1+ X0Y1 ∈ { f }, we

have X0Tn ∈ { f }, which concludes the proof by Remark 2.1.

As a consequence, we have the following key proposition.

Proposition 2.3. Let f ∈ k[X, Y ] be the polynomial X2
+ Y 2. Then, the subset

{X j X i + Y j Yi ; (i, j) ∈ N2
}

is included in the ideal { f } of the ring k{X, Y }.

Proof. Let us note that, thanks to Lemma 2.2, we have

X0(X i X j + Yi Y j ) = (X0 X i )X j + Yi (X0Y j )

≡ (−Y0Yi )X j + Yi (X j Y0) mod { f }

≡ 0 mod { f }.

It concludes the proof by Remark 2.1.
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3. Proof of our main result

Our main result is crucially based on Theorem 3.1. The fundamental idea behind these

statements is to control nilpotence at the level of function rings of arc schemes.

Theorem 3.1. Let k be a field of characteristic 0. Then, there exist a strictly increasing

function σ : N→ N and a family (Pn)n∈N of elements of k{X} such that for every n ∈ N
one has Pn ∈ [X ]2 and Pσ(n)n 6∈ [X2

].

The proof uses the notion of a strong basis of a differential ideal, which we now recall

according to [10, I/15]. If I is a differential ideal of k{X}, a strong basis of I is a finite

subset B of I such that there exists a positive integer N with the following property:

for every element P ∈ I , the element P N belongs to the differential ideal [B] generated

by B.

Proof. Let us assume that the assertion of the statement of Theorem 3.1 does not hold.

Then, there exists an integer N ∈ N such that, for every polynomial P ∈ [X ]2, P N
∈ [X2

].

This implies that the singleton {X2
} forms a strong basis of the ideal [X ]2. But, Kolchin

proved in [6, § 5] (see also [10, I/15]) that the ideal [X ]2 has no strong basis. That is a

contradiction, which concludes the proof.

The following lemma allows us to deduce the proof of our main result from

Theorem 3.1. Let us consider the morphism of differential k-algebras θ : k{X, Y }/[X2
+ Y 2
]

→ k{X}/[X2
] defined by X i 7→ X i and Yi 7→ X i for every integer i ∈ N.

Lemma 3.2. Let P ∈ [X ]2 in the ring k{X}. There exists Q ∈ {X2
+ Y 2
} in the ring k{X, Y }

such that θ(Q) = P.

Proof. Recall that the differential ideal [X ] is generated as an algebraic ideal by {X i ;

i ∈ N}. Without loss of generality, we may assume that there exist i, j ∈ N and P̃ ∈ k{X}
such that P = X i X j P̃. Let us set 2Q := (X i X j + Yi Y j ) · P̃. The polynomial Q has now

the required properties by Lemma 2.3.

We are ready to establish the validity of Example 1.1. Let us assume that the

pair (C f , o) satisfies the statement of Theorem 1.1. Let us denote by I the ideal of

k[[(X i , Yi )i∈N]] generated by {1(i)( f )}i∈N. The existence of isomorphism (1) gives rise

to an integer N ∈ N such that (
√

I )N
⊂ I . Indeed, if isomorphism (1) holds, there exist

positive integers r, s, polynomials F1, . . . Fs ∈ k[Z1, . . . , Zr ], and an isomorphism

k[[(X i , Yi )i∈N]]/I ∼= k[[Z1, . . . , Zr , (Ti )i∈N]]/(F1, . . . , Fs).

One may show, using this presentation, that the nilradical of k[[(X i , Yi )i∈N]]/I is nilpotent

(see [1, Theorem 5.1] for a detailed argument). Let us denote by (σ, (Pn)n∈N) the pair of

objects provided by Lemma 3.1. Since every polynomial Pn belongs to [X ]2, there exists a

polynomial Qn ∈ { f } such that θ(Qn) = Pn for every integer n (see Lemma 3.2). For every

integer n, let us denote by t (n) the smallest integer such that Qt (n)
n ∈ [ f ]. Because of the

very definition of the function σ , we have that t (n) > σ(n). So, the sequence (t (n))n∈N
converges to +∞. In particular, there exists an integer m ∈ N such that, for every n > m,

we have that t (n) > N . By Lemma 3.3, that is a contradiction, which concludes the proof.
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Lemma 3.3. Let k be a field of characteristic 0. Let f ∈ k[X, Y ] be a homogeneous

polynomial. Let I be the ideal of k[[(X i , Yi )i∈N]] generated by the family {1(i)( f )}i∈N.

Then, we have I ∩ k{X, Y } = [ f ]. In particular, for every polynomial P ∈ k{X, Y } and

every integer n ∈ N, Pn
∈ I if and only if Pn

∈ [ f ].

In the following, the notation A designates either the ring k{X, Y } or the ring

k[[(X i , Yi )i∈N]]. For every monomial M = Xµ1
i1
· · · Xµm

im
Y ν1

j1
· · · Y νn

jn in A, we set

weight(M) =
m∑
`=1

i`µ`+
n∑
`=1

j`ν`.

Then the ring A is endowed with a graduation defined as follows. For every pair (d, ω)
of nonnegative integers, we define the k-vector space A(d,ω) generated by the monomials

M of A such that deg(M) = d and weight(M) = ω. An element Q ∈ A(d,ω) is said to be

homogeneous of degree d and isobaric of weight ω. We easily observe that

A(d,ω) · A(d ′,ω′) ⊂ A(d+d ′,ω+ω′)

for every pair of integers (d, ω), (d ′, ω′) ∈ N2. Besides, for every element Q ∈ k{X, Y }
(respectively, Q ∈ k[[(X i , Yi )i∈N]]), there exist a finite number of homogeneous and

isobaric polynomials Qd1,ω1 . . . , Qdn ,ωn (respectively, an infinite number of homogeneous

and isobaric polynomials (Qdi ,ωi )i∈N) such that

Q =
n∑

i=1

Qdi ,ωi

(
respectively, Q =

∑
i∈N

Qdi ,ωi

)
.

Such a decomposition is obviously unique.

Proof. Let P ∈ k{X, Y }. We only have to prove that, if we have P ∈ I ∩ k{X, Y }, then

we have P ∈ [ f ]. Let us assume that there exist an integer n ∈ N, and power series

R1, . . . , Rn , such that

P =
n∑

i=1

Ri1
(i)( f ). (5)

Then, by the above remark, for every integer i ∈ {1, . . . , n}, there exist two families of

homogeneous and isobaric polynomials (R̃i, j ) j∈N and (P`)`∈{1,...,m} such that

Ri =
∑
j∈N

R̃i, j and P =
m∑
`=1

P`. (6)

By gluing formulas (5) and (6), we deduce that

m∑
`=1

P` =
n∑

i=1

∑
j∈N

R̃i, j1
(i)( f ). (7)

For every integer i ∈ N, let us note that the polynomial 1(i)( f ) is homogeneous and

isobaric. We conclude the proof by the uniqueness of decomposition (7). The second

assertion directly follows from the first one.
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Remark 3.4. Example 1.1 can be generalized to include every homogeneous polynomial

f of degree 2. Let k′ be an algebraic closure of the field k. If the image of f in the

ring k′{X, Y } is denoted by f ′, we observe that we may assume that f ′ ∈ {XY, X2
}. When

f ′ = X2, we apply Theorem 3.1 to conclude the proof of the assertion. When f ′ = XY ,

we verify that { f ′} = [X ] ∩ [Y ] in k′{X, Y }; hence, {X i Y j ; i, j ∈ N} ⊂ { f ′}. Thanks to this

remark and the fact that isomorphism (1) is stable under field extension, the arguments

of § 3 conclude the proof.

4. Further questions

A next step in the direction of the present work would be to provide an answer to the

following questions.

Question 1. Let k be a field of characteristic zero. If f = X3
− Y 2

∈ k[X, Y ], does the pair

(C f , o) satisfy the statement of Theorem 1.1?

Question 2. Let k be a (perfect) field of arbitrary characteristic. Does there exist a k-curve

C , with x ∈ Csing(k), such that the pair (C , x) satisfies the statement of Theorem 1.1?

A negative answer to Question 2 would in particular imply, for every k-curve C , with

x ∈ C (k), the equivalence of the following assertions.

(1) The k-curve C is smooth at x .

(2) The pair (C , x) satisfies the statement of Theorem 1.1.

In another direction, it would be interesting to obtain methods to compute the

nilradical of differential ideals associated with ideals I ∈ k[X1, . . . , Xn]. This problem

is an open problem both from the theoretic point of view and from the effective point of

view. Let us give below two illustrations of this remark which could contribute to shed

light on the present picture.

Question 3. Let k be a field of characteristic zero. Let us consider the ring k{X}/[X2
].

Does the nilpotence index of Xn equal n+ 2, for every integer n ∈ N?

This conjecture has been formulated by O’Keefe in [8]. In particular, a positive

answer to this question would improve the qualitative argument used in the proof of

Theorem 3.1. By [7, 31/Corollary] or [10, I/26], we easily observe that Xn+2
n = 0 in the

rings k{X}/[X2
] and k[[(X i )i∈N]]/(1

( j)(X2)) j∈N. We can make this assertion more precise

from an effective point of view: for every integer n 6 24, the monomial Xn+2
n belongs to

the ideal J2n = 〈1
(i)(X2); i ∈ {0, . . . , 2n}〉 of the ring k[(X i )i∈{0,...,2n}]. So, we state the

following conjecture.

Conjecture 4.1. Let k be a field of characteristic zero. The monomial Xn+2
n belongs to the

ideal J2n for every integer n ∈ N.

https://doi.org/10.1017/S1474748015000341 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000341


The Drinfeld–Grinberg–Kazhdan theorem is false for singular arcs 885

Example 4.1. Using Sage [11], we checked that Question 3 admits a positive answer for

every integer n 6 8. In particular, we obtain that

X9
8 ≡

702464
30366765

X0 X2 X4 X6 X8 X10 X12 X14 X16 mod [X2
],

which allows us to conclude the proof of the property for X8 by [7, 25/corollary] or

[10, I/24].

Question 4. Let k be a field of characteristic zero, and let f ∈ k[X, Y ] be the

polynomial f = X2
+ Y 2. Is the family {(X j X i + Y j Yi , X j X i − Y j Yi )(i, j)∈{0,...,n}2} a system

of generators (more precisely, a Groebner basis) of the ideal formed by the polynomials

P ∈ k[(X i , Yi )i∈N] such that there exists an integer N which satisfies X N
0 P ∈ 〈1(i)( f );

i ∈ {0, . . . , n}〉?

We note that computations of Groebner bases appear in a slightly different but related

context in [3].

Remark 4.2. As pointed out by the referee, it would be interesting to relate the question

of the validity Theorem 1.1 for singular arcs to the linearization principle introduced

in [2].
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