
Robotica (2018) volume 36, pp. 427–447. © Cambridge University Press 2017
doi:10.1017/S0263574717000480

Variable admittance control of the exoskeleton for
gait rehabilitation based on a novel strength metric
Ali Taherifar†, Gholamreza Vossoughi†,∗ and Ali Selk
Ghafari‡
†School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
‡School of Science and Engineering, Sharif University of Technology, International Campus, Kish
Island, Iran

(Accepted October 06, 2017. First published online: November 20, 2017)

SUMMARY
Assist-as-needed control is underlain by the aim of replacing skillful therapists with rehabilitation
robots. The objective of this research was to introduce a smart assist-as-needed control system for the
elderly or partially paralyzed individuals. The main function of the proposed system is to assist the
patients just in the required sub phases of the motion. To ensure that a smart and compliant system
is developed, the target admittance gains of the controller was adapted according to the concept of
energy The admittance gains were modified so that an exoskeleton reduces interaction energy in
cases wherein users have sufficient strength for task execution and maximizes the interaction energy
in the required subphases. The results of simulations and an experimental investigation on a novel
exoskeleton showed that the proposed adaptive admittance control improves performance to a level
substantially higher than that achieved with constant impedance control.

KEYWORDS: Adaptive admittance control, Exoskeleton, Assist-as-needed control, Human–robot
interaction, Strength metric.

1. Introduction
Exoskeletons are used extensively in robotic rehabilitation and power augmentation systems. They
can also serve as assistive systems for restoring the gait patterns of partially disabled people and
helping the elderly perform daily activities.

During the early development of assistive robotic systems, patients were compelled or guided along
a reference trajectory that describes an entire gait pattern.1 This approach is a passive process, thus
driving several researchers to develop impedance-based support devices to enable more active patient
participation.2,3 A recent effort in this regard is the study conducted by Cai et al. who investigated the
potential of such devices through experimentation with mice; the authors found that spinal injured
mice trained with a fixed pattern regained fewer walking abilities than did mice trained with an
assist-as-needed (AAN) algorithm.4

Taking advantage of the features of an impedance shaping controller, Emken et al. introduced a
step-by-step learning assistive controller composed of a feedback term that is adjusted at each step.5

Wolbrecht et al. presented an AAN controller based on an adaptive feed-forward term and argued
that decreasing assistance during the learning of a new task is necessary to increase the contribution
of human muscles to generate the force required to accomplish the task.6 The authors implicitly
assumed that a patient behaves in a similar manner during each repetition of a task, indicating that
patient errors always occur in the same locations and directions. This assumption, however, does
not always hold. Oboe et al. presented a nonlinear adaptive impedance controller based on position
errors and adapted the feedback and feed-forward gains of the assistive controller.7 Their simulation
results indicated large impact during high-acceleration phases. In addition, the authors failed to
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428 Variable admittance control of the exoskeleton

guarantee the algorithm’s stability. Hussain et al. put forward an AAN controller that works on the
basis of a robust adaptive control approach. The researchers carried out two experiments, namely, a
trajectory following experiment and an AAN experiment. However, they did not define any measures
for confirming the performance of their algorithm.8

As shown in the discussion earlier, advanced control algorithms have been used in developing
devices for the rehabilitation of disabled individuals and people suffering from spinal cord injury and
stroke. These algorithms, which are usually referred to as AAN controllers, are underlain by the ideal
goal of replacing skillful therapists with robotic rehabilitation technologies. The same goal was the
main motivation behind the current research, in which an algorithm that brings us a step closer to the
ideal goal was developed.

Its objective was to introduce a smart assistive control system that primarily helps elderly or
partially paralyzed individuals in the required subphases of the motion while maintaining minimum
interaction energy between a human and an exoskeleton. To achieve this objective, an adaptive
admittance controller based on a target admittance adaptation law was developed. To validate
simulation results, the proposed controller was implemented on a compact, lightweight, powerful,
and functional exoskeleton that enables active hip and knee extension/flexion actuation by means of
electrical series elastic actuators (SEAs).

The earlier-mentioned features distinguish the current work from previous research in the following
manner. Most previous studies8−12 did not employ the standard form of impedance control, whereas
the present study used the standard form of admittance control in the control algorithm and developed
a systematic controller design. The controllers proposed in the literature were adapted on the basis
of position error; the researchers increased the gains of the controllers in cases wherein position
error increased, and gradually decreased the gains over time to increase human participation. These
algorithms inadequately cover situations in which a patient has sufficient strength to execute the
subphases of gait.

The main novelty of the present study is that unlike previous research, it used the concept of energy,
specifically interaction energy, as basis in adapting admittance gains. It also developed a strength
metric and incorporated it into the law that governs the adaptation. Using the function approximation
technique (FAT), admittance gains and feed-forward force were considered as a function of position
(r1, r2) and time t .

The rest of the paper is structured as follows. Section 2 describes the establishment of the dynamic
model of the swing leg for the augmented human–exoskeleton system. Section 3 focuses on the control
scheme for gait rehabilitation and is divided into four subsections. The first subsection presents the
block diagram and basic formulation of the admittance control implemented in this work. It also
introduces the concept of admittance gains, that is, target admittance. The second subsection details
the application of function approximation in reformulating target admittance. The third subsection
discusses the novel strength metric developed on the basis of interaction energy. The data derived
from the procedures described in the three subsections were used to develop the proposed adaptive
admittance controller, which is discussed in the fourth subsection. Section 4 provides the results of
two simulations, namely, a simulation on a controller that mimics human functioning and an overall
simulation on the augmented human–exoskeleton system. Sections 5 and 6 present the experimental
results and the conclusion, respectively.

2. Human–Exoskeleton System: Dynamic Modeling in Cartesian Space
Human–exoskeleton motion in the swing phase was modeled with a double pendulum (Fig. 1) and
the effects of hip translational acceleration were also considered. A swing leg model was established
to test control performance while avoiding the complexity of modeling an entire body. The mass
distribution and geometrical parameter of the model were assumed to be similar to those of a normal
human with a weight of 56.7 kg and a height of 170 cm.13 The physical human properties adopted in
this work are indicated in Table I.

The human model and the exoskeleton were assumed to be connected to each other by straps at
interaction points, which coincide with the center of mass (Fig. 1). The physical properties of the
exoskeleton fabricated in this research are also listed in Table I.

The governing equations of motion for the human and exoskeleton are the same with different
physical parameters. The dynamic human–exoskeleton model, which was derived using a Lagrangian
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Table I. Physical properties of a normal human (weight = 56.7 kg, height = 170 cm) height and the
exoskeleton robot.

Moment of
Segment/parameter Length (m) Mass (kg) inertia (kg·m2)

Human shank and foot 0.425 2.637 0.042
Human thigh 0.314 5.67 0.103
Exoskeleton shank and foot 0.425 3.5 0.15
Exoskeleton thigh 0.314 5.8 0.22

Fig. 1. Schematic of the exoskeleton model with two active degree of freedom (DoFs) and translational motion
of the hip. The direction of the interaction forces is presented.

approach, is expressed as follows:

Mr (qr )q̈r + Cr (qr , q̇r )q̇r + Gr (qr ) = Brτ r − J T Fint

Mh(qh)q̈h + Ch(qh, q̇h)q̇h + Gh(qh) = Brτ h + JT Fint
(1)

where subscripts r and h stand for the exoskeleton and the human model, respectively. In this
formulation, q denotes the generalized coordinates, M(q) ∈ �n×n is the symmetric positive definite
inertia matrix, C(q, q̇) ∈ �n denotes the centrifugal and Coriolis vector, G(q) ∈ �n represents the
gravitational effects, τ ∈ �n is the vector of the joint torque, and B ∈ �n×n maps joint torques to
limb torques. Limb torques are calculated with the following equation:

Qi =
∑
j=1:n

δθj

δqi

τj (2)

where θ = [q1, q2 − q1 ]T represents the relative angles. The limb torques derived in this equation
are Q = [ τ1 − τ2, τ2 ]T . In addition, Fint ∈ �n is the interaction force exerted by the exoskeleton on
the human model and J(q) is the Jacobian matrix, defined as,

v = J(q)q̇ (3)
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where v is the linear velocity of the interaction points. The compliant controller was to be derived in
the Cartesian space to accommodate task-based rehabilitation programs. This derivation necessitates
that the dynamic equation be presented in the Cartesian space as well. The kinematic transformation
of joint coordinates into Cartesian coordinates proceeds as follows:

x = Ω(q)

ẋ = J(q)q̇

ẍ = J(q)q̈ + J̇(q)q̇

(4)

where J(q) = dΩ(q)/dq. Equation (1) for non-redundant and non-singular manipulators with a
known Jacobian J(q) can be converted from the joint space to the Cartesian space using the following
equations:

M x(x) = J−T (q)M(q) J−1(q)

C x(x, ẋ) = J−T (q)
(
C(q, q̇) − M(q) J−1(q) J̇(q)

)
J−1(q)

Gx(x) = J−T (q)G(q)

Fx(x) = J−T (q)τ

(5)

With Eqs. (4) and (5), the dynamic equation of the human-exoskeleton system in the Cartesian
space can be written as

M xr (x)ẍr + C xr (x)ẋr + Gxr (x) = Fr (x) − Fint (6)

M xh(x)ẍh + C xh(x)ẋh + Gxh(x) = Fh(x) + Fint (7)

where xr = xh = x = [ r1 r2 ]T is the position vector of the ankle as shown in Fig. 1. The inverse
dynamic solution of the presented model was compared with the MATLAB SimMechanics toolbox.
A reference position trajectory was assigned to the model, and the joint torques were computed and
compared. The inverse dynamic validation test showed that the relative error in the joint torques is
limited to less than 10−3 N·m.

3. Control Scheme for Gait Rehabilitation

3.1. Basic admittance control
Impedance/admittance control, which was first introduced by Hogan,14 is the most widely recognized
control strategy in research on human–exoskeleton interaction. Impedance control correlates position
tracking errors to interaction forces according to a mass–spring–damper relationship. This strategy
is implemented through two principal approaches,15,16 namely, position- and torque-based methods.
The present study employed the position-based approach (admittance control).

If the desired values of generalized coordinates are defined as xd , admittance control can be
formulated as follows:

Md(t) ¨̃x + Cd(t) ˙̃x + K d(t)x̃ = Fint − Fd(t) (8)

where Md(t), Cd(t), and K d(t) are the exoskeleton’s target inertia, damping, and stiffness matrices
in the Cartesian space, respectively. According to the literature of impedance control, the admittance
control gains are called target admittance. The performance of admittance controllers depends heavily
on environmental dynamics and choice of target admittance.17 Also, Fd(t) is the feed-forward force
and ¨̃x = ẍd−ẍi , ˙̃x = ẋd−ẋi , x̃ = xd−xi . The desired trajectory is a predefined trajectory which
is defined according to the normal gait of a healthy human and always contributes to the control
system. The target admittance in this study is diagonal matrices; to simplify the calculation, the target
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Fig. 2. Block diagram of the proposed adaptive admittance control. The inner loop is the position controller, the
middle loop is the admittance controller and the outer loop is the adaptive admittance loop.

admittance vectors are defined as

Mvec
d = diag(Md(t))

Cvec
d = diag(Cd(t))

K vec
d = diag(K d(t))

(9)

A block diagram of the proposed assistive-compliant control law is shown in Fig. 2. Note that xi

represents the Cartesian position reference for the inner position control loop as illustrated in Fig. 2.
The target impedance matrices were assumed to be positive, time-varying diagonal matrices.

As indicated in Fig. 2, the admittance law is used to calculate x̃, which is subtracted from xd to
calculate xi . The same procedure is applied for ˙̃x, ẋd , ẋi and second derivatives. The outer loop of
the proposed admittance controller takes Fint as an input and calculates x̃ and its derivatives according
to Eq. (8). The inner position loop takes xi as a reference and attempts to follow the reference. As in
ref. [18], the inner loop uses the sliding surface s and reference trajectory w, and the control law Fr

is defined, thus, as

e = x − xi

ė = ẋ − ẋ i

w = ẋ i − λe

ẇ = ẍ i − λė

s = ẋ − w

ė = −λe + s

Fr = M xrẇ + C xrw + Gxr − K s + Fint

(10)

where λ and K are the symmetric, constant, and positive definite gain matrices of position control.
The advantages of this method are that the acceleration feedback is not necessary, equations are
singularity free and using the regression matrix instead of the detailed dynamic modeling in19 is
easier. This controller allows for the independent stability analysis of inner and outer loops.

In cases wherein exoskeleton parameters M xr , C xr , and Gxr are uncertain, the inner loop can be
adapted using the technique proposed in.20

https://doi.org/10.1017/S0263574717000480 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000480


432 Variable admittance control of the exoskeleton

3.2. Function approximation approach
Admittance control enables the realization of different rehabilitation exercises through modifications
to the target admittance gains. In most researches presented in the literature, target admittance was
experimentally tuned by trial and error.21 To the best of our knowledge, little evidence has been found
with respect to the target admittance adaptation for the system investigated in the current research.
As previously indicated, one of the major contributions of this work is the introduction of an adaptive
admittance controller, whose development was facilitated by the adaptation of admittance parameters
Md(t), Cd(t), and K d(t).

Given that the swing phase involves cyclic motion, admittance gains and feed-forward force must
be a functions of position (r1, r2) and time t . We used the FAT22 to realize variations in the admittance
gains and feed-forward force as follows:

Mvec
d = Y (r1, r2)bm(t)

Cvec
d = Y (r1, r2)bc(t)

K vec
d = Y (r1, r2)bk(t)

Fd = Y (r1, r2)b f (t)

(11)

where Y (r1, r2) is a 2 × m regression matrix and bm(t), bc(t), bk(t), and b f (t) are gain vectors. The
regressor matrix is composed of dependent Gaussian radial basis functions defined as

Y (r1, r2) =
[

gT 0

0 gT

]

g = [g1 g2 . . . gm/2 ]T

gi = exp

(
−|r1 − μxi |2

2σ 2
x

−
∣∣r2 − μyi

∣∣2

2σ 2
y

) (12)

where r1 and r2 specify the current location of the ankle joint in the x–y plane, μx and μy are the
centers of radial basis functions, and σx and σy denote the widths of the basis functions. To achieve
good function approximation, the function widths (σx and σy) should be large enough for sufficient
overlap between the radial basis functions.

3.3. Strength metric: human contribution to motion
As mentioned earlier, the advanced control algorithms used in rehabilitation are intended to act as
skillful therapists. These algorithms are typically called AAN, patient corporative or human-centered
algorithms. Their core objectives are to recognize and differentiate the voluntary motions of a patient
from the motions that result from disabilities. They are designed to help patients when needed and
refrain from intervention when patients are sufficiently strong to execute tasks. In this study, a novel
approach was developed to realize assistive control based on interaction force and power.

The diagram shown in Fig. 3 illustrates the different human-exoskeleton interaction states for
different levels of human contribution to the motion. The “Human Dynamic” and “Robot Dynamic”
columns in the figure pertain to the required dynamic forces for the human model and the exoskeleton
in a specific trajectory, respectively. These forces can be determined using the left-hand side of Eqs.
(6) and (7).

Figure 3(a) presents a state in which the exoskeleton force is zero and the human force is equal to
the sum of the human and exoskeleton dynamics. Because the left-hand side of Eq. (6) is positive, the
interaction force must be negative, that is the human moves the exoskeleton. The human contribution
to the motion was reduced in Fig. 3(b) and the robot force was increased to satisfy Eqs. (6) and
(7). Figure 3(c), shows that the human generates a force equal to his/her dynamics and that the
exoskeleton generates only the force equal to that required to move the exoskeleton. Therefore, the
interaction force is zero and the human can successfully follow the trajectory. It can be observed that
the human contribution is less than his/her dynamics, as shown in Fig. 3(d) and (e), in which case
the exoskeleton helps the human. A similar interpretation is presented in Fig. 3(f)–(j). For instance,
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Fig. 3. Human–exoskeleton interaction states for different levels of human contribution to motion (human-
generated force).

the human negative force as shown in Fig. 3(f) is equal to the sum of the human and exoskeleton
dynamics. Although the human helps the robot in this case, the interaction force is positive.

On the basis of the descriptions above, one can interpret that in the cases shown in Fig. 3(c) and
(h), the human is strong enough to follow the trajectory, and strength decreases in the cases shown
in Fig. 3(b), (g), (d), and (i). The human can be interpreted as being weak in the cases shown in Fig.
3(a), (f), (e), and (j).

As was described, the human has strength when Fint is small, regardless of whether the human-
required dynamic force is positive or negative. According to this fact, a novel strength metric was
developed as follows:

Sm = α

α + F 2
int

α = (z × Dyn2
h)/(1 − z)

(13)

where Dynh refers to the dynamics of the human (left-hand side of Eq. (7)) and z is a parameter that
indicates 0 < z � 1. Figure 4 illustrates the proposed strength metric versus the interaction force.
This metric is calculated at each instant of motion.

It can be observed that, as the value of interaction force tends to Dynh, the strength metric tends to
a small value (z) and the human weakens. By contrast, as interaction force tends to zero, the strength
metric tends to 1 and the human becomes stronger.

3.4. Variable admittance formulation
The transferred power, called interaction power, is defined as Eint = ẋT Fint. The positive sign of Eint

indicates that the robot transfers energy to the human, whereas the negative sign means that the robot
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Fig. 4. Proposed strength metric versus interaction force.

receives energy from the human. It should be emphasized that neither the positive nor negative sign
of Eint indicates that this energy transfer is due to the weakness or strength of the human as illustrated
in Fig. 3. However, the strength of the human must be determined according to the human-required
dynamic force from Eq. (13).

To formulate the proposed AAN controller, a novel cost function was introduced, and the adaptation
laws were derived to minimize the cost function:

R = (2Sm − Iv) |Eint | (14)

where Iv is 2 × 2 identical matrix and Sm is 2 × 2 diagonal matrix defined as Sm = diag(Smx, Smy)
where Smx = αx/αx + F 2

intx and αx are determined in the manner described in the previous subsection.
When Sm is small, the human is weak and the robot must supply energy to help the human complete
motion. In this case, |Eint| must be increased to minimize the cost function. This means that more
energy for transfer to the human is required. When Sm is near one and the human is strong, |Eint|
must be reduced because assistance is not required. The objective of the AAN control algorithm is
to increase the active participation of a human, that is the exoskeleton should help a patient when
required and leave the patient unassisted when the patient has adequate strength for task completion.

The absolute function can be replaced by the Sign function in the following manner:

R = (2Sm − Iv)sign(Eint).Eint (15)

The Sign function is then estimated using tanh because it is not a differentiable function. Rewriting
the cost function using Eint = ẋT Fint yields

R =
(

2α

α + F2
int

− Iv

)
tanh(β ẋT Fint).(ẋT Fint) (16)

where β determine the accuracy of approximating Sign with tanh. To determine the adaptation law,
the partial derivative of R with respect to Mdi, Cdi, Kdi, Fdi i = x, y must be calculated. Note that
Mdi, Cdi, Kdi, Fdi are the elements of Mvec

d , Cvec
d , K vec

d , Fd matrices. First, the partial derivative
of Rx and Ry with respect to Fint in the x and y direction are calculated as follows: (Note that
R = [Rx Ry ]T )

∂Rx

∂Fint x

= −4αxFint x

(αx + F 2
int x)

2 tanh(βEint x)Eint x + (2Smx − 1)
βṙT

1

cosh2(βEint x)
Eint x

+(2Smx − 1)tanh(βEint x)ṙ1,

∂Ry

∂Fint y

= −4αyFint y

(αy + F 2
int y)

2 tanh(βEint y)Eint y + (2Smy − 1)
βṙT

2

cosh2(βEint y)
Eint y

+(2Smy − 1)tanh(βEint y)ṙ2

(17)
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One can use Fint from Eq. (8) to calculate the partial derivative of Fint with respect to
Mdi, Cdi, Kdi, Fdi i = x, y, thus

∂Fint x

∂Mdx

= ¨̃xT
,

∂Fint y

∂Mdy

= ¨̃yT

∂Fint x

∂Cdx

= ˙̃xT
,

∂Fint y

∂Cdy

= ˙̃yT

∂Fint x

∂Kdx

= x̃T ,
∂Fint y

∂Kdy

= ỹT

∂Fint x

∂Fdx

= 1,
∂Fint y

∂Fdy

= 1

(18)

To minimize cost function R, the gradient approach is used. The adaptation laws for admittance
gains and feed-forward term are proposed as

Ṁ
vec
d = −Γ m

[
∂Rx

∂Mdx

∂Ry

∂Mdy

]T

=
[

∂Rx

∂Fint x

∂Fint x

∂Mdx

∂Ry

∂Fint y

∂Fint y

∂Mdy

]T

Ċ
vec
d = −Γ c

[
∂Rx

∂Cdx

∂Ry

∂Cdy

]T

=
[

∂Rx

∂Fint x

∂Fint x

∂Cdx

∂Ry

∂Finty

∂Fint y

∂Cdy

]T

K̇
vec
d = −Γ k

[
∂Rx

∂Kdx

∂Ry

∂Kdy

]T

=
[

∂Rx

∂Fint x

∂Fint x

∂Kdx

∂Ry

∂Fint y

∂Fint y

∂Kdy

]T

Ḟd = −Γ f

[
∂Rx

∂Fdx

∂Ry

∂Fdy

]T

=
[

∂Rx

∂Fint x

∂Fint x

∂Fdx

∂Ry

∂Fint y

∂Fint y

∂Fdy

]T

(19)

where the partial derivatives in the first term of this equation can be calculated, for instance, as

Ṁ
vec
d = −Γ m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

−4αxFint x

(αx + F 2
int x)

2 tanh(βEint x)Eint x

+(2Smx − 1)
βṙT

1

cosh2(βEint x)
Eint x

+(2Smx − 1)tanh(βEint x)ṙ1

⎞
⎟⎟⎟⎟⎠ ¨̃xT

×

⎛
⎜⎜⎜⎜⎝

−4αyFint y

(αy + F 2
int y)

2 tanh(βEint y)Eint y

+(2Smy − 1)
βṙT

2

cosh2(βEint y)
Eint y

+(2Smy − 1)tanh(βEint y)ṙ2

⎞
⎟⎟⎟⎟⎠ ¨̃yT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

The other terms in Eq. (19) can be determined in the similar manner. In this equation, Γ m, Γ c, Γ k,

and Γ f are positive, and constant 2 × 2 adaptation rate matrices. Substituting the definition of
admittance parameters (Eq. (11)) into Eq. (19) and using the pseudo inverse of Y yields

ḃm(t) = Y T (YY T )−1 Ṁ
vec
d

ḃc(t) = Y T (YY T )−1Ċ
vec
d

ḃk(t) = Y T (YY T )−1 K̇
vec
d

ḃ f (t) = Y T (YY T )−1 Ḟ
vec
d

(20)

To simulate the proposed controller, differential Eqs. (8), (10), (19), and (20) and dynamic Eqs. (6)
and (7) were numerically solved. The differential equations were calculated using the “ode45”
algorithm. The numerical calculation of the terms in Eq. (19) was not a concern since all the variables
were determined previously as was presented forṀ

vec
d .
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4. Simulation Study

4.1. Human controller simulation
Thus far, the dynamic model of the augmented human skeletal and exoskeleton structure has been
derived, and an impedance controller for the exoskeleton has been proposed. If the human is assumed to
be completely paralyzed, the passive torque of muscles can be examined, and the human–exoskeleton
model can be simulated using Eq. (1). For a healthy, weak, or partially paralyzed human, however,
the central nervous system of the human must be modeled and simulated.

As the neural system of humans is highly complicated and that several of its aspects are remain
unknown, no complete and verified model of the human motor control has been presented in the
literature. In the current work, one of the more widely accepted controllers that mimic the human
neural system in the swing phase is used. This model was first introduced by Geyer23,24 and later
integrated with the famous neuromusculoskeletal model.25 The main features of the model are as
follows:

1. No predefined trajectory is established for the joints.
2. It is robust to external disturbances.
3. The dynamics of the pendulum motion of the knee is considered in the controller.
4. Local feedback is used in a similar manner as human biological feedback.

This model has been validated with the following evidences:

1. The ankle trajectory in the x–y plane matches the real trajectory of the human.
2. The trend of joint torques closely follows the trend observed in experiment.
3. The model is robust to initial joint angle and velocity.

4.2. Simulation results
A repetitive swing leg motion was simulated for the human–exoskeleton system. The desired trajectory
of the exoskeleton (xd) was adopted from the normal gait of a healthy human.13 The step length was
0.7 m, and the walking speed was about 0.71 m/s. The gains of the human swing leg controller
(HSLC), the gains of the inner position loop control and the gains of the adaptive admittance control
for this simulation are shown in Table II.

The simulation was performed for three general cases. In the first case, the human can actively
participate for a certain period of motion. In the second case, the human is healthy, and the human
torques resulting from muscle activation are calculated from HSLC.23 In the third case, the human
is assumed to be completely paralyzed and all human joint torques are zero. The results showed that
the proposed algorithm reduce the cost function in any possible scenario of human behavior.

In the simulation, 10 grid divisions each in the x (0.05, 1.6)m and y (0.05, 0.4)m directions were
established, leaving us with 100 basis functions (m = 200). The dimensions of the regressor matrix
were 2 × 200. The values of σx and σy were 0.065 and 0.016 m in the x and y directions, respectively.

Four indices were defined to examine the performance of the proposed algorithm. These indices
were evaluated in the x and y directions and in relation to the sum of the directions.

J1i =
√∑

ET
i Ei

N
,

J2i =
√∑

FT
inti

FT
inti

N
,

J3i =
√∑

(max(0, Ri))T (max(0, Ri))

N

J4i =
√∑

(min(0, Ri))T (min(0, Ri))

N
, i = x, y

(21)

In the equation above, E and J are the position error vector and cost function, respectively, and
N denotes the size of the vectors. The first index indicates the Root Mean Square (RMS) position
error. Position error is the difference between the desired trajectory (xd ) and the actual trajectory (x).
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Table II. Gains of the human swing leg controller, inner position loop control, and adaptive admittance control.

Human swing leg control (HSLC)

Kα
P Kα

d Ki Kii Kstp Kext α̇max αtgt αthr

20 4 20 5.5 200 200 10 70 74

Inner position loop control

K λ

200I2×2 10I2×2

Adaptive admittance control

Γ m Γ c

2 × 102diag([ I100×100 I100×100 ]) 15 × 104diag([ I100×100 I100×100 ])
Γ k Γ f

6 × 105diag([ 5I100×100 4I100×100 ]) 60diag([ I100×100 4I100×100 ])

Fig. 5. Simulated motion path of the human–exoskeleton system.

The second index calculates the RMS interaction force and the third and fourth indices determine the
RMS of the Positive Part of the Cost Function (PPCF) and the Negative Part of the Cost Function
(NPCF), respectively.

For the first case (partially active human), the motion path of the augmented human–exoskeleton
in the swing phase of motion is shown in Fig. 5. The swing phase of motion is a single support phase
that starts with toe off and ends with heel contact. Without loss of generality, hip translational motion
instead of human leg stance was considered in the simulation, as stated in Section 2.

Figure 6(f) shows that the human exerts a linearly increasing force in [0.17 0.30] s in the y direction,
thereby causing the interaction force to decrease to a level below 0 and the strength metric to tend to
1 (Fig. 6(h)).

The linear velocity of the leg in different cycles is indicated in Fig. 6(a) and (e). The linear velocity
in the x direction is positive, except in the last 0.08 s of motion, which is an acceptable result for the
swing phase of gait. The interaction-induced exoskeleton and human force and the force in the hip
and knee joints are illustrated in Fig. 6(b) and (f). The cost functions in the x and y directions are
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Fig. 6. (a) Leg linear velocity in X, (b) leg force in X direction, (c) cost function in X, (d) strength metric in X,
(e) leg linear velocity in Y , (f) leg force in Y direction, (g) cost function in Y , (h) strength metric in Y direction.
Representations are for five continuous cycles in the case wherein the human is partially active.

Fig. 7. Comparison of different indices in five continuous cycles in the x and y directions in the case wherein
the human is partially active. The first and second columns in each chart indicates the values of the indices in
the x and y directions, respectively, and the third column is the sum of the indices in the both directions. (a)
First index—J1, (b) second index—J2, (c) third index—J3, (d) fourth index—J4.

shown in Fig. 6(c) and (g), respectively. These figures also show that the cost function is positive. At
[0.3 0.6] s, the strength metric is positive, and the cost function is negative.

The bar chart presented in Fig. 7 displays the position, force, and energy indices in five continuous
swing cycles. The NPCF increases in the x and y directions, whereas the PPCF decreases. The figure
indicates that the proposed adaptation law (i.e., Eq. (20)) successfully reduces the cost function in Eq.
(6) in five cycles. This success is ascribed to the decrease and increase in the positive and negative
parts of the cost function, respectively.
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Fig. 8. (a) Desired inertia in X direction, (b) desired damping X direction, (c) desired stiffness X direction,
(d) feed forward in X direction, (e) desired inertia in Y direction, (f) desired damping Y direction, (g) desired
stiffness Y direction, (g) feed forward in Y direction, (h) feed forward in Y direction. Representations are for
five continuous cycles in the case wherein the human is partially active.

Figure 8 shows the admittance gains and feed-forward force during the gait cycles. The inertia,
damping, and stiffness coefficient in the x and y direction were changed according to Eq. (20). It can
be observed that all the gains converge into a certain value in both the x and y directions, indicating
that the adaptation law is stable. The desired inertia is gradually changed due to low adaptation
learning gains.

The value of the feed-forward term in the x direction was adapted on the basis of the values of
∂Fint i/∂Fdi and ∂Ri/∂Fint i (Fig. 8(d)). Given that the first term is equal to 1, the second term is
highly positive and negative at 0.17 and 0.35 s, respectively. It also causes a sudden change in ḃf x(t).
As shown in Fig. 8(c), stiffness suddenly varies in the x direction because of the change in the sign
of the interaction force (Fig. 6(b)).

The admittance gains and feed-forward force in the Cartesian plane (x–y plane) are presented
in Fig. 9, which also depicts the admittance gain surface and feed-forward surface in the last cycle.
This figure is the same as Fig. 8, except that the output is illustrated versus the x–y coordinate rather
than time

In the case where the human is healthy, the strength metric is positive at a certain duration of gait
(Fig. 10). The proposed method functions perfectly, as demonstrated in Fig. 11. Compared with the
NPCF in the partially active case, that in the healthy case increases in magnitude because the human
neural control system acts against the robot at a certain duration of the cycle. As observed in Fig.
10(b) and (f), the human torque in the hip joint is negative at the beginning of swing motion, thereby
increasing the hip angle; it is positive at the end of motion, thereby enabling deceleration. The knee
joint torque is positive at the beginning, thus enabling the flexing of the knee joint and the avoidance
of foot contact with the ground. Furthermore, the interaction and robot torques only slightly differ
because of the small torque required to overcome the robot dynamics.

The trend of human torque in the hip and knee joint in the healthy human case is the same as that
reported in the literature.13 This confirms that the controller intended for human action functions
effectively.

The results on the case wherein the human is completely passive are presented in Figs. 12 and 13.
Because the human is completely passive, the human torque is 0, and the interaction torque is almost
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Fig. 9. Final values of admittance gains and feed-forward force in the x–y plane after five cycles in the case
where the human is partially active.

Fig. 10. (a) Leg linear velocity in X, (b) leg force in X direction, (c) cost function in X, (d) strength metric in X,
(e) leg linear velocity in Y , (f) leg force in Y direction, (g) cost function in Y , (h) strength metric in Y direction.
Representations are for five continuous cycles in the case wherein the case that the human is healthy.

equal to that of the robot (Fig. 12(b) and (f)). As the robot inertia decreases, the difference between
the interaction and robot torques also declines.

The cost function is mostly negative and increases in magnitude during the cycles, indicating that
the human has insufficient strength in this case (Fig. 12(c) and (g)). The strength metrics in the x and y
directions are presented in Fig. 12(d) and (h); for these directions, the strength metric was calculated
using Eq. (13). In this simulation, the human joint torques were set to 0, and the proposed strength
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Fig. 11. Comparison of different indices in five continuous cycles in the x and y directions in the case wherein
the human is healthy. The first and second columns in each chart indicates the values of the indices in the x and
y directions, respectively and the third column is the sum of the index in the both directions. (a) First index—J1,
(b) second index—J2, (c) third index—J3, (d) fourth index—J4.

Fig. 12. (a) Leg linear velocity in X, (b) leg force in X direction, (c) cost function in X, (d) strength metric in X,
(e) leg linear velocity in Y , (f) leg force in Y direction, (g) cost function in Y , (h) strength metric in Y direction.
Representations are for five continuous cycles in the case wherein the human is completely passive.

metric was calculated as 0. These confirm that the human in the scenario is paralyzed. The third and
fourth metrics shown in Fig. 13 reflect substantial improvement in performance during the cycles.

To verify the performance of the proposed algorithm, the constant target impedance and the
developed adaptive impedance control were compared. Five sets of impedance gains (Table III) were
selected for the comparison.
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Table III. Five sets of constant target impedance.

Target impedance SET 1 SET 2 SET 3 SET 4 SET 5

ωn 8 16 24 32 40
Mvec

d 50[1,1] 130[1,1] 210[1,1] 290[1,1] 370[1,1]

Fig. 13. Comparison of different indices in five continuous cycles in the x and y directions in the case wherein
the human is completely passive. The first and second columns in each chart indicate the values of the indices
in the x and y directions, respectively and the third column is the sum of the index in the both directions. (a)
First index—J1, (b) second index—J2, (c) third index—J3, (d) fourth index—J4.

where K vec
d = Mvec

d ω2
n, Cvec

d = 2ξ
√

Mvec
d K vec

d , and ξ is supposed to be 1 in all the impedance
gain sets. The ith cycle was assumed to be completed with the ith set of the target impedance gains.
Figure 14 presents the results of the five cycles. Increasing the target impedance does not necessarily
decrease the NPCF or increase the PPCF. In contrast to the proposed algorithm, the AAN controller
cannot be realized using constant target impedance.

5. Experimental Validation
An experimental test was performed to validate the appropriate performance of the proposed adaptive
admittance controller. To examine the controller, a lower limb exoskeleton that uses SEAs was
designed and constructed (Fig. 15). The experimental test was executed on 1-DoF joint (hip joints of
the exoskeleton), and the other joints were disassembled.

The exoskeleton frame is constructed from aluminum tubes (black tubes). Two rounded frame was
also designed for the thigh and shank part of the robot (purple element). This rounded frame supports
the culfs which are made of polyethylene (white element). The culfs are attached to the human leg
with straps (black belts). Through this arrangement, the exoskeleton is attached to the human leg.
The human foot is also attached to the exoskeleton foot with straps.

For data collection, a data acquisition card that receives data from the force sensor and joint
incremental encoder was used. The precision of analogue-to-digital conversion of the DAQ is 16 bits.
Desired analog velocity commands are sent to motor drivers, and position is read via a USB port.
A force sensor with a capacity of 20 kgf is used in the straps. The resolution of the joint encoder is
10,000 pulses per revolution, which is equal to 40,000 quadrature states per revolution, thus providing
sufficient precision for position control. All the received data are transmitted into a computer through
a high-speed USB port at a rate of 200 Hz.
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Fig. 14. Comparison of different indices in five set of constant impedance gain in the x and y directions in the
case wherein human is partially active. The first and second columns in each chart indicate the values of the
indices in the x and y directions, respectively, and the third column is the sum of the index in the both directions.
(a) First index-J1, (b) Second index-J2, (c) Third index-J3, (d) Fourth index-J4.

Fig. 15. Prototype of the lower limb exoskeleton used in the experimental test.
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Fig. 16. (a) The velocity, (b) torque, (c) position and (d) sliding error of the hip joint in the experimental test.

The experimental test was conducted on a healthy subject, who was asked to repeat the swing
motion as he was attached to the exoskeleton. The velocity, torque, position, and sliding error in
the hip joint are shown in Fig. 16. The command and actual velocity in the hip motor coincide well
with each other (Fig. 16(a)). The oscillation of the actual velocity is due to the derivation of the
encoder output. The torque tracking in the hip joint is indicated in Fig. 16(b). The actual torque
was measured on the basis of series elastic spring deflection. Because the human is healthy, a small
torque is transferred to the human, generating a torque less than 9 Nm. The desired position, the
actual position of the motor, and the load imposed on the hip joint are depicted in Fig. 16(c). The
actual position of the motor slightly differs from that of the load because of spring deflection. This
difference is directly related to the actual torque by the spring stiffness law. The implementation of
admittance control generates a difference between the desired and actual positions. The sliding error
shown in Fig. 16(d) is less than 1 rad/s.

The target stiffness and damping are shown in Fig. 17. The target stiffness increases at 2–3 s
because the subject could not follow the desired trajectory in this period (Fig. 16(c)). As a result, the
interaction energy and the target stiffness and damping increase, thereby enabling AAN control. The
target stiffness and damping gradually increase because of the low learning rates.

Qualifying and validating the advantages of an AAN controller necessitate the definition of
quantitative metrics. In this research, a novel cost function (R) that must be minimized was defined.
This cost function is a function of interaction energy. When R decreases during motion cycles, the
assistance force in the required subphases of motion increases. In the simulation and experimental
sections, the magnitude of R in different cycles of motion is presented to demonstrate the advantage
of the proposed method.

Figure 18 shows the four indices presented in Eq. (21) for the hip joint in the experimental test.
The sliding error decreases in different cycles (Fig. 18(a)) because of the increase in the admittance
gains. Furthermore, the RMS of the NPCF increases in the hip joint, reflecting the performance of
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Fig. 17. (a) Target stiffness and (b) damping in the experimental test.

Fig. 18. Comparison of different indices in three continuous cycles in the experimental test. The first and second
columns in each chart indicates the values of the indices in hip and knee joints. (a) First index—J1, (b) second
index—J2, (c) third index—J3, (d) fourth index—J4, (e) cost function.
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the introduced adaptation law. The PPCF slightly increases in Cycle 2 but decreases in Cycle 3. This
finding is attributed to human muscle adaptation or fatigue, which was not considered in this research.
Figure 18(e) illustrates the adaptation law’s cost function, which decreases during the motion cycles.
According to the definition of the cost function (Eq. (14)), when the cost function decreases, AAN
control increases. Consequently, the energy required in such control rises during the experimental test.

6. Conclusions
A smart–compliant assistive control system was developed on the basis of energy and power. An
adaptive admittance controller was designed according to a novel cost function. When the cost function
is minimized, interaction power changes in accordance with human strength in different gait cycles.
Interaction power increases when the strength metric is low, indicating that an exoskeleton is helping
a human in a certain subphase of motion. Conversely, interaction power decreases according to the
proposed adaptation law when the strength metric is high, reflecting that a human is strong enough
to independently execute motion. The human neural control system was simulated by an advanced
robust controller. The proposed algorithm was verified in an experiment and three simulation cases
of healthy, paralyzed, and partially paralyzed humans.
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