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SUMMARY
This paper investigates task allocation for multiple robots
by applying the game theory-based negotiation approach.
Based on the initial task allocation using a contract net-based
approach, a new method to select the negotiation robots
and construct the negotiation set is proposed by employing
the utility functions. A negotiation mechanism suitable for
the decentralized task allocation is also presented. Then,
a game theory-based negotiation strategy is proposed to
achieve the Pareto-optimal solution for the task reallocation.
Extensive simulation results are provided to show that the
task allocation solutions after the negotiation are better
than the initial contract net-based allocation. In addition,
experimental results are further presented to show the
effectiveness of the approach presented.

KEYWORDS: Task allocation; Game theory; Multiple ro-
bots; Negotiation; Cooperative control; Pareto-optimization.

1. Introduction
The cooperation of multiple autonomous robots, including
unmanned aerial vehicles (UAVs), automatic ground vehicles
(AGVs), unmanned underwater vehicles (UUVs), etc., is
being employed in a growing number of applications,
such as military applications, space/subsea explorations, and
disaster relief.1–7 Through the exchange and sharing of local
information, the cooperation of multiple robots can offer
improved performances over single robots, such as efficiency,
robustness, flexibility and fault tolerance.1, 3, 8 Hence, the
research on multi-robot systems has been extremely active
in recent years, which covers distributed decision making,
formation control, area coverage and their applications.
When dispatching multiple robots to execute the missions,
the first step is to assign individual robots subtasks of a given
system-level task, which is called task allocation. The main
goal of task allocation is to maximize the overall performance
of the system and to fulfill the tasks as soon as possible.3, 9 A
typical scenario is that a group of robots is deployed to visit
a set of locations/targets for some purpose with routes that
minimize the completion time or the distance traveled.10

Depending on the nature of task availability, the multiple
robots coordination problem can be categorized as static
and dynamic.10 When the tasks to be performed are known
to robots before task execution, they can be referred to
as static task allocation. For dynamic task allocation, the
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assignment of robots to subtasks is a dynamic process and
may need to be continuously adjusted in response to changes
in the task environment or group performance. Numerous
schemes have been proposed for the task allocation problems.
A formal analysis and taxonomy of multi-robot task
allocation are introduced in ref. [11], providing a particular
taxonomy for the task allocation problem from several
fields, including operations research, economics, scheduling,
network flows, and combinatorial optimization. A distributed
and asynchronous task allocation for the area coverage of
robots is proposed in ref. [12], where each robot is responsible
for performing tasks that occur in its Voronoi cell. Inspired
by a resource distribution process commonly found in nature,
vacancy chain scheduling-based task allocation is proposed
in ref. [3]. Coalitions formation for task allocation is studied
in ref. [13], where the teams of robots are formed and
each team is assigned a particular task to complete the set
of tasks in a best way. Clustering-based task allocation is
proposed in refs. [10, 14], where the K-means clustering
is used in ref. [14]. Other clustering algorithms such as
the one presented in ref. [15] can also be applied to this
problem. Learning is another method for task allocation.16–18

Assuming that the task stream would be unpredictable, a
hybrid planning/learning system combining planning with
reinforcement learning that allows scheduling of a group of
robots for a heterogeneous stream of tasks is proposed in
ref. [16]. A gradient ascent learning algorithm is proposed
for task allocation in ref. [17]. An adaptive learning approach
is proposed in ref. [18], where the solutions are obtained for
coupled Hamilton–Jacobi equations.

Recently, the principles of market economies have been
introduced to the coordination of multi-robot systems,
including market-based coordination approaches and
auction-based task allocation schemes.19 These approaches
have been shown to efficiently produce suboptimal
solutions.20, 21 In the market-based mechanisms, the virtual
market is constructed based on the tasks in which the tasks are
treated as the goods in the virtual market, and the robots are
treated as self-interested participants in the virtual market in
which they can exchange tasks for payment. Subsequently,
the task allocation problem is solved based on the prices
in the market. The basic idea of a market-based system is
to facilitate task allocation through contract negotiations. A
manager offers tasks to contractors, which may then submit
bids based on their abilities to perform the tasks and the
highest bid wins the assignment. Each task will only be
assigned to a single robot since only one robot is selected
by the auctioneer as the winner. A consensus-based auction
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algorithm is proposed for robust task allocation in ref. [21],
where the consensus is used to achieve an agreement of the
situational awareness for the robots. Auction-based complex
task allocation for the mobile surveillance system is proposed
in ref. [20], where the priority of each task is considered. The
disadvantages of the market-based methodology are that it
needs to define the precise price for every task and needs
to change the price along the task allocation process. This
results in large communication burden and the price needs to
be carefully set to achieve the optimal solution.

In order to obtain the Pareto-optimal or Nash equilibrium
solution for task allocation problems, a negotiation
mechanism can be applied between each pair of robots.22

The potential benefits of negotiation include its efficiency for
computationally intense negotiations searching for optimal
results and the ability to incorporate multiple negotiation
strategies for the changing environments. Three subproblems
need to be solved in the negotiation mechanisms, including
determining negotiation robots, rules construction and the
negotiation policy.23 Current multi-agent negotiation is
twofold: distributed artificial intelligent and software intelli-
gence design, including the contract-based negotiation,24, 25

planning-based negotiation,26 market-based negotiation,27, 28

game theory-based negotiation29, 30 and artificial intelligent-
based negotiation.31 In these works, there is a lack of a
specific procedure to choose the negotiation robots in the
large group of robots and a specific way to construct the
negotiation set.

This work focuses on the design of a game theory-based
negotiation approach for the task allocation problem. We
denote the set of robots and tasks by A = {A1, . . . , Am}
and T = {T1, . . . , Tn}, respectively, and consider only the
case where the number of tasks is larger than the number
of robots, i.e., n > m, where n and m are the number of
tasks and robots, respectively. The main motivation behind
this consideration is that, for most applications, we would
like to use fewer robots to perform tasks. We decompose
the task allocation problem into two steps. First, the contract
net-based negotiation is employed to obtain the initial task
allocation. Second, based on the approach computing the
possible task set involving in the further negotiation, game
theory-based negotiation is employed to the reallocation
of the tasks. This partitioning reduces the dimension of
the problem. The main contribution of this work lies in
three aspects: (i) we propose a new method to select the
negotiation robots and construct the negotiation set by
employing the utility functions. This method decreases the
computational complexity and is suitable for the case where
the computational ability of a single robot is limited; (ii)
we propose a negotiation mechanism that is suitable for the
decentralized task allocation. This can realize the merit of the
decentralized system structure of the multi-robot system; and
(iii) a negotiation strategy is proposed to achieve the Pareto-
optimal solution for the multi-robot task allocation problem,
improving the system without additional cost added for each
robot.

The remainder of the paper is organized as follows. In
Section 2, problem formulation is presented. The initial task
allocation is presented in Section 3, followed by the task
reallocation in Section 4. Simulation and experimental results

are presented in Sections 5 and 6, respectively. Conclusions
are drawn in Section 7.

2. Problem Formulation
We consider that all the robots involved in the negotiation
are autonomous in the sense that they have their own utility
functions, and no global notion of utility plays a role in their
design. The robots have disparate goals and are individually
motivated. Each robot is rational, i.e., it always maximizes its
own utility.32 The goal of task allocation is, given a set of of
tasks T = {T1, . . . , Tn} and m robots, A1, . . . , Am, to find a
conflict-free matching of tasks to robots that minimize some
cost. The term conflict-free means that each task is assigned
to not more than one robot. The task allocation problem can
be written as follows, with binary decision variable xij that
indicates whether task Ti is assigned to agent Aj or not:

min

{
φj

(
n∑

i=1

wijxij

)
, for j = 1, . . . , m

}
, (1)

subjected to

m∑
j=1

xij = 1, i = 1, . . . , n, (2)

n∑
i=1

wijxij ≤ Yj , (3)

xij = 0 or 1, (4)

where Yj is the permissible maximum cost for Aj , wij

is the maximum cost when Ti is assigned to Aj , and φj

is the design objective function.33 In the multiple robots
system considered in this work, φj can be determined by
the negotiation strategy in Section 4.2.

Remark 1. We assume that each robot is rational, i.e., it
wants to maximize its expected utility. As a consequence, the
objectives of the robots are conflicting and it is impossible
to achieve local optimal for all the robots simultaneously.
In this work, we are interested in finding the Pareto-
optimal solutions satisfying (1) by treating multiple robots
coordination as a multi-objective optimization problem. This
notion of Pareto optimality is widely used in mathematical
economics to model individual consumers striving to
optimize distinct economic goals, and the Pareto solutions
are the ones where there exist no solutions that are better
for all robots in the negotiation.34, 35 It is noted that
there is usually no single optimal solution for the multi-
objective optimization, but a set of alternatives with different
trade-offs. Despite the existence of multiple Pareto-optimal
solutions, in practice, usually only one of these solutions is
to be chosen. We use the Zeuthen negotiation strategy36 to
obtain the unique solution.

This paper will first present a contract net-based algorithm
for the initial task allocation in Section 3 and then the task
reallocation algorithm based on game theory in Section 4.
The objective of task allocation is trying to achieve Pareto
optimality.
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3. Initial Task Allocation
In this section, we construct the initial task set for each robot
following the marginal cost calculation-based contract net
protocol in refs. [37, 38]. The nearest-neighbor insertion cost
is used for the marginal cost and this marginal cost is used
for the subsequent contract net protocol.

For each robot in negotiation, define the set of potential
tasks as Ti = {T1, . . . , T|T |}, and the cost performing its tasks
as C(Ti). If a new task Tg is added to T , the marginal cost of
the task Tg can be defined as the incremental cost to complete
this task, i.e.,

Cadd
M (Tg|Ti) = C(Ti ∪ {Tg}) − C(Ti). (5)

In contrast, when Tg is removed from the task set, the
marginal cost can be defined as the decremented cost for
removing this task, i.e.,

Cremove
M (Tg|Ti) = C(Ti) − C(Ti\Tg), (6)

where C(Ti\Tg) is the cost for completing the set of tasks
when Tg is removed from Ti .

There are two types of the individuals in the contract
net-based mechanism, namely manager and contractor. The
manager has a list of all the tasks information and announces
the tasks to others in order to get bids from them. Each robot
locally calculates its marginal cost for performing a set of
tasks using (5). Then the task will be awarded to the robot
owing the optimal bidding value, and this robot will put this
task into its task set. The bid price for task Tg of each robot
in this work is calculated by

Bidi(Tg) = Cadd
M (Tg|Ti) + C(Ti), i = 1 . . . , m. (7)

The algorithm for determining the initial task set of each
robot using the contract net-based protocol is shown in
Algorithm 1. It is noted that the contract net can be used
for multiple robots negotiation and a local optimal solution
can be guaranteed. However, the calculation of the marginal
cost in (5) is handled in order of receiptor. Therefore, the
roles of the robots in the negotiation are not equal. In order
to optimize the efficiency of the whole system, we reallocate
the tasks in the next section.

Algorithm 1: Initial Task Allocation
Input: T = {T1, . . . , Tn}: A set contains all the tasks
Output: {Ti , . . . , Tm}: Initial allocation of the tasks to

the robots
1 forall the Tk ∈ T do
2 Announcing Tk to all the robots, Ai, i = 1, . . . , m

3 if Bidj (Tk) = maxi=1,...,m Bidi(Tk) then
Tj = Tj ∪ {Tk}

4. Tasks Reallocation
To improve the effectiveness of the multi-robot system,
we use the game theory-based negotiation mechanism to
reallocate the tasks to robots on the basis of the initial
assignments in the previous section. There are two main

parts in the negotiation, including negotiation protocol and
the negotiation strategies.

4.1. Negotiation protocol
4.1.1. Determine negotiation tasks.

Definition 1.39 Negotiation utility function (NUF): Define
Ti , i = 1, . . . , m as the task set for robot Ai , and δ as the
negotiation solution, then the negotiation utility function for
robot Ai can be described as

Ui(δ) = C(Ti) − Ci(δ). (8)

The objective of the negotiation is to optimize the individual
cost and the system cost. The negotiation deals can be defined
by the NUF. There are two constraints for the negotiation
solution:
� Assuming that the robots in negotiation are rational, i.e.,

the negotiation solution δ will not increase an extra cost
for each individual, then the negotiation solution needs to
satisfy Ui(δ) ≥ 0, i = 1, . . . , m, i.e.,

(U1(δ), . . . , Um(δ)) � (0, . . . , 0). (9)

This constraint is the rational constraint of the negotiation
solution.

� As the objective of the negotiation is to satisfy the optimal
solution of the whole system, the negotiation solution δ

belongs to the so-called Pareto-optimal solution, i.e., ∀δ′ 
=
δ, the following inequations hold:

(U1(δ), . . . , Um(δ)) � (U1(δ′), . . . , Um(δ′)). (10)

This constraint is the constraint for the optimization.

Through the definition of these two constraints for the
negotiation, the negotiation deals offer optimized individual
and system costs. In order to reallocate the tasks to robots, we
first propose an algorithm determining the tasks involved in
the negotiation for each robot, i.e., constructing a negotiation
task setNS which consists of the tasks that will be included in
the negotiation process. When robot Ai negotiates with robot
Aj , we compare the marginal costs of the tasks that belong to
different robot individually and extract the negotiation task
set from the initial assignment set Ti = {Ti(1), . . . , Ti(n)}. The
detailed procedure selecting tasks involved in the negotiation
for robot Ai is described in Algorithm 2.

Algorithm 2: Select Negotiation Tasks
Input: Ti : Initial task allocation set of Ai

Aj : The robot negotiates with Ai

Output: Tij : Tasks for robot Ai involved in negotiation
with robot Aj

1 Tij ← ∅
2 forall the Tg ∈ Ti do
3 Ui(Tg) ← Cremove

M (Tg|Ti)
4 Announces Tg to Aj and Uj (Tg) ← Cadd

M (Tg|Tj )
5 if Ui(Tg) > Uj (Tg) then
6 Tij ← Tij

⋃{Tg}
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4.1.2. Determine negotiation robots. In the multiple robots
team, the robots organize themselves in a way that is
mutually beneficial. Since the aggregate profit amassed by the
individuals is directly tied to the success of the task, this self-
organization yields the best results. Consider that a robot, Ai ,
shares its services with others. It does not force them to finish
its work, but by convincing the group that they will make
more profit by exchanging work than by acting individually
or in subgroups. Ai does this by investigating negotiation
for utilizing all robots. If the group of robots comes up
with a truly good negotiation together, it will maximize
utility across the whole group. But there is a limit to this
organization. As the group becomes larger, the combinatorics
become intractable and the process of gathering all of the
relevant information to produce a good negotiation becomes
increasingly difficult. To overcome this problem, we propose
an optimized way, which limits the simultaneous negotiation
robots not more than three and optimizes the group utility
via repeated negotiation.

To select negotiation robots, define an indicative function
as

I (Ai, Aj ) =
{

1, if Tij 
= ∅ and Tji 
= ∅,

0, otherwise.
(11)

When the robot chooses the negotiation robots, it will
randomly select one idle robot and check I (Ai, Aj ). If
I (Ai, Aj ) = 1, Ai will negotiate with Aj . If the robot
can choose two robots Aj and Ak satisfying I (Ai, Aj ) ∩
I (Ai, Ak) ∩ I (Aj, Ak) = 1, then these three robots will
negotiate among them. If any robot, Ai , cannot find any robot
in the team satisfying I (Ai, Aj ) = 1, j 
= i, it means that
the system cannot be further optimized using the proposed
negotiation mechanism. Then the negotiation process stops.

4.1.3. Determine negotiation sets. After the computation of
the corresponding negotiation tasks set for robots Ai and
Aj , we select the negotiation solution set NS satisfying
the constraints from the task set T̄ = Tij

⋃
Tji . Before

computing the negotiation solution, we preprocess the tasks
Tg ∈ T̄ , calculating a utility of each task as

U (Tg) =
{

Ui(Tg) = Cremove
M (Tg|Ti), if Tg ∈ Ti

Uj (Tg) = Cadd
M (Tg|Ti), if Tg ∈ Tj .

(12)

Then, sort the tasks according to its utility in an ascending
order as

U (T1) ≤ U (T2) ≤ · · · ≤ U (T|T̄ |). (13)

Define the task set of robots before negotiation by Ti

and Tj , and the initial task set in the negotiation by T ini
i =

Ti\Tij , T ini
j = Tj\Tji , respectively. The initial negotiation

task set is defined by NS = ∅, and the task sets in negotiation
procedure are defined by T T

i and T T
j , respectively. Let

the initial values T T
i = T T

j = T ini
i . Based on the rational

constraint and the optimal constraint, we use the branch-

Algorithm 3: NegotiationDealsConstruction

Input: T̄ = Tij

⋃
Tji : A set of tasks involved in

negotiation
T T

i : A set of tasks of robot Ai

k: An integer
Output: NS : A set of feasible negotiation solutions

1 NS ← ∅
2 if k < |T̄ | then
3 forall the

(
T S

i , T S
j

) ∈ NS do
4 if U

(
T S

i , T S
j

) � U
(
T T

i , T ini
j

⋃
T̄ \(T T

i \T ini
i )

)
then

5 return false

6 if U
(
T T

i

⋃{Tk}
)

< U (Ti) then
7 T T

i ← T T
i

⋃{Tk}
8 NegotiationDealsConstruction(T̄ , T T

i , k + 1)

9 if U
(
T ini

j

⋃
T̄ \(T T

i \T ini
i )

)
< U (Tj ) then

10 NegotiationDealsConstruction(T̄ , T T
i , k + 1)

11 else
12 T T

j ← T ini
j

⋃
T̄ \(T T

i \T ini
i

)
13 NS ← NS

⋃(
T T

i , T T
j

)
14 forall the

(
T S

i , T S
j

) ∈ NS do
15 if

(
U

(
T S

i

)
, U

(
T S

j

)) � (
U

(
T T

i

)
, U

(
T T

j

))
then

16 NS ← NS\
(
T S

i , T S
j

)

and-bound principle to solve the negotiation problem and
provide the details in Algorithm 3.

To obtain the negotiation solution, we choose the upper
bound from the utility function of the tasks of robots Ai

and Aj , and compare this value with the existing negotiation
utility function. If this value is worse than the negotiation
solution, i.e., violates the optimization constraint, then this
branch will be deleted (lines 4 and 5); otherwise, construct a
branch containing task Tk in the state tree. Judge whether the
rational constraint is satisfied when Tk is put into T T

i (lines 6–
8); if true, construct a branch inserting Tk in T T

i . Otherwise,
if the potential new branch, T T

i , satisfies the constraints by
inserting task Tk , construct this branch (lines 9 and 10).

Having judged all the negotiation tasks by a branch, the
solution corresponding to the branch will be a potential
negotiation solution (lines 12 and 13). We then check if these
solutions satisfy the optimization constraints, by comparing
each solution with the one in NS . If any (T S

i , T S
j ) ∈ NS ,

U (T S
i , T S

j ) is worse than U (T T
i , T T

j ), then delete it from NS .
While all the branches in the tree have been computed, the
resulted set NS will be the set of negotiation solutions.

It is noted that Algorithm 3 is a kind of the branch and
bound algorithm, resulting in a large computational burden
with large task numbers in NS . In order to decrease the
computational complexity, it is better to reduce the numbers
of tasks involved in the negotiation.

As each robot considered in this work is a rational
individual, it tries to select the negotiation deal suitable
to its optimization objective as the negotiation solution. It
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is however in the set of Pareto solutions that there are no
solutions guaranteeing two robots approaching optimization
simultaneously. The negotiation protocols should be
determined, by which the robots will come to a consensus
from the negotiation set NS . In this work, the receding
concession is employed for the negotiation protocol,40

which contains three main parts, including preprocessing the
negotiation deals, determining the negotiation objectives and
constructing the action set of negotiation.

Preprocessing the negotiation deals. Before negotiation,
robot Ai calculates the Ui(δ) for all the negotiation deals NS

and sorts these utilities in a descending order. The rational
robot will choose the solution with larger utility, making its
own utility optimal.

Determining the negotiation objectives. When robot Aj

receives a negotiation proposal δi ∈ NS from Ai , it will
calculate Uj (δi). If this utility is not smaller than the utility
of the negotiation proposal raised by itself, Uj (δi) ≥ Uj (δj ),
i.e., the negotiation proposal raised by others is better than its
own proposal, we call this state as the negotiation objective.
If the negotiation approaches the objective, robots will
reallocate the tasks according to δi .

Constructing the action set of negotiation. If the
negotiation proposals made by Ai and Aj do not satisfy the
negotiation objectives. Robots will make new proposals δ′

i ∈
NS satisfying Uj (δ′

i) > Uj (δi), which increases the utility of
Aj . This proposal is called the receding proposal. As long as
one robot makes the receding proposal, the robots will rene-
gotiate. Otherwise, the negotiation will conclude a conflict,
making it not being able to approach the mutual negotiation.

4.2. Negotiation strategies
From the negotiation flow, we can find that it is important
to define the negotiation strategy, i.e., the actions robots take
if the negotiation proposal does not satisfy the negotiation
objective. As the goal of negotiation is to optimize the cost
performing tasks, the conflict deal cannot optimize this cost.
In this work, we use the Zeuthen negotiation strategy36 to
avoid the negotiation conflict.

Robots Ai and Aj compute the Zeuthen risk value Riskδ
i

and Riskδ
j according to its negotiation suggestion respectively

using the following equation:

Riskδ
i =

{
1, Uδi

= 0
Ui (δi )−Uj (δj )

Ui (δi )
, Uδi


= 0.
(14)

If Riskδ
i > Riskδ

j , it will result in a conflict negotiation. Be-
cause of the smaller cost of Ai , Aj will take the receding ac-
tion and make a new negotiation proposal. If Riskδ

i = Riskδ
j ,

it will randomly choose a robot to take the receding action.

4.3. Scalability
The proposed negotiation process works in a distributed way.
For each agent, the computational complexity depends on
two aspects: first, the selection of the negotiation robots
and, second, the complexity of constructing the negotiation
set, NS .

Let A contain m robots and T contain n tasks. Based on
the proposed mechanism, the selection of negotiation robots

may be determined in time o(m3) as there are at most three
robots involved in one negotiation procedure.

The complexity of constructing the negotiation set, NS ,
depends on two factors: the number of robots involved in one
negotiation procedure and the cardinal of the negotiation set,
|NS |. If the number of robots involved in one negotiation pro-
cedure is not constrained, i.e., all the robots involve in, then
the problem will be PSPACE-hard.41 However, the proposed
mechanism limits the number of robots in one negotiation
procedure as two or three. Then, the maximum computational
complexity will be o(2n) or o(3n). In this work, we employ
the utility function to constrain the number of tasks involved
in negotiations, making the computational cost decrease phe-
nomenally. If the maximum number of the tasks calculated
by using the utility function is fixed, the computational cost
of the proposed negotiation protocol will be polynomial.

As there are two or three robots negotiating among
themselves in one negotiation procedure, the bottleneck of
the proposed methodology is that the negotiation in one
procedure only achieves the local Pareto optimization for
these two or three robots. Group utility needs multiple
negotiation procedures to be optimized. For this reason, the
proposed methodology is applicable to medium-size robot
teams. In this case, the global optimization can be achieved
through fewer negotiation procedures.

5. Simulation Study
In this section, we study the problem of allocating tasks to
robots, where tasks are simply locations in a map that have to
be visited by the robots. There are many possible connection
costs for these targets, of which we have used the nearest
insertion cost.42 Hence, the marginal cost putting task Tg to
the task set Ti can be defined as

Cadd
M (Tg|Ti) = min

Tk∈Ti

{L(Tk, Tg) + L(T , Tk+1) − L(Tk, Tk+1)},

(15)

and the marginal cost removing task Tg fromTi can be defined
as

Cremove
M (Tg|Ti) = L(Tk, Tg) + L(Tg, Tk+1) − L(Tk, Tk+1),

(16)

where L(·) is the cost for completing the task. In the vehicle
routing problem, one may use the direct cost Cadd

M (Tg|Ti) =
2 minTk∈Ti

{L(Tk, T ))} as the marginal cost adding target Tg.
It provides an upper bound on the routing cost. The nearest
insertion cost used in this work works well because it is
usually accurate for small sets Ti .

Remark 2. In the problem studied in the simulation, we can
simply use the Euclidean distance as the moving cost. Other
cost functions containing the motion constraints or the mis-
sion constraints of the robot can also be employed for specific
applications such as emitting the threat targets using UAVs.

In the first simulation study, there are three robots in
negotiation. Two scenarios containing 30 and 50 target
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Table I. Simulation results for 30 targets.

Initial number Number of targets Cost after Cost reduction
Robot of targets Initial cost after negotiation negotiation ratio

1 10 327.94 m 8 240.01 m 26.81%
2 9 255.44 m 9 207.64 m 18.72%
3 11 241.33 m 13 234.62 m 2.78%

points are considered, respectively. As shown in Fig. 1,
the targets are randomly distributed in a 100 m × 100 m
area, which are denoted by ‘◦’. The initial positions of
the robots are P1 = [10 m, 25 m], P2 = [80 m, 20 m], and
P3 = [50 m, 80 m], which are denoted by ‘�’ in Fig. 1.

For each targets set, we first use the contract net-based
mechanism to obtain the initial task allocation. The cost of
each robot can be simply calculated as the moving distance
after visiting all the targets. The initial allocation results using
the contract net-based mechanism are shown in Figs. 1(a) and
(b). Based on the initial target assignment, negotiation-based
target reallocation results using our proposed mechanism are
shown in Figs. 1(c) and (d), respectively. In the figures, we use
lines with consistent color to connect the targets belonging
to the same robot.

The costs for the task allocation problem are shown in
Tables I and II, respectively. The cost reduction ratio of robot
Ai is defined as

Ratioi = Initial cost – Cost after negotiation

Initial cost
× 100%.

(17)

From Tables I and II, we can find that the costs of all robots
are reduced after negotiation. Specifically, for the case where
there are 30 targets, A1 has the maximum cost reduction
ratio, 26.81%, and A3 has the minimum cost reduction ratio,
2.78%. For the case where there are 50 targets, A3 has the
maximum reduction cost ratio, 31.45%, and A1 has the
minimum reduction cost ratio, 11.93%. As each robot is
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Fig. 1. (Colour online) Simulation results (three robots with 30 and 50 targets, respectively). (a) Initial target allocation for targets set 1 (30
targets). (b) Initial target allocation for targets set 1 (50 targets). (c) Target reallocation of targets set 1 (30 targets). (d) Target reallocation
of targets set 2 (50 targets).
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Table II. Simulation results for 50 targets.

Initial number Number of targets Cost after Cost reduction
Robot of targets Initial cost after negotiation negotiation ratio

1 15 269.08 m 13 236.97 m 11.93%
2 16 289.18 m 14 241.62 m 16.45%
3 19 360.93 m 23 247.41 m 31.45%

rational and wants to reduce its own cost, there are no robots
that increase their cost.

It is noted that from Fig. 1(c), A1 still keeps tasks that
are closer to the path of A3. This is because in the task
allocation process, we use the simple nearest insertion to
compute the connection cost of the tasks, and we try to
obtain the Pareto-optimal solution of the robots. A global
optimal solution cannot be achieved using the decentralized
mechanism proposed in this work.

In order to evaluate the proposed approach in more detail,
we further ran two batches of simulations. In the first batch,
the number of robots varies while the number of targets
(tasks) is kept fixed. We set that there are 100 targets
randomly distributed in a 1000 m × 1000 m square area, and
consider different cases with 5, 10, 20, 30, 40 and 50 robots
in the task allocation, respectively. In each case, it is assumed
that the robots uniformly lie in the diagonal of the square.

In the second batch of simulations, the number of targets
(tasks) varies while the number of robots is kept fixed. We set
that there are 10 robots which uniformly lie in the diagonal
of a 1000 m × 1000 m square, and consider different cases
with 50, 80, 100, 120, 150, 180 and 200 targets, respectively.
It is assumed that all the targets are randomly distributed in
the square for all the cases.

We mainly examine the cost reduction ratio and the
running times when employing our algorithm for such cases.
Simulation results for the first batch are shown in Figs. 2–4.
From Fig. 2, we can find that the running time of the algorithm

decreases as more robots involved in the task allocation.
Specifically, when there are only five robots sharing 100
targets, the algorithm runs very slow compared with other
cases with more robots. This is because if the number
of robots is small while the number of targets is large,
each robot has a large initial allocation target set and this
initial allocation ensures that there are many targets that
may be selected as the possible negotiation tasks in the
reallocation procedure. As discussed in Sections 4.1.3 and
4.3, the construction of the negotiation set will be complex
and the cardinal number of the negotiation set will be very
large, as shown in Fig. 2(b). The numbers shown in Fig. 2(b)
are the summation of the cardinal number of the negotiation
set of all the robots. When the number of robots is large, the
contract- based task allocation will provide a better initial
task allocation solution, then the negotiation set will be small
and the algorithm runs faster.

Figure 3 gives the statistics of the cost reduction ratio after
the negotiation against the initial contract-based allocation.
It is clear that average costs of the robots are all decreased
after negotiation for all the cases. When the number of
robots is large, we can find that the costs of some robots
are not decreased. This is due to the fact that the number
of targets initially allocated to the robots is small; therefore,
it is possible that there are some robots that have no targets
involved in negotiation or the negotiation result is the same as
initial allocation. This can also be observed in Figs. 3(b) and
4. Figure 3(b) indicates that there are many robots that have
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Fig. 2. Running times and the cardinal number of the negotiation sets for the cases with different number of robots. (a) Running times.
(b) Summation of the cardinal number of the negotiation sets for all the robots.
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Fig. 3. (Colour online) Cost reduction of robots. (a) Cost reduction ratio of robots. (b) Statistics of number of robots that have cost reduction
ratios within different ranges.
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Fig. 4. (Colour online) Negotiation times for the cases with different
number of robots.

the cost reduction ratio less than 10% in the case where a large
number of robots involve in the task allocation. Figure 3(b)
shows that the negotiation times will decrease when the
number of robots increases. The maximum negotiation times
decrease to 1 and the total negotiation times decrease to 3
when there are 50 robots sharing 100 targets. This is also
due to the fact that the target set of the initial allocation is
small for each robot and the chance of the targets that will be
selected as the negotiation target is small.

Simulation results for the second batch of simulation are
shown in Figs. 5–7. It is also noticed from Fig. 5 that the
average traveling costs decrease after negotiation. When
more targets are incorporated in the environment, the cost
reduction will be more remarkable. The reason is that if more
targets are added, each robot will have a large set of initial

targets and the possible negotiation set increases. Then more
negotiations should be done for the robots. This increasing of
targets also increases the cardinal number of the negotiation
set and makes the program run slower as shown in Fig. 6.
Figure 7 also indicates that the negotiation times increase as
the number of targets increases. It is noted that the results are
also affected by the distribution of robots and targets in the
environment.

In summary, these preliminary simulations indicate that the
negotiation mechanism provides a computationally efficient
approach to the problem of task allocation. Compared with
the contract-based initial task allocation, the traveling cost
of the robots is decreased. As shown in the simulation
results discussed in Section 4.3, our algorithm is affected
by the number of targets and robots. The running time
will increase when the number of targets increases. As our
negotiation mechanism works in a decentralized manner and
we constrain the number of negotiation objects (robots), the
algorithm can also work well when the number of robots
increases. These results have shown that the game theory-
based negotiation offers advantages over the simple contract-
based task allocation. In the scenarios given, performance has
been improved. If there are few tasks entering the system,
some tasks can be effectively allocated using the initial
contract-based task allocation. If there are many tasks, the
negotiation-based reallocation is needed to reduce the cost.

6. Experimental Results
In the experiment, we use the proposed negotiation
mechanism for the target assignment of three Pioneer 3TM-
DX (referred to as P3dx) robots as shown in Fig. 8.
The negotiation algorithm is developed in the VC.net
environment.

Because of the lack of independent communication ability
on the P3dx robot, the communications among the robots
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Fig. 5. (Colour online) Cost reduction of robots. (a) Cost reduction ratio. (b) Statistics of number of robots that have cost reduction ratios
within different ranges.
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Fig. 6. (Colour online) Running times and the cardinal number of the negotiation sets for the cases with different number of targets. (a)
Running times. (b) Summation of the cardinal number of the negotiation sets for all the robots.

are realized via the data packet ArPacket provided in the
Advanced Robotics Interface for Applications (ARIA)1. To
prevent the drop of communication, we build the Server and
Client program for every robot, where the Server program is
used to receive the data which are sent from a robot (including
the robot itself and others), and the Client is used to process
and send the data. To verify the multiple robot negotiation
mechanism, we divide the experiment into two parts, namely
allocation and negotiation individually.

1 ARIA is a software provided by MobileRobots, Inc., USA, for
the Pioneer robots. Users can develop their own algorithms based
on the existing classes and interfaces provided by the software.

6.1. Implementation of task allocation
The system structure of the task allocation system in the
experiment is designed as shown in Fig. 9. In the experiment,
there are totally 11 targets in the environment, which are
described as the ID(x,y) style as 1(−2, 2), 2(−7, 7), 3(−5, 5),
4(−6, 6), 5(1.2, 12), 6(3, 3), 7(2, 2), 8(−7, −7), 9(−3, −3),
10(−4, −4), 11(−6, −6).

The task allocation system for the robot consists of two
parts; one is to allocate the task and another is to obtain
the task. In the negotiation process, each robot allocates its
targets set to other robots and selects the robot to which it
will allocate the targets according to the position of the robot.
Table III shows the target assignment process of each robot. It
is shown that the contract net-based approach can guarantee
that each target is assigned to the nearest robot.

https://doi.org/10.1017/S0263574713000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000192


932 Game theory-based negotiation for multiple robots task allocation

50 80 100 120 150 180 200
0

5

10

15

0 0 0 0 0
1 1

2 2
3

5
4

5
4

 3
 4

 7

 9
 8

13

11

Number of targets

N
eg

ot
ia

tio
n 

tim
es

Maximum negotiation times
Minimum negotiation times
Totoal negotiation times

Fig. 7. (Colour online) Negotiation times for the cases with different
number of targets.

Fig. 8. (Colour online) Pioneer 3TM-DX robots.

A. Selecting the negotiation robot
If there are several robots in idle process, the robot
will take high priority to select the robot which has the
minimum negotiation times with the current robot. When
the negotiation times of two robots are the same, the robot
will select the robot with lower ID as its negotiation object.
The framework of selecting the negotiation object is shown
in Fig. 10. There are three robots involved in the experiment,

Idle broadcast Idle response

Robot select
partnership

Robot 
partnership

Fig. 10. Framework of selecting the negotiation object.

and the maximum negotiation times of each robot are set
as 5.

In the experiment, each robot selects the negotiation robot
in accordance with the negotiation times and the robot ID. If
there are two robots that select each other as the negotiation
robot, then we can confirm one selection of the negotiation
object and display the negotiation object and negotiation
times in Table IV. We repeat the negotiation object selection
process until the negotiation times between all the robots
satisfy the predefined requirements. We can find that the
negotiation system satisfies the predefined negotiation object
selection policy.

B. Negotiation between robots
To ease the experiment, the negotiation is a pair-wised ne-
gotiation based on the pre-specified negotiation object. Each
robot has its own targets set and the negotiation will obtain
the optimal allocation of these targets. Before the negotiation,
each robot announces its targets set to its negotiation partner.
Then, each robot computes the negotiation proposal solution
based on the targets set of its partner and itself and then
announces it to its partner. Each robot will have the proposal
solutions of the robot itself and the one received from its
partner, individually. According to the utility function, the
robot will choose the solution which makes the whole utility
function optimal. In this experiment, A2 proposes a solution
which is accepted by both robots. Robots will exchange
the target based on the negotiation solution. The targets
set of each robot, including the ID, position and the angle
information, before and after negotiation is shown in Table 7.
We can find that the solution after negotiation is better than
the initial task allocation solution.

7. Conclusion
In this work, we have investigated the game theory-based
negotiation methodology for multiple robots task allocation.
The basic contract net-based approach has been employed to
obtain the initial task allocation. A new method to select the
negotiation robots and constructing the negotiation set has

Task announce
Target robot 

broadcasts the tasks
Bid

Each robot bids the 
tasks

Task award Robot respond
Target robot 

computes the awards
Robot responds to the 

task

Fig. 9. Framework of the task assignment.
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Table III. Initial task allocation process.

Client connected to server Client connected to server Client connected to server

A1 win the auction of #1 A2 win the auction of #5 A3 win the auction of #9

A1 win the auction of #2 A2 win the auction of #6 A3 win the auction of #7

A1 win the auction of #3 A2 finishes allocation. A3 win the auction of #10

A1 win the auction of #4 A3 win the auction of #11

A1 win the auction of #8 A3 finishes allocation.

A1 finishes allocation.

Table IV. Process of selecting negotiation robot.

Robot A1: Robot A2: Robot A3:
Connected to server Connected to server Connected to server

deal with A2 win, 0 times deal with A3 win, 0 times deal with A2 win, 0 times

deal with A2 win, 1 times deal with A3 win, 1 times deal with A2 win, 1 times

deal with A3 win, 0 times deal with A1 win, 0 times deal with A1 win, 0 times

deal with A3 win, 1 times deal with A1 win, 1 times deal with A1 win, 1 times

deal with A2 win, 2 times deal with A1 win, 2 times deal with A2 win, 2 times

deal with A3 win, 2 times deal with A3 win, 2 times deal with A2 win, 3 times

deal with A2 win, 3 times deal with A3 win, 3 times deal with A2 win, 4 times

deal with A3 win, 3 times deal with A3 win, 4 times deal with A1 win, 2 times

deal with A2 win, 4 times deal with A1 win, 3 times deal with A1 win, 3 times

deal with A3 win, 4 times deal with A1 win, 4 times deal with A1 win, 4 times

deal with A2 win, 5 times deal with A1 win, 5 times deal with A1 win, 5 times

deal with A3 win, 5 times deal with A3 win, 5 times deal with A2 win, 5 times

Table V. Targets of each robot.

Targets ID Targets ID
Robot Position (initial allocation) after negotiation

1 (1, 1) 1, 2, 3, 4, 8 7, 5, 6
2 (−1, 1) 5, 6 1, 2, 3, 4
3 (−1,−1) 9, 7, 10, 11 9, 10, 11, 8

been proposed by employing the utility functions. Next, a
negotiation mechanism that is suitable for the decentralized
task allocation has been presented. Subsequently, a game
theory-based negotiation strategy is proposed to achieve
the unique Pareto-optimal solution for the multi-robots task
allocation problem. Extensive simulations have illustrated
that the task allocation solutions after the negotiation are
better than the initial contract-based task allocation. The
impact of the number of robots and tasks has also been
provided through the simulation study. It has been shown that
our algorithm can work well with medium sizes of robots and
tasks.

Future research directions include: (i) we need to optimize
the negotiation set construction procedure for specific
problems, and decrease the computational complexity in this
procedure; (ii) we may employ the framework of graphical
games, such as the one used in our previous work,43 to make
the algorithms more flexible, and be suitable for fault tolerant
task allocation when some robots are broken; (iii) we will
extend our algorithms so that constrained and tight tasks
can be handled. A typical example for constrained are two
tasks that cannot be done independently by a single robot.
Tight tasks cannot be decomposed into further single tasks.
In this case, a subgroup of robots could determine their joint
marginal costs and submit joint bids for such type of tasks.
Also, to ensure cost independence between the subteams,

the proposed framework should be extended to include the
constraint that the subteams being awarded tight tasks are
disjoint. In addition, the negotiation will be done between
the subgroups rather than robot pairs.
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