
Math. Struct. in Comp. Science (2004), vol. 14, pp. 1–55. c© 2004 Cambridge University Press

DOI: 10.1017/S0960129503003943 Printed in the United Kingdom

A simple process algebra based on atomic actions

with resources

PAUL GASTIN† and MICHAEL MISLOVE‡§

†LIAFA, Université Paris 7, 2 Place Jussieu, F-75251 Paris Cedex 05
‡Department of Mathematics, Tulane University, New Orleans, LA 70118

Received 16 June 2001; revised 8 October 2002

This paper initiates the study of a process algebra based on atomic actions that are assigned

resources, and that supports true concurrency. By true concurrency we mean that the parallel

composition of concurrent processes does not rely on an interleaving of concurrent actions

for its definition. Our process algebra includes a number of interesting operators that can be

defined using resources of atomic actions to control their behaviour: of particular note is a

(weak) sequential composition operator that exploits the truly concurrent nature of the

semantics; this operator extends significantly the operation of prefixing by atomic actions

that is supported in most truly concurrent semantics. Our language also includes a parallel

composition operator that allows local events to execute asynchronously, while requiring

synchronising events to execute simultaneously. In addition, the language supports a

restriction operator and includes (unguarded) recursion.

We present both a denotational semantics and a companion operational semantics for our

language. The denotational semantics supports true concurrency, so that parallel

composition is defined without non-determinism or interleaving. This semantics also is novel

for its treatment of recursion. The meaning of a recursive process is defined using a least

fixed point on a subdomain that is determined by the body of the recursion, and that varies

from one process to another. Nonetheless, the recursion operators in the language have

continuous interpretations in the denotational model. In fact, our denotational model is

based on a domain-theoretic generalisation of Mazurkiewicz traces in which the

concatenation operator, as well as the other operators from our language, can be given

continuous interpretations.

The operational model is presented in a natural SOS style. We prove a congruence theorem

relating the two semantics, which implies the operational model itself is compositional. The

congruence theorem also implies the denotational model is adequate with respect to the

operational semantics, and we characterise the relatively mild conditions under which the

denotational semantics is fully abstract with respect to the operational semantics.

1. Introduction

Most approaches to modelling concurrency are based on abstract atomic actions that

denote communication events between processes. For example, two of the main process

§ The support of the National Science Foundation and the US Office of Naval Research is gratefully

acknowledged.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 2

algebras supporting concurrent computation are CCS (Milner 1989) and CSP

(Roscoe 1988), and both of these – as well as most other models – use abstract atom-

ic actions to model how concurrent processes communicate and cooperate to achieve

common goals. Each of these process algebras has a well-developed theory providing

semantic models that allow the language to be precisely analysed. Despite the wealth of

tools available for analysing processes in either language, subtle issues arise concerning

the behaviour of concurrent processes. This is due in part to the abstract nature of the

atomic actions on which these process algebras are based.

The contribution of this paper is to begin the study of a concurrent process algebra

based on atomic actions that are more concrete than in the usual approaches. In particular,

we associate to each atomic action a non-empty set of resources that the action needs in

order to execute, and we use this information to derive more precise results about the

behaviour of processes in our language.

One such behaviour concerns true concurrency. A standard approach to modelling

parallel composition in process algebra is to rely on sequential composition and non-

deterministic choice to give an interleaving semantics for parallel composition. This

approach was laid out in the seminal work Hennessy and Plotkin (1979), where the authors

showed how power domains could be used to provide the denotational models necessary

for such an approach. The literature also includes number of truly concurrent models of

concurrency, based on prime event structures (Winskel 1987) and pomsets (Pratt 1986), as

well as other models (see, for example, Best et al. (1997), Nielsen and Thiagarajan (1984),

Olderog (1987; 1991) and Reisig (1985)). By truly concurrent we mean the model does

not rely on an interleaving of concurrent actions for its definition of parallel composition.

These models have been used to give truly concurrent denotational semantics for tradi-

tional process algebras – most notably CCS and SCCS (cf. Boudol and Castellani (1988a;

1988b; 1988c; 1994), Castellani (2001), Darondeau and Degano (1989; 1990; 1993),

Degano et al. (1988), Olderog (1987) and Winskel (1982; 1987)) – that allow one to observe

when processes can execute concurrently. Some of these results also include an operational

model for the process algebra, and a proof that the denotational model is fully abstract

with respect to the operational model. Even so, these models require rather intricate con-

structions in order to distinguish truly concurrent execution paths from those that are not

concurrent.

The process algebra we propose here allows us to define the concurrent composition

of processes directly, without using non-determinism or interleaving. Processes are built

using atomic actions that are assigned resources, so that two actions are independent if

they share no resources. This allows us to define several interesting operators for our

language:

— The weak sequential composition of two processes allows an action from the second

process to start as soon as the resources it needs are available, even if the first process

is still active. On the other hand, dependent actions must still occur in the order

specified. Other truly concurrent semantics we know of support only prefixing of

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 3

processes by atomic actions, and do not give a continuous interpretation to (some

form of) the concatenation operator of trace theory†.

Our model fully supports the weakly sequential composition of processes that relies on

the truly concurrent semantics to allow independent actions to execute concurrently.

We think this is a very attractive feature that corresponds to the automatic parallel-

isation of processes. We can also force processes to execute sequentially by using a

blocking event between them on which all their events are dependent.

— The language includes a parallel composition operator, which allows local events to

occur asynchronously, while requiring synchronising events to occur simultaneously.

— In addition, the language supports a restriction operator, which confines processes to

specified sets of resources. This provides a mechanism for controlling the resources

granted to processes.

— Finally, the language includes process variables and recursion. It should be noted that

our language supports unguarded recursion.

Our semantics consists of two models, one denotational and the other operational. As

is the case with the existing models of true concurrency, in our denotational model,

the semantics of a process is defined using partial orders. In our case, it consists

mainly of a Mazurkiewicz-like trace that is a special kind of event structure; in fact,

it is a prime event structure that is conflict free (Winskel 1987). But our model has

additional properties not found in the existing models. It is based on the resource traces

model of Gastin and Teodosiu (2002), which is a domain-theoretic generalisation of

Mazurkiewicz traces (Mazurkiewicz 1987) in which the concatenation operator has a

continuous interpretation. We augment this domain with continuous interpretations for

the other operators from our language. We need these continuous interpretations in order

to give a fixed point semantics for recursion. It should be noted that we are not using

the traditional least fixed point semantics for recursion (cf. Abramsky and Jung (1994)).

Instead, the meaning of a recursive process is defined using a least fixed point on a

subdomain that is determined by the resources needed by the body of the recursion,

and that varies from one process to another. This is necessary in order to ensure that

processes that are meant to execute concurrently with a recursive process actually can do

so. Remarkably, the recursion operators in the language have continuous interpretations

in the denotational model.

In addition to the denotational model, we also present a natural SOS-style operational

semantics for our language. The fact that we do not use a least fixed point semantics for

the denotation of a recursive process – but instead one that first requires us to compute

an appropriate resource set for each process – is reflected in the operational model as well.

Indeed, our transition rules for processes require the addition of a resource environment –

a mapping from the set of variables in our language to the set of resources, so that the

behaviour of a process varies from one resource environment to another.

We prove a congruence theorem showing that the behaviour function defined by the

operational semantics assigns the same unique resource trace to a process as in the

† In particular, we do not see how to build a continuous interpretation of the concatenation operator of trace

theory using only the event structures of Winskel (1987).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 4

denotational model. In addition to implying the operational model itself is compositional,

this immediately implies the denotational semantics is adequate with respect to the

operational model. Finally, we characterise the relatively mild conditions under which the

denotational model is fully abstract with respect to the operational semantics.

This paper is the beginning of a longer-range project (see Gastin and Mislove (2002) for

a continuation) whose goal is to develop a process algebra based on atomic actions that

are assigned resources that has the expressive power of the more traditional languages –

such as CSP (Roscoe 1988) and CCS (Milner 1989) – and to compare the relative strength

of this approach with the more established ones. But the focus in this paper is as much on

the mathematical techniques that have been developed as on the language being modelled.

Indeed, the language we study here is not as expressive as the traditional process algebras

since we have deliberately omitted all operators involving non-determinism in order

to concentrate on concurrency-based operators. Therefore, our simple parallel language

has only a few, well-chosen operators, and these are included not because of specific

applications to computing, but rather to illustrate the mathematical ideas and techniques

that have evolved in this work.

The rest of the paper is organised as follows. In the next section, we provide some

preliminary background on domain theory and on the resource traces model of Gastin and

Teodosiu (2002). These are the main ingredients of our approach to providing semantic

models for our language. The syntax of our language is the subject of the next section, and

this is followed by a section in which we explore the properties of the resource mapping

that assigns to each process its set of resources. The results of this section are needed

for both the operational and denotational semantics. There follows a section detailing

the operational semantics of our language, and then one giving the denotational model.

Section 7 is devoted to our main theorem, which states that the operational semantics is

congruent with the denotational semantics, and it is followed by a section that further

discusses adequacy and full abstraction between our models. The paper closes with a

short discussion of what we have achieved and of future work.

2. Preliminaries

In this section we review some basic results from domain theory, and then some results

from trace theory. A standard reference for domain theory is Abramsky and Jung (1994),

and most of the results we cite can be found there. We provide specific references for

those results that can be found elsewhere. Similarly, for the theory of traces the reader

is referred to Diekert and Rozenberg (1995). Specific results on resource traces can be

found in Gastin and Teodosiu (2002). Section 2.3 contains new results.

2.1. Domain theory

To begin, a poset is a partially ordered set, usually denoted P . The least element of P (if

it exists) is denoted ⊥, and a subset D ⊆ P is directed if each finite subset F ⊆ D has

an upper bound in D. Note that since F = � is a possibility, a directed subset must be

non-empty. A (directed) complete partial order (dcpo) is a poset P in which each directed

set has a least upper bound. If P also has a least element, then it is called a cpo. If P and

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 5

Q are posets and f:P → Q is a monotone map, then f is (Scott) continuous if f preserves

sups of directed sets: if D ⊆ P is directed and x = �D ∈ P exists, then �f(D) ∈ Q exists

and f(�D) = �f(D).

If P is a dcpo, the element k ∈ P is compact if, for each directed subset D ⊆ P , if

k � �D, then (∃d ∈ D) k � d. The set of compact elements of P is denoted K(P), and for

an element x ∈ P , K(x) = K(P) ∩ ↓x, where ↓x = {y ∈ P | y � x}. P is algebraic if K(x)

is directed and x = �K(x) for each x ∈ P .

Similarly, an element p of a dcpo P is (complete) prime if for each subset X ⊆ P that

has a least upper bound, p � �X implies p � x for some x ∈ X. The set of prime elements

below some element x ∈ P is denoted by Pr(x). P is p-algebraic if x = �Pr(x) for each

x ∈ P .

One of the things that makes cpos useful is the following result, which provides a

uniform method for assigning meanings to recursive processes that the cpo is being used

to model.

Theorem 2.1 (Tarski, Knaster, Scott). If f:P → P is a continuous selfmap of a cpo, then

f has a least fixed point given by fix(f) = �n�0f
n(⊥).

Actually, Tarski proved that the set of fixed points of a monotone selfmap of a complete

lattice is a complete sublattice (whose least element is the least fixed point), and Knaster

and Scott added the result that the fixed point is achieved in countably many iterations

if the selfmap is continuous, under varying assumptions.

We will use Theorem 2.1, but in a somewhat unconventional way. Instead of defining

the meaning of recursive constructs in our models via least fixed points, they will be

defined as the least fixed point of a selfmap of a subdomain of the model determined

by the resources the recursive process requires to complete its computation. Even in this

setting, the fixed point operator is continuous; more details are provided when we actually

define our denotational semantics.

2.2. Resource traces

Mazurkiewicz trace theory begins with an alphabet Σ of actions that can be executed by

processes, and a reflexive, symmetric dependency relation D ⊆ Σ × Σ, which defines which

actions are dependent. The actions a, b ∈ Σ are independent if and only if (a, b) �∈ D. In

trace theory, independent actions can occur concurrently while dependent actions must

be ordered. The concatenation operator from trace theory takes advantage of this by

allowing the beginning of the second process to occur independently of the end of the

first process provided these events are independent. Therefore, this concatenation is only

weakly sequential.

Though Mazurkiewicz traces with the prefix ordering form a domain, the concatenation

operator does not have a continuous interpretation on this domain. In order to overcome

this problem, Diekert and Gastin (1998) and Gastin and Teodosiu (2002) generalised

Mazurkiewicz trace theory by introducing trace based domains with a new approximation

ordering and on which the concatenation operator can be given a Scott-continuous

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 6

continuous interpretation. This opens the way to giving truly concurrent denotational

semantics for parallel languages using trace theory.

In this paper, we have chosen to use the resource traces model of Gastin and

Teodosiu (2002) as the basis for the denotational model for our language. In this approach,

things are a bit more concrete than described above. We start with a finite alphabet Σ of

actions and a finite set of resources R, as well as a function res: Σ → P(R) that assigns to

each action a non-empty set of resources that it needs in order to execute. One can then

define the reflexive and symmetric dependency relation D by

D = {(a, b) ∈ Σ × Σ | res(a) ∩ res(b) �= �}.

Its complement I = (Σ × Σ) \ D is called the independence relation on Σ. The fact that

each action must have some resources means there is no auto concurrency – instances of

actions that are independent of themselves.

A real trace t over (Σ, res) is the isomorphism class of a labelled, directed acyclic graph

t = [V , E, λ], where V is a countable set of events, E ⊆ V × V is the causal relation on V ,

and λ:V → Σ is a node-labelling satisfying

— ∀p ∈ V , ↓p = {q ∈ V | (q, p) ∈ E∗} is finite,

— ∀p, q ∈ V , (λ(p), λ(q)) ∈ D ⇔ (p, q) ∈ E ∪ E−1 ∪ {(p, p) | p ∈ V }.

The trace t is finite if V is finite and the length of t is |t| = |V |. The sets of finite traces

and of real traces over (Σ, res) are denoted by �(Σ, res) and by �(Σ, res), or simply by

� and �, respectively. We use 1 = (�,�,�) to denote the empty trace.

The alphabet of a real trace t is the set alph(t) = λ(V) of letters that occur in t. We also

define the alphabet at infinity of t as the set alphinf(t) of letters that occur infinitely often

in t. We extend the resource mapping to real traces by defining res(t) = res(alph(t)) =⋃
{res(a) | a ∈ alph(t)}. The resources at infinity of t is the set resinf(t) = res(alphinf(t)).

A real trace is finite if and only if alphinf(t) = resinf(t) = �.

A partial concatenation operation is defined on real traces as follows: if t1 =

[V1, E1, λ1] and t2 = [V2, E2, λ2] are real traces such that resinf(t1) ∩ res(t2) = �, then

the concatenation of t1 and t2 is the real trace t1 · t2 = [V , E, λ] obtained by taking the

disjoint union of t1 and t2 and adding necessary edges from t1 to t2, that is, V = V1 ∪̇V2,

λ = λ1 ∪̇ λ2, and E = E1 ∪̇E2 ∪̇ (V1 × V2 ∩ λ−1(D)). Note that, if resinf(t1) ∩ res(t2) �= �,

then t1 · t2 would not be a real trace since it would have vertices with infinite past. For

this operation, the empty trace 1 = [�,�,�] is the identity.

The prefix ordering is defined on real traces by r � t if and only if there exists a real

trace s such that t = r · s. In other words, a prefix of t is a downward closed subgraph of

t. When r � t, the trace s satisfying t = r · s is unique and is denoted by r−1t. (�,�) is

a cpo with the empty trace as least element. The compact elements of (�,�) are exactly

the finite traces. A real trace t = [V , E, λ] is prime if and only if it is finite and has exactly

one maximal vertex.

The monoid of finite traces (�, ·) is isomorphic to the quotient monoid Σ∗/∼ of

the free monoid Σ∗ of finite words over Σ, modulo the least congruence generated by

{(ab, ba) | (a, b) ∈ I}. Similarly, an infinite real trace t = [V , E, λ] may be identified with

the equivalence class of infinite words that are linearisations of the graph [V , E, λ].

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 7

Just as in the case of the concatenation of words, the concatenation operation on �
is not monotone with respect to the prefix order. It is for this reason that � cannot be

completed into a dcpo on which concatenation is continuous, so it is not clear how to

use traces as a basis for a domain-theoretic model for the concatenation operator of trace

theory.

This shortcoming was overcome by the work presented in Diekert and Gastin (1998)

and Gastin and Teodosiu (2002). In this paper, we will use the latter work as a basis for

the denotational models for our language. The resource trace domain over (Σ,R, res) is

then defined to be the family

�(Σ, res) = {(r, R) | r ∈ �(Σ, res), R ⊆ R and resinf(r) ⊆ R}.

This set will be simply denoted by � when no ambiguities may occur. For a resource trace

x = (r, R) ∈ �, we call Re(x) = r the real part of x and Im(x) = R the imaginary part

of x. Most resource traces are meant to describe approximations of actual processes. The

real part describes what has already been observed from the process and the imaginary

part is the set of resources allocated to the process for its completion. The set of resource

traces � is thus endowed with a partial order called the approximation order:

(r, R) � (s, S) ⇔ r � s and R ⊇ S ∪ res(r−1s).

We also endow � with the concatenation operation

(r, R) · (s, S) = (r · µR(s), R ∪ S ∪ σR(s)),

where we use µR(s) for the largest prefix u of s satisfying res(u) ∩ R = � and σR(s) =

res(µR(s)−1s). Intuitively, the product (r, R) · (s, S) is the best approximation we can

compute for the composition of two processes if we only know their approximations (r, R)

and (s, S). For x= (s, S) ∈ � and R⊆ R, we let σR(x) = σR(s) ∪ S .

It turns out that (�,�) is a cpo with least element (1,R), where 1 is the empty trace.

Moreover, the concatenation operator defined above is continuous with respect to this

order. In other words, (�,�, ·) is a continuous algebra in the sense of domain theory. The

cpo (�,�) is also algebraic and a resource trace x = (r, R) is compact if and only if it is

finite, that is, if and only if its real part r is finite.

The dcpo (�,�) is also a p-algebraic domain. We also know a characterisation of prime

traces: the resource trace (r, R) ∈ � is prime if and only if either r = 1 and |R| = |R| − 1

or r is a prime real trace with its maximal vertex labelled with a letter a ∈ Σ such that

R ∪ res(a) = R.

We close this section with a simple result about the resource mapping. For this, we

order the set P(R) with reverse containment in order to get the cpo (P(R),⊇). We are

using reverse containment rather than natural containment because there is a natural

continuous embedding from the lattice of resource sets (P(R),⊇) into the domain of

resource traces (defined by R �→ (1, R)) if we are using the reverse containment. Moreover,

the mapping res can be extended to a continuous map from (�,�) to (P(R),⊇) as stated

below.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 8

Proposition 2.2. The resource mapping res: Σ → P(R) extends to a continuous mapping

res: (�,�) → (P(R),⊇) defined by res(r, R) = res(r) ∪ R.

Proof. By definition, if (r, R) ∈ �, then res(r) = ∪{res(a) | a ∈ alph(r)}. If (r, R) � (s, S),

then r � s and R ⊇ S ∪ res(r−1s), so

res(r, R) = res(r) ∪ R ⊇ res(r) ∪ res(r−1s) ∪ S = res(s) ∪ S = res(s, S).

Thus res: (�,�) → (P(R),⊇) is monotone.

If X ⊆ � is consistent (that is, X has an upper bound), then (Gastin and Teodosiu 2002)

�X = (Re(�X), Im(�X)), where

Re(�X) =
⊔
x∈X

Re(x)

and

Im(�X) =
⋂
x∈X

Im(x).

Since res is monotone, we have � res(X) ⊇ res(�X). Conversely, let α ∈ � res(X) =

∩x∈Xres(x). Either α ∈ res(Re(x)) for some x ∈ X. In this case, we have

α ∈ res(Re(x)) ⊆ res(Re(�X)) ⊆ res(�X).

Or α ∈ ∩x∈XIm(x), and we can conclude, since

∩x∈XIm(x) = Im(�X) ⊆ res(�X).

2.3. Alphabetic mappings

We now present some results about alphabetic mappings over real traces and over resource

traces. These results are new and will be useful for the denotational semantics of our

parallel composition operator (cf. Section 6).

Let res : Σ → P(R) and res′ : Σ′ → P(R) be two resource maps over the alphabets Σ

and Σ′. The associated dependence relations over Σ and Σ′ are denoted by D and D′.

Let ϕ : Σ → Σ′ ∪ {1} be an alphabetic mapping such that res′(ϕ(a)) ⊆ res(a) for all

a ∈ Σ. We extend ϕ to real traces. If r = [V , E, λ] ∈ �(Σ, res), we define ϕ(r) = [V ′, E ′, λ′]

by:

— V ′ = {e ∈ V | ϕ ◦ λ(e) �= 1},
— λ′ = ϕ ◦ λ, and

— E ′ = E ∩ λ′−1(D′) = {(e, f) ∈ E | λ′(e) D′ λ′(f)}.

Proposition 2.3.

(1) For all r ∈ �(Σ, res), ϕ(r) is a real trace over (Σ′, res′). Therefore ϕ is a mapping from

�(Σ, res) to �(Σ′, res′).

(2) ϕ : (�(Σ, res), ·) → (�(Σ′, res′), ·) is a morphism.

(3) ϕ : (�(Σ, res),�) → (�(Σ′, res′),�) is continuous.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 9

Proof.

(1) Since E is acyclic, E ′ ⊆ E is acyclic also, and for each vertex e ∈ V ′, {f ∈ E ′ |
(f, e) ∈ E ′∗} ⊆ {f ∈ E | (f, e) ∈ E∗} is finite. Now, if (e, f) ∈ E ′, then, by definition,

λ′(e)D′ λ′(f). Conversely, let e, f ∈ V ′ such that λ′(e)D′ λ′(f). Since res′(ϕ(a)) ⊆ res(a)

for all a ∈ Σ, we deduce that λ(e)Dλ(f). Hence, either e = f or (e, f) ∈ E or (f, e) ∈ E.

In the last two cases, it follows that (e, f) ∈ E ′ or (f, e) ∈ E ′.

(2) Let r1 = (V1, E1, λ1) and r2 = (V2, E2, λ2) be two real traces over Σ such that

resinf(r1) ∩ res(r2) = �. The product is r = r1 · r2 = (V , E, λ) with V = V1 ∪̇V2,

λ = λ1 ∪̇ λ2 and E = E1 ∪̇E2 ∪̇ {(e, f) ∈ V1 × V2 | λ1(e) D λ2(f)}. Now, let r′
1 = ϕ(r1) =

(V ′
1, E

′
1, λ

′
1), r

′
2 = ϕ(r2) = (V ′

2, E
′
2, λ

′
2) and r′ = ϕ(r) = (V ′, E ′, λ′). Our definition for

extending ϕ to real traces then implies that V ′ = V ′
1 ∪̇V ′

2, λ
′ = λ′

1 ∪̇ λ′
2 and

E ′ = E ′
1 ∪̇E ′

2 ∪̇ {(e, f) ∈ V1 × V2 | λ1(e) D λ2(f) and λ′
1(e) D

′ λ′
2(f)}

= E ′
1 ∪̇E ′

2 ∪̇ {(e, f) ∈ V ′
1 × V ′

2 | λ′
1(e) D

′ λ′
2(f)}.

Therefore, r′ = r′
1 · r′

2.

(3) Since the order on real traces is the prefix order, from the previous point we deduce

that ϕ is monotone. Now, let X ⊆ �(Σ, res) be any set such that �X = r = (V , E, λ)

exists. Then ϕ(X) ⊆ ↓ϕ(�X), so �ϕ(X) exists and �ϕ(X) � ϕ(�X) = r′ = (V ′, E ′, λ′).

Conversely, let e ∈ V ′, let p′ be the prime prefix of r′ defined by Vp′ = {f ∈ V ′ |
(f, e) ∈ E ′∗}, and let p be the prime prefix of r defined by Vp = {f ∈ V | (f, e) ∈ E∗}.
Since p � r, we have ϕ(p) � ϕ(r) = r′. Now p′ is a prime prefix of r′ whose maximal

vertex is contained in the prefix ϕ(p) of r′. Therefore, p′ is a prefix of ϕ(p). Finally,

p is a prime prefix of r = �X, so there exists x ∈ X such that p � x. Hence,

p′ � ϕ(p) � ϕ(x) � �ϕ(X). Since this holds for all prime prefixes p′ of r′ = ϕ(�X), it

follows that r′ = ϕ(�X) � �ϕ(X).

Note that ϕ : �(Σ, res) → �(Σ′, res′) may also be defined via words. Let ψ : Σ∞ → Σ′∞

be defined by ψ(a1a2 · · ·) = ϕ(a1)ϕ(a2) · · ·. Then, the following diagram commutes:

Σ∞ ψ
−→ Σ′∞

| |
[] ↓ ↓ []

�(Σ, res)
ϕ
−→ �(Σ′, res′)

where [] denotes the canonical mapping from words to traces.

Indeed, ϕ([a]) = ϕ(a) = [ψ(a)] for all a ∈ Σ, and since ϕ,ψ and [] are morphisms, we

deduce that ϕ([u]) = [ψ(u)] for all u ∈ Σ∗. Now, ϕ,ψ and [] are also continuous and for

all u ∈ Σ∞, we obtain ϕ([u]) = �nϕ([un]) = �[ψ(un)] = [ψ(u)] where (un) is any increasing

sequences of words that converges to u.

This implies in particular that if u and v are two equivalent words over Σ, then ψ(u)

and ψ(v) are equivalent words over Σ′. Also, in order to compute ϕ(r) for some real trace

r, one may take any linearisation u of r (r = [u]) and compute [ψ(u)].

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 10

We now extend ϕ to a mapping over resource traces of �(Σ, res) simply by defining

ϕ(r, R) = (ϕ(r), R). Since res′(ϕ(a)) ⊆ res(a) for all a ∈ Σ, we deduce resinf ′(ϕ(r)) ⊆
resinf(r) ⊆ R and (ϕ(r), R) is a resource trace over Σ′. Hence, ϕ:�(Σ, res) → �(Σ′, res′) is

well defined.

Note that ϕ:�(Σ, res) → �(Σ′, res′) is not necessarily a morphism. Indeed, consider the

mappings

res : a �→ {α} ϕ : a �→ a

b �→ {α, γ} b �→ 1

c �→ {γ} c �→ c.

Then, we have:

ϕ((aω, {α}) · (bc,�)) = (aω, {α, γ}),
but

ϕ((aω, {α})) · ϕ((bc,�)) = (caω, {α}).
What is more surprising is that ϕ:�(Σ, res) → �(Σ′, res′) is not even a morphism when

ϕ: Σ → Σ′ is a non-erasing mapping. Indeed, consider Σ = Σ′ = {a, c} with

res : a �→ {α, β} res′: a �→ {α}
c �→ {β, γ} c �→ {γ}.

Then the identity from (�(Σ, res), ·) to (�(Σ′, res′), ·) is not a morphism.

Proposition 2.4.

(1) ϕ : (�(Σ, res),�) → (�(Σ′, res′),�) is continuous.

(2) If res′(ϕ(a)) = res(a) for all a ∈ Σ, then ϕ : (�(Σ, res), ·) → (�(Σ′, res′), ·) is a (non-

erasing) morphism.

Proof.

(1) Let (r, R), (s, S) ∈ �(Σ, res) be such that (r, R) � (s, S). Since ϕ : �(Σ, res) → �(Σ′, res′)

is a morphism, we have ϕ(r) � ϕ(s) and ϕ(r)−1ϕ(s) = ϕ(r−1s). Hence, we obtain

res′(ϕ(r)−1ϕ(s)) ⊆ res(r−1s) ⊆ R and deduce that (ϕ(r), R) � (ϕ(s), S). Now, let X be

any subset of �(Σ, res) such that �X exists. Then �ϕ(X) exists,

Re(�ϕ(X)) =
⊔
x∈X

Re(ϕ(x)) =
⊔
x∈X

ϕ(Re(x)) = ϕ

(⊔
x∈X

Re(x)

)
= ϕ(Re(�X)) = Re(ϕ(�X)),

and

Im(�ϕ(X)) =
⋂
x∈X

Im(ϕ(x)) =
⋂
x∈X

Im(x) = Im(�X) = Im(ϕ(�X)).

Therefore, �ϕ(X) = ϕ(�X).

(2) For all a ∈ Σ, res′(ϕ(a)) = res(a) �= �, so ϕ(a) �= 1. In this case, we also

have a D b if and only if ϕ(a) D′ ϕ(b). Hence, if r = (V , E, λ) ∈ �(Σ, res), we

obtain ϕ(r) = (V , E, ϕ ◦ λ). Let (r, R), (s, S) be two resource traces over (Σ, res).

Using the hypothesis again, we obtain µR(ϕ(s)) = ϕ(µR(s)) and σR(ϕ(s)) = σR(s).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 11

Therefore,

(ϕ(r), R) · (ϕ(s), S) = (ϕ(r) · µR(ϕ(s)), R ∪ S ∪ σR(ϕ(s)))

= (ϕ(r · µR(s)), R ∪ S ∪ σR(s))

= ϕ((r, R) · (s, S))

3. The language

In this section we introduce a simple parallel programming language that utilises the

concatenation operator from trace theory as a basic mechanism for combining processes,

replacing the more traditional sequential composition operator of process algebra. The

goal is to present an operational and denotational model for this language based on the

resource traces model of Gastin and Teodosiu (2002). We begin once again with a finite

set Σ of atomic actions, a finite set R of resources, and a mapping res: Σ → P(R) that

assigns to each a ∈ Σ a non-empty set of resources. We view res(a) as the set of resources

– memory, ports, etc. – that the action a needs in order to execute. Two actions a, b ∈ Σ

may be executed concurrently if and only if they are independent – that is, if and only if

they do not share any resource.

We define the BNF-like syntax of the language L we study as

p ::= STOP | a | p ◦ p | p|R | p ‖
C

p | x | rec x.p

where a ranges over Σ, R,C range over P(R) and x ranges over a countable set V of

variables. Here:

— STOP is the process capable of no actions but claiming all resources; it is full deadlock.

— a ∈ Σ denotes the process that can execute the action a and then terminate normally.

— p ◦ q denotes the weak sequential composition of the two argument processes with the

understanding that independent actions commute with one another: a◦b = b◦a if a, b ∈
I . We call ◦ weak sequential composition because it enforces sequential composition of

those actions that are dependent, while allowing those that are independent of one

another to execute concurrently.

— p|R denotes the process p with all resources restricted to the subset R ⊆ R. The

intention is that only those actions a from p can execute for which res(a) ⊆ R; all

other actions are disabled.

— p ‖
C

q denotes the parallel composition of the component processes. It supports a parallel

composition with synchronisation on those events that share resources in C , which

we view as the set of channels across which communication occurs. Local events, in

other words, events from one process that do not share any resource with C or with

the other process, may also occur independently.

Since our semantics does not allow choices, this process can only make progress as

long as there are no actions from one component that use resources that some action

from the other component also uses, except in the case of synchronisation actions. If

this condition is violated, the process deadlocks.

— x ∈ V is a process variable.

— recx.p denotes recursion of the process body p in the variable x.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 12

Some words about choice are also in order. One of the principal impetuses for our

work is the desire to understand the differences between parallel composition, choice and

non-determinism. Historically, non-deterministic choice arose as a convenient means with

which to model parallel composition: the parallel composition of sequential processes

is modelled by the set of possible interleavings of the actions of each component. This

quickly led to the development of power domains to provide a domain-theoretic analogue

to the power set of a set.

In our approach, we are interested in exploring an alternative model for parallelism. A

parallel composition involves choice whenever there is a competition between conflicting

events. Since we use a truly concurrent semantic domain, our events are not necessarily in

conflict, and we can consider a very natural and important form of cooperative parallel

composition that does not require choice or non-determinism. Each process consists of

local events that occur independently of the other process, and of synchronisation events

that are executed in matching pairs. Indeed, these synchronisation events may introduce

conflict when the two processes offer non-matching synchronisation events. Since we

want to stress the difference between concurrency and choice, we have decided to block

conflicting events in our parallel composition. Note that this situation does not occur in

a cooperative parallel composition, for example, in a parallel sorting algorithm.

It is important to understand the algebraic interpretation of our language L. We can

(and do) take the view that the BNF-like syntax given above is one way to express the sig-

nature of a universal algebra. In our case, the algebra is single sorted, and the signature Ω

can be written as Ω = ∪nΩn, where the index n denotes the arity of the operators in the

subset Ωn. We have:

— Nullary operators: Ω0 = {STOP } ∪ Σ ∪ V ,

— Unary operators: Ω1 = {−|R | R ⊆ R} ∪ {rec x.− | x ∈ V },
— Binary operators: Ω2 = {◦} ∪ { ‖

C

| C ⊆ R}, and

— Ωn = � for all other n.

With this view, L is the initial Ω-algebra. This means that, given any other Ω-algebra A

(and we shall see several), there is a unique Ω-algebra homomorphism φA: L → A, that

is, a unique compositional mapping from L to A.

A simple example is that this allows us to define a rank function ρ: L → � using

this approach. This rank function is then the basis for the many arguments by structural

induction that we shall use in this paper. The definition of ρ is straightforward; we begin

by defining the structure of an Ω-algebra on �:

— [[STOP]] = [[a]] = [[x]] = 1 for all a ∈ Σ and all x ∈ V ;

— [[|R]] = [[recx]] = succ:� → � by n �→ n+ 1;

— [[◦]] = [[‖
C

]]:�×� → � by (n, m) �→ n+ m+ 1.

Then � becomes an Ω-algebra with these definitions, and so the fact that L is

initial implies there is a unique function ρ: L → � that is compositional. For example,

ρ(a ◦ b) = 3, and ρ((rec x.a ◦ x) ‖
C

(a|R)) = 7.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 13

For the sake of completeness, we include the standard definition of (free) variables of a

process and of the substitution of a process for a variable in another process. The reader

familiar with this can proceed directly to the next section.

Definition 3.1. Let p ∈ L be a process. Then the set of variables of p, V(p), and the set

of free variables in p, F(p), are defined by

— V(STOP) = F(STOP) = V(a) = F(a) = �, (∀a ∈ Σ).

— V(x) = F(x) = x, (∀x ∈ V).

— V(p ◦ q) = V(p) ∪ V(q), F(p ◦ q) = F(p) ∪ F(q).

— V(p|R) = V(p), F(p|R) = F(p).

— V(p ‖
C

q) = V(p) ∪ V(q), F(p ‖
C

q) = F(p) ∪ F(q).

— V(rec x.p) = V(p), F(recx.p) = F(p) \ {x}.

The fact that V(p) and F(p) are well defined can be deduced by first defining Ω-algebra

structures on P(V), the set of variables, and then defining these mappings to be the unique

Ω-algebra maps from L to P(V) with the appropriate structure. For example, in the case

of F, we could define

[[STOP]] = [[a]] = �, [[x]] = {x}, [[|R]] = IdP(V), [[‖
c

]] = [[◦]] = ∪, and

[[recx]] : P(V) → P(V) defined by [[recx]](W) = W \ {x},

and then F: L → P(V) is the unique Ω-algebra map respecting this algebra structure on

P(V).

We are now ready to define substitution. In order for the rule for recursion given

below to work, we must make the assumption that the set V of variables is infinite; then

substitution is most easily done using structural induction.

Definition 3.2. For process p and q and a variable x ∈ V , we now define the substitution

p[q/x] as follows:

— If x �∈ F(p), then p[q/x] = p.

— x[q/x] = q.

— (p1|R)[q/x] = (p1[q/x])|R .

— (p1 ◦ p2)[q/x] = p1[q/x] ◦ p2[q/x].

— (p1 ‖
C

p2)[q/x] = p1[q/x] ‖
C

p2[q/x].

— If y �= x and y �∈ F(q), then (rec y.p1)[q/x] = rec y.(p1[q/x]).

— If y �= x and y ∈ F(q), then choose z ∈ V \ (V(p1) ∪ F(q)). Then

(rec y.p1)[q/x] = (rec z.p1[z/y])[q/x] = rec z.(p1[z/y][q/x]).

Substitution also can be defined as an Ω-algebra homomorphism, but this is much more

complicated than in the case of defining free variables. The problem is in making the

selection of a fresh variable in the last clause into a compositional map – it relies on first

defining a related map called Clashset that determines when a term has a free variable

that will be captured by the intended substitution. More details about this can be found

in Mislove and Oles (1995).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 14

4. The resource mapping

The set of resources R and the resource mapping res: Σ → P(R) play a crucial role in our

semantic models. In this section we define the resources that may be used by a process

p ∈ L, and we show that the extension of res: Σ → P(R) to L gives a denotational model

for our language. This is crucial for defining the operational semantics of weak sequential

composition and of parallel composition (cf. Table 1 below), and it is of fundamental

importance in how we define the meaning of recursive processes. The extension of

res: Σ → P(R) to the full language L with variables and recursion requires us to define

the resource set associated with a process with free variables; for this we use resource

environments, mappings σ : V → P(R) assigning a resource set to each variable. Any

resource environment σ ∈ P(R)V can be locally overridden in its value at x:

σ[x �→ R](y) =

{
R if y = x,

σ(y) otherwise,

where R ∈ P(R) is any resource set we wish to assign at x.

Now, we define inductively the set of resources res(p, σ) associated with a process p ∈ L
in the resource environment σ ∈ P(R)V by:

— res(STOP, σ) = R,

— res(a, σ) = res(a) for all a ∈ Σ,

— res(p|R, σ) = res(p, σ) ∩ R for all R ⊆ R,

— res(p ◦ q, σ) = res(p, σ) ∪ res(q, σ),

— res(p ‖
C

q, σ) = res(p, σ) ∪ res(q, σ),

— res(x, σ) = σ(x) for all x ∈ V ,

— res(rec x.p, σ) = res(p, σ[x �→ �]).

For instance, we have res(STOP|R, σ) = R, res(rec x.(a ◦ x ◦ b), σ) = res(a) ∪ res(b) and

res((rec x. (x ◦ a)) ‖
C

(rec y. (b ◦ y))) = res(a) ∪ res(b).

The definition of the resource map for a recursion may look strange since one may

expect a fixed point. Actually, as shown below (Proposition 4.3), it is a fixed point. But

before proving this, we establish two easy lemmas.

Lemma 4.1. Let p ∈ L be a process and x ∈ V be a variable that does not occur free in

p. Then, res(p, σ) does not depend on σ(x).

In particular, if p ∈ L is a closed term (no free variables), res(p, σ) does not depend on

the resource environment σ.

Proof. Let σ, σ′ ∈ P(R)V be two resource environments such that σ(y) = σ′(y) for all

y �= x. We show by induction on p that res(p, σ) = res(p, σ′) for each process p in which x

does not occur free.

The result is immediate for the basis cases STOP, a ∈ Σ or y ∈ V such that y �= x. It

follows by induction for restriction p1|R , weak sequential composition p1 ◦ p2 and parallel

composition p1 ‖
C

p2. Now, assume that p = rec y.p1 with y �= x and that x does not occur

free in p1. We have

res(rec y.p1, σ) = res(p1, σ[y �→ �]) = res(p1, σ
′[y �→ �]) = res(rec y.p1, σ

′).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 15

Finally, if p = rec x.p1, then σ[x �→ �] = σ′[x �→ �], and we have

res(rec x.p1, σ) = res(p1, σ[x �→ �]) = res(p1, σ
′[x �→ �]) = res(rec x.p1, σ

′).

Lemma 4.2. Let p ∈ L be a process and σ ∈ P(R)V be a resource environment. We have

res(p, σ) ⊆ res(p, σ[x �→ �]) ∪ σ(x).

Proof. The result is immediate for p = x, and it follows from Lemma 4.1 if x is not

free in p. In particular, it holds for the basis cases STOP, a ∈ Σ or y ∈ V . It follows

directly by induction for restriction p1|R , weak sequential composition p1 ◦p2, and parallel

composition p1 ‖
C

p2. Finally, assume that p = rec y.p1 with y �= x. Then we have

res(p, σ) = res(p1, σ[y �→ �])

⊆ res(p1, σ[y �→ �, x �→ �]) ∪ σ[y �→ �](x)

⊆ res(rec y.p1, σ[x �→ �]) ∪ σ(x).

Next, we show that the resource map is continuous and that our definition of recursion

fulfills what one expects – that it is a fixed point for the body of the recursion. As

explained in Section 2.2, we order the set P(R) with reverse containment.

Proposition 4.3. Let p ∈ L be a process and σ ∈ P(R)V be a resource environment. Then,

(1) The mapping

res(p,−) : (P(R),⊇)V → (P(R),⊇)

is continuous.

(2) R = res(rec x.p, σ) = νS.res(p, σ[x �→ S]), that is, res(rec x.p, σ) is the greatest fixed

point of the continuous map

res(p, σ[x �→ −]) : (P(R),⊇) → (P(R),⊇)

S �→ res(p, σ[x �→ S]).

In particular, res(recx.p, σ) = res(p, σ[x �→ res(rec x.p, σ)]).

Proof.

(1) Again, we prove this by structural induction on p. The result is clear for the cases of

STOP and a ∈ Σ, since these give constant maps. For x ∈ V , the mapping res(x,−) is

a projection that is indeed continuous. The mapping − ∪ − : (P(R),⊇)2 → (P(R),⊇)

is continuous, and since the composition of continuous maps is continuous, the result

follows for p1 ◦p2 and p1 ‖
C

p2. Similarly, −∩− : (P(R),⊇)2 → (P(R),⊇) is continuous,

and we obtain the result for p1|R . Finally, the selfmap of (P(R),⊇)V defined by

σ �→ σ[x �→ �] is continuous since (P(R),⊇)V is given the product topology. The

result follows by composition of continuous maps for recursion rec x.p1.

(2) Using Lemma 4.2, we obtain

res(p, σ[x �→ R]) ⊆ res(p, σ[x �→ �]) ∪ R = R,

and since the mapping res(p,−) is monotone, we also have

R = res(p, σ[x �→ �]) ⊆ res(p, σ[x �→ R]).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 16

Therefore, R is a fixed point of the mapping res(p, σ[x �→ −]), and since it is obtained

by iteration from the greatest element � of (P(R),⊇), it is the greatest fixed point

of res(p, σ[x �→ −]).

We now present a lemma that will be useful when studying the operational semantics

of our language. It explains how to compute the resource map of the process p[q/x] that

is obtained by substituting the process q for each free occurrence of the variable x in the

process p.

Lemma 4.4. Let p, q ∈ L be two processes and σ ∈ P(R)V be a resource environment.

Then

res(p[q/x], σ) = res(p, σ[x �→ res(q, σ)]).

Proof. We proceed by induction on p. The result is immediate for p = x, and it follows

from Lemma 4.1 if x is not free in p. In particular, it holds for the basis cases STOP, a ∈ Σ

or y ∈ V . It follows directly by induction for restriction p1|R , weak sequential composition

p1 ◦ p2, and parallel composition p1 ‖
C

p2. Finally, assume that p = rec y.p1 with y �= x.

Then, we may assume that y is not free in q and p[q/x] = rec y.(p1[q/x]). We obtain

res(rec y.(p1[q/x]), σ) = res(p1[q/x], σ[y �→ �])

= res(p1, σ[y �→ �, x �→ res(q, σ[y �→ �])]) by induction

= res(p1, σ[x �→ res(q, σ), y �→ �]) by Lemma 4.1

= res(rec y . p1, σ[x �→ res(q, σ)]).

We conclude this section by showing that we can endow the set of continuous maps

[P(R)V → P(R)] with a structure of a continuous Ω-algebra that yields precisely the

resource map defined above. (This will not be used in the paper but it shows that our

definition is legitimate.) The constants STOP and a (a ∈ Σ) are interpreted as constant

maps, the constant x ∈ V is interpreted as a projection, restriction |R is intersection with

R, the two compositions ◦ and ‖
C

are union, and, finally, recursion rec x is a greatest fixed

point. More precisely, for continuous maps f, g: P(R)V → P(R) and resource environment

σ ∈ P(R)V , we define:

[[STOP]] ∈ [P(R)V → P(R)] defined by [[STOP]](σ) = R,

[[a]] ∈ [P(R)V → P(R)] defined by [[a]](σ) = res(a), (∀a ∈ Σ),

[[x]] ∈ [P(R)V → P(R)] defined by [[x]](σ) = σ(x), (∀x ∈ V),

[[|R]] : [P(R)V → P(R)] → [P(R)V → P(R)] by f �→ f[[|R]]

with f[[|R]](σ) = f(σ) ∩ R, (∀R ⊆ R),

[[◦]] : [P(R)V → P(R)]2 → [P(R)V → P(R)] by f, g �→ f[[◦]]g

with (f[[◦]]g)(σ) = f(σ) ∪ g(σ),

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 17

[[‖
C

]] : [P(R)V → P(R)]2 → [P(R)V → P(R)] by f, g �→ f[[‖
C

]]g

with (f[[‖
C

]]g)(σ) = f(σ) ∪ g(σ),

[[rec x]] : [P(R)V → P(R)] → [P(R)V → P(R)] by f �→ [[recx]].f

with ([[recx]].f)(σ) = (νS.f(σ[x �→ S])), (∀x ∈ V).

With this view, the mapping p �→ res(p,−) is the unique Ω-algebra map from L to

[P(R)V → P(R)]. Indeed, we have to show that these interpretations are well defined,

that is, that for each operator ω of arity n, [[ω]](f1, . . . , fn) is continuous assuming that

f1, . . . , fn are continuous themselves.

Proposition 4.5. If ω ∈ Ω is an operator of arity n, the operator

[[ω]]: [P(R)V → P(R)]n → [P(R)V → P(R)]

is well defined and continuous.

Proof. We have to show that [[ω]](f1, . . . , fn) is indeed continuous if we assume that

f1, . . . , fn are themselves continuous and, also, that (f1, . . . , fn) �→ [[ω]](f1, . . . , fn) is

continuous (this last part only when n > 0). This is clear for the constants of STOP

and a ∈ Σ, since these give constant maps, and also for x ∈ V , since projections are

continuous.

It is a standard result from domain theory that continuous operators on a domain D

lift to continuous operators on function spaces over D (cf. Abramsky and Jung (1994)

or Proposition 6.1). Therefore, the results for restriction, weak sequential composition

and parallel composition follow, since the mappings − ∪ − : (P(R),⊇)2 → (P(R),⊇) and

− ∩ − : (P(R),⊇)2 → (P(R),⊇) are continuous.

For recursion, it is not so clear since the greatest fixed point operator is usually

not continuous. Fortunately, P(R) is finite, hence the greatest fixed point is obtained

after a fixed number of iterations, which allows us to deduce the claim. More precisely,

we consider the continuous selfmap Φf,σ: P(R) → P(R) by Φf,σ(R) = f(σ[x �→ R]).

Then, ([[recx]].f)(σ) = ΦN
f,σ(�) where N = |P(R)|. Since the mapping from [P(R)V →

P(R)] × P(R)V to [P(R) → P(R)] defined by (f, σ) �→ Φf,σ is continuous, we can show

easily that the mapping [P(R)V → P(R)] × P(R)V → P(R) defined by (f, σ) �→ ΦN
f,σ(�)

is continuous. The claim that [[rec x]] is well defined and continuous follows.

5. Operational semantics

In this section we present an operational semantics for our language. In fact, we give

somewhat more than usual – we give an operational semantics for all terms p ∈ L,

even those with free variables. This is necessitated by our desire to use something other

than the usual least fixed point semantics of recursion that domain theory offers. The

reason for this will be clarified later on – for now, we confine our discussion to presenting

the transition rules for our language, and on deriving results about the resulting behaviour

of terms from L under these rules.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 18

The now traditional method for presenting an operational semantics for a language has

its origins in the seminal work Plotkin (1981), where the notion of a structural operational

semantics was first put forth. Such a semantics consists of a set of transition rules that

indicate what the ‘next step’ of a computation is, according to the form of the term

being executed. This means we must have rules for each of the clauses in the BNF

definition we gave in Section 3 for our language. But the fact that we must also give

operational rules for open terms (ones with free variables) means that we must have some

way of interpreting those variables. The key is what we have already done in the pre-

vious section to interpret variables in the context of a denotational model: we use

environments. Once again we rely on the mappings σ:V → P(R) to aid us, and so our

transition rules tell us what next steps are possible for a term in a given environment σ.

We must make an additional assumption to define our transition rules. We are interested

in supporting synchronisation over a set C ⊆ R, which we view as the channels over which

synchronisation can occur. We therefore assume that the alphabet Σ has a synchronisation

operation ‖: Σ × Σ → Σ that describes the result of synchronising a matching pair of

actions. There is no extra resource introduced by synchronisation and no hiding of

resources either, hence we require that for all (a1, a2) ∈ Σ2,

res(a1‖a2) = res(a1) ∪ res(a2).

We introduce a notation used in the rule for parallel composition. Let p1, p2 ∈ L be

processes, σ ∈ P(R)V be an environment and C ⊆ R be a set of channels. Then, a pair

(a1, a2) ∈ Σ2 may be synchronised in p1 ‖
C

p2 if res(ai) ⊆ res(pi, σ) for i = 1, 2 and

res(a1) ∩ res(p2, σ) = res(a2) ∩ res(p1, σ) = res(a1) ∩ C = res(a2) ∩ C �= �.

We use SyncC,σ(p1, p2) to denote the set of those pairs satisfying this condition.

We are now ready for the transition rules, which are the basis for the operational

semantics for our language L. We present them in natural deduction style in Table 1. We

use SKIP to denote the process STOP|� that does nothing and claims no resources.

We need a number of results about the rules in Table 1 before we can define the

operational behaviour of a term p ∈ L. In order to improve the readability, they are

stated below without proofs so that we can immediately define the operational behaviour.

Then the proofs are given except for one of the results whose proof is much easier once

we have defined the denotational semantics of our language in the following section.

Proposition 5.1. Let p, p′, p′′ ∈ L be processes, σ ∈ P(R)V be a syntactic environment,

and a, b ∈ Σ. If a �= b, p a
−→
σ
p′ and p b

−→
σ
p′′, then a I b and ∃p′′′ ∈ L with p′ b

−→
σ
p′′′ and

p′′ a
−→
σ
p′′′.

Proposition 5.2. Let p, p′, p′′ ∈ L be processes, σ ∈ P(R)V be a syntactic environment,

and a ∈ Σ. Then

p a
−→
σ
p′ and p a

−→
σ
p′′ ⇒ p′ = p′′.

Proposition 5.3. Let p, p′, p′′ ∈ L be processes, σ ∈ P(R)V be a syntactic environment,

and a, b ∈ Σ. If a I b, p a
−→
σ
p′, p′ b

−→
σ
p′′, then ∃p′′′ ∈ L with p b

−→
σ
p′′′ and p′′′ a

−→
σ
p′′.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 19

(1)
a a

−→
σ

SKIP

(2a)

p1
a

−→
σ
p′

1

p1 ◦ p2
a

−→
σ
p′

1 ◦ p2

(2b)

p2
a

−→
σ
p′

2, res(a) ∩ res(p1, σ) = �

p1 ◦ p2
a

−→
σ
p1 ◦ p′

2

(3)

p a
−→
σ
p′, res(a) ⊆ R

p|R a
−→
σ
p′|R

(4a)

p1
a

−→
σ
p′

1, res(a) ∩ (res(p2, σ) ∪ C) = �

p1 ‖
C

p2
a

−→
σ
p′

1 ‖
C

p2

(4b)

p2
a

−→
σ
p′

2, res(a) ∩ (res(p1, σ) ∪ C) = �

p1 ‖
C

p2
a

−→
σ
p1 ‖
C

p′
2

(4c)

p1
a1

−→
σ
p′

1, p2
a2

−→
σ
p′

2, (a1, a2) ∈ SyncC,σ(p1, p2)

p1 ‖
C

p2
a1‖a2
−→
σ

p′
1 ‖
C

p′
2

(5)

p
a

−→
σ′
p′, σ′ = σ[x �→ res(rec x.p, σ)]

rec x.p a
−→
σ
p′[rec x.p/x]

Table 1. The Transition Rules for L

Proposition 5.2 implies that our transition system is deterministic. Adding

Proposition 5.1, we know that it is strongly locally confluent, and thus Church–Rosser.

Since we want a truly concurrent semantics, it should be possible for a process to

execute independent events concurrently – that is, independently. This is reflected by

Proposition 5.3 in our transition system. From this we derive the following corollary by

induction.

Corollary 5.4. Let u, v ∈ Σ∗ with u ∼ v. Then p u
−→
σ
q if and only if p v

−→
σ
q. Hence p s

−→
σ
q

is well defined for finite traces s ∈ �.

In an interleaving semantics, the possible operational behaviours of a process p in the

environment σ ∈ P(R) would consist of the set

XΣ∗(p, σ) = {u ∈ Σ∗ | ∃q ∈ L, p u
−→
σ
q}.

Thanks to Corollary 5.4, we can actually define the possible concurrent behaviours as

X�(p, σ) = {t ∈ � | ∃q ∈ L, p t
−→
σ
q}.

But, knowing only a possible real (finite) trace that can be executed does not provide

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 20

enough information to know how the process can be continued or composed with another

process. Hence we need to bring resources into the picture.

Definition 5.5. Let p ∈ L be a process and σ ∈ P(R)V be a resource environment. The

set of resource trace behaviours of p in σ is

X�(p, σ) = {(s, res(q, σ)) ∈ � | ∃q ∈ L, p s
−→
σ
q}.

The meaning of this is that (s, S) ∈ X�(p, σ) if p can concurrently execute the trace s

and then still claim the resources in S .

Actually, we will prove later (Theorem 7.10) that the set X�(p, σ) is directed. The

interpretation is that p has a unique maximal behaviour in the environment σ that is the

least upper bound of X�(p, σ): B�(p, σ) = �X�(p, σ). This is precisely what tells us that

our semantics of parallelism does not involve non-deterministic choice.

Proposition 5.3 will be proved in Section 7 using results from the denotational semantics.

The remainder of this section is devoted to the proofs of Propositions 5.1 and 5.2 We

start with some useful results.

Proposition 5.6. Let p, p′ ∈ L be processes, σ ∈ P(R)V be a syntactic environment, and

u ∈ Σ∗. Then

p u
−→
σ
p′ ⇒ res(p, σ) = res(p′, σ) ∪ res(u).

Proof. We first prove by structural induction on p that the property holds when

u = a ∈ Σ is a single letter. Then the only forms that p could take are p = a, p = p1 ◦ p2,

p = p1|R , p = p1 ‖
C

p2, or p = rec x.p1. We consider these in turn.

— If p = a ∈ Σ, then p′ = SKIP, so

res(p, σ) = res(a) = res(a) ∪ res(SKIP, σ).

— If p = p1 ◦ p2, then either p1
a

−→
σ
p′

1 or p2
a

−→
σ
p′

2 and res(a) ∩ res(p1, σ) = �. In the first

case, p′ = p′
1 ◦ p2, so

res(p1 ◦ p2, σ) = res(p1, σ) ∪ res(p2, σ)

= res(a) ∪ res(p′
1, σ) ∪ res(p2, σ) by structural induction

= res(a) ∪ res(p′
1 ◦ p2, σ).

In the second case, p′ = p1 ◦ p′
2, and

res(p1 ◦ p2, σ) = res(p1, σ) ∪ res(a) ∪ res(p′
2, σ) = res(a) ∪ res(p1 ◦ p′

2, σ).

— If p = p1|R , then p1
a

−→
σ
p′

1 and res(a) ⊆ R and p′ = p′
1|R . Then

res(p, σ) = res(p1) ∩ R = (res(a) ∪ res(p′
1, σ)) ∩ R

= res(a) ∪ (res(p′
1, σ) ∩ R) = res(a) ∪ res(p′

1|R, σ).

— If p = p1 ‖
C

p2, then p a
−→
σ
p′ means either p1

a
−→
σ
p′

1 and res(a) ∩ (C ∪ res(p2, σ)) = �,

or p2
a

−→
σ
p′

2 and res(a) ∩ (C ∪ res(p1, σ)) = �, or a = a1‖a2 for some (a1, a2) ∈
SyncC,σ(p1, p2) and p1

a1
−→
σ
p′

1, p2
a2

−→
σ
p′

2. The last case is the most interesting, and the

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 21

proof in this case is

res(p1 ‖
C

p2, σ) = res(p1, σ) ∪ res(p2, σ)

= (res(a1) ∪ res(p′
1, σ)) ∪ (res(a2) ∪ res(p′

2, σ))

= res(a) ∪ res(p′
1 ‖
C

p′
2, σ),

the middle equality following from the induction hypothesis, and the last from the

assumption on the mapping ‖ : Σ2 → Σ.

— The final form is p = rec x.p1, in which case we have p1
a

−→
σ′
p′

1 and p′ = p′
1[recx.p1/x]

where σ′ = σ[x �→ res(rec x.p1, σ)], so

res(p, σ) = res(rec x.p1, σ) = res(p1, σ
′) = res(a) ∪ res(p′

1, σ
′)

= res(a) ∪ res(p′
1[recx.p1/x], σ),

the second equality following from Proposition 4.3 and the last from Lemma 4.4.

Finally, the proof of Proposition 5.6 for an arbitrary u ∈ Σ∗ is done by induction on the

length of u. If u = ε is the empty word, then p′ = p, and there is nothing to prove. If

u = au′ for some u′ ∈ Σ∗ and p u
−→
σ
p′, then there is some q ∈ L with p a

−→
σ
q u′

−→
σ
p′, so

res(p, σ) = res(a) ∪ res(q, σ)

= res(a) ∪ res(u′) ∪ res(p′, σ)

= res(u) ∪ res(p′, σ),

the first equality following from the proof just given, and the middle equality by the

induction hypothesis on the length of u.

Lemma 5.7. Let p, p′, q ∈ L be processes, σ, σ′ ∈ P(R)V be syntactic environments, a ∈ Σ,

and x ∈ V . Then

p
a

−→
σ′
p′, σ′ = σ[x �→ res(q, σ)] ⇒ p[q/x] a

−→
σ
p′[q/x].

Proof. We proceed by structural induction on p, and since we are concerned with

processes p
a

−→
σ′
p′, we know p cannot be STOP or a variable x ∈ V or a letter b �= a.

— If p = a ∈ Σ, then p[q/x] = p and p′ = SKIP. Then

p[q/x] = a a
−→
σ

SKIP = SKIP[q/x],

which proves the result in this case.

— If p = p1 ◦ p2, then either p1
a

−→
σ′
p′

1 or p2
a

−→
σ′
p′

2 and res(a) ∩ res(p1, σ
′) = �. In the first

case, p1[q/x]
a

−→
σ
p′

1[q/x] by the induction hypothesis, so

(p1 ◦ p2)[q/x] = p1[q/x] ◦ p2[q/x]
a

−→
σ
p′

1[q/x] ◦ p2[q/x] = (p′
1 ◦ p2)[q/x].

A similar argument can be applied in the second case. Since by Lemma 4.4 we have

res(p1[q/x], σ) = res(p1, σ
′), we deduce that res(a) ∩ res(p1[q/x], σ) = �. Therefore

(p1 ◦ p2)[q/x] = p1[q/x] ◦ p2[q/x]
a

−→
σ
p1[q/x] ◦ p′

2[q/x] = (p1 ◦ p′
2)[q/x].

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 22

— If p = p1|R , then res(a) ⊆ R and p′ = p′
1|R with p1

a
−→
σ′
p′

1. Then, by the induction

hypothesis, we have p1[q/x]
a

−→
σ
p′

1[q/x], so

(p1|R)[q/x] = (p1[q/x])|R a
−→
σ

(p′
1[q/x])|R = (p′

1|R)[q/x].

— If p = p1 ‖
C

p2
a

−→
σ′
p′, then either p1

a
−→
σ′
p′

1 and res(a) ∩ (C ∪ res(p2, σ
′)) = �, or p2

a
−→
σ′
p′

2

and res(a) ∩ (C ∪ res(p1, σ
′)) = �, or a = a1‖a2 for some (a1, a2) ∈ SyncC,σ′(p1, p2)

and p1
a1

−→
σ
p′

1, p2
a2

−→
σ
p′

2. The first two cases are easier to verify – we consider only

the last one, which is the most interesting. In this case, the induction hypothesis

implies p1[q/x]
a1

−→
σ
p′

1[q/x] and p2[q/x]
a2

−→
σ
p′

2[q/x]. Moreover, by Lemma 4.4 we

have res(p1, σ
′) = res(p1[q/x], σ) and res(p2, σ

′) = res(p2[q/x], σ), and we deduce that

(a1, a2) ∈ SyncC,σ(p1[q/x], p2[q/x]). Then

(p1 ‖
C

p2)[q/x] = p1[q/x] ‖
C

p2[q/x]
a

−→
σ
p′

1[q/x] ‖
C

p′
2[q/x] = (p′

1 ‖
C

p′
2)[q/x].

— If p = rec x.p1, we have p′ = p′
1[recx.p1/x] with p1

a
−→
σ′′

p′
1 and σ′′ = σ′[x �→

res(rec x.p1, σ
′)]. By Lemma 4.1, we have res(rec x.p1, σ

′) = res(recx.p1, σ), and hence

σ′′ = σ[x �→ res(rec x.p1, σ)]. Therefore rec x.p1
a

−→
σ
p′

1[rec x.p1/x]. The result follows

since x occurs free in neither rec x.p1 nor p′
1[recx.p1/x].

— If p = rec y.p1 with y �= x, then p′ = p′
1[rec y.p1/y] with p1

a
−→
σ′′

p′
1 and σ′′ = σ′[y �→

res(p, σ′)] = σ[x �→ res(q, σ), y �→ res(p, σ′)]. We may assume that y is not free in

q. Let σ′′′ = σ[y �→ res(p, σ′)], since y is not free in q we have, by Lemma 4.1,

res(q, σ) = res(q, σ′′′), and therefore σ′′ = σ′′′[x �→ res(q, σ′′′)]. Using the induction

hypothesis, we obtain p1[q/x]
a

−→
σ′′′

p′
1[q/x]. Now, using Lemma 4.4 and the fact that

y is not free in q, we obtain res(p, σ′) = res(p[q/x], σ) = res(rec y.(p1[q/x]), σ). Hence,

σ′′′ = σ[y �→ res(rec y.(p1[q/x]), σ)]. Therefore,

(rec y.p1)[q/x] = rec y.(p1[q/x])
a

−→
σ

(p′
1[q/x])[rec y.(p1[q/x])/y] = (p′

1[rec y.p1/y])[q/x].

Lemma 5.8. Let p1, p2 ∈ L be processes, σ ∈ P(R)V be an environment and (a1, a2),

(b1, b2) ∈ SyncC,σ(p1, p2) be synchronisation pairs. If res(a1) ∩ res(b2) �= �, then

res(a1) ∩ res(b2) = res(b1) ∩ res(a2) ⊆ C.

In particular, the four letters a1, a2, b1, b2 are pairwise dependent.

Proof. We have res(a1) ∩ res(b2) ⊆ res(a1) ∩ res(p2, σ) = res(a2) ∩ C and res(a1) ∩
res(b2) ⊆ res(p1, σ) ∩ res(b2) = res(b1) ∩ C . Therefore, res(a1) ∩ res(b2) ⊆ res(a2) ∩ res(b1) ∩
C . Similarly, we get the reverse inclusion and obtain � �= res(a1) ∩ res(b2) = res(b1) ∩
res(a2) ⊆ C .

Proof of Proposition 5.1. We use an induction on p. The premises are impossible to

satisfy for the basis cases STOP, x ∈ V or c ∈ Σ.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 23

p = p1|R We must have res(ab) ⊆ R, p1
a

−→
σ
p′

1 and p1
b

−→
σ
p′′

1. By induction, we deduce

that a I b, and there exists p′′′
1 ∈ L with p′

1
b

−→
σ
p′′′

1 and p′′
1

a
−→
σ
p′′′

1 . The result follows

with p′′′ = p′′′
1 |R .

p = recx.p1 Let σ′ = σ[x �→ res(p, σ)]. We must have p1
a

−→
σ′

p′
1 and p1

b
−→
σ′

p′′
1. By

induction, we deduce that a I b, and there exists p′′′
1 ∈ L with p′

1

b
−→
σ′
p′′′

1 and p′′
1

a
−→
σ′
p′′′

1 .

By Lemma 5.7, we deduce that p′ = p′
1[p/x]

b
−→
σ
p′′′

1 [p/x] = p′′′. Similarly, we have

p′′ = p′′
1[p/x]

a
−→
σ
p′′′.

p = p1 ◦ p2 There are three cases to consider:

— p1
a

−→
σ
p′

1 and p1
b

−→
σ
p′′

1. By induction, we deduce that a I b, and there exists

p′′′
1 ∈ L with p′

1
b

−→
σ
p′′′

1 and p′′
1

a
−→
σ
p′′′

1 . The result follows with p′′′ = p′′′
1 ◦ p2.

— p2
a

−→
σ
p′

2, p2
b

−→
σ
p′′

2 and res(ab) ∩ res(p1, σ) = �. By induction, we deduce that

a I b, and there exists p′′′
2 ∈ L with p′

2
b

−→
σ
p′′′

2 and p′′
2

a
−→
σ
p′′′

2 . The result follows with

p′′′ = p1 ◦ p′′′
2 .

— p1
a

−→
σ
p′

1, p2
b

−→
σ
p′′

2 and res(b) ∩ res(p1, σ) = �. By Proposition 5.6, we have

res(p1, σ) = res(a) ∪ res(p′
1, σ), and we deduce that a I b and res(b) ∩ res(p′

1, σ) = �.

The result follows with p′′′ = p′
1 ◦ p′′

2.

p = p1 ‖
C

p2 Parallel composition is the most difficult operator to deal with. We distinguish

four cases.

— res(ab) ∩ (C ∪ res(p2, σ)) = �. Then p1
a

−→
σ
p′

1 and p1
b

−→
σ
p′′

1, and we conclude

easily by induction

— res(a) ∩ (C ∪ res(p2, σ)) = � and res(b) ∩ (C ∪ res(p1, σ)) = �. Then p1
a

−→
σ
p′

1 and

p2
b

−→
σ
p′′

2. By Proposition 5.6, we have res(p1, σ) = res(a) ∪ res(p′
1, σ), hence a I b and

res(b) ∩ (C ∪ res(p′
1, σ)) = �. Therefore, p′ = p′

1 ‖
C

p2
b

−→
σ
p′

1 ‖
C

p′′
2 = p′′′. Similarly, we

show that p′′ = p1 ‖
C

p′′
2

a
−→
σ
p′′′.

— a = a1‖a2 with (a1, a2) ∈ SyncC,σ(p1, p2) and res(b) ∩ (C ∪ res(p2, σ)) = �. Then

p1
a1

−→
σ
p′

1, p2
a2

−→
σ
p′

2 and p′ = p′
1 ‖
C

p′
2. Moreover, p1

b
−→
σ
p′′

1 and p′′ = p′′
1 ‖
C

p2. By

induction, we deduce that a1 I b, and there exists p′′′
1 ∈ L with p′

1
b

−→
σ
p′′′

1 and

p′′
1

a1
−→
σ
p′′′

1 .

By Proposition 5.6, res(p2, σ) = res(a2) ∪ res(p′
2, σ), hence a2 I b and res(b) ∩ (C ∪

res(p′
2, σ)) = �. Therefore, p′ = p′

1 ‖
C

p′
2

b
−→
σ
p′′′

1 ‖
C

p′
2 = p′′′.

Now res(p1, σ) = res(b) ∪ res(p′′
1 , σ) by Proposition 5.6. Since a2 I b, we deduce that

res(a2) ∩ res(p1, σ) = res(a2) ∩ res(p′′
1 , σ), and therefore a = (a1, a2) ∈ SyncC,σ(p

′′
1 , p2).

It follows that p′′ = p′′
1 ‖
C

p2
a

−→
σ
p′′′.

— a = a1‖a2, b = b1‖b2 with (a1, a2), (b1, b2) ∈ SyncC,σ(p1, p2). Then p1
a1

−→
σ
p′

1,

p2
a2

−→
σ
p′

2 and p′ = p′
1 ‖
C

p′
2. Also p1

b1
−→
σ
p′′

1, p2
b2

−→
σ
p′′

2 and p′′ = p′′
1 ‖
C

p′′
2. By induction,

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 24

we have a1 Ib1, and there exists p′′′
1 ∈ L with p′

1
b1

−→
σ
p′′′

1 and p′′
1

a1
−→
σ
p′′′

1 . By induction,

we also have a2 I b2, and there exists p′′′
2 ∈ L with p′

2
b2

−→
σ
p′′′

2 and p′′
2

a2
−→
σ
p′′′

2 . Using

Lemma 5.8, we deduce that a1 I b2 and a2 I b1, and we deduce that a I b since

res(a) = res(a1‖a2) = res(a1) ∪ res(a2), and similarly for b.

By Proposition 5.6, res(p2, σ) = res(b2) ∪ res(p′′
2 , σ), and we deduce that res(a1) ∩

res(p2, σ) = res(a1)∩res(p′′
2 , σ). Similarly, res(a2)∩res(p1, σ) = res(a2)∩res(p′′

1 , σ). We

deduce that (a1, a2) ∈ SyncC,σ(p
′′
1 , p

′′
2) and p′′ = p′′

1 ‖
C

p′′
2

a
−→
σ
p′′′

1 ‖
C

p′′′
2 = p′′′. We obtain

similarly that p′ = p′
1 ‖
C

p′
2

b
−→
σ
p′′′.

Proof of Proposition 5.2. We proceed by induction. The hypothesis is impossible to

fulfill for STOP, x ∈ V or b �= a. The result is trivial for p = a and follows immediately by

induction for restriction, recursion and weak sequential composition. The most interesting

case is parallel composition: p = p1 ‖
C

p2. There are two cases.

res(a) ∩ (C ∪ res(p2, σ)) = �. Then, necessarily, (Proposition 5.6), p1
a

−→
σ
p′

1, p1
a

−→
σ
p′′

1,

p′ = p′
1 ‖
C

p2 and p′′ = p′′
1 ‖
C

p2. By induction, we obtain p′
1 = p′′

1, and we deduce p′ = p′′.

a = a1‖a2 = b1‖b2 with (a1, a2), (b1, b2) ∈ SyncC,σ(p1, p2). Then p1
a1

−→
σ
p′

1, p2
a2

−→
σ
p′

2 and

p′ = p′
1 ‖
C

p′
2. Also p1

b1
−→
σ
p′′

1, p2
b2

−→
σ
p′′

2 and p′′ = p′′
1 ‖
C

p′′
2.

We claim that a1 = b1 and a2 = b2. Indeed, we have � �= res(a) = res(a1) ∪ res(a2) =

res(b1) ∪ res(b2). Either res(a1) ∩ res(b1) �= � or res(a1) ∩ res(b2) �= �. We deduce from

Lemma 5.8 that in both cases a1 and b1 are dependent. It follows that a1 = b1 from

Proposition 5.1, which proves the claim.

By induction, we obtain p′
1 = p′′

1 and p′
2 = p′′

2, whence p′ = p′′.

We conclude this section with a quite natural result. As one might expect, the operational

behaviour of a term only depends on the values taken by the syntactic environments at

free variables of the term.

Proposition 5.9. Let p ∈ L be processes and σ, σ′ ∈ P(R)V be syntactic environments

such that σ(y) = σ′(y) ∀y ∈ F(p). Then, X�(p, σ) = X�(p, σ′).

Proof. In order to show this, we first prove that under the hypotheses of the proposition

we have p a
−→
σ
p′ ⇔ p

a
−→
σ′
p′. This can be shown by structural induction. It is also an

easy corollary of Lemma 5.7: for each x �∈ F(p) we apply this lemma with q = STOP|σ′(x).

Next we use an induction on the length to obtain a similar result for finite traces:

p s
−→
σ
p′ ⇔ p

s
−→
σ′
p′. Finally, we conclude using Lemma 4.1.

6. Denotational semantics

In this section, we define a denotational semantics for our language, which we later show

is adequate and fully abstract with respect to the operational semantics given by the

transition system we presented in the previous section. The semantics takes its values

in the family [�V → �] of continuous maps from �V to the underlying domain � of

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 25

resource traces. As was the case with the resources model of Section 4, the semantics of a

closed process p is a constant map, which means it is simply a resource trace. But, in order

to give the semantics of recursion, we also have to consider terms with free variables.

We begin by defining the family of semantic environments to be the mappings σ:V → �,

and we endow this with the domain structure from the target domain �, regarding �V as

a product on V -copies of �. The semantics of an arbitrary process p ∈ L is a continuous

map from �V to �. The semantics of a recursive process rec x.p is obtained by considering

some fixed point of the semantic map associated with the body p of the recursion. We

obtain a compositional semantics by defining the structure of an Ω-algebra on [�V → �].

We begin with the simplest operations – the nullary operators.

The denotational semantics of constants and of variables are defined by the maps:

[[STOP]] ∈ [�V → �] defined by [[STOP]](σ) = (1,R)

[[a]] ∈ [�V → �] defined by [[a]](σ) = (a,�)

[[x]] ∈ [�V → �] defined by [[x]](σ) = σ(x)

The first two clearly are continuous, since they are constant maps. As for the last, this

mapping amounts to projection of the element σ ∈ �V onto its x-component, and since

we endow �V with the product topology, this mapping is also continuous.

Next we define the semantics of restriction, weak sequential composition and parallel

composition. Rather than define the interpretations of these operators directly at the level

of [�V → �], we instead define continuous interpretations on �, and then extend to

[�V → �] in a pointwise fashion. Proposition 6.1 is the link that shows this approach

induces continuous interpretations on [�V → �].

Proposition 6.1 (Abramsky and Jung 1994). Let ω ∈ Ωn be an n-ary operator of our

language and assume that we have defined a corresponding continuous operation ω :

�n → �. We define the interpretation of the operation ω on [�V → �] in a pointwise

fashion:

ω̃: [�V → �]n → [�V → �] defined by ω̃(f1, . . . , fn)(σ) = ω(f1(σ), . . . , fn(σ)).

Then

(1) ω̃(f1, . . . , fn) : �V → � is a continuous map, and

(2) ω̃ : [�V → �]n → [�V → �] is also continuous.

We use this approach for weak sequential composition, restrictions and parallel

composition. Hence, we obtain continuous intrepretations on [�V → �] of these operators

by defining only continuous interpretations on �. Then, the semantics of a compound

process is defined by

[[ω(p1, . . . , pn)]] = ω̃([[p1]], . . . , [[pn]]),

and this semantics [[ω(p1, . . . , pn)]] is automatically continuous.

In the following we may use the same notation for ω, ω and ω̃. The actual operation

should always be clear from the context.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 26

6.1. Weak sequential composition

For weak sequential composition, we use the following result concerning the concatenation

of resource traces.

Proposition 6.2 (Gastin and Teodosiu 2002). Concatenation over resource traces is a

continuous operation. Moreover, for all (x1, x2) ∈ �2, we have

res(x1 · x2) = res(x1) ∪ res(x2).

The interpretation of ◦ on [�V → �] is then

◦: [�V → �]2 → [�V → �] defined by (f1 ◦ f2)(σ) = f1(σ) · f2(σ).

6.2. Restriction

For restriction and parallel composition, we need to define new operations on traces since

they have not been introduced yet. We start with restriction, which is the easier of the

two. We obtain restriction as the composition of two continuous maps.

Let R ⊆ R be a fixed resource set. We first introduce

�R = {x ∈ � | res (Re(x)) ⊆ R},

the set of resource traces whose real parts use resources from R only. Note that if some

set X ⊆ �R is pairwise consistent in �, its least upper bound in � exists and actually

belongs to �R . Therefore, �R is also a consistently complete domain. Recall also that

↑x = {y ∈ � | x � y} denotes the upper set of x ∈ �. Now we define

f:� → �R by x �→ �{y ∈ �R | y � x},

and

g:�R → ↑(1, R) ⊆ � by (s, S) �→ (s, S ∩ R),

and finally,

|R = g ◦ f:� → �.

Note first that all these mappings are well defined. Indeed, the set Y = {y ∈ �R | y � x}
is bounded above in �, so its sup exists and belongs to �R . To show that g is well defined,

one only has to observe that resinf(s) ⊆ S ∩ R when (s, S) ∈ �R . Therefore, |R is well

defined, too. We now investigate the properties of these mappings; in the following, we

denote the complement of R ⊆ R by R.

Lemma 6.3.

(1) f is continuous.

(2) Re(f(x)) = µR(x) = �{r ∈ � | res(r) ⊆ R and r � Re(x)},
Im(f(x)) = σR(x) = Im(x) ∪ res(Re(f(x))−1Re(x)).

(3) res(f(x)) = res(x).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 27

Proof.

(1) f is clearly monotone. Now, let X ⊆ � be a directed set. Since f is monotone, we

know that f(X) is bounded above by f(�X), and thus �f(X) � f(�X). Conversely,

let k be a compact (finite) trace such that

k � f(�X) = �{y ∈ �R | y � �X}.

We have k � y for some y ∈ �R such that y � �X. Therefore, k ∈ �R and k � �X.

Let x ∈ X be such that k � x. We have k � f(x) � �f(X), which concludes the proof

of the first point.

(2) Let x ∈ �. We define s = �{r ∈ � | res(r) ⊆ R and r � Re(x)}. Then indeed, s � Re(x)

and res(s) ⊆ R. Let S = Im(x) ∪ res(s−1Re(x)). Clearly we have (s, S) � x, and hence

(s, S) � f(x). Conversely, let y ∈ �R be such that y � x. We have Re(y) � Re(x)

and res(Re(y)) ⊆ R, hence Re(y) � s. Now, Im(y) ⊇ Im(x) ∪ res(Re(y)−1Re(x)) =

S ∪ res(Re(y)−1s), and we also have y � (s, S). Therefore, f(x) = (s, S), which proves

the second point.

(3) This follows directly from the previous point.

Lemma 6.4. The mapping g is continuous and res(g(x)) = res(x) ∩ R for all x ∈ �R .

Proof. Let (s, S) � (t, T) be resource traces in �R . Then s � t and T ⊇ S ∪ res(s−1t).

Therefore T ∩ R ⊇ (S ∩ R) ∪ res(s−1t), which shows that g is monotone.

Let X ⊆ �R be directed. Then,

Re(g(�X)) = Re(�X) =
⊔
x∈X

Re(x) =
⊔
x∈X

Re(g(x)) = Re(�g(X))

Im(g(�X)) = Im(�X) ∩ R =
⋂
x∈X

Im(x) ∩ R =
⋂
x∈X

Im(g(x)) = Im(�g(X)),

which shows that g is continuous.

The last part of the proposition is clear.

From the previous lemmas, we obtain the following proposition directly.

Proposition 6.5. The mapping |R : � → � defined by x|R = g ◦ f(x) is continuous.

Moreover, we have res(x|R) = res(x) ∩ R for all x ∈ �.

From this, we obtain the interpretation on [�V → �] of the restriction operator:

|R: [�V → �] → [�V → �] defined by (f|R)(σ) = f(σ)|R.

6.3. Parallel composition

We now turn to the semantics of parallel composition. This requires some preliminary

definitions and results before we get to the definition of the parallel operation over

resource traces.

We use the results from Section 2.3 about alphabetic mappings to define the semantics of

parallel composition. Recall first that we assumed the existence of a parallel composition

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 28

over actions of the alphabet (‖ : Σ2 → Σ) that satisfies res(a1‖a2) = res(a1) ∪ res(a2) for

all (a1, a2) ∈ Σ2. The action a1‖a2 represents the result of synchronising a1 and a2 in a

parallel composition.

We introduce the alphabet Σ′ = (Σ ∪ {1})2 \ {(1, 1)} with the resource map res′(a1, a2) =

res(a1) ∪ res(a2) and the associated dependence relation D′. Then we consider the sets

�(Σ′, res′) and �(Σ′, res′) of real traces and of resource traces over the resource alphabet

res′ : Σ′ → P(R). We define the alphabetic mappings

Π1 : Σ′ → Σ ∪ {1} by Π1(a1, a2) = a1,

Π2 : Σ′ → Σ ∪ {1} by Π2(a1, a2) = a2, and

Π : Σ′ → Σ by Π(a1, a2) = a1‖a2,

where we set a‖1 = 1‖a = a. Note that res(Π1(a1, a2)) ⊆ res′(a1, a2), res(Π2(a1, a2)) ⊆
res′(a1, a2) and res(Π(a1, a2)) = res′(a1, a2). Therefore, the three mappings extend to

continuous morphisms over real traces (Proposition 2.3), and to continuous maps over

resource traces. Moreover, Π is also a morphism over resource traces (Proposition 2.4).

Now we consider a subset C ⊆ R of resources on which we want to synchronise. Recall

that we view these resources as channels.

We fix two resource traces x1 = (s1, S1) and x2 = (s2, S2) of �(Σ, res), and we want to

define a resource trace x1 ‖
C

x2 that represents the parallel composition of x1 and x2 with

synchronisation on the channels of C .

We first define a resource trace ϕC(x1, x2) ∈ �(Σ′, res′) that represents the parallel

composition of x1 and x2. Then we set x1 ‖
C

x2 = Π(ϕC(x1, x2)). Since the mapping Π is

continuous, in order to obtain a continuous semantics for parallel composition, we only

need to show that the mapping ϕC : �(Σ, res)2 → �(Σ′, res′) is continuous as well.

In analogy to the set SyncC,σ(p1, p2) for terms p1, p2 ∈ L, given resource traces x1 =

(s1, S1) and x2 = (s2, S2), we can define the synchronisation set SyncC (x1, x2) as the set of

pairs (a1, a2) ∈ alph(s1) × alph(s2) satisfying

res(a1) ∩ C = res(a2) ∩ C = res(a1) ∩ res(x2) = res(a2) ∩ res(x1) �= �.

Then the set Σ′
C (x1, x2) of actions that may occur in ϕC (x1, x2) is defined as

Σ′
C(x1, x2) = {(a1, 1) ∈ alph(s1) × {1} | res(a1) ∩ (C ∪ res(x2)) = �}

∪ {(1, a2) ∈ {1} × alph(s2) | res(a2) ∩ (C ∪ res(x1)) = �}
∪ SyncC(x1, x2).

The first two sets in this union correspond to local events: these should not use any

channel on which we want to synchronise (res(a1) ∩ C = �). In addition, the condition

res(a1)∩res(x2) = � implies that a local event does not conflict with any event of the other

component, which ensures parallel composition does not involve non-deterministic choice.

The set SyncC,σ(x1, x2) corresponds to synchronisation events. In order to synchronise, two

events must use exactly the same channels and, in order to assure determinism, neither

should conflict with resources of the other component.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 29

Lemma 6.6.

(1) Let (a1, a2) ∈ SyncC(x1, x2). Then

res(a1) ∩ res(a2) = res(a1) ∩ C = res(a2) ∩ C
= res(a1) ∩ res(x2) = res(a2) ∩ res(x1) �= �.

(2) Let (a1, a2) and (b1, b2) be letters in Σ′
C(x1, x2). If res(a1) ∩ res(b2) �= �, then

res(a1) ∩ res(b2) = res(b1) ∩ res(a2) ⊆ C.

In particular, the four letters a1, a2, b1, b2 are pairwise dependent.

(3) The mapping

Σ′
C : (�(Σ, res),�)2 → (P(Σ′),⊆)

(x1, x2) �→ Σ′
C (x1, x2)

is continuous.

Proof.

(1) We have

res(a1) ∩ res(a2) ⊆ res(a1) ∩ res(x2)

= res(a1) ∩ C = res(a2) ∩ C ⊆ res(a1) ∩ res(a2).

(2) The proof is similar to that of Lemma 5.8 once we have noted that res(a1)∩res(b2) �= �
implies (a1, a2), (b1, b2) ∈ SyncC (x1, x2).

(3) For i = 1, 2, let xi � yi with xi = (si, Si) and yi = (ti, Ti). Then, alph(si) ⊆ alph(ti)

and res(yi) ⊆ res(xi). It follows that (a1, 1) ∈ Σ′
C(x1, x2) implies (a1, 1) ∈ Σ′

C(y1, y2).

Now let (a1, a2) ∈ SyncC (x1, x2). We have res(a1) ∩ res(x2) = res(a2) ∩ C ⊆ res(s2) ⊆
res(y2) ⊆ res(x2). Therefore, res(a1) ∩ res(x2) = res(a1) ∩ res(y2), and we deduce that

(a1, a2) ∈ Σ′
C(y1, y2).

Now let Y ⊆ �(Σ, res)2 be directed and let (y1, y2) = �Y with yi = (ti, Ti). Since

Σ′
C is monotone, we already know that Σ′

C(Y) is directed and �Σ′
C (Y) ⊆ Σ′

C(�Y).

Conversely, let (a1, a2) ∈ Σ′
C(�Y). Since Y is directed, we can choose (Gastin and

Teodosiv 2002) (x1, x2) ∈ Y such that xi = (si, Ti) with ai ∈ alph(si) and res(xi) =

res(yi). Therefore, (a1, a2) ∈ Σ′
C (x1, x2), which concludes the proof.

Now we introduce the set

RC(x1, x2) = {r ∈ �(Σ′
C(x1, x2), res

′) | Πi(r) � Re(xi) for i = 1, 2},

whose least upper bound will be the real part of the parallel composition of x1 and x2.

The following proposition shows that indeed this least upper bound exists.

Proposition 6.7. The set RC (x1, x2) is pairwise consistent. Moreover, it is the lower set of

its least upper bound:

RC (x1, x2) = ↓(�RC(x1, x2)).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 30

Proof. Since Π1 and Π2 are monotone, it is clear that RC (x1, x2) is a lower set. Assume

that there exist two real traces r, r′ ∈ RC (x1, x2) that are inconsistent. Since RC(x1, x2) is

a lower set, we may also assume that s and r′ are consistent for all s < r, and that s′

and r are consistent for all s′ < r′. Let us write r = (r ∧ r′)sa and r′ = (r ∧ r′)s′b with

a = (a1, a2) ∈ Σ′ and b = (b1, b2) ∈ Σ′ (this writing turns out to be unique). Clearly,

(r ∧ r′)s ∧ (r ∧ r′)s′b = r ∧ r′, and since (r ∧ r′)s is consistent with r′ = (r ∧ r′)s′b, it follows

that res(s) ∩ res(s′b) = �. Similarly, we obtain res(s′) ∩ res(sa) = �.

Let t = (r ∧ r′)ss′ = (r ∧ r′)s ∨ (r ∧ r′)s′. Note that ta and tb are not consistent, since

r � ta and r′ � tb are not. Hence, a �= b and a D b. We have

Πi(ta) = Πi(r ∧ r′)Πi(sa)Πi(s
′) = Πi(r ∧ r′)Πi(sa) ∨ Πi(r ∧ r′)Πi(s

′)

= Πi(r) ∨ Πi((r ∧ r′)s′) � si.

Therefore, ta ∈ RC(x1, x2) and, similarly, tb ∈ RC (x1, x2). Now, Πi(ta) = Πi(t)ai � si and

Πi(tb) = Πi(t)bi � si, hence we have either ai = bi or aiIbi. Since aDb, we have, for instance,

a1Db1 (Lemma 6.6 (2)), and then a1 = b1. Since a �= b, it is not possible to have a2 = b2 = 1.

Hence, for instance, a2 �= 1, and we obtain res(b1) ∩ C = res(a1) ∩ C = res(a2) ∩ C �= �.

It follows that res(b2) ∩C = res(b1) ∩C = res(a2) ∩C �= �. Therefore a2 D b2, and we get

a2 = b2, which contradicts a �= b.

We have proved that RC (x1, x2) is consistent, hence its least upper bound exists. Since

Πi are continuous, it is clear that �RC(x1, x2) ∈ RC(x1, x2).

Finally, we define the set

XC(x1, x2) = {(t, T) ∈ �(Σ′, res′) | alph(t) ⊆ Σ′
C (x1, x2) and

Πi(t, T) � xi for i = 1, 2}.

Proposition 6.8. The set XC(x1, x2) has a least upper bound x = (r, R), which is given by

r = �RC(x1, x2)

R = S1 ∪ S2 ∪ res
(
r−1
1 s1

)
∪ res

(
r−1
2 s2

)
where ri = Πi(r).

Moreover, XC(x1, x2) = ↓x is the lower set of its least upper bound and res(x) =

res(x1) ∪ res(x2).

Proof. Since Πi are monotone, the set XC(x1, x2) is clearly a lower set. Now, it is easy to

check that x ∈ XC (x1, x2). Conversely, let x′ = (r′, R′) ∈ XC(x1, x2). Clearly, r′ ∈ RC(x1, x2),

and we obtain r′ � r. Then,

Si ∪ res
(
r′
i
−1
si
)

= Si ∪ res
(
r′
i
−1
ri
)

∪ res
(
r−1
i si

)
⊆ R′.

Since res(r′−1
r) = res(r′

1
−1
r1)∪res(r′

2
−1
r2), we deduce that R∪res(r′−1

r) ⊆ R′, which proves

that x′ � x.

Finally, since res(r) = res(r1) ∪ res(r2), we deduce that res(x) = res(x1) ∪ res(x2).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 31

Proposition 6.9. The mapping

ϕC:�(Σ, res)2 → �(Σ′, res′) defined by ϕC(x1, x2) = �XC (x1, x2)

is continuous.

Proof. If (x1, x2) � (x′
1, x

′
2), we have Σ′

C(x1, x2) ⊆ Σ′
C(x′

1, x
′
2) by Lemma 6.6 (3), and it

follows that XC (x1, x2) ⊆ XC (x′
1, x

′
2), which proves that ϕC is monotone.

Let Y ⊆ �(Σ, res)2 be directed and let (y1, y2) = �Y . We may assume that Y = Y1 ×Y2

with y1 = �Y1 and y2 = �Y2. We already know that ϕC (Y) is directed and that

�ϕC (Y) � ϕC(�Y) = ϕC (y1, y2). Conversely, let x = (r, R) � ϕC(y1, y2) be compact. Then,

x ∈ XC (y1, y2) (Proposition 6.8), and we have Πi(x) � yi = �Yi. Hence, Πi(x) � xi for

some xi ∈ Yi. Since Σ′
C is continuous (Lemma 6.6) and {Σ′

C (z1, z2) | (z1, z2) ∈ Y } is a

directed finite set, we have Σ′
C (y1, y2) ∈ {Σ′

C(z1, z2) | (z1, z2) ∈ Y }, and we may assume that

Σ′
C (x1, x2) = Σ′

C(y1, y2). Therefore, we obtain x ∈ XC (x1, x2) and x � ϕC(x1, x2) � �ϕC(Y),

which concludes the proof.

As mentioned earlier, we now define the semantics of the parallel composition by

‖
C

= Π ◦ ϕC , and from the above results we obtain the following corollary directly.

Corollary 6.10. The mapping

‖
C

:�(Σ, res)2 → �(Σ, res) defined by x1 ‖
C

x2 = (Π ◦ ϕC)(x1, x2)

is continuous. Moreover, for all (x1, x2) ∈ �2, we have

res(x1 ‖
C

x2) = res(x1) ∪ res(x2).

As with weak sequential composition and restriction, the interpretation of parallel

composition on [�V → �] is the mapping

‖
C

: [�V → �]2 → [�V → �] defined by (f1 ‖
C

f2)(σ) = f1(σ) ‖
C

f2(σ).

6.4. Recursion

Finally, we give the denotational semantics for recursion. For each variable x ∈ V , we

define a continuous selfmap rec x of [�V → �]; we use a fixed point of a continuous

selfmap from � to �, but contrary to the classical approach, we do not use the least fixed

point semantics.

Example 6.11. We begin with an example. Let Σ = {a, b, c} with res(a) = {α}, res(b) =

{α, γ} and res(c) = {γ}. Consider the process q = rec x.p with p = (a ◦ x). From the

previous sections we know that the semantics of p is the continuous map [[p]] : �V → �
defined by [[p]](σ) = (a,�) · σ(x). The semantics of q will be a fixed point of the

continuous selfmap from � to � defined by x �→ (a,�) · x. The fixed point is obtained

as follows. Let x0 = (1, res(a)) and xn+1 = (a,�) · xn = (an+1, res(a)). This sequence is

increasing and its least upper bound xω = (aω, res(a)) is the semantics of the process q, so

[[q]] : �V → � is the constant map that assigns xω to any environment σ ∈ �V . Note that

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 32

the resource set claimed by q (Section 4) is exactly the resource set used by its semantics:

res([[q]](σ)) = res(a) = res(q, res(σ)).

We do not use a least fixed point semantics since we started with x0 = (1, res(a)),

which is not the least element (1,R) of our domain �. One reason we did not use a least

fixed point semantics is that it would claim too many resources for the recursive process.

Indeed, let y0 = (1,R) and yn+1 = (a,�) · yn = (an+1,R). Then the least fixed point of

the continuous selfmap from � to � defined by x �→ (a,�) · x is the least upper bound

yω = (aω,R) of the sequence (yn)n�0. Now, res(q, res(σ)) = res(a) � R = res(yω), which

leads to problems when we further compose this process.

In order to explain this fact we anticipate a bit. We will see in Proposition 7.9 that, for a

process p ∈ L, any sequence of actions that is allowed by the operational semantics for p

is actually a linearisation of some prefix of the real part of the denotational semantics of p

(and vice versa). For example, consider the process r = q◦c, whose denotational semantics

is (the constant map) [[r]] = [[q]] · [[c]] = xω · (c,�) = (caω, res(a)). Indeed, since q claims

only the resource α for its execution, the operational semantics allows any sequence of

the form an and any sequence of the form ancam as well. All these sequences are prefixes

of the real part of [[r]]. If we had used a least fixed point semantics, the semantics of r

would have been yω · (c,�) = yω , and the sequences of the form ancam allowed by the

operational semantics would not have been prefixes of the real part of the denotational

semantics.

Since we are not using the classical least fixed point semantics, we have to explain in

some detail how our semantics works. We first define the two mappings

ϕ : [�V → �] × �V → [� → �] by (f, σ) �→ ϕf,σ

ψ : [�V → �] × �V → [(P(R),⊇) → (P(R),⊇)] by (f, σ) �→ ψf,σ

where

ϕf,σ(y) = f(σ[x �→ y]),

ψf,σ(R) = res(f(σ[x �→ (1, R)])).

Proposition 6.12. The two mappings ϕ and ψ are well defined and continuous.

Proof. First, the mapping

�V × � → �V defined by (σ, y) �→ σ[x �→ y]

that overrides the value of σ at x is clearly continuous. Since applying a function is

also a continuous operation in both the function and its argument, we conclude that the

mapping

[�V → �] ×�V × � → � defined by (f, σ, y) �→ f(σ[x �→ y])

is continuous, being the composition of continuous maps. Since the category DCPO is

cartesian closed (Abramsky and Jung 1994),

[[�V → �] × �V × � → �] � [[�V → �] × �V → [� → �]],

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 33

and we deduce that ϕf,σ is continuous for all (f, σ) (whence ϕ is well defined), and that

ϕ is continuous.

Now, (P(R),⊇) is isomorphic to a subdomain of the domain (�,�) under the continuous

embedding defined by R �→ (1, R) (recall that we always consider P(R) with the reverse

containment, precisely so that P(R) can be seen as a sub-domain of �).

The mapping res : (�,�) → (P(R),⊇) is continuous (Proposition 2.2). Therefore, we

obtain that the mapping

[�V → �] ×�V × P(R) → P(R)

(f, σ, R) → res(f(σ[x �→ (1, R)]))

is continuous also. Again,

[[�V → �] × �V × P(R) → P(R)] � [[�V → �] × �V → [P(R) → P(R)]],

so we deduce that ψ is well defined and continuous.

In order to have a compositional semantics for the recursion, we need to define a

continuous map rec x : [�V → �] → [�V → �], and then we will set [[rec x.p]] = rec x.[[p]].

So we start with a continuous map f ∈ [�V → �] and explain the construction of the map

rec x.f ∈ [�V → �]. For σ ∈ �V , we define (rec x.f)(σ) as a fixed point of the continuous

map ϕf,σ . As explained above, we do not use the least fixed point of ϕf,σ . Instead, we start

the iteration yielding the fixed point from a resource trace ⊥f,σ that depends on f and σ.

We define the mapping

R: [�V → �] × �V → P(R) by (f, σ) �→ Rf,σ = νS.ψf,σ(S)

that assigns to each pair (f, σ) the greatest fixed point of the monotone map ψf,σ . The

starting point for the iteration is simply the resource trace ⊥f,σ = (1, Rf,σ). Therefore, we

also have a mapping

⊥: [�V → �] × �V → � defined by (f, σ) �→ ⊥f,σ = (1, Rf,σ).

Lemma 6.13. The maps R : [�V → �] × �V → P(R) and ⊥ : [�V → �] × �V → � are

continuous.

Proof. Since R is finite, the greatest fixed point of ψf,σ is obtained by starting from

the greatest element �, and iterating at most N = |P(R)| times, so Rf,σ = ψNf,σ(�). Since

ψ is continuous and application of a function is continuous in both the function and its

argument, it follows that the mapping R is continuous as well.

We are now ready to define the interpretation of recursion on [�V → �]:

rec x: [�V → �] → [�V → �] defined by (rec x.f)(σ) =
⊔
n�0

ϕnf,σ(⊥f,σ).

Proposition 6.14. The mapping rec x: [�V → �] → [�V → �] is well defined and

continuous. Moreover, for f ∈ [�V → �] and σ ∈ �V , we have that (rec x.f)(σ) is

the least fixed point of ϕf,σ above ⊥f,σ .

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 34

Proof. First, Rf,σ = ψf,σ(Rf,σ) = res(ϕf,σ(⊥f,σ)). Therefore, ⊥f,σ � ϕf,σ(⊥f,σ), and the

sequence (ϕnf,σ(⊥f,σ))n�0 is increasing. It follows that the least upper bound
⊔
n�0 ϕ

n
f,σ(⊥f,σ)

exists. Since ϕf,σ is continuous, this least upper bound is a fixed point of ϕf,σ . Moreover,

it is the least one above ⊥f,σ .

We now show simultaneously that both rec x.f and rec x are continuous. Let � =

� ∪ {∞}. We claim that the following mapping is continuous:

Φ : �× [�V → �] × �V → �

(n, f, σ) �→
{
ϕnf,σ(⊥f,σ) if n �= ∞⊔
m�0 Φ(m, f, σ) otherwise.

Φ is continuous with respect to its first argument � by its very definition. We show by

induction on n that it is also continuous with respect to the other two arguments. Let

X ⊆ [�V → �] and Y ⊆ �V be directed. For n = 0, it is just the continuity of the

mapping ⊥ (Lemma 6.13):

Φ(0,�X,�Y) = ⊥�X,�Y =
⊔

f∈X,σ∈Y
⊥f,σ =

⊔
f∈X,σ∈Y

Φ(0, f, σ).

We will now assume that Φ(n,−,−) is continuous for some n � 0, and will show that

Φ(n+ 1,−,−) is continuous as well.

Φ(n+ 1,�X,�Y) = ϕ�X,�Y (Φ(n,�X,�Y))

=
⊔

f∈X,σ∈Y
ϕf,σ(Φ(n,�X,�Y)) by continuity of ϕ

=
⊔

f∈X,σ∈Y
ϕf,σ

(⊔
f′∈X,σ′∈Y

Φ(n, f′, σ′)

)
by induction

=
⊔

f∈X,σ∈Y

⊔
f′∈X,σ′∈Y

ϕf,σ(Φ(n, f′, σ′)) by continuity of ϕf,σ

=
⊔

f∈X,σ∈Y
ϕf,σ(Φ(n, f, σ)) by diagonalisation

=
⊔

f∈X,σ∈Y
Φ(n+ 1, f, σ).

Therefore, we know that Φ(n,−,−) is continuous for all n � 0. From this, we will deduce

that Φ(∞,−,−) is continuous as well.

Φ(∞,�X,�Y) =
⊔
n�0

Φ(n,�X,�Y)

=
⊔
n�0

⊔
f∈X,σ∈Y

Φ(n, f, σ)

=
⊔

f∈X,σ∈Y

⊔
n�0

Φ(n, f, σ)

=
⊔

f∈X,σ∈Y
Φ(∞, f, σ).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 35

Note that by the definition of Φ, we have Φ(∞, f, σ) = rec x.f(σ). We have just shown

that the mapping

Φ(∞,−,−) : [�V → �] × �V → �

(f, σ) �→ Φ(∞, f, σ) = rec x.f(σ)

is continuous. We deduce that the mapping

rec x.f : �V → � defined by σ �→ rec x.f(σ)

is continuous, and since

[[�V → �] × �V → �] � [[�V → �] → [�V → �]],

we deduce that the mapping

rec x: [�V → �] → [�V → �] defined by f �→ rec x.f

is continuous too.

6.5. Link with the resource mapping

We relate the semantic resources of a process to the syntactic resource of the process

defined in Section 4. The semantic resource set of the process p ∈ L in some environment

σ ∈ �V is given by res([[p]](σ)). In order to relate this semantic resource set to the syntactic

resource set defined in Section 4, we introduce the map

resV :�V → P(R)V defined by resV (σ)(x) = res(σ(x)).

Proposition 6.15. Let p ∈ L be a process. Then,

∀σ ∈ �V , res([[p]](σ)) = res(p, resV (σ)). (1)

Proof. As usual, the proof is by induction on p. The result is trivial from the definitions

for the basic processes STOP, a ∈ Σ and x ∈ V . It follows directly from the definition of

the syntactic resources (Section 4) and from Propositions 6.2 and 6.5 and Corollary 6.10

for weak sequential composition, restriction and parallel composition. The only non-trivial

case at this point is recursion.

Let p ∈ L be a process that satisfies Equation (1), we show that rec x.p satisfies

Equation (1) as well. Let R = res([[p]](σ[x �→ (1,�)])). Using Equation (1), we deduce that

R = res(p, resV (σ)[x �→ �]) = res(rec x.p, resV (σ)).

From Proposition 4.3, we know that R = νS.res(p, resV (σ)[x �→ S]). It follows using

Equation (1) again that

res([[p]](σ[x �→ (1, R)])) = res(p, resV (σ)[x �→ R]) = R,

that is, R = νS.res([[p]](σ[x �→ (1, S)])). Therefore, the semantics of rec x.p is given by

[[rec x.p]](σ) = �n�0xn, where x0 = (1, R) and xn+1 = [[p]](σ[x �→ xn]). We show by

induction on n that res(xn) = R for all n � 0. The result is clear for n = 0. Now, assume

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 36

that res(xn) = R for some n � 0. Using Equation 1 for the second equality, we deduce

res(xn+1) = res([[p]](σ[x �→ xn])) = res(p, resV (σ[x �→ res(xn)]))

= res(p, resV (σ)[x �→ R]) = R.

Now, it follows that

res([[rec x.p]](σ)) = res

(⊔
n�0

xn

)
=

⋂
n�0

res(xn) = R = res(rec x.p, resV (σ)),

which concludes the proof.

During the proof of the above proposition, we have also shown that the greatest

fixed point of ψf,σ , which is used for the starting point of the denotational semantics of

recursion, is actually obtained after the first iteration for maps f = [[p]] that are semantics

of processes. Hence we have the following corollary.

Corollary 6.16. Let p ∈ L be a process and x ∈ V be a variable. The semantics of rec x.p

is given for all environments σ ∈ �V by

[[rec x.p]](σ) =
⊔
n�0

xn

where x0 = (1, R) with R = res(rec x.p, resV (σ)) = res([[p]](σ[x �→ (1,�)])), and xn+1 =

[[p]](σ[x �→ xn]).

We remark that the greatest fixed point of the mapping ψf,σ is not necessarily attained

on the first iteration for arbitrary mappings f ∈ [�V → �]. It is easy to show that, if for

all σ ∈ �V we have

res(f(σ)) ⊆ res(f(σ[x �→ (1,�)])) ∪ res(σ(x)),

then the fixed point is attained on the first iteration: Rf,σ = ψf,σ(�).

6.6. Summary

We conclude the discussion of the denotational semantics of our language by giving a

summary of the semantics for the processes in L. We have defined our denotational

semantics as a compositional mapping [[−]]: L → [�V → �]; the work in this section

has validated the fact that such a mapping exists, since L is the initial Ω-algebra, and

we have given a continuous interpretation in [�V → �] for each of the operators ω ∈ Ω

in the signature of our language. To summarise, the semantics of a process p ∈ L is the

continuous map [[p]] defined inductively by:

[[STOP]](σ) = (1,R)

[[a]](σ) = (a,�)

[[x]](σ) = σ(x)

[[p ◦ q]](σ) = [[p]](σ) · [[q]](σ)

[[p ‖
C

q]](σ) = [[p]](σ) ‖
C

[[q]](σ)

[[p|R]](σ) = ([[p]](σ))|R
[[recx.p]](σ) = (rec x.[[p]])(σ) =

⊔
n�0

xn

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 37

where x0 = (1, R) with R = res(rec x.p, resV (σ)) = res([[p]](σ[x �→ (1,�)])), and xn+1 =

[[p]](σ[x �→ xn]).

7. Relating semantics: the congruence theorem

In this section we complete the picture by showing that the operational behaviour of

a process defined in Section 5 is essentially the same as the Ω-algebra map we defined

for the denotational model in the last section. In Section 7.1 we prove some rather

technical lemmas. On a first reading you may wish to skip these lemmas and go directly

to Section 7.2.

7.1. Auxiliary results

The first lemma states that the denotational semantics of a process p only depends on the

free variables of p.

Lemma 7.1. Let p ∈ L be a process and σ, σ′ ∈ �V be environments satisfying σ(x) = σ′(x)

for all x ∈ F(p). Then [[p]](σ) = [[p]](σ′).

Proof. We proceed by induction on p. The result is trivial for the basis cases STOP,

a ∈ Σ and y ∈ V . It follows directly by induction for restriction, weak sequential

composition and parallel composition. Now we assume that the result holds for some

process p ∈ L and we prove it for rec x.p. Using the notation of Corollary 6.16, we have

[[rec x.p]](σ) = �n�0xn and [[rec x.p]](σ′) = �n�0x
′
n. From Lemma 4.1 we obtain

res(recx.p, resV (σ)) = res(rec x.p, resV (σ′))

and deduce that x0 = x′
0. Now, assume that xn = x′

n for some n � 0. Using the induction

hypothesis on p, we immediately derive

xn+1 = [[p]](σ[x �→ xn]) = [[p]](σ′[x �→ x′
n]) = x′

n+1,

which proves the lemma.

Next, we explain the effect on the denotational semantics of substituting a process for

a variable. This is in the same spirit as Lemmas 4.4 and 5.7.

Lemma 7.2. Let p, q ∈ L and σ ∈ �V . Then

[[p[q/x]]](σ) = [[p]](σ[x �→ [[q]](σ)]).

Proof. We proceed by induction on p. Let σ′ = σ[x �→ [[q]](σ)]). If x �∈ F(p), the result

follows from Lemma 7.1, and the result is also clear if p = x.

If p = p1|R , then p[q/x] = p1[q/x]|R , so

[[p[q/x]]](σ) = ([[p1[q/x]]](σ))|R = ([[p1]](σ
′))|R = [[p]](σ′),

where the second equality follows from the induction hypothesis.

Similarly, if p = p1 ◦ p2 or p = p1 ‖
C

p2, the result again follows directly by induction.

If p = rec y.p1 with y �= x, we can assume y �∈ F(q) so that we have (rec y.p1)[q/x] =

rec y.(p1[q/x]). By Corollary 6.16 we have [[p[q/x]]](σ) = [[rec y.p1[q/x]]](σ) = �n�0yn

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 38

where the sequence (yn) is defined by y0 = (1, R) with R = res(rec y.p1[q/x], res
V (σ)), and

yn+1 = [[p1[q/x]]](σ[y �→ yn]). Similarly, we have [[p]](σ′) = [[rec y.p1]](σ
′) = �n�0y

′
n, where

y′
0 = (1, R′) with R′ = res(rec y.p1, res

V (σ′)), and y′
n+1 = [[p1]](σ

′[y �→ y′
n]). Now,

R = res((rec y.p1)[q/x], res
V (σ))

= res(rec y.p1, res
V (σ)[x �→ res(q, resV (σ))]) by Lemma 4.4

= res(rec y.p1, res
V (σ′)) by Proposition 6.15

= R′.

Therefore y0 = (1, R) = (1, R′) = y′
0. Now, assume that yn = y′

n for some n � 0. Then,

yn+1 = [[p1[q/x]]](σ[y �→ yn])

= [[p1[q/x]]](σ[y �→ y′
n]) by induction on n

= [[p1]](σ
′[y �→ y′

n]) by induction on p

= yn+1.

Therefore [[rec y.p1[q/x]]](σ) = �n�0yn = �n�0y
′
n = [[rec y.p1]](σ

′).

The following corollary will not be used in the paper, but it shows that our definition

for the semantics of recursion is legitimate.

Corollary 7.3. Let p ∈ L, p0 = x ∈ V , and pn+1 = p[pn/x]. Let σ ∈ �V with σ(x) =

(1, res(rec x.p, resV (σ))) = x0, and let xn+1 = [[p]](σ[x �→ xn]). Then xn = [[pn]](σ) for all

n � 0.

Proof. We prove this by induction on n. For n = 0 the result is clear. For n � 0, we

have

[[pn+1]](σ) = [[p[pn/x]]](σ) = [[p]](σ[x �→ [[pn]](σ)])

= [[p]](σ[x �→ xn]) = xn+1.

Next, we relate the Ω-algebra structure to the prefix ordering on �. Recall that the

prefix ordering is defined by x � z if z = xy for some y. Real traces are embedded into

resource traces by the canonical mapping s �→ (s, resinf(s)). In particular, a finite real trace

s ∈ � is mapped to (s,�). To simplify the notation, we simply write s for (s, resinf(s))

when we consider a real trace as a resource trace. Note that if r ∈ � and x = (s, S) ∈ �,

then r � x if and only if r � s.

Lemma 7.4. Let x1, x2 ∈ �, R ⊆ R and a ∈ Σ. Then

(1) a � x1x2 iff a � x1 or (res(a) ∩ res(x1) = � and a � x2).

Moreover, (ax1)x2 = a(x1x2),

and if res(a) ∩ res(x1) = �, then x1(ax2) = a(x1x2).

(2) a � x1|R iff a � x1 and res(a) ⊆ R.

If res(a) ⊆ R, then (ax1)|R = a(x1|R).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 39

(3) a � (x1 ‖
C

x2) iff a � x1 ∧ res(a) ∩ (C ∪ res(x2)) = �,

or a � x2 ∧ res(a) ∩ (C ∪ res(x1)) = �,

or a = a1‖a2 with (a1, a2) ∈ SyncC(x1, x2)

and 1 �= a1 � x1, 1 �= a2 � x2.

If res(a) ∩ (C ∪ res(x2)) = �, then (ax1) ‖
C

x2 = a(x1 ‖
C

x2).

If res(a) ∩ (C ∪ res(x1)) = �, then x1 ‖
C

(ax2) = a(x1 ‖
C

x2).

If (a1, a2) ∈ SyncC (a1x1, a2x2), then (a1x1) ‖
C

(a2x2) = (a1‖a2)(x1 ‖
C

x2).

Proof. Parts (1) and (2) follow easily from the definitions of · and |R on �. The proof

of (3) is not so easy. In the following, we let x1 = (s1, S1) and x2 = (s1, S2).

Assume that a � (x1 ‖
C

x2). We have x1 ‖
C

x2 = Π(x) with x = �XC (x1, x2). Hence

a = Π(a′) with a′ = (a1, a2) ∈ Σ′
C (x1, x2) and a′ � x. We deduce that a′ � Re(x) =

�RC (x1, x2). Hence a′ ∈ RC (x1, x2) by Proposition 6.7. Now, there are three cases for

a′ = (a1, a2) ∈ Σ′
C(x1, x2):

— If a2 = 1, then res(a1) ∩ (C ∪ res(x2)) = �. In this case, a1 � s1 and a = Π(a′) =

(a1‖1) = a1 � x1.

— The case when a1 = 1 is similar.

— If a1 �= 1 �= a2, then (a1, a2) ∈ SyncC(x1, x2). In this case, a1 � s1, a2 � s2, whence

a1 � x1 and a2 � x2.

The converse implication is rather easy to prove, but we will not include the proof as it

also follows from the remaining points (though their proofs are harder). These remaining

points are needed for the proof of Proposition 7.9.

Assume now that res(a) ∩ (C ∪ res(x2)) = �. We show that (ax1) ‖
C

x2 = a(x1 ‖
C

x2). First,

it is easy to show by a case distinction that res(a) ∩ res(x2) = � implies Σ′
C (x1, x2) ⊆

Σ′
C (ax1, x2). Now, let r ∈ RC(x1, x2). We claim that a′r ∈ RC(ax1, x2) with a′ = (a, 1).

Indeed, Π1(a
′r) = aΠ1(r) � as1 = Re(ax1) and Π2(a

′r) = Π2(r) � s2. Moreover, a′ ∈
Σ′
C (ax1, x2), and it follows from the above remark that alph(a′r) ⊆ Σ′

C(ax1, x2). Therefore

a′r ∈ RC (ax1, x2), as claimed above. We deduce that

a′ · (�RC(x1, x2)) = �(a′ · RC(x1, x2)) � �RC (ax1, x2).

We now show the converse inequality. Clearly, we have a′ ∈ RC (ax1, x2). Now let r′′ ∈
RC (ax1, x2), and consider r′ = a′ ∨ r′′ and write r′ = a′r. We claim that r ∈ RC(x1, x2).

First, Π1(r
′) = aΠ1(r) � as1, and thus Π1(r) � s1. Second, Π2(r

′) = Π2(r) � s2. Third,

we show that alph(r) ⊆ Σ′
C (x1, x2). The most interesting case is when (b1, b2) ∈ alph(r)

with b1 �= 1 �= b2. Since alph(r) ⊆ Σ′
C(ax1, x2), we deduce that (b1, b2) ∈ SyncC (ax1, x2).

Since res(a)∩ res(b2) ⊆ res(a)∩ res(x2) = �, we deduce that (b1, b2) ∈ SyncC(x1, x2), which

proves the claim.

We obtain r′′ � r′ = a′r � a′ · (�RC(x1, x2)), and therefore �RC (ax1, x2) � a′ ·
(�RC (x1, x2)). Taking this with the inequality above, we deduce

�RC (ax1, x2) = a′ · (�RC(x1, x2)).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 40

We are almost done for this case. Let x′ = (r′, R′) = �XC(ax1, x2) and let x = (r, R) =

�XC(x1, x2). Using Proposition 6.8 we deduce that

r′ = �RC(ax1, x2) = a′ · (�RC (x1, x2)) = a′r,

and since Π1(r
′)−1(as1) = Π1(r)

−1s1 and Π2(r
′)−1(s2) = Π2(r)

−1s2, we also have R′ = R.

Therefore, x′ = a′x and

(ax1) ‖
C

x2 = Π(x′) = aΠ(x) = a(x1 ‖
C

x2).

The case res(a) ∩ (C ∪ res(x1)) = � is similar.

Finally, assume that (a1, a2) ∈ SyncC (a1x1, a2x2). We have to show that

(a1x1) ‖
C

(a2x2) = (a1‖a2)(x1 ‖
C

x2).

Again, we first show that Σ′
C(x1, x2) ⊆ Σ′

C(a1x1, a2x2).

— If (b1, 1) ∈ Σ′
C (x1, x2), then b1 ∈ alph(s1) ⊆ alph(a1s1) and res(b1) ∩ (C ∪ res(x2)) = �.

We have res(b1) ∩ res(a2) ⊆ res(a1x1) ∩ res(a2) ⊆ C since (a1, a2) ∈ SyncC (a1x1, a2x2). It

follows that res(b1)∩res(a2) ⊆ res(b1)∩C = �, and therefore res(b1)∩(C∪res(a2x2)) =

�, which proves that (b1, 1) ∈ Σ′
C(a1x1, a2x2).

— If (b1, b2) ∈ SyncC (x1, x2), then for i = 1, 2 we have bi ∈ alph(si) ⊆ alph(aisi), and we

obtain as above that res(b1) ∩ res(a2) ⊆ res(b1) ∩ C and res(b2) ∩ res(a1) ⊆ res(b2) ∩ C .

We easily deduce that (b1, b2) ∈ SyncC (a1x1, a2x2).

Second, let r ∈ RC(x1, x2), we claim that a′r ∈ RC (a1x1, a2x2) with a′ = (a1, a2). Indeed,

Πi(a
′r) = aiΠi(r) � aisi = for i = 1, 2. Moreover, a′ ∈ Σ′

C(a1x1, a2x2), and we obtain

alph(a′r) ⊆ Σ′
C (a1x1, a2x2). Therefore a′r ∈ RC (a1x1, a2x2), as claimed above. We deduce

that

a′ · (�RC (x1, x2)) = �(a′ · RC (x1, x2)) � �RC(a1x1, a2x2).

For the converse inequality, we first note that a′ ∈ RC(a1x1, a2x2). Now, let r′′ ∈
RC(a1x1, a2x2), and consider r′ = a′ ∨ r′′ and write r′ = a′r. We claim that r ∈ RC(x1, x2).

First, for i = 1, 2 we have Πi(r
′) = aiΠi(r) � aisi, and thus Πi(r) � si. Second, we show

that alph(r) ⊆ Σ′
C (x1, x2).

— If (b1, 1) ∈ alph(r), then b1 ∈ alph(Π1(r)) = alph(s1), and since we have alph(r) ⊆
Σ′
C(a1x1, a2x2), we also have res(b1) ∩ (C ∪ res(x2)) = �, and we can deduce that

(b1, 1) ∈ Σ′
C (x1, x2).

— If (b1, b2) ∈ alph(r) with b1 �= 1 �= b2, then bi ∈ alph(Πi(r)) = alph(si). Since

alph(r) ⊆ Σ′
C(a1x1, a2x2), we also have (b1, b2) ∈ SyncC (a1x1, a2x2). Since (a1, a2) ∈

SyncC (a1x1, a2x2), we have

res(b1) ∩ res(a2) ⊆ res(a1x1) ∩ res(a2) ⊆ C.

Hence,

res(b1) ∩ res(a2) ⊆ res(b1) ∩ C = res(b2) ∩ C ⊆ res(x2),

and we deduce that res(b1) ∩ res(a2x2) = res(b1) ∩ res(x2). Therefore (b1, b2) ∈
SyncC (x1, x2).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 41

We obtain r′′ � r′ = a′r � a′ · (�RC (x1, x2)). Hence, �RC(a1x1, a2x2) � a′ · (�RC(x1, x2)).

Taking this with the inequality above, we deduce

�RC(a1x1, a2x2) = a′ · (�RC (x1, x2)).

Let x′ = (r′, R′) = �XC(a1x1, a2x2) and let x = (r, R) = �XC(x1, x2). Using Proposition 6.8,

we deduce that

r′ = �RC(a1x1, a2x2) = a′ · (�RC(x1, x2)) = a′r,

and since Πi(r
′)−1(aisi) = Πi(r)

−1si for i = 1, 2, we also have R′ = R. Therefore, x′ = a′x

and

(a1x1) ‖
C

(a2x2) = Π(x′) = Π(a′)Π(x) = (a1‖a2)(x1 ‖
C

x2).

The last technical lemma that we need to proceed with the congruence theorem states

that each minimal action of a recursive process is already a minimal action of the body

of the recursion.

Lemma 7.5. Let p ∈ L and σ ∈ �V with σ(x) = (1, res(rec x.p, resV (σ))). Then

a � [[recx.p]](σ) ⇒ a � [[p]](σ).

The remainder of this subsection is devoted to the proof of this lemma. We start with

a process p ∈ L and an environment σ ∈ �V with σ(x) = (1, res(rec x.p, resV (σ))).

We say that a process p is in normal form if no variable occurs both free and bound

in p and if each bound variable is bound only once, that is, if rec y.q and rec y′.q′ are

different subterms of p, then y �= y′. Using fresh variables, we may assume that the process

p is in normal form.

We say that an environment σ ∈ �V is in normal form for a process r if for each

subterm rec y.q of r we have σ(y) = (1, res(rec y.q, resV (σ))). By Lemma 7.1, and since p

is in normal form, we may assume that our environment σ is in normal form for rec x.p.

For convenience, we use τ to denote the syntactic environment resV (σ).

We view a term p ∈ L as a syntax tree and consider subterms of p as nodes in the

syntax tree of p. In the following, q denotes a node in p, that is, a subterm of p. If q �= p,

there is a unique father r of q in p.

We define inductively the set Sq of available resources at q in p by Sp = R, and if r is

the father of q �= p, then

— r = q|R ⇒ Sq = Sr ∩ R,

— r = q′ ◦ q ⇒ Sq = Sr\res(q′, τ),

— and Sq = Sr in all other cases.

Lemma 7.6. Let q �= p be a node in the syntax tree of p and let r be the father of q in p.

Then, res(q, τ) ∩ Sq ⊆ res(r, τ) ∩ Sr .

Proof.

r = q|R Then, res(r, τ) ∩ Sr = res(q, τ) ∩ R ∩ Sr = res(q, τ) ∩ Sq .
r = q′ ◦ q Then, res(q, τ) ∩ Sq ⊆ res(q, τ) ∩ Sr ⊆ res(r, τ) ∩ Sr .
r = q ◦ q′ Then, res(q, τ) ∩ Sq = res(q, τ) ∩ Sr ⊆ res(r, τ) ∩ Sr .

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 42

r = q ‖
C

q′and r = q′ ‖
C

q These cases are dealt with similarly.

r = rec y.q Then, res(r, τ) = res(q, τ[y �→ res(r, τ)]) by Proposition 4.3. Since σ is in

normal form for rec x.p, we have τ(y) = res(σ(y)) = res(r, τ), and we deduce that

res(r, τ) = res(q, τ). The result follows since Sq = Sr .

By Corollary 6.16, the denotational semantics of rec x.p is given by

[[rec x.p]](σ) =
⊔
n�0

xn

where x0 = (1, res(rec x.p, τ)) = σ(x) and xn+1 = [[p]](σ[x �→ xn]). Recall that we have seen

in the proof of Proposition 6.15 that res(xn) = res(rec x.p, τ) = τ(x) for all n � 0.

When q is a node in p we use P(p, q, n, σ) to denote the condition

a � [[q]](σ[x �→ xn]) ∧ res(a) ⊆ Sq ⇒ a � xn ∨ a � [[q]](σ)

for all a ∈ Σ.

Lemma 7.7. P(p, q, n, σ) holds for all p ∈ L in normal form, all σ ∈ �V in normal form

for recx.p, all q subterms of p and all n � 0.

Proof. We proceed by induction on p, q and n. Let σ′ = σ[x �→ xn]. We have seen that

res(xn) = res(σ(x)), hence resV (σ′) = resV (σ) = τ. Therefore, Proposition 6.15 implies that

∀r ∈ L, res([[r]](σ)) = res([[r]](σ′)). (2)

In the following we will assume that a � [[q]](σ′) and res(a) ⊆ Sq .

We begin with some easy special cases, which constitute the basis of the induction.

First, if x is not free in q, then by Lemma 7.1 we deduce that [[q]](σ′) = [[q]](σ), and

therefore P(p, q, n, σ) holds. Second, if n = 0, then σ′ = σ, and we get the same conclusion.

The result is also trivial if q = x, since [[x]](σ′) = xn. Note that p = x implies q = x, and

since p is in normal form, x �∈ F(p) implies x �∈ F(q).

q= q1|R Then a � [[q1]](σ
′) and res(a) ⊆ Sq ∩ R = Sq1

. The induction hypothesis

P(p, q1, n, σ) implies that a � xn or a � [[q1]](σ). Since res(a) ⊆ R, the second case

implies a � [[q]](σ).

q= q1 ◦ q2 Then either a � [[q1]](σ
′) ∧ res(a) ⊆ Sq = Sq1

, or a � [[q2]](σ
′) ∧ res(a) ⊆

Sq \ res([[q1]](σ
′)) = Sq2

. In the first case, P(p, q1, n, σ) holds by induction, so a � xn
or a � [[q1]](σ), which implies a � [[q]](σ). In the second case, P(p, q2, n, σ) holds by

induction, which implies that a � xn or a � [[q2]](σ). Since res(a) ∩ res([[q1]](σ
′)) = �,

we deduce using Equation 2 that once again a � [[q]](σ).

q= rec y.q1 Recall that, since σ is in normal form for rec x.p, we have that σ(y) =

(1, res(rec y.q1, τ)). Now, p is in normal form and we have y �= x. Hence σ′(y) =

σ(y) = (1, res(rec y.q1, τ)). By Corollary 6.16 we deduce that [[q]](σ) = �m�0ym with

y0 = σ(y) and ym+1 = [[q1]](σ[y �→ ym]) and also [[q]](σ′) = �m�0y
′
m with y′

0 = σ′(y)

and y′
m+1 = [[q1]](σ

′[y �→ y′
m]). Since a � [[q]](σ′) = �my

′
m and a �� y′

0, we find some

m � 0 such that a �� y′
m ∧ a � y′

m+1 = [[q1]](σ
′[y �→ y′

m]). Note that the set of available

resources at q1 in q1 is R ⊇ res(a) and since by induction P(q1, q1, m, σ
′) holds we obtain

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 43

a � [[q1]](σ
′). Now, still by induction P(p, q1, n, σ) holds and since Sq = Sq1

we deduce

that a � xn or a � [[q1]](σ) = y1 � �nyn = [[q]](σ). Thus P(q, q1, n, σ) holds.

q = q1 ‖
C

q2 This is the most difficult case. We consider two subcases:

— res(a) ∩ C = � Then a is a local event, and, without of loss of generality, we

may assume a � [[q1]](σ
′) and res(a) ∩ (C ∪ res([[q2]](σ

′))) = �. From Equation (2)

we get res(a) ∩ (C ∪ res([[q2]](σ))) = �. By induction, P(p, q1, n, σ) holds, and since

Sq = Sq1
, we deduce that a � xn or a � [[q1]](σ), which implies a � [[q]](σ).

— res(a) ∩ C �= � Then a is a synchronisation event, so we have a = a1‖a2 with

ai � [[qi]](σ
′) and (a1, a2) ∈ SyncC([[q1]](σ

′), [[q2]](σ
′)). From Equation (2) we get

SyncC ([[q1]](σ
′), [[q2]](σ

′)) = SyncC ([[q1]](σ), [[q2]](σ)). We have res(ai) ⊆ res(a) ⊆
Sq = Sqi . The induction hypothesis implies that either ai � xn or ai � [[qi]](σ) for

each i = 1, 2.

If ai � [[qi]](σ) for i = 1, 2, Lemma 7.4 implies a � [[q]](σ).

We assume now that a1 � xn. Since a1 �= 1, we must have n > 0 and xn = [[p]](σ[x �→
xn−1]). Let σ′′ = σ[x �→ xn−1]. Note that resV (σ′′) = resV (σ′) = resV (σ) = τ since

res(xn1
) = res(σ(x)). We need the following result.

Claim: Let B = {b ∈ Σ | res(b) ∩ res(a) ∩ C �= �}. Then for all ancestors r of q in

p,

(∃b ∈ B) b � [[r]](σ′′) ⇒ (∃b′ ∈ B) b′ � [[q]](σ′′).

We first show that this claim allows us to conclude the proof. Since res(a1) ⊆ res(a)

and res(a1) ∩ C �= �, we deduce that a1 ∈ B. Now, a1 � xn = [[p]](σ′′) and p is

an ancestor of q, hence we can apply the claim and obtain b � [[q]](σ′′) for some

b ∈ B.

Then res(b) ∩ C �= �, and from Lemma 7.4, we deduce that b = b1‖b2 with

bi � [[qi]](σ
′′) and (b1, b2) ∈ SyncC ([[q1]](σ

′′), [[q2]](σ
′′)).

Since xn−1 � xn, we have [[qi]](σ
′′) � [[qi]](σ

′) and bi � [[qi]](σ
′).

From res(ai) ∩ C = res(a) ∩ C and res(bi) ∩ C = res(b) ∩ C , we deduce that

res(ai) ∩ res(bi) ∩ C = res(a) ∩ res(b) ∩ C �= � and ai D bi. Using ai � [[qi]](σ
′) and

bi � [[qi]](σ
′), we get ai = bi, and therefore a = b.

Finally, a = b � [[q]](σ′′) = [[q]](σ[x �→ xn−1]). By induction, P(p, q, n− 1, σ) holds,

so either a � [[q]](σ) or a � xn−1. Since xn−1 � xn, the last case implies a � xn.

Proof of the Claim: We proceed by induction on r following the branch from q to

p in the syntax tree of p. The result is clear for the base case r = q.

Recall that resV (σ′′) = resV (σ′) = resV (σ) = τ. Several times in the proof we will

use the fact that if r1 is an ancestor of q in p, then:

res(a) ⊆ res([[q]](σ′)) ∩ Sq Hypothesis of P(p, q, n, σ)

= res(q, τ) ∩ Sq Proposition 6.15

⊆ res(r1, τ) ∩ Sr1 Lemma 7.6

= res([[r1]](σ
′′)) ∩ Sr1 Proposition 6.15

Throughout, we assume that b � [[r]](σ′′) for some b ∈ B and we consider the

possible cases.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 44

r = r1|R We have b � [[r]](σ′′) = [[r1]](σ
′′)|R . Then b � [[r1]](σ

′′), and we apply the

induction hypothesis on r1 to conclude.

r = rec y.r1 Since p is in normal form and σ is in normal form for rec x.p, we

have σ′′(y) = σ(y) = (1, res(r, τ)). By Corollary 6.16, we have [[r]](σ′′) = �k�0yk
where y0 = σ(y) and yk+1 = [[r1]](σ

′′[y �→ yk]). Then, b � [[r1]](σ
′′) and b �� y0

imply (∃k) b �� yk ∧ b � yk+1. Note that the set of available resources at r1 in

r1 is the whole set of resources R ⊇ res(a). Since, by induction, P(r1, r1, k, σ
′′)

holds, we deduce that b � [[r1]](σ
′′). Then, using the induction on r1, there is

some b′ ∈ b with b′ � [[q]](σ).

r = r1 ◦ r2 and r1 is an ancestor of q Then, either b � [[r1]](σ
′′) or b � [[r2]](σ

′′)

and res(b) ∩ res([[r1]](σ
′′)) = �. In the first case, the induction hypothesis

on r1 implies there is some b′ ∈ B with b � [[q]](σ′′). The second case is

impossible. Indeed, � �= res(b) ∩ res(a) ⊆ res([[r1]](σ
′′)) is in contradiction with

res(b) ∩ res([[r1]](σ
′′)) = �.

r = r1 ◦ r2 and r2 is an ancestor of q If b � [[r2]](σ
′′), we conclude by induction

on r2. We show that b � [[r1]](σ
′′) is impossible. Indeed, it implies that res(b) ⊆

res([[r1]](σ
′′)) = res(r1, τ), which contradicts

� �= res(b) ∩ res(a) ⊆ res([[r2]](σ
′′)) ∩ Sr2 ⊆ R \ res(r1, τ).

r = r1 ‖
E

r2 Without loss of generality, r1 is an ancestor of q. There are three

subcases:

– res(b) ∩ (E ∪ res([[r2]](σ
′′))) = � Then b � [[r1]](σ

′′), and the induction

hypothesis on r1 implies the result.

– res(b) ∩ (E ∪ res([[r1]](σ
′′))) = � This is impossible since � �= res(b) ∩

res(a) ⊆ res([[r1]](σ
′′)).

– Finally, assume that b = b1‖b2 with (b1, b2) ∈ SyncE([[r1]](σ
′′), [[r2]](σ

′′)) and

bi � [[ri]](σ
′′). If b1 ∈ B, the result follows by the induction hypothesis

applied to r1. If b1 �∈ B, then res(b) = res(b1) ∪ (res(b2)\E), and we obtain a

contradiction with

� �= res(b) ∩ res(a) ∩ C = (res(b2)\E) ∩ res(a) ∩ C
⊆ (res(b2) ∩ res([[r1]](σ

′′)))\E = �,

where the last inequality holds since (b1, b2) ∈ SyncE([[r1]](σ
′′), [[r2]](σ

′′)).

This concludes the proof of the claim and of Lemma 7.7.

Proof of Lemma 7.5. Let x0 = σ(x) and xn+1 = [[p]](σ[x �→ xn]). Then [[rec x.p]](σ) =

�nxn, and so a � �nxn. Since a �� x0, it follows that there is some n with a �� xn and

a � xn+1 = [[p]](σ[x �→ xn]). Since Sp = R, Lemma 7.7 implies a � [[p]](σ).

7.2. The congruence theorem

We want first to relate the initial actions of the denotational semantics of a process p ∈ L
to the initial actions allowed for p by the operational semantics. This is done in the

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 45

following two crucial propositions. In order to simplify the notation, we view P(R) as a

subset of � with the canonical embedding S �→ (1, S).

Proposition 7.8. Let p ∈ L, a ∈ Σ and σ ∈ P(R)V ⊆ �V . Then

a � [[p]](σ) ⇒ p a
−→
σ
.

Proof. We proceed by structural induction on p. Suppose a � [[p]](σ) for a ∈ Σ, p ∈ L
and σ ∈ P(R)V . The cases p = STOP, x or b �= a are clearly impossible, while the result

is obvious if p = a.

If p = q|R , then a � [[p]](σ) iff a � [[q]](σ) and res(a) ⊆ R (Lemma 7.4). Then the

induction hypothesis implies q a
−→
σ

, which in turn implies p = q|R a
−→
σ

since res(a) ⊆ R.

If p = p1 ◦ p2, then either a � [[p1]](σ) or a � [[p2]](σ) and res(a) ∩ res([[p1]](σ)) = �
(Lemma 7.4). In the first case, we have p1

a
−→
σ

, so p a
−→
σ

. In the second case, we obtain p2
a

−→
σ

from the induction hypothesis. Using Proposition 6.15, we deduce that res(a)∩ res(p1, σ) =

�, from which p a
−→
σ

follows.

If p = rec x.q, we can assume that σ(x) = res(rec x.q, σ) (Lemma 7.1). Then a �
[[rec x.q]](σ) and Lemma 7.5 imply a � [[q]](σ), and then induction implies q a

−→
σ

. Hence

p a
−→
σ

by the operational rule for recursion.

If p = p1 ‖
C

p2, there are three possibilities:

— res(a) ∩ (C ∪ res([[p2]](σ))) = � and a � [[p1]](σ); or

— res(a) ∩ (C ∪ res([[p1]](σ))) = � and a � [[p2]](σ); or

— a = a1‖a2 with ai � [[pi]](σ) and (a1, a2) ∈ SyncC ([[p1]](σ), [[p2]](σ)) (Lemma 7.4).

In the first case, we have p1
a

−→
σ

by induction, and this implies p a
−→
σ

, since res(p2, σ) =

res([[p2]](σ)) by Proposition 6.15. A similar argument works for the second case, and the

third follows from the fact that ai � [[pi]](σ) implies pi
ai

−→
σ

by induction, and this in turn

implies p a
−→
σ

, since by Proposition 6.15 we obtain (a1, a2) ∈ SyncC,σ(p1, p2).

Proposition 7.9. Let p, q ∈ L, a ∈ Σ and σ ∈ �V . Then

p a
−→
τ
q ⇒ [[p]](σ) = a · [[q]](σ),

where τ = resV (σ).

Proof. We again proceed by induction on p, and begin by noting that p = STOP,

p = x ∈ V or p = b �= a are impossible. Moreover, the result is obvious for p = a.

p = p1|R We must have p1
a

−→
τ
q1, res(a) ⊆ R and q = q1|R . Then, using the induction

hypothesis and Lemma 7.4, we obtain

[[p]](σ) = [[p1]](σ)|R = (a · [[q1]](σ))|R = a · ([[q1]](σ)|R) = a · [[q]](σ).

p = p1 ◦ p2 There are two cases. The first is p1
a

−→
τ
q1 and q = q1 ◦p2. Using the induction

hypothesis, we deduce

[[p1 ◦ p2]](σ) = [[p1]](σ) · [[p2]](σ) = a · [[q1]](σ) · [[q2]](σ) = a · [[q]](σ).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 46

The second case is p2
a

−→
τ
q2, res(a)∩res(p1, τ) = � and q = p1 ◦q2. By Proposition 6.15,

we have res(p1, τ) = res([[p1]](σ)), and therefore res(a) ∩ res([[p1]](σ)) = �. Using the

induction hypothesis and Lemma 7.4, it follows that

[[p1 ◦ p2]](σ) = [[p1]](σ) · a · [[q2]](σ) = a · [[p1]](σ) · [[q2]](σ) = a · [[q]](σ).

p = p1 ‖
C

p2 Again, we consider two cases. If res(a) ∩ (C ∪ res(p2, τ)) = �, then p1
a

−→
τ
q1,

and q = q1 ‖
C

p2. Using the induction hypothesis and Lemma 7.4, we obtain

[[p]](σ) = [[p1]](σ) ‖
C

[[p2]](σ) = (a · [[q1]](σ)) ‖
C

[[p2]](σ) = a · [[q]](σ).

If a = a1‖a2 with (a1, a2) ∈ SyncC,τ(p1, p2), then pi
ai

−→
τ
qi and q = q1 ‖

C

q2. As above, we

obtain, using the induction hypothesis and Lemma 7.4,

[[p]](σ) = (a1 · [[q1]](σ)) ‖
C

(a2 · [[q2]](σ)) = a · [[q]](σ).

p = rec x.p1 Let σ′ = σ[x �→ [[p]](σ)]), and note that τ′ = resV (σ′) = τ[x �→ res(p, τ)] by

Proposition 6.15. Then p1
a

−→
τ′
q1 and q = q1[p/x]. Now, using successively the fixed

point property of Proposition 6.14, the induction hypothesis and Lemma 7.2, we get

[[recx.p1]](σ) = [[p1]](σ
′) = a · [[q1]](σ

′) = a · [[q]](σ).

As promised in Section 5, we will now prove Proposition 5.3.

Proof of Proposition 5.3. Assume that p a
−→
σ
p′ b

−→
σ
p′′ with a I b. By Proposition 7.9, we

have [[p]](σ) = a · b · [[p′′]](σ) = b · a · [[p′′]](σ). Hence b � [[p]](σ), and, by Proposition 7.8,

we get p b
−→
σ
p′′′. Then Propositions 5.1 and 5.2 allow us to conclude the proof.

The definitions of the operational behaviours given in Section 5 are now fully justified.

Using the above propositions, we now show that each possible (operational) resource

trace behaviour of p (cf. Definition 5.5) in some environment σ ∈ P(R)V corresponds to

some compact resource trace below [[p]](σ), and, conversely, that each compact resource

trace below [[p]](σ) approximates some (operational) resource trace behaviour of p in σ.

More precisely, in order to relate the operational and the denotational semantics, we use

the mapping χ : � → P(K(�)) defined by χ(x) = {(s, S) ∈ K(�) | s � x, S = res(s−1 · x)}.
Note that for all x ∈ � we have χ(x) ⊆ K(x) ⊆ ↓χ(x), and therefore χ(x) is directed and

�χ(x) = x. Recall that for x ∈ �, we use K(x) to denote the set of compact resource

traces below x.

Theorem 7.10 (Congruence theorem). For all p ∈ L and σ ∈ P(R)V , we have

X�(p, σ) = χ([[p]](σ))

and

B�(p, σ) = �X�(p, σ) = [[p]](σ).

Proof. Let (s, S) ∈ X�(p, σ). We have p s
−→
σ
q for some process q ∈ L such that

S = res(q, σ). Then Proposition 7.9 implies [[p]](σ) = s · [[q]](σ) by an easy induction

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 47

on the length of s. We deduce that res(s−1[[p]](σ)) = res([[q]](σ)) = res(q, σ) = S by

Proposition 6.15. Therefore, (s, S) ∈ χ([[p]](σ)).

Conversely, let (s, S) ∈ χ([[p]](σ)). Then s ∈ � is a finite prefix of [[p]](σ). An induction

on the length of s using Proposition 7.8 gives p s
−→
σ
q for some process q ∈ L. Therefore

we obtain [[p]](σ) = s · [[q]](σ) by induction on the length of s using Proposition 7.9.

We conclude as above since Proposition 6.15 implies S = res(s−1[[p]](σ)) = res([[q]](σ)) =

res(q, σ). Therefore, (s, S) ∈ X�(p, σ).

We use L to denote the family of closed terms of L – that is, those terms in which every

variable x falls within the scope of a binding operator rec x. For p ∈ L and ξ ∈ LV
, we

use p(ξ) to denote the term p with ξ(z) substituted for z for each variable z ∈ V . Note that

the order in which the substitutions are performed does not matter since the processes

ξ(z) are closed. Also, we let [[ξ]] ∈ �V be defined componentwise by [[ξ]](z) = [[ξ(z)]] for

all z ∈ V .

Remark 7.11. The congruence theorem may also be stated in the following equivalent

ways:

(1) For all p ∈ L and σ ∈ P(R)V , we have X�(p, σ) = χ([[p]](σ)) and B�(p, σ) =

�X�(p, σ) = [[p]](σ).

(2) For all p ∈ L, we have X�(p) = χ([[p]]) and B�(p) = �X�(p) = [[p]].

(3) For all p ∈ L and ξ ∈ LV
, we have X�(p(ξ)) = χ([[p]]([[ξ]])) and B�(p(ξ)) =

�X�(p(ξ)) = [[p]]([[ξ]]).

Proof. Part (2) follows directly from (1). We derive (3) from (2) as follows. The process

p(ξ) ∈ L is closed. Using (2) we have X�(p(ξ)) = χ([[p(ξ)]]). Lemma 7.2 then implies that

[[p]]([[ξ]]) = [[p(ξ)]], which is (3). Finally, note that (3) implies (1) using ξ(z) = STOP|σ(z).

8. Adequacy and full abstraction

In this section, we first prove that our denotational semantics [[−]] is adequate with

respect to both operational semantics X� and X�. Then we show that it is also fully

abstract with respect to the operational semantics X�. Since the denotational semantics

includes the resources that are still claimed by the process after some execution, it would

be surprising if it were always fully abstract with respect to the operational semantics X�,

which observes only the executions and not the resources still claimed after them. But

with some resource maps, these claimed resources may be probed by putting the process

in some context, and in these cases we can obtain full abstraction with respect to X�. We

give an exact characterisation of the resource maps for which this holds.

Recall first that a denotational semantics [[−]] is adequate with respect to an operational

semantics B if ∀p, p′ ∈ L, [[p]] = [[p′]] implies B(p) = B(p′).

Theorem 8.1. The denotational semantics [[−]] is adequate both with respect to the

operational semantics X� and X�.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 48

Proof. This is a direct corollary of Theorem 7.10. Indeed, for all p ∈ L, we have

X�(p) = χ([[p]]) and X�(p) = Re(X�(p)).

Actually, we can prove stronger results.

Proposition 8.2.

(1) ∀p, p′ ∈ L, [[p]] = [[p′]] implies X�(p) = X�(p′).

(2) ∀p, p′ ∈ L, [[p]] = [[p′]] implies for all q ∈ L with F(q) = {z}, X�(q[p/z]) =

X�(q[p′/z]).

(3) ∀p, p′ ∈ L, [[p]] = [[p′]] implies for all σ ∈ P(R)V , X�(p, σ) = X�(p′, σ).

(4) ∀p, p′ ∈ L, [[p]] = [[p′]] implies for all ξ ∈ LV
, X�(p(ξ)) = X�(p′(ξ)).

(5) ∀p, p′ ∈ L, [[p]] = [[p′]] implies for all q ∈ L with z ∈ F(q) and for all ξ ∈ LV
,

X�(q[p/z](ξ)) = X�(q[p′/z](ξ)).

Moreover, the same results hold if we replace X� with X� in the above.

Proof. The proof consists of first showing that all of the statements are equivalent. The

result then follows from Theorem 8.1, since it shows that (1) holds.

We prove the conditions are equivalent for X�; the proof that they are equivalent for

X� = Re(X�) then follows from this result. It is clear that (5) implies (2) and (4), (2)

implies (1), (4) implies (1), and (3) implies (1).

We can also show that (1) implies (5) using Lemma 7.2. Let p, p′ ∈ L with [[p]] = [[p′]].

Let q ∈ L with z ∈ F(q) and let ξ ∈ LV
. Then, r = q[p/z](ξ) and r′ = q[p′/z](ξ) are

closed. Moreover, Lemma 7.2 implies that

[[r]] = [[q[p/z]]]([[ξ]]) = [[q]]([[ξ]][z �→ [[p]]([[ξ]])]).

We have a similar equation for r′ and since [[p]] = [[p′]], we deduce that [[r]] = [[r′]]. Now

(1) implies X�(q[p/z](ξ)) = X�(q[p′/z](ξ)).

Finally, (4) implies (3). Take ξ(z) = STOP|σ(z). First, Lemma 7.2 implies [[p(ξ)]] =

[[p]]([[ξ]]) = [[p]](σ). Now, using Theorem 7.10 twice, we deduce

X�(p(ξ)) = χ([[p(ξ)]]) = χ([[p]](σ)) = X�(p, σ),

and similarly for p′. The result then follows.

Now we turn to full abstraction and recall that a denotational semantics [[−]] is fully

abstract with respect to an operational semantics B if ∀p, p′ ∈ L, [[p]] �= [[p′]] implies

∃q ∈ L with F(q) = {z} and B(q[p/z]) �= B(q[p′/z]). (The term q ∈ L with the single

free variable z is usually called a context.)

Theorem 8.3. The denotational semantics [[−]] is fully abstract with respect to the

operational semantics X�.

Proof. Again, this is a trivial corollary of Theorem 7.10. Indeed, for all p ∈ L, we

have χ([[p]]) = X�(p), and for all resource traces x ∈ �, we have x = �χ(x). Therefore,

[[p]] �= [[p′]] implies X�(p) �= X�(p′), and we do not need any context to see that p and p′

are different operationally.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 49

The operational semantics X� assumes that we are able to observe the resources that

are still claimed after some partial execution of a process. One may argue that resources

claimed are not observable. We do not agree with this statement and think that resources

claimed are observable in the same way divergence is considered observable in most other

semantics, such as in CSP and CCS. An intuitive idea could be that there are lights on the

machine indicating which resources are still claimed for the rest of the execution. Such a

light will be automatically switched off when the resource is no longer claimed, never to

be switched on again during the execution.

A more pragmatic argument showing that observing resources claimed is natural is that

the denotational semantics is not fully abstract with respect to X� for the simple and

natural resource alphabet defined by Σ = {a, b, c, d}, R = {α, β, γ, δ} with res(a) = {δ, α},
res(b) = {α, β}, res(c) = {β, γ}, and res(d) = {γ, δ}. This fact is a consequence of the next

theorem, which characterises the resource alphabets for which the denotational semantics

is fully abstract with respect to X�. Indeed, the sets {α, γ} and {β, δ} are indistinguishable

(definition just below) but different.

We start with a definition. Two resource sets S, T ⊆ R are indistinguishable if for all

a ∈ Σ we have

res(a) ∩ S = � ⇐⇒ res(a) ∩ T = �.

We use ≡ to denote this indistinguishability relation. Note that if S ≡ T , we have µS = µT
and σS = σT . This will be crucial later, together with the fact that ≡ is a congruence with

respect to union: S ≡ T implies S ∪U ≡ T ∪U.

Theorem 8.4. The denotational semantics [[−]] is fully abstract with respect to the

operational semantics X� if and only if for all sets S, T ⊆ R, we have S ≡ T ⇐⇒ S = T .

The rest of this section is devoted to the proof of this theorem.

Proof. We first show the condition is sufficient. Assume we have two closed processes

p and p′ such that for all contexts q with only one free variable z, we have X�(q[p/z]) =

X�(q[p′/z]) (note that we do not need environments since q[p/z] and q[p′/z] are closed

terms). We have to show that [[p]] = [[p′]]. Let [[p]] = (s, S) and [[p′]] = (t, T). By

Theorem 7.10 we have s = Re(�X�(p)) = �Re(X�(p)) = �X�(p), and, similarly, t =

�X�(p′). Considering the context q = z, we deduce that s = t.

Now let a ∈ Σ and consider the context q = z◦a. We have [[q[p/z]]] = (s, S)(a,�), and, as

above, we get sµS (a) = Re([[q[p/z])]] = �X�(q[p/z]). Similarly, sµT (a) = Re([[q[p′/z])]] =

�X�(q[p′/z]), and we deduce that sµS (a) = sµT (a), and, therefore, S ∩ res(a) = � if

and only if T ∩ res(a) = �. Since this holds for all a ∈ Σ, we deduce that S = T , and,

therefore, [[p]] = [[p′]].

In order to show that the condition in Theorem 8.4 is also necessary, we will consider

two cases. The first is when res(Σ) �= R. Thus, let S = R\res(Σ) and consider the processes

p = STOP|S and p′ = SKIP. We have [[p]] = (1, S) �= [[p′]] = (1,�). Note that S �= � but

S ≡ �. We want to show that p and p′ are indistinguishable in any context q.

To this end, we introduce a notation and prove a lemma. Let x = (s, S) and y = (t, T)

be two resource traces. We write x ≈ y when s = t and S ∩ res(Σ) = T ∩ res(Σ). This

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 50

notation is extended to �V component by component: for σ, σ′ ∈ �V , we write σ ≈ σ′ if

σ(z) ≈ σ′(z) for all z ∈ V . Note that if S ∩ res(Σ) = T ∩ res(Σ), then clearly S ≡ T .

Lemma 8.5. Let q ∈ L and σ, σ′ ∈ �V be such that σ ≈ σ′. Then we have [[q]](σ) ≈
[[q]](σ′).

Proof. We proceed by structural induction on q. The cases q = STOP, q = a ∈ Σ and

q = z ∈ V are trivial.

— Assume that q = p|R . Using the induction hypothesis, we have [[p]](σ) = (s, S) and

[[p]](σ′) = (s, T) with S ∩ res(Σ) = T ∩ res(Σ). By definition we get

[[q]](σ) = (µR(s), (S ∪ σR(s)) ∩ R)

[[q]](σ′) = (µR(s), (T ∪ σR(s)) ∩ R).

We deduce that [[q]](σ) ≈ [[q]](σ′).

— Assume now that q = p1 ◦ p2, and for i = 1, 2, let xi = [[pi]](σ) = (si, Si) and

yi = [[pi]](σ
′) = (ti, Ti). We have x1x2 = (s1µS1

(s2), S1 ∪ S2 ∪ σS1
(s2)) and y1y2 =

(t1µT1
(t2), T1 ∪ T2 ∪ σT1

(t2)). By the induction hypothesis, we have si = ti and

Si ∩ res(Σ) = Ti ∩ res(Σ). We deduce that µS1
= µT1

and σS1
= σT1

, and we obtain

x1x2 ≈ y1y2.

— The next case is when q = p1 ‖
C

p2. Using the induction hypothesis, we have xi =

[[pi]](σ) = (si, Si) and yi = [[pi]](σ
′) = (si, Ti) with Si ∩ res(Σ) = Ti ∩ res(Σ). We deduce

that res(xi) ∩ res(Σ) = res(yi) ∩ res(Σ), and, therefore, res(xi) ∩ res(a) = res(yi) ∩ res(a)

for all a ∈ Σ. Hence we have Σ′
C (x1, x2) = Σ′

C(y1, y2). Since Re(xi) = Re(yi), we deduce

that RC (x1, x2) = RC(y1, y2), and, therefore, Re(x1 ‖
C

x2) = Re(y1 ‖
C

y2). Now, using the

notation of Section 6.3, we have

Im(x1 ‖
C

x2) = S1 ∪ res
(
r−1
1 s1

)
∪ S2 ∪ res

(
r−1
2 s2

)
Im(y1 ‖

C

y2) = T1 ∪ res
(
r−1
1 s1

)
∪ T2 ∪ res

(
r−1
2 s2

)
.

Therefore, [[q]](σ) = x1 ‖
C

x2 ≈ y1 ‖
C

y2 = [[q]](σ′).

— The last case is q = rec z.p. Note that σ[z �→ (1,�)] ≈ σ′[z �→ (1,�)]. By the induction

hypothesis, we obtain [[p]](σ[z �→ (1,�)]) ≈ [[p]](σ′[z �→ (1,�)]). Hence, x0 ≈ y0 with

x0 = (1, res([[p]](σ[z �→ (1,�)]))) and y0 = (1, res([[p]](σ′[z �→ (1,�)]))). Now assume

that xn ≈ yn. Then σ[z �→ xn] ≈ σ′[z �→ yn], and, by the induction hypothesis, we

obtain xn+1 = [[p]](σ[z �→ xn]) ≈ [[p]](σ′[z �→ yn]) = yn+1. Therefore, for all n � 0 we

have xn ≈ yn. We deduce easily that

Re([[q]](σ)) = �Re(xn) = �Re(yn) = Re([[q]](σ′))

and

Im([[q]](σ)) ∩ res(Σ) =
⋂

(Im(xn) ∩ res(Σ)) =
⋂

(Im(yn) ∩ res(Σ)) = Im([[q]](σ′)).

Using this lemma, we now show that the denotational semantics is not fully abstract

with respect to the operational semantics X� when res(Σ) �= R. Let S = R \ res(Σ), and

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 51

consider the processes p = STOP|S and p′ = SKIP. We have [[p]] = (1, S) ≈ [[p′]] = (1,�).

Let q ∈ L with F(q) = {z}. Using Lemma 7.2, we have [[q[p/z]]] = [[q]]([z �→ [[p]]]) and

[[q[p′/z]]] = [[q]]([z �→ [[p′]]]). It follows directly from Lemma 8.5 that [[q[p/z]]] ≈ [[q[p′/z]]].

Using Theorem 7.10, we deduce that

X�(q[p/z]) = ↓Re([[q[p/z]]]) = ↓Re([[q[p′/z]]]) = X�(q[p′/z]).

The second and last case is when res(Σ) = R and the indistinguishability relation is not

equality. We have to show that full abstraction does not hold. Again we introduce some

notation and prove a crucial lemma. Note that the hypotheses of this second case are not

used for the lemma; they will be needed only in the example following the lemma, which

shows that full abstraction does not hold in this case.

If T ⊆ R, we extend σT to resource traces by σT (s, S) = S ∪ σT (s). For resource traces

x = (s, S) and y = (s′, S ′), we write x � y if the following conditions hold:

(1) s = s′,

(2) S ≡ S ′,

(3) res(x) = res(y), and

(4) � �= T ⊆ R implies σT (x) = σT (y).

The notation � is extended to �V component by component: for σ, σ′ ∈ �V , we write

σ � σ′ if σ(z) � σ′(z) for all z ∈ V .

Lemma 8.6. Let q ∈ L and σ, σ′ ∈ �V satisfy σ � σ′. Then we have [[q]](σ) � [[q]](σ′).

Proof. We proceed by structural induction on q. The cases q = STOP, q = a ∈ Σ and

q = z ∈ V are trivial.

— Assume that q = p|R and let x = [[p]](σ) and y = [[p]](σ′). If x = y or R = R, the

result is trivial. Otherwise, using the induction hypothesis, we can write x = (s, S) and

y = (s, S ′). We have [[q]](σ) = (µR(s), σR(x) ∩ R) and [[q]](σ′) = (µR(s), σR(y) ∩ R). Since

R �= �, we deduce from the induction hypothesis that [[q]](σ) = [[q]](σ′).

— Assume now that q = p1 ◦ p2, and for i = 1, 2, let xi = [[pi]](σ) = (si, Si) and

yi = [[pi]](σ
′) = (si, S

′
i). Since µS1

= µS ′
1

and σS1
= σS ′

1
, we have

x = x1x2 = (s1µS1
(s2), S1 ∪ S2 ∪ σS1

(s2))

y = y1y2 = (s1µS1
(s2), S

′
1 ∪ S ′

2 ∪ σS1
(s2)).

Since ≡ is a congruence with respect to union, we deduce that Im(x) ≡ Im(y). It also

follows directly from the induction hypothesis that res(x) = res(y).

Now, note that for T ⊆ R we have

σT (s1) ⊆ σT (s1µS1
(s2))

and

σT (s2) ⊆ σT (µS1
(s2)) ∪ σS1

(s2) ⊆ σT (s1µS1
(s2)) ∪ σS1

(s2).

Therefore, σT (x1) ∪ σT (x2) ⊆ σT (x). Clearly, we also have S1 ∪ S2 ⊆ σT (x1) ∪ σT (x2),

and we deduce

σT (x) = σT (x1) ∪ σT (x2) ∪ σT (s1µS1
(s2)) ∪ σS1

(s2).

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 52

Similarly,

σT (y) = σT (y1) ∪ σT (y2) ∪ σT (s1µS1
(s2)) ∪ σS1

(s2).

We deduce from the induction hypothesis that σT (x) = σT (y) if T �= �.

— The next case is when q = p1 ‖
C

p2. Using the induction hypothesis, we have xi =

[[pi]](σ) = (si, Si) and yi = [[pi]](σ
′) = (si, S

′
i). We have res(xi) = res(yi), and we

deduce that Σ′
C (x1, x2) = Σ′

C (y1, y2). It follows directly that RC (x1, x2) = RC (y1, y2),

and, therefore, Re(x) = Re(y) where x = x1 ‖
C

x2 and y = y1 ‖
C

y2. Clearly, we have

res(x) = res(y). Now, using the notation of Section 6.3, we have

Im(x) = S1 ∪ res
(
r−1
1 s1

)
∪ S2 ∪ res

(
r−1
2 s2

)
Im(y) = S ′

1 ∪ res
(
r−1
1 s1

)
∪ S ′

2 ∪ res
(
r−1
2 s2

)
.

Therefore, Im(x) ≡ Im(y).

Now, let T ⊆ R. We have σT (r1) ⊆ σT (r) = σT (Re(x)). Hence, we deduce that

σT (x1) = σT (s1) ∪ S1 ⊆ σT (r1) ∪ res(r−1
1 s1) ∪ S1 ⊆ σT (Re(x)) ∪ Im(x) = σT (x).

Similarly, we obtain σT (x2) ⊆ σT (x), and conclude as in the case of weak sequential

composition.

— The last case is q = rec z.p. Note that σ[z �→ (1,�)] � σ′[z �→ (1,�)]. By the induction

hypothesis, we deduce that y � y′ with y = [[p]](σ[z �→ (1,�)]) and y′ = [[p]](σ′[z �→
(1,�)]). Hence we have res(y) = res(y′), and deduce x0 = (1, res(y)) = (1, res(y′)) = y0.

Now, assume that xn � yn. Then σ[z �→ xn] � σ′[z �→ yn], and we deduce by the

induction hypothesis that xn+1 = [[p]](σ[z �→ xn]) � [[p]](σ′[z �→ yn]) = yn+1. Therefore,

for all n � 0 we have xn � yn.

We have x = [[q]](σ) = �xn and y = [[q]](σ′) = �yn. We deduce easily that

Re([[q]](σ)) = �Re(xn) = �Re(yn) = Re([[q]](σ′)).

Since R is finite, there exists n � 0 such that:

– Im(x) = Im(xn) and Im(y) = Im(yn),

– res(x) = res(xn) and res(y) = res(yn),

– σT (Re(x)) = σT (Re(xn)) and σT (Re(y)) = σT (Re(yn)) for all T ⊆ R.

We conclude easily using the induction hypothesis and xn � yn.

We need an additional result.

Lemma 8.7. Assume that Σ = A∪B with res(A)∩ res(B) = �. Let R, S ⊆ R. Then, R ≡ S

if and only if R ∩ res(A) ≡ S ∩ res(A) and R ∩ res(B) ≡ S ∩ res(B).

Proof. Assume first that R ≡ S and let a ∈ Σ. Either a ∈ A and R ∩ res(A) ∩ res(a) =

R ∩ res(a) �= � iff S ∩ res(A) ∩ res(a) = S ∩ res(a) �= �, or a ∈ B and R ∩ res(A) ∩ res(a) =

� = S ∩ res(A) ∩ res(a). The converse can be shown similarly.

We are now ready to complete the proof of Theorem 8.4. Assume that res(Σ) = R
and let S, S ′ ⊆ R be such that S ≡ S ′ and S �= S ′. Since res(Σ) = R, we can find

a connected component A ⊆ Σ with respect to the dependence relation D such that

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 53

S ∩ res(A) �= S ′ ∩ res(A). By Lemma 8.7, we have S ∩ res(A) ≡ S ′ ∩ res(A). Therefore,

without loss of generality, we can assume that S, S ′ ⊆ res(A), S �= S ′ and S ≡ S ′.

Now consider the two processes p = (a1 ◦ · · · ◦ ak)k ◦ STOP|S and p′ = (a1 ◦ · · · ◦ ak)k ◦
STOP|S ′ where A = {a1, . . . , ak}. Let x = [[p]] = (s, S) and x′ = [[p′]] = (s, S ′). We have

x � x′. Indeed, res(x) = res(A) = res(x′). Moreover, since the subalphabet A is connected,

we have σT (s) = res(A) if T �= �, and, therefore, σT (x) = res(A) = σT (x′).

We can now conclude as in the first case, using Lemma 8.6 instead of Lemma 8.5, that

for any context q ∈ L with F(q) = {z}, we have [[q[p/z]]] � [[q[p′/z]]], and, therefore,

X�(q[p/z]) = X�(q[p′/z]).

9. Closing remarks

In this paper we have presented a process algebra based on atomic actions that are

assigned resources. This has allowed us to define a simple language that includes a

number of interesting and related operators: weak sequential composition, deterministic

parallel composition, restriction and (unguarded) recursion. We have given both an

operational and a truly concurrent denotational semantics for the language and shown

they are equivalent:

— The Congruence Theorem 7.10 shows that the behaviour map associates to each

process a unique resource trace it can execute, and this is the same resource trace that

the denotational mapping associates to the process. Because the denotational mapping

is compositional, this immediately implies that processes with the same denotational

meaning have the same observable behaviour in any context.

— Theorem 8.4 characterises the relatively mild conditions under which processes have

the same denotational meaning if their observable behaviour is the same in all contexts.

A novel feature of our semantics is that it does not involve non-deterministic choice for

parallel composition, giving instead a truly concurrent semantics to parallel composition.

Some researchers have studied true concurrency by concentrating on the operational

semantics, showing how to describe the behaviour of a (concurrent) transition system

without appealing to interleavings, while others present truly concurrent denotational

semantic models for a variant of CCS that allow one to observe which processes can

execute concurrently. Our approach is novel because it introduces a weakly sequential

composition operator that allows actions of the second process to execute as soon as

the resources they need are available, even though the first process is still active. Our

truly concurrent semantics gives a continuous interpretation to this operator, which

significantly extends the prefixing of processes by atomic actions found in other truly

concurrent semantic models.

The main focus of this paper is not so much the language being studied, per se, but

rather on the underlying mathematical techniques that have been employed to establish

the results about its semantics. In particular, the denotation of recursion is new: it does

not rely on the usual least fixed point semantics of domain theory, but instead uses a

least fixed point semantics on a subdomain that varies from process to process. This is

needed to ensure that processes that are meant to execute concurrently actually do so

in the model. The fact that this can be carried out, and that the recursion operators

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

P. Gastin and M. Mislove 54

themselves are continuous, is notable. We expect that similar interesting alterations to the

traditional semantic methods of domain theory will be needed as we expand this language

to one that is more expressive. Indeed, as we mentioned early on, this work represents the

beginning of a longer-range effort to build up a truly concurrent denotational semantics

for a complete parallel language, and eventually to compare it to the more traditional

interleaving based models.

The next step is to add a hiding operator (à la CSP) to the language. This requires

more general models than resource traces provide. For example, if a D b D c but a I c,

then hiding b in the trace a · b · c does not yield a trace but a pomset (Pratt 1986). In

Gastin and Mislove (2002) we generalise the present work to a language including hiding

by using a domain based on resource pomsets instead of resource traces.

We believe the existing work based on event structures (cf. Boudol and Castel-

lani (1988a; 1988c; 1994), Darondeau and Degano (1989; 1990; 1993), Degano et al. (1988),

Olderog (1987) and Winskel (1982; 1987)) may help us find a model for non-deterministic

choice that is suitable for our process algebra augmented with non-determinism. This is

needed in order to model some of the most basic situations – Hoare’s vending machines

provide obvious examples. We hope to extend the language to include this operator, and

to obtain a full abstraction theorem for the extended language just as we have done for

the simple language we presented here. Once this work is complete, we believe we will

be in a position to carry out a comparison with the more traditional process algebras

supporting concurrency, and we also expect to find many interesting areas where this

language will prove very useful in providing a notation and rigorous mathematical setting

in which to model physical processes.

Acknowledgement

The authors thank the referees for pointing out a number of truly concurrent semantics

for variants of CCS.

References

Abramsky, S. and Jung, A. (1994) Domain theory. In: Abramsky, S., Gabbay, D. M. and Maibaum,

T. S. E. (eds.) Handbook of Logic in Computer Science 3, Clarendon Press 1–168.

Best, E., de Boer, F. S. and Palamidessi, C. (1997) Partial order and SOS semantics for linear

constraint programs. In: Garlan, D. and Le Métayer, D. (eds.) Proceedings of the 2nd International

Conference on Coordination Languages and Models (COORDINATION’97). Springer-Verlag

Lecture Notes in Computer Science 1282 256–273.

Boudol, G. and Castellani, I. (1988) Concurrency and atomicity. Theoretical Computer Science 59

25–84.

Boudol, G. and Castellani, I. (1988b) A non-interleaving semantics for CCS based on proved

transitions. Fundamenta Informaticae 11 433–452.

Boudol, G. and Castellani, I. (1988c) Permutations of transitions: An event structure semantics for

CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P. and Rozenberg, G. (eds.) Proceedings of

the REX Workshop on Linear Time, Branching Time and Partial Order in Logics and Models

for Concurrency. Springer-Verlag Lecture Notes in Computer Science 254 411–427.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

A simple process algebra based on atomic actions with resources 55

Boudol, G. and Castellani, I. (1994) Flow models of distributed computations: Three equivalent

semantics for CCS. Information and Computation 114 247–314.

Castellani, I. (2001) Process algebras with localities. In: Bergstra, J. A., Ponse, A. and Smolka, S. A.

(eds.) Handbook of Process Algebra, Elsevier Science B.V. 945–1045.

Darondeau, Ph. and Degano, P. (1989) Causal trees. In: Proceedings of the 16th International

Colloquium on Automata, Languages and Programming (ICALP’89). Springer-Verlag Lecture

Notes in Computer Science 372 234–248.

Darondeau, Ph. and Degano, P. (1990) Event structures, causal trees and refinements. In: Proceedings

of the 15th International Symposium on Mathematical Foundations of Computer Science

(MFCS’90). Springer-Verlag Lecture Notes in Computer Science 452 239–245.

Darondeau, Ph. and Degano, P. (1993) Refinement of actions in event structures and causal trees.

Theoretical Computer Science 118 21–48.

Degano, P., de Nicola, R. and Montanari, U. (1988) On the consistency of ‘truly concurrent’

operational and denotational semantics. In: Proceedings of the 2nd Logic in Computer Science

Symposium (LICS’88), IEEE Press 133–141.

Diekert, V. and Gastin, P. (1998) Approximating traces. Acta Informatica 35 567–593.

Diekert, V. and Rozenberg, G. (1995) (eds.) The Book of Traces, World Scientific, Singapore.

Gastin, P. and Mislove, M.W. (2002) A truly concurrent semantics for a process algebra using

resource pomsets. Theoretical Computer Science 281 369–421.

Gastin, P. and Teodosiu, D. (2002) Resource traces: A domain for processes sharing exclusive

resources. Theoretical Computer Science 278 195–221.

Hennessy, M. and Plotkin, G. D. (1979) Full abstraction for a simple parallel programming language.

In: Becvar, J. (ed.) Proceedings of the 8th International Symposium on Mathematical Foundations

of Computer Science (MFCS’79). Springer-Verlag Lecture Notes in Computer Science 74 108–120.

Mazurkiewicz, A. (1987) Trace theory. In Brauer, W. et al. (eds.) Advances in Petri Nets’86. Springer-

Verlag Lecture Notes in Computer Science 255 279–324.

Milner, R. (1989) Communication and Concurrency, Prentice-Hall.

Mislove, M. W. and Oles, F. J. (1995) Full abstraction and recursion. Theoretical Computer Science

151 207–256.

Nielsen, M. and Thiagarajan, P. S. (1984) Degrees of non-determinism and concurrency: A Petri

net view. In: Proc. of the 4th Conf. Found. of Software Technology and Theor. Comp. Sci.

(FSTTCS’84). Springer-Verlag Lecture Notes in Computer Science 181 89–117.

Olderog, E.-R. (1987) Operational Petri net semantics for CCSP. In: Advances in Petri Nets’87.

Springer-Verlag Lecture Notes in Computer Science 266 196–223.

Olderog, E.-R. (1991) Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer Science

23, Cambridge University Press.

Plotkin, G.D. (1981) A structural approach to operational semantics. Report DAIMI FN–19,

Aahrus University.

Pratt, V.R. (1986) Modelling concurrency with partial orders. J. of Parallel Programming 15 33–71.

Reisig, W. (1985) Petri Nets (an Introduction), EATCS Monographs on Theoretical Computer

Science 4, Springer Verlag.

Roscoe, A.W. (1988) The Theory and Practice of Concurrency, Prentice Hall.

Winskel, G. (1980) Events in Computation, Ph.D. thesis, University of Cambridge.

Winskel, G. (1982) Event structure semantics for CCS and related languages. In: Proceedings

of the 9th International Colloquium on Automata, Languages and Programming (ICALP’82).

Springer-Verlag Lecture Notes in Computer Science 140 561–576.

Winskel, G. (1987) Event structures. In: Brauer, W. et al. (eds.) Advances in Petri Nets’86. Springer-

Verlag Lecture Notes in Computer Science 255 325–392.

https://doi.org/10.1017/S0960129503003943 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503003943

