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Abstract—Vertical gradients in biotic and abiotic factors may create small-scale spatial variation
in arthropod communities, a phenomenon that continues to be understudied. We investigated
heterogeneity in the vertical distribution of spider and beetle assemblages in the canopy of sugar
maples (Acer saccharum Marshall) (Aceraceae) in a deciduous forest in eastern Canada. Compar-
isons across four strata (understorey [UN] through upper canopy [UC] crown) documented variation
in density, diversity, and species composition. Density of all common families decreased sig-
nificantly with height and overall species richness of both spiders and beetles was highest in the UN
and lowest in the UC crown. We observed greater spatial variation in spider assemblages compared
with beetle assemblages and documented differences in spider guild structure: web-spinning spiders
were most common in the UN and jumping spiders dominated the canopy. Our results suggest that
arthropod assemblages are not homogeneous with respect to vertical space and that heterogeneity
exists even at the scale of several metres.

Résumé—Les gradients verticaux des facteurs biotiques et abiotiques peuvent produire des variations
spatiales à petite échelle dans les communautés d’arthropodes, un phénomène qui reste encore peu
étudié. Nous examinons l’hétérogénéité de la répartition spatiale de peuplements d’araignées et de
coléoptères dans la canopée d’érables à sucre (Acer saccharum Marshall) (Aceraceae) dans une forêt
décidue de l’est du Canada. La comparaison de quatre strates (du sous-bois à la cime supérieure de la
canopée) montre des variations de densité, de diversité et de composition d’espèces. La densité de toutes
les familles communes décroı̂t significativement en fonction de la hauteur et la richesse spécifique
globale, tant des araignées que des coléoptères, atteint son maximum dans le sous-bois et son minimum
dans la cime supérieure de la canopée. Nous observons une variation spatiale plus importante chez les
peuplements d’araignées que chez les peuplements de coléoptères, ainsi que des différences dans les
guildes d’araignées, car les araignées tisseuses de toile sont plus communes dans le sous-bois et les
araignées sauteuses dominent dans la canopée. Nos résultats indiquent que les peuplements d’arthro-
podes ne sont pas homogènes en fonction de l’espace vertical et qu’il existe une hétérogénéité même à
l’échelle de quelques mètres.

Introduction

Since the 1990s, improved access to the

forest canopy has created opportunities for well-

replicated ecological studies of canopy patterns

and processes (e.g., Nadkarni et al. 2004). Ver-

tical gradients in abiotic factors include sunlight

intensity, temperature, humidity, and wind speed

(Parker 1995); and these in turn influence

vegetation structure and quality (Ellsworth and

Reich 1993; Fortin and Maufette 2002; Oishi

et al. 2006). Variation among species combined

with strong vertical gradients in abiotic and

biotic factors may produce detectable patterns

of vertical stratification (e.g., MacArthur and

MacArthur 1961; August 1983; Longino and

Nadkarni 1990).

Of all organisms in the canopy, arthropods

are the most diverse (Erwin 1982). They are

abundant across many different forest habitats

and are used frequently in studies of vertical

stratification (e.g., Rodgers and Kitching 1998;
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Preisser et al. 1999; Basset et al. 2001; Grim-

bacher and Stork 2007). Research in tropical

canopies has repeatedly demonstrated distinct

patterns of stratification, often with little overlap

between canopy and understorey (UN) species

(Longino and Nadkarni 1990; Charles and

Basset 2005). Recent research in temperate

canopies also indicates stratification (Lindo and

Winchester 2006; Larrivée and Buddle 2009;

Schroeder et al. 2009). Studies on temperate

forests in eastern North America have shown

decreased species richness and density in the

canopy compared with the UN (Preisser et al.

1999; Su and Woods 2001; Larrivée and Buddle

2009), though these patterns have not been

consistent (Le Corff and Marquis 1999; Ulyshen

and Hanula 2007; Vance et al. 2007; Schroeder

et al. 2009). Larrivée and Buddle (2009) repor-

ted that spider assemblages in a beech-maple

forest differed in species composition between

canopy and UN and recorded unique species

from both habitats. Lindo and Winchester (2006)

document changes in species assemblages of

corticolous mites with increasing distance from

the forest floor.

Whereas large-scale patterns of stratification

(i.e., canopy versus UN) have been documented

for macroarthropods (Preisser et al. 1999; Su and

Woods 2001; Vance et al. 2007; Larrivée and

Buddle 2009; Schroeder et al. 2009), fine-scale

patterns remain poorly understood. In contrast,

numerous well-replicated studies of micro-

arthropods indicate patterns of small-scale stratifi-

cation throughout the canopy (Winchester et al.

1999; Proctor et al. 2002; Lindo and Winchester

2006; Beaulieu et al. 2010). In this study, we

document fine-scale variation in canopy-dwelling

macroarthropods. Our objective was to determine

whether assemblages of foliage-dwelling arthro-

pods exhibited heterogeneity across a vertical

gradient from the UN to the upper canopy (UC)

crown. We conducted our sampling in a temperate

deciduous forest and selected beetles (Coleoptera)

and spiders (Araneae) as focal taxa for species-

level identification, as both are highly diverse and

abundant in temperate forests. Stratification was

defined in terms of four layers: understorey (UN),

lower canopy (LC), mid canopy (MC), and UC. It

was our primary objective to determine whether

species richness, density, assemblage composi-

tion, and guild structure differed across these

four strata. We predict differences in values of

these measures to increase with increasing

separation in vertical space, i.e. the largest

observed differences will occur between the UN

and UC.

Methods

Location and sampling protocol
Our sampling was conducted at the Morgan

Arboretum, a 245-ha reserve in Ste-Anne-de-

Bellevue, on the Macdonald campus of McGill

University, Québec, Canada (458260N, 738570W).

The Arboretum contains tracts of natural wood-

land and collections of exotic trees; natural stands

of sugar maple (Acer saccharum Marshall)

(Aceraceae) were selected for this study. We

included mature trees with heights of ,20–25 m.

Trees were selected on the basis of canopy

accessibility, which was accomplished using a

mobile aerial lift platform, with a maximum

working height of 26 m and a maximum hor-

izontal reach of 11.7 m.

Stratification was defined in terms of four

strata: UN, LC, MC, and UC, while recognising

that these strata are somewhat artificial and

overlapping categories. Strata were defined in

relative terms rather than in absolute height

because we considered this more biologically

meaningful given the variance in both absolute

tree height and depth of canopy foliage. There-

fore, the LC was defined as the first several

layers of branches encountered ( ,10–12 m), the

MC as the layers of branches at the midpoint of

total tree foliage ( ,15–17 m), and the UC as

the several layers of branches at the very top of

the foliage ( ,20–25 m). The UN was defined as

the first 2 m above the forest floor.

Foliage-dwelling arthropods were collected five

times throughout the summer: in early- and late-

June, in mid-July, and in early-and late-August.

A total of 30 trees were selected and samples were

collected in four strata of each tree to yield a total

of 120 samples per collection period. A single

sample consisted of six branches. To collect

arthropods, a 1-m2-beating sheet was placed under

each branch and the branch was shaken or struck

with a stick until no additional individuals were

collected. The beating sheet had a funnel in the

centre to which a collecting cup containing ethyl

alcohol was attached. All arthropods were stored
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in 70% ethyl alcohol. Spiders and beetles were

extracted and identified to species using various

keys (e.g., spiders: Dondale and Redner 1982;

beetles: Downie and Arnett 1996; Arnett and

Thomas 2001; Arnett et al. 2002; Paquin and

Dupérré 2003). Voucher specimens were deposited

at the Lyman Entomological Museum, Ste-Anne-

de-Bellevue, Québec, Canada.

Statistical analyses
We predicted that spider and beetle assem-

blages would respond differently to stratification,

and therefore all analyses for these taxa were

completed separately. Because foliage density

differs among strata, it is not appropriate to use

raw numbers of individuals collected from beating

in analyses of density across strata. Therefore,

numbers of individuals collected in each stratum

were weighted by the mean mass of foliage per

branch for each stratum. This mean was obtained

by taking the dry mass of the foliage of 20 bran-

ches in each stratum. To determine differences in

density among strata, we used ANOVA (SAS

version 9.1, 2002–2004, SAS Institute Inc., Cary,

North Carolina, USA) with stratum as a fixed

factor and tree as a random factor. ANOVAs were

completed for total number of spiders, total

number of beetles, most common families, and of

common species (i.e., species that represent more

than 5% of the total catch for each group). We

recognise that 5% is an arbitrary cut-off point,

but selected this amount because it included all

species present in at least one-third of all samples

for a given stratum. In cases where raw data did

not fit a normal distribution, we used log trans-

formations.

To compare species richness across strata, we

used individual-based rarefaction curves (Gotelli

and Colwell 2001), using the software Ecosim

version 8.0 (Gotelli and Entsminger 2004), with

1000 iterations. The 95% confidence intervals

were used to determine significance levels. To

further support rarefaction analyses, we obtained

estimates of total species richness in each stratum

using the Jackknife2 incidence-based estimator

(Chazdon et al. 1998) and the abundance-based

estimator (Chao et al. 2005). Estimators were

calculated using EstimateS version 8.0 (Colwell

2006) with 50 randomisations of data and

rare species assigned if they occurred in 10 or

fewer samples. Using the same parameters, we

calculated values for the Bray–Curtis index to

compare similarity among communities. We also

calculated Simpson’s diversity measure (1/D) as

a measure of evenness using EstimateS.

Nonmetric multidimensional scaling (NMDS)

was used to determine whether assemblages of

spiders and beetles were homogeneous among

different strata. NMDS does not assume normality

of data, nor does it constrain solutions to a parti-

cular axis (Clarke 1993; McCune and Grace 2002)

and is therefore advantageous compared with a

correspondence analysis. PC-ORD version 4 was

used for all analyses. Prior to ordination, abun-

dance data were log-transformed to decrease the

influence of dominant species. We specified six

dimensions in the preliminary analyses and took

the recommended number of dimensions (two or

three) to re-run the ordination. We defined n

samples as the number of individuals collected

from a single stratum of a single tree, pooled over

the five collection periods. To support differences

found in NMDS ordination, a multi-response

permutation procedure (MRPP) was used. MRPP

yields both a P-value and a measure of effect size

(the within-group agreement statistic).

Beetle and spider species were assigned to

various guilds to assess how relative dominance

of guilds differs across strata. Guild classifica-

tion is determined by resource use rather than

taxonomy (Root 1967) and is especially infor-

mative along gradients of resource quality and

availability, like in forest canopies. Spiders were

assigned to guilds based on hunting mode, and

included jumpers, web-spinners, pursuers, or

ambushers (following Ehmann 1994). Beetle

guilds followed Grimbacher and Stork (2007)

and included herbivores, predators, fungivores,

saprophages/xylophages, or mixed feeding

habits. We determined how the relative dom-

inance of each guild differed across strata by

using a x2-test to compare expected versus

observed proportions of individuals of each

guild. To control for Type II error, we used

Bonferroni’s correction.

Results

In total, 3954 spiders and 1749 beetles

were collected, representing 37 and 101 species,

respectively. Thirty-two of the 36 spider species

collected were adults. Of this total, 22% were
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represented by a single individual (singletons) and

7% by two individuals (doubletons). In contrast,

more than 40% of the beetle species (all adults)

recorded is represented by singletons and nearly

20% more by doubletons. In addition to contain-

ing a high proportion of rare species, the beetle

fauna was heavily dominated by two species,

Phyllobius oblongus Linnaeus (Curculionidae)

and Paratenetus fuscus LeConte (Tenebrionidae),

which together comprised 66% of the total beetle

catch. All other species represented 4% or less of

the total number of individuals captured. One

common species (20 individuals) was restricted

to the UN: Sciaphilus asperatus Bonsdorff

(Curculionidae), an invasive root-feeding weevil.

Another common species (34 individuals) was

collected only in the canopy: Litargus tetra-

spilotus LeConte (Mycetophagidae), a fungivore.

Six species of spiders were common (.5%

in any given stratum): Eris militaris Hentz

(Salticidae), Hentzia mitrata Hentz (Salticidae),

Dictyna sublata Hentz (Dictynidae), Philo-

dromus rufus vibrans Dondale (Philodromidae),

Clubiona obesa Hentz (Clubionidae), and Ther-

idion murarium Emerton (Theridiidae), and

together represented .80% of all individuals

collected. No species comprising of more than

0.2% of the total catch was restricted to either

the canopy or UN samples.

Mean foliage dry weights for each stratum

(7SE) were as follows: UN, 11.6 g7 0.7; LC,

32.7 g71.9; MC, 43.1 g74.1; UC 68.9 g74.1.

Density of all spiders and all beetles was highest

in the UN and decreased through consecutive

strata (spiders: df 5 3, 87, F 5 5.443, P , 0.001;

beetles: df 5 3, 87, F 5 36.536, P , 0.001;

Table 1). Similar results were obtained for all

common families (Table 1) and species, though

differences among canopy strata were not

significant for most spider families (Araneidae,

Clubionidae, Dictynidae, Salticidae, and Ther-

idiidae). Hentzia mitrata, a single common

species of jumping spider, defied the pattern of

decreasing density with decreasing height. This

species increased significantly and consistently

in abundance with height (Fig. 1), with 11, 97,

208, and 408 individuals collected from the UN,

LC, MC, and UC.

Observed species richness was highest in the

UN for both taxa. Spiders and beetles differed

in their rankings of species richness of canopy

Table 1. Mean density (7SE) per gram foliage of spiders and beetles, including dominant families in each of

four canopy layers (UN, LC, MC, UC).

UN LC MC UC

Spiders 4.27 0.3a 0.887 0.05b 0.647 0.03c 0.437 0.02d

Araneidae 0.247 0.03a 0.0427 0.006b 0.0327 0.005b 0.0187 0.002b

Clubionidae 0.317 0.03a 0.0777 0.01b 0.0537 0.007b 0.0367 0.005b

Dictynidae 0.997 0.2a 0.0917 0.02b 0.0307 0.01b 0.0177 0.004b

Philodromidae 0.487 0.05a 0.157 0.01b 0.107 0.01b,c 0.0287 0.005c

Salticidae 1.37 0.09a 0.387 0.03b 0.347 0.02b 0.307 0.02b

Theridiidae 0.497 0.07a 0.127 0.02b 0.0607 0.009b 0.0257 0.004b

Beetles 1.67 0.2a 0.577 0.07b 0.347 0.03b,c 0.127 0.01c

Curculionidae 0.627 0.1a 0.267 0.05b 0.137 0.02c 0.047 0.008d

Tenebrionidae 0.387 0.4a 0.177 0.02b 0.127 0.02b,c 0.0377 0.006c

Letters indicate significant difference at P , 0.05.
UN, understorey; LC, lower canopy; MC, mid canopy; UC, upper canopy.

Fig. 1. Density of spiders compared with density of a

single species, Hentzia mitrata, across four canopy

layers (UN, understorey; LC, lower canopy; MC, mid

canopy; UC, upper canopy). Different letters indicate

significant differences between strata at P , 0.05.
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layers, though observed and rarefied estimates

were consistent for each taxon (Table 2). Spiders

showed a significant decrease in diversity

from the LC to the MC and UC strata (Fig. 2A,

Table 2). Chao2 and Jackknife2 estimators of

total species richness also supported this rank-

ing. Though rarefaction curves do not separate

mid and UC, the estimators predict higher

species richness in the UC (Table 2). Estimates

of total richness do not substantially increase

the number of species in each stratum. This

combined with rarefaction curves, which appear

to be nearing asymptote (Fig. 2A), suggest that

sampling for spiders was relatively complete.

Beetle species richness was significantly

higher in the MC compared with the other canopy

layers, as shown by observed and rarefied

species richness and estimators of total species

richness (Fig. 2B, Table 2). Estimates of total

species richness predict substantially higher

species richness for all strata, with 501 additional

species to be uncovered in the UN. The rare-

faction curves (Fig. 2B) also indicate higher

species richness for all strata relative to what was

sampled during this study.

Simpson’s diversity index (1/D) ranked spider

assemblages as decreasing in evenness from the

LC, UN, MC, and UC (Table 2). The evenness

in the UC was influenced heavily by the most

common species in that layer, H. mitrata, which

represented more than 45% of the total catch.

Common species in other strata represented less

than 30% of the total for that stratum. According

to Simpson’s index, beetle communities increase

in evenness from UN to UC.

The Bray–Curtis index does not indicate

distinct canopy and UN assemblages for beetles.

Instead, it suggests that the UC is the most

dissimilar from the other strata (Table 3). Spider

assemblages show a more predictable pattern:

the similarity index decreases consistently with

increasing distance, and adjacent strata are most

similar. For both beetle and spider assemblages,

the Bray–Curtis index suggests that the LC and

MC contain the most similar assemblages, and

the UN and UC the most dissimilar.

NMDS ordination yielded a three-dimensional

solution for spider communities, with a total of

82.7% variance explained and stress value of 16.2

with 400 iterations. Only Axes 1 and 2 are shown

in Figure 3A, as Axis 3 yielded separation similar

to Axis 2. Nearly 60% of the variance was

explained by Axis 1, which widely separated the

UN from all canopy layers. MRPP results suggest

different assemblages in each stratum with each

pair-wise comparison differing significantly

(P , 0.0001; Table 4). Ordination of beetle com-

munities produced a three-dimensional solution,

with 81.2% of variance explained, and a stress

value of 25.4 with 400 iterations. Again, only two

axes are presented in Figure 3B. A Monte Carlo

test indicated that lower stress was observed in

less than 4% of runs with randomised data; how-

ever, the resulting ordination should be interpreted

cautiously, as stress exceeds 20 units (McCune

and Grace 2002). There is large variance along the

Table 2. Observed and estimated (mean7SE) species richness and dominance for spiders and beetles across

four canopy layers (UN, LC, MC, UC).

Richness estimator

Species observed Rarefied Chao2 Jackknife2 Simpson’s D

Spiders

UN 28 29.57 0.4 32.67 3.4 32.87 0.5 5.9 7 0.001

LC 23 26.67 0.3 28.57 3.0 29.27 0.5 6.4 7 0.003

MC 18 18.87 0.2 18.57 0.5 20.87 0.4 5.67 0.003

UC 19 22.07 0.3 26.07 3.6 25.47 0.5 3.77 0.001

Beetles

UN 67 123.47 1.1 109.67 3.8 116.27 0.8 5.67 0.03

LC 40 57.87 0.4 58.57 2.3 63.87 0.5 3.57 0.02

MC 44 81.67 1.1 78.47 3.8 79.47 0.7 4.07 0.02

UC 30 49.97 0.7 45.87 2.1 50.57 0.4 4.57 0.02

UN, understorey; LC, lower canopy; MC, mid canopy; UC, upper canopy.
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dominant axis (36.8% variance), although no clear

separation of any strata. MRPP results suggest that

all strata can be considered distinct, save the MC

and LC. However, the within-group agreement

statistic (a measure of effect size) is low for all

comparisons (Table 4).

For spiders, proportions of individuals belong-

ing to each guild differed significantly throughout

all canopy layers (Table 5). The UN was domi-

nated by web-spinners, which decreased in relative

abundance through all subsequent canopy layers

(Fig. 4A). Jumping spiders made up a much larger

proportion of UC spiders, comprising nearly 70%

of all spiders collected compared with 32% of

spiders collected in the UN. For beetles, proportion

of predators varied significantly throughout the

strata (Table 5, Fig. 4B).

Discussion

We documented vertical heterogeneity in

assemblages of foliage-dwelling beetles and

spiders. Across four strata and even between

adjacent strata, we measured differences in

density, species richness, assemblage composi-

tion, and guild composition. We present no

Fig. 2. Rarefaction curves for species richness of spiders (A) and beetles (B) collected by strata (UN, understorey;

LC, lower canopy; MC, mid canopy; UC, upper canopy). Curves were generated using an individual-based

sampling algorithm, with 1000 iterations (Ecosim version 8.0). Bars represent the 95% confidence intervals.
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evidence for a distinct canopy fauna in terms of

canopy-restricted species; however, we observed

dissimilar composition between UN and canopy,

and among canopy layers. Even at a small scale

of spatial separation, different canopy layers

present distinct arthropod assemblages. Our

work is one of the few to illustrate this type of

stratification of macroarthropods in temperate

deciduous forest (but see Le Corff and Marquis

1999; Ulyshen and Hanula 2007; Vance et al.

2007; Larrivée and Buddle 2009; Schroeder

et al. 2009).

Table 3. Bray–Curtis index values across four

canopy layers (UN, LC, MC, UC).

UN LC MC UC

UN ** 0.69 0.72 0.51

LC 0.61 ** 0.78 0.52

MC 0.49 0.81 ** 0.64

UC 0.41 0.65 0.79 **

Values below double asterisks represent similarity of
spider assemblages; values above represent similarity of
beetle assemblages.

UN, understorey; LC, lower canopy; MC, mid canopy;
UC, upper canopy.

Fig. 3. Results of nonmetric multidimensional scaling ordinations (axes 1 and 2) for (A) spiders (3943

individuals, 33 species) and (B) beetles (1668 individuals, 41 species). Sample units for each stratum (UN,

understorey; LC, lower canopy; MC, mid canopy; UC, upper canopy) are tree with collections for each

date pooled.
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Tropical forest canopies often demonstrate

strong patterns of vertical stratification of macro-

arthropods. This has been documented for

herbivorous insects (Basset et al. 2001), ants

(Bruhl et al. 1998), and butterflies (DeVries

et al. 1997). General patterns include higher

density and species richness in the canopy

(DeVries et al. 1997; Basset et al. 2001; Charles

and Basset 2005), though opposite trends have

been observed (Molleman et al. 2006). Studies

in temperate forests document few general

patterns; some have indicated lower density

in the canopy (Preisser et al. 1999), while

others have indicated no difference (Ulyshen and

Hanula 2007). Few studies have found evidence for

macroarthropod canopy specialists in temperate

forests. Deciduous canopies do not offer much

refuge for overwintering arthropods, so even

canopy-dwelling species would likely be forced to

migrate to the forest floor to overwinter. It seems

that the canopy macroarthropods of temperate

deciduous forests consists only of a subset of

UN species. Our results support this conclusion: of

all the common species, only L. tetraspilotus was

collected exclusively in the canopy. This species

has also been collected from galls on red

oak (Quercus rubra Linnaeus) (Fagaceae)

(Klimaszewski and Majka, 2007).

In this study, beetle species richness was more

heavily influenced by singleton and doubleton

species than was spider richness. Many of these

species can be accurately labelled as ‘‘tourists’’

as they are specialist herbivores with nearby host

plants. These account for about one-third of all

singleton species observed. Spiders had fewer

rare species, possibly because all spiders are

generalist predators, rather than tourist herbi-

vores that have wandered from a host plant.

Lower densities in the UC of both spiders

and beetles may be maintained by biotic factors

(e.g., predation, parasitism, prey availability),

abiotic factors, or a combination of these factors.

There is some evidence that predation pressure

by birds is stronger in the canopy compared with

the UN (Van Bael et al. 2003) and may increase

in intensity from the UN upwards (Aikens 2008).

There is a large body of evidence indicating that

avian predators effectively limit arthropod den-

sity (Holmes et al. 1979; Marquis and Whelan

1994; Gunnarsson 1996; Philpott et al. 2004).

Prey availability has also been shown to be an

important determinant of community structure

(Halaj et al. 1998), and key prey items may be

Table 4. Effect size (agreement statistic) and significance of MRPP for spiders and beetles collected from

four canopy layers (UN, LC, MC, UC).

Spiders Beetles

Comparisons Agreement statistic P-value Agreement statistic P-value

All 0.175 ,0.001 0.0343 ,0.001

UN versus LC 0.120 ,0.001 0.0261 ,0.001

UN versus MC 0.200 ,0.001 0.0286 ,0.001

UN versus UC 0.234 ,0.001 0.0483 ,0.001

LC versus MC 0.0268 ,0.001 20.00457 0.877

LC versus UC 0.0934 ,0.001 0.0234 ,0.001

MC versus UC 0.0358 ,0.001 0.0153 0.004

MRPP, multi-response permutation procedure; UN, understorey; LC: lower canopy; MC, mid canopy; UC, upper canopy.

Table 5. x2-values for proportion of individuals

belonging to four spider guilds and five beetle guilds.

df x2-value

Spiders

Ambushers 3 35.2*

Jumpers 3 168.0*

Pursuers 3 31.8*

Web-spinners 3 190.3*

Beetles

Fungivores 3 7.7

Herbivores 3 5.5

Predators 3 39.0*

Sapro/xylophages 3 9.2

Mixed 3 7.2

Guild assignment follows Ehmann (1994) for spiders
and Grimbacher and Stork (2007) for beetles. Asterisks
indicate significant difference at P , 0.05 across the four
canopy strata.
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unavailable or less abundant in the UC. For

herbivores, available leaf biomass is much

higher in the canopy, so this would not play a

role in limiting density. Instead, it seems likely

that gradients in abiotic factors are important.

The UC is a highly variable environment that

subjects inhabitants to extremes of temperature,

moisture, and wind (Parker 1995). The UC is

also exposed to large amounts of radiation,

which decreases by more than 97% as sunlight

reaches the forest floor (Canham et al. 1994).

In contrast, the UN is more stable and sheltered

and may represent more of a ‘‘sure bet’’ strategy

for survival and reproduction. These same

factors – favourable microclimate below and

high predation pressure above – may also limit

species richness and permit only a subset of

species living in the UN to invade the canopy.

Species richness of spiders was high in the UN

and LC and dropped significantly in the MC and

UC. This suggests that only a subset of spider

species present in the LC and UN are able to

persist in the MC and UC. In contrast, beetle

species richness did not follow a consistent

pattern of decrease with increasing height; MC

samples yielded higher species richness than LC

or UC. Although Schroeder et al. (2009) only

sampled two strata, they documented a higher

diversity of beetles in the canopy compared with

the upper UN (comparable to our LC layer) – a

finding consistent with ours. Fewer species of

beetles than spiders appear to be limited by

canopy height, which may indicate that condi-

tions necessary for survival and persistence is

different for spiders, perhaps requiring adapta-

tions that fewer spider species possess. Most of

the spider species richness is contained within

the web-spinner guild, which may be more sus-

ceptible to wind. Higher wind speeds may

destroy webs, which are costly to produce;

they may also render the webs less effective as

more web movement means greater visibility for

Fig. 4. Proportion of individuals belonging to each guild of spider (A) and beetle (B) across four strata (UN,

understorey; LC, lower canopy; MC, mid canopy; UC, upper canopy). Guild assignment follows Ehmann (1994)

for spiders and Grimbacher and Stork (2007) for beetles.
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potential prey. Additionally, since web-builder

spiders are relatively sedentary, they may not

escape high winds simply by moving to another

stratum. Though spiders are excellent dispersers

(Freeman 1946; Wise 1993), most beetle species

are capable of directed flight. Beetle commu-

nities may be more homogeneous through the

canopy layers because most species spend their

time moving between the strata.

Based on the assessment of abiotic factors

potentially limiting spider diversity and diversity

in the UC, we might predict exploitation of the

UC by one or a few species that have adapted to

harsher conditions. It appears that is the case

in a single jumping spider species, H. mitrata,

which was collected infrequently in the UN and

increased in density through subsequent canopy

layers. This species may exhibit adaptations

lacking in other spider species. Members of

other species that have managed to persist in the

UC may show intra-population morphological or

physiological variation in vertical space. For

example, those individuals in the UC may exploit a

lower surface area to volume ratio by having larger

mass, and therefore avoid desiccation.
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Arnett, R.H. and Thomas, M.C. 2001. American
beetles, Vol. 1. CRC Press, Boca Raton, Florida,
United States of America.

Arnett, R.H., Thomas, M.C., Skelley, P.E., and
Frank, J.H. 2002. American beetles, Vol. 2. CRC
Press, Boca Raton, Florida, United States of
America.

August, P.V. 1983. The role of habitat complexity and
heterogeneity in structuring tropical mammal
communities. Ecology, 64: 1495–1507.

Basset, Y., Aberlenc, H.-P., Barrios, H., Curletti, G.,
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