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Abstract

Automatic generation of high-quality meshes is a base of CAD/CAE systems. The element
extraction is a major mesh generation method for its capabilities to generate high-quality
meshes around the domain boundary and to control local mesh densities. However, its wide-
spread applications have been inhibited by the difficulties in generating satisfactory meshes in
the interior of a domain or even in generating a complete mesh. The element extraction
method’s primary challenge is to define element extraction rules for achieving high-quality
meshes in both the boundary and the interior of a geometric domain with complex shapes.
This paper presents a self-learning element extraction system, FreeMesh-S, that can automat-
ically acquire robust and high-quality element extraction rules. Two central components
enable the FreeMesh-S: (1) three primitive structures of element extraction rules, which are
constructed according to boundary patterns of any geometric boundary shapes; (2) a novel
self-learning schema, which is used to automatically define and refine the relationships
between the parameters included in the element extraction rules, by combining an
Advantage Actor-Critic (A2C) reinforcement learning network and a Feedforward Neural
Network (FNN). The A2C network learns the mesh generation process through random
mesh element extraction actions using element quality as a reward signal and produces
high-quality elements over time. The FNN takes the mesh generated from the A2C as samples
to train itself for the fast generation of high-quality elements. FreeMesh-S is demonstrated by
its application to two-dimensional quad mesh generation. The meshing performance of
FreeMesh-S is compared with three existing popular approaches on ten pre-defined domain
boundaries. The experimental results show that even with much less domain knowledge
required to develop the algorithm, FreeMesh-S outperforms those three approaches in essen-
tial indices. FreeMesh-S significantly reduces the time and expertise needed to create high-
quality mesh generation algorithms.

Introduction

Automatic mesh generation is an important yet not well-solved problem essential to numerical
computation for CAD/CAE applications, including finite element analysis, computational
fluid dynamics, and geometric modeling (Gordon and Hall, 1973; Roca and Loseille, 2019).
For example, solving partial differential equations (PDE) using finite element methods
requires target geometric regions or objects to be discretized into polygonal or polyhedral
meshes first; topology optimization utilizes finite element analysis to study the behaviors of
geometric objects (Zhang et al., 2019). The mesh quality dramatically affects the accuracy, sta-
bility, and efficiency of those engineering applications. Quad meshes are particularly favored
by many applications for modeling structure behaviors with less computational power and
higher accuracy (Docampo-Sánchez and Haimes, 2019). The quality of a finite element
mesh is measured by metrics related to the mesh’s geometrical and topological properties
(Pébay et al., 2008; Verma and Suresh, 2017). Common metrics for a quad mesh include mini-
mum and maximum angles, aspect ratio, stretch, taper, and singularity (Rushdi et al., 2017). In
general, a mesh cannot achieve high scores on every metric because of the complexities of the
boundary shapes and the need for a minimum number of elements in a mesh.

Motivation: why is it necessary to use the element extraction method?

Conventionally, according to the connectivity of quadrilateral elements in meshes, there are
structured and unstructured meshes. All elements in structured meshes have the same valence
in their vertices and are arranged in regular patterns (Thompson et al., 1998). Most real-world
engineering problems have complex geometric boundaries, and structured meshes would have
poor mesh quality near the domain boundaries; hence, unstructured meshes are preferred,
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which can adapt the mesh structure to complex boundary shapes
(Owen, 1998; Garimella et al., 2004; Remacle et al., 2012; Bommes
et al., 2013).

Existing approaches for unstructured mesh generation can be
classified into two categories: indirect and direct methods
(Shewchuk, 2012). Indirect quad mesh generation methods
usually start with a triangular mesh and then transform the trian-
gular elements into quadrilateral elements (Garimella et al., 2004).
The classical transformation strategies may include optimization
(Brewer et al., 2003), refinement and coarsening (Garimella
et al., 2004), or simplification (Daniels et al., 2008). Some indirect
methods split the triangle mesh into three quadrilateral elements
by adding a mid-point (Peters and Reif, 1997; Prautzsch and
Chen, 2011). Owen et al. (1999) proposed Q-Morph that created
an all-quadrilateral mesh by following a sequence of systematic
triangle transformations. Q-Morph, however, required heuristic
operations such as topological cleanup and smoothing to guaran-
tee the quality of the final quad mesh. Ebeida et al. (2010) pro-
vided an indirect method, named Q-Tran, which is of provably
good quality and smoothing post-processing free in generating
quadrilateral elements. Remacle et al. (2012) proposed a
fast-indirect method, Blossom-Quad, to generate all-quadrilateral
meshes by finding the best matching triangular pairs and combin-
ing them into quadrilaterals. The generated quad mesh’s quality is
unstable and limited by the initial triangulation. Remacle et al.
(2013) proposed an advanced method, DelQuad, to overcome
the limitation of Blossom-Quad by generating triangular mesh
suitable to be recombined into high-quality quad meshes.
However, it is a challenge for all the triangles to form quadrilateral
elements. The indirect methods often suffer from many irregular
vertices, which is undesired in numerical simulations. Therefore,
some methods provide post-processing to improve this irregular
situation. For example, Verma and Suresh (2017) proposed a
robust approach to increase the topological quality of generated
quad meshes by reducing the singularity for many existing
approaches; Docampo-Sánchez and Haimes (2019) described a
technique to recover the regularity by performing iterative topolo-
gical changes, such as splitting, swapping, and collapsing, on the
quad mesh generated by Catmull–Clark subdivision (Catmull and
Clark, 1978).

The direct quadrilateral mesh generation methods construct
quadrilateral elements without any intermediate triangular
mesh. Zhu et al. (1991) built a mesh generator for quadrilateral
elements based on the advancing front technique. Some methods
proposed a quad mesh generator by modifying the quadtree back-
ground grid to conform to the domain boundaries (Baehmann
et al., 1987; Liang et al., 2009; Liang and Zhang, 2012). Zeng
and Cheng (1993) proposed FREEMESH, a knowledge-based
method, to recursively generate quadrilateral elements along the
domain boundary until quadrilateral elements fill the entire
domain. Blacker and Stephenson (1991) proposed an approach
named Paving to generate quad meshes directly in an iterative
way from the boundaries of the input domain towards the
domain’s interior. White and Kinney (1997) improved the origi-
nal Paving algorithm by changing the generation method from
row-by-row to element-by-element. The Paving algorithm is cur-
rently implemented as part of the CUBIT software (Blacker et al.,
2016). The challenge for those methods is to reduce the flat or
inverted elements. Most of these methods require heuristic post-
cleanup operations to improve mesh quality. Some methods use
square packing (Shimada et al., 1998) and circle packing (Bern
and Eppstein, 2000) to generate all quadrilaterals. Circle packing

can only bound the maximum angle to 120°. Atalay et al. (2008)
utilized a quadtree to construct quadrilateral mesh with a guaran-
teed minimum angle bound of 18.43°. Rushdi et al. (2017) aimed
to solve the angle and post-processing problem and developed an
all-quadrilateral algorithm to achieve better quality angles, which
falls in the range [45°, 135°], without any cleanup operations,
including pillowing, swapping, or smoothing. Among the direct
unstructured mesh generation methods, the element extraction
is preferred for applications that need high quality boundary
meshes (Park et al., 2007; Docampo-Sánchez and Haimes, 2019).

The challenge of the element extraction method

Element extraction methods extract elements one by one along
the domain boundary and update the boundary inwardly by cut-
ting off the generated element. An updated boundary is also called
a front (Owen, 1998). The basic procedure is (1) choosing a vertex
(called reference point in this paper) from the front; (2) construct-
ing an element around the reference point; (3) removing the gen-
erated element, and; (4) updating the front. A few crucial
questions must be answered during the procedure:( 1) how to
choose the reference point in step 1? and (2) how to decide the
other three points to form an element in step 2? The common
challenge is that it is difficult to assure element quality as bad-
quality elements occur when the front collides with itself
(Shewchuk, 2012; Suresh and Verma, 2019). To properly answer
the two mentioned questions will significantly affect whether
this challenge can be solved and even whether the meshing task
can be completed.

It is extremely difficult, expensive, and time-consuming for
human algorithm designers to develop high-quality and robust
element extraction rules for even two-dimensional domains.
Despite its capability to generate high-quality meshes along a
domain boundary, the element extraction method’s applications
have been largely limited. Therefore, researchers and developers
have had to turn to alternative solutions that are easier to develop
by compromising the qualities of the overall mesh (Sarrate Ramos
et al., 2014).

Contribution

This paper proposes a self-learning system, FreeMesh-S, to gener-
ate quadrilateral elements by automatically acquiring robust and
high-quality element extraction rules. The system takes two
steps in obtaining the extraction rules. In the first step, three pri-
mitive extraction rules are proposed according to the boundary
patterns, which follows a design methodology—
Environment-Based Design (Zeng, 2004, 2015; Zeng and Yao,
2009). A novel self-learning schema is then formed to automati-
cally define and refine the relationships between the parameters
included in the element extraction rules by combining reinforce-
ment learning and artificial neural networks. By applying the
Advantage Actor-Critic (A2C) reinforcement learning networks,
the system can generate high-quality quadrilateral elements
while maintaining the remaining geometry’s quality for the con-
tinuous generation of good quality elements. By taking the good
quality elements generated from the A2C method as samples, a
feedforward neural network (FNN) is trained for the fast genera-
tion of high-quality meshes. This proposed system answers the
two previously mentioned questions automatically and relieves
human algorithm designers from an inefficient and incomplete
search of heuristic knowledge.
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Comparing with three existing meshing approaches, the main
contribution of this proposed system includes: (1) to construct
element extraction rules by replacing the conventionally ineffi-
cient and incomplete search of heuristic knowledge with an auto-
matic self-learning schema; (2) to achieve high performance in all
the quality measurement indices with the highest score in the
metrics of Taper and Scaled Jacobian; (3) to eliminate the need
for in-depth knowledge in computational geometry, which
makes it algorithm developer-friendly; and (4) to provide insights
about smart designing of smart system.

The rest of this paper is organized as follows. Section “Smart
designing of the smart element extraction system” discusses the
smartness of the proposed element extraction system and the
smart designing embedded in the system. The proposed system
is presented in Section “A self-learning system for element extrac-
tion” using quad mesh generation. Section “Experiments” com-
pares the proposed system’s performances with the other three
widely adopted methods. Section “Discussion” discusses the prac-
tical and theoretical benefits of this research. Finally, Section
“Conclusions” concludes this paper.

Smart designing of the smart element extraction system

To address the challenge identified in Section “Introduction”, we
adopt a concept of smart designing of smart systems. A smart sys-
tem has two important properties: (1) making adaptive decisions
corresponding to various environmental situations, and; (2) self-
evolving to improve the system performance (Akhras, 2000).
For a smart element extraction system, its extraction rules should
be adaptive to various domain boundaries and can self-evolve to
achieve the overall mesh quality. This section introduces the smart
element extraction system’s design process, which is linked with
two machine learning methods: reinforcement learning and arti-
ficial neural network, for self-evolving the element extraction
rules.

How is the element extraction method smart?

What is the element extraction method?
Mesh generation is considered a design problem and can be
resolved recursively into the atomic design and a sub-design prob-
lem (Zeng and Cheng, 1991; Zeng and Yao, 2009). The quad
mesh design should satisfy the following conditions: (1) each ele-
ment is a quadrilateral; (2) the inner corner of each element
should be between 45° and 135°; (3) the aspect ratio (the ratio
of opposite edges) and taper ratio (the ratio of neighboring

edges) of each quadrilateral should be within a predefined
range; (4) the transition from a dense mesh to a coarse mesh
should be smooth (Zeng and Cheng, 1991; Zeng and Yao,
2009). Zeng and Cheng (1993) proposed a knowledge-based
method, FREEMESH, to recursively extract quadrilateral elements
following a domain boundary until the remaining boundary
becomes a quadrilateral element, based on the recursive logic of
design (Zeng and Cheng, 1991). In FREEMESH, the atomic
design is to generate an element in a specified boundary region,
while the corresponding sub-design problem is to generate a
good quality mesh over the domain by cutting the generated ele-
ment from the original domain (see Fig. 1).

In extracting elements one by one, three types of element
extraction rules (i.e., adding one, two, and three edges) are defined
to construct a good quality element (see Fig. 2). The challenge is
for these rules to generate a good quality element around the cur-
rent domain boundary while guaranteeing that these design rules
are still applicable to the remaining domain for the subsequent
construction of good elements.

How is the element extraction method smart?
A smart system can make adaptive decisions corresponding to
various environmental situations. For an element extraction
method, the environment is domain boundaries, which keep
changing throughout the entire mesh generation process. Even
with a simple domain, the initial boundary can evolve into
many complex intermediate boundary shapes. Following the pro-
cess specified in Figures 1 and 3 shows an example element
extraction process, where the initial boundary is shown in
Figure 3 (1) and the final mesh is shown in Figure 3 (10). The
intermediate boundaries could include various situations, which
are not predictable.

The smartness of element extraction systems lies in how var-
ious complex boundary shapes are processed by the three
element-extraction rules shown in Figure 2. First, each edge in
any boundary shape can be processed by one of those three
extraction rules. The three rules define three kinds of patterns
for a selected boundary edge V1V2 in a domain, as specified in
solid lines in Figure 2a–c. The three rules are sufficient to process
any environmental situation (boundary shapes). Secondly, among
all the boundary edges, the system would be able to smartly pick
up one edge and a corresponding rule to generate an element. In
Figure 4, V1, V2, V3 and V4 are all the same for different environ-
ment situations while different rules are preferred if more condi-
tions are considered from the environment. For instance, the
boundary edge V1V2 is selected as the target edge in Figure 4a–f;

Fig. 1. Quad mesh generation process (Yao et al., 2005).
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the extraction rule in Figure 2c is applied in situations in
Figure 4a,c,d; the extraction rule in Figure 2b is applied in situa-
tions in Figure 4b,e; and the last extraction rule in Figure 2a is
applied in the situation in Figure 4f. This example demonstrates
that it is challenging to select a proper rule even considering
two more connected boundary points.

Thirdly, when rules in Figure 2a or Figure 2b are selected for a
boundary edge, the positioning of the newly added point(s) will
be smartly determined according to its local surrounding environ-
ment situations so that a good element can be generated while the

remaining boundary does not create an impossible situation for
the three rules to process. For instance, Figure 5 shows the chal-
lenges in positioning the new point in extracting a new element
for two base situations in Figure 4b,f. The red lines represent dif-
ferent remaining boundary shapes to form a complete domain
boundary. Although Points B, B1, and B2 can form a better ele-
ment in each situation, Points A, A1, and A2 are the optimal
options due to the trade-off of quality of the element quality
and the remaining boundary. The coordinates of newly added
point(s) are adapted to various remaining boundary shapes.

Fig. 2. Three primitive generation rules (Zeng and Cheng, 1993).

Fig. 3. Changes of intermediate boundary shapes: all boundaries are represented in red lines from (2) to (9).

Fig. 4. Challenges in selecting a proper rule to extract an element for an edge V1V2.
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In summary, the smart element extraction process is enabled by
a knowledge-based reasoning process, where the three basic rules
shown in Figure 2 can process complex 2D domain boundaries
recursively. The method smartly extracts elements one by one adap-
tive to the situations implied in the current domain boundary.

How can the element extraction system be smartly evolving
and designed?

As Figures 4 and 5 show, two major challenges exist to enable the
smartness of an element extraction system, which are as follows:

(1) How to decide which of the three rules in Figure 2 should be
applied for a selected edge (V1V2) from all kinds of geometric
boundaries?

(2) For the first and second types of rules in Figure 2, how to
determine relationships between the coordinates of the
newly added points (V3 and V4; or V3) and the geometric
conditions surrounding the selected edge (V1V2)?

Conventionally, the questions above are answered manually by
algorithm developers through a trial-and-error process. It is
extremely difficult, costly, and time-consuming for human algo-
rithm designers to develop such robust element extraction rules.

The element extraction rules can be smartly designed and evol-
ving using machine learning algorithms, and many researchers
attempted to combine machine learning algorithms with finite
element methods. Those attempts include mesh density optimiza-
tion with artificial neural networks (Chedid and Najjar, 1996;
Zhang et al., 2020), node placement for existing quad elements
by a self-organizing neural network (Manevitz et al., 1997;
Nechaeva, 2006), mesh design by an expert system (Dolšak,
2002), remeshing structural elements by neural networks (Jadid
and Fairbairn, 1994), the relationship simulation between quad
element state and forces (Capuano and Rimoli, 2019), triangular
mesh simplification (Hanocka et al., 2019), and mesh optimiza-
tion to solve partial differential equation (Zhang et al., 2021).
However, those methods do not directly focus on mesh generation
and element extraction. There are a few works focusing on trian-
gular mesh generation using neural networks (NNs). Pointer net-
works, (Vinyals et al., 2015), are able to transform a sequence of
points into a sequence of triangular mesh elements (three points).

But it heavily relies the initial distribution of the points and can-
not complete the meshing due to intersecting connections or low
triangular element coverage. Papagiannopoulos et al. (2021) pro-
posed a triangular mesh generation method with NNs using
supervised learning. They trained three NNs based on the datasets
of meshed domains by the Constrained Delaunay Triangulation
algorithm (Chew, 1989), to predict the number of candidate
inner vertices (to form a triangular element), coordinates of
those vertices, and their connection relations with existing seg-
ments on the boundary, respectively. The limitations of their
method lie in that the overall mesh quality is doomed by the
training data, and it cannot be applied to arbitrary and complex
domain boundaries because of the fixing number of boundary
vertices in the model input. They also cannot be applied to
mesh generation or element extraction of quadrilaterals.

According to the nature of the problem, two machine learning
algorithms can be exploited to enable the automatic evolution of
element extraction rules. The first is Feedforward Neural
Networks (FNNs), whereas the second is Reinforcement
Learning (RL). The FNN can learn from given samples how to
decide which rule should be applied and how to position the
new point(s) for a new element when necessary. Yao et al.
(2005) improved the FREEMESH approach by introducing an
artificial neural network (ANN) to learn the element extraction
rules from a set of pre-selected samples of good quality quad
meshes. The improved method eases the acquisition and application
of these rules and could handle more complex domain boundaries.
The trained model by ANN serves as the mapping function to
transform the input (a specific boundary region) to output (rule
type and a point), which is used to form an element following
the FREEMESH construction process. This kind of system provides
a smart designing mechanism that automatically generates smart
rules to extract elements from any geometric domain.

With its abilities for trial-and-error learning, the RL models
element extraction as a sequential decision-making problem. No
samples are needed for the RL except that the mesh generation
requirements need to be formulated into a reward feedback func-
tion. The RL will produce smart element extraction rules for gen-
erating high-quality quad meshes through self-learning and
evolving. The system proposed in this paper combines these
two different learning techniques: reinforcement learning and
supervised learning (i.e., FNNs).

Fig. 5. Trade-off between qualities of an extracted element and the remaining boundary. (a–c) correspond to the situation in Figure 4b; (d) and (e) correspond to
the situation in Figure 4f. Points A, A1, and A2 form better elements than B, B1, and B2.
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A self-learning system for element extraction

This section introduces a self-learning element extraction system,
FreeMesh-S, which automatically generates mesh elements by
self-learned extraction rules from a combination of an RL algo-
rithm and an FNN. Quadrilateral element generation in single-
connected 2D domains is used as an example to demonstrate
this system. The subsequent subsection introduces how to formu-
late the element extraction into a reinforcement learning problem.
Section “A2C RL network for element extraction based mesh gen-
eration” presents an RL algorithm, A2C, to learn to extract mesh
elements by trial-and-error. Section “FNN as policy approximator
for fast learning and meshing” elaborates how to utilize the FNN
to accelerate learning extraction rules by supervised learning.
Finally, Section “Summary” summarizes a general self-learning
framework for element extraction.

Element extraction as a reinforcement learning problem

Architecture similarity between element extraction and
reinforcement learning
The element extraction process in Figure 1 can be generalized into
architecture, as shown in Figure 6. The mesh generator applies the
extraction rules to a domain boundary and generates an element;
the domain boundary will be updated by removing the extracted
element, which is scored for its quality. This recursive process con-
tinues until mesh elements fill the domain. However, one must
specify the mesh generator’s extraction rules in advance. By formu-
lating this process into an RL problem, the machine itself can auto-
matically learn these extraction rules (i.e., the mesh generator).

Reinforcement learning (RL) is a technique that enables an
agent to learn from the interactions with its environment by
trial-and-error via reward feedback from its actions and experi-
ences (Kaelbling et al., 1996; Sutton and Barto, 2018). The
hypothesis behind RL is that all the goals can be represented by
the maximization of the expected cumulative reward. As is shown
in Figure 7, the agent, at each time step t, observes a state St from
the environment, and conducts an action At applied to the environ-
ment. The environment responds to the action and transits into a
new state St+1. It then reveals the new state and provides reward
Rt to the agent. This process forms an iteration and repeats until
a given condition is satisfied (i.e., the RL problem is solved).

It can be seen from Figures 6 and 7 that element extraction and
reinforcement learning bear a similar framework of problem-solv-
ing. As illustrated in Figure 8, the mesh generation process shown
in Figure 6 has the same architecture as the RL process does, and
the mesh generation process can be seen as an instance of an RL
process. In the context of element extraction, the agent is a mesh
generator; the environment is a domain boundary to mesh; the

state of the environment consists of a set of focused vertices
and edges in the boundary; an action to take by the agent is to
extract an element from an edge in the state; the reward is the
combination of qualities of both the current extracted element
and the remaining boundary; a policy of the agent guides the
selection of a specific action; the agent’s goal is to maximize the
aggregated rewards – the total quality of all extracted elements
and their corresponding boundaries.

Formulation of the element extraction problem in the
reinforcement learning framework
In RL, how the learning agent behaves (to select an action at each
state) is described as the agent’s policy. Mathematically, a policy is
represented as a probability distribution over all possible actions
at each state, denoted as π(a|s). A state’s value is the expected
future rewards starting at that state, which determines how bene-
ficial for the agent to enter that state. A value function is designed
to estimate the value for each state. The value function Vp(s) of a
state St under a policy π is formally denoted as,
Vp(s) = E[Gt|St = s, p], for any s∈ S , where S is a set of envi-
ronment states; and Gt is a discounted sum of the sequence of
rewards achieved over time, which is calculated by,

Gt =
∑T
k=t+1

gk−t−1Rk, (1)

where 0≤ γ ≤ 1 is a discount rate, and T is a final time step. The
value function of an action at a state under a policy can be expressed
as Qp(s, a) = E[Gt|St = s, At = a, p]. These value functions can
be estimated from experience with different methods. Policy and
value functions are essential for almost every RL algorithms.

Mathematically, the RL is a sequential decision-making pro-
cess, which can be formalized as a Markov Decision Process
(MDP) consisting of a set of environment states S, a set of possible
actions A(s) for a given state s, a set of rewards R, and a transition
probability P(St+1 = s’, Rt+1 = r|St = s, At = a) where s’, s ∈ S, a∈ A
(s), r∈ R, s’ is the new state at t + 1 and r is the reward after action
a at state s. The transition probability indicates that the current

Fig. 7. Architecture of reinforcement learning (Sutton and Barto, 2018).

Fig. 6. Element extraction architecture.
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state is only dependent on the preceding state and action, the
so-called Markov property, thereby defining the MDP dynamics.
This requires that the state contain information about the past
interactions that could distinguish the future and the present.
The MDP and agent then produce a sequence [S0, A0, R0, S1,
A1, R1, S2, A2, R2, … ]. In general, the MDP framework can be
applied to various problems in many ways because of its flexibil-
ity. Once a goal is represented as agents’ choices, the basis for
choice from the environment, and a reward measurement of the
goal, it can be formalized as an RL problem. Existing reinforce-
ment learning algorithms can be categorized into three types:
policy-based, value-based, and model-based methods (Kaelbling
et al., 1996; Sutton and Barto, 2018), which learn policies,
value functions, and models (Grondman et al., 2012). Deep
reinforcement learning (DRL) intends to make behavioral decisions
through learning from the experience of interacting with the envi-
ronment and from the evaluative feedback (Littman, 2015).

Mathematically, as RL does, the element extraction process can
also be represented as an MDP, which consists of a set of bound-
ary environment states S, a set of possible actions A(s) in state s to
form an element for each boundary state, a set of rewards R, and a
state transition probability P(s’, r|s, a). The extraction process will
produce a sequence [S0, A0, R0, S1, A1, R1, S2, A2, R2, … ], where
the notations are explained as follows:

t: denotes the index associated with the time step of element
extraction;

St: the partial boundary of the domain (at time t) from which the
tth element will be extracted;

At: the action to produce the tth extracted element, which consists
of four vertices of the extracted element.

This process shows the natural alignment of the element
extraction method with reinforcement learning.

Correspondingly, the three rules, which are used to extract ele-
ments in Figure 2, can be viewed as three actions: (a) to add two
new vertices and three edges; (b) to add one new vertex and two
edges; (c) to add just one edge. The determination of which rule
to apply and especially where to position a candidate vertex to
form a high-quality element is highly challenging because the
position of a new vertex has substantial impacts on the quality
of meshing in the future steps. These actions address the two
questions raised in Section “How can the element extraction sys-
tem be smartly evolving and designed?”.

In this work, we focus on using RL to select the optimal posi-
tion of a candidate vertex, and the action is defined as locating a
vertex position. In this way, the action space could be a two-
dimensional continuous domain. The policy that needs to be
learned with RL is the element extraction rule, which maps a
state to an action (positioning the new vertex). The full state of
the environment at time t would consist of all boundary vertices

at the time. However, not all vertices are equally useful for extract-
ing a new element. Zeng and Cheng (1993) identified a small set
of vertices on the current boundary, which are highly relevant to
constructing a new element. We select this partial boundary to
represent the state, making computing much more efficient.
This selected partial boundary denoted as St, is composed of
four parts (1) a reference point, P0, which is a vertex selected
from the current boundary and will be used as the relative origin
for the new element to be constructed and extracted; (2) n neigh-
boring vertices in the right side, where n = 2 in this paper; (3) n
neighbor vertices in the left side, where n = 2; (4) three neighboring
points Pu1 , Pu2 , and Pu3 in the fan-shaped area θ1, θ2, and θ3 with
radius d, as shown in Figure 9. This partial boundary is denoted as:

St = {Pl2, Pl1, P0, Pr1, Pr2, Pu1 , Pu2 , Pu3 }, (2)
which is still a high dimensional continuous domain, but its dimen-
sion is significantly reduced from the full boundary. We treat this
partial boundary as the state partially observed by the agent
(Kaelbling et al., 1996).

Regarding reward, we define it as the combination of qualities of
both the extracted element and the remaining boundary because
their trade-off is essential to the overall quality of the final mesh.
The reward details will be defined in Section “Reward function”.

Regarding the agent’s policy and the value function of a state
(or action under a state), as discussed earlier, the position of a new
vertex for a new element has substantial impacts on the quality of
meshing in the future steps; it is highly challenging to find an opti-
mized policy to locate the vertex position and to find a reasonable
estimation of that position. Both an optimal policy and the value
function are unknown to the agent but can be approximated with

Fig. 8. Element extraction process as reinforcement learning.

Fig. 9. Partial boundary.
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a parameterized function by learning from experience. For this rea-
son, the advantage actor-critic method is used in this paper.

A2C RL network for element extraction- based mesh
generation

The overall architecture of the advantage actor-critic (A2C) is
shown in Figure 10. The “actor” mimics the policy in the architec-
ture, and the “critic” mimics state value functions. We use an A2C
network-based agent to interact with the environment and gradually
generate high-quality elements by trial-and-error learning. The fol-
lowing subsections will introduce the basics of the A2C method and
explain how to generate mesh elements with the A2C method.

A2C
The RL problem is to learn how to select an action at each state
over time to maximize the accumulated reward Gt, which is a dis-
counted sum of the sequence of rewards achieved over time, as
shown in Eq. (1). Actor-critic is a subclass of policy-gradient
methods, which learns approximations to both policy and value
functions (Grondman et al., 2012; Sutton and Barto, 2018).
Policy-gradient methods directly optimize an agent’s actions
without consulting a value function. Policy-gradient methods
are via learning a parameterized policy pu, where θ is the policy’s
parameter vector. The probability that an action a has been taken
in state s at time t with policy parameter θ is represented as π(a|s,
θ) = Pr{At = a|St = s, θt = θ}. The general idea is to increase the
probability of actions being taken in each state when they have
high optimality. The performance of the policy can be denoted
as J (u) = Vpu (s), which is calculated by

Vpu (s) =
∑
a[A

pu(a|s)
∑
s′[S

Pr (s′|s, a){r + gVpu (s′)}, (3)

when every episode starts in state s. r is the reward after action a at
state s. According to the policy gradient theorem, the gradient of
this performance is denoted as,

∇uJ (u)/
∑
s

d(s)
∑
a

Qp(s, a)∇up(a|s, u), (4)

where d(s) is a state distribution under policy p, Qp(s, a) is
state-action value function under policy π. The gradient-ascent
algorithm improves the policy as

ut+1 = ut + a∇uJ (u), (5)
where α is a step size.

We can estimate the performance gradient using Monte Carlo
sampling, which is proportional to the actual gradient. The gradi-
ent can then be represented as,

∇uJ (u) / E
∑
a

Qp(St , a)∇up(a|St , u)
[ ]

= E[Gt∇ulnp(At |St , u)], (6)

where St and At are sampled state and action at time t, Gt is the
return after t, and; E[.] is the expected value of the expression
with random variables St and At in the Monte Carlo sampling.
The gradient-ascent algorithm could be,

ut+1 = ut + aGt∇ulnp(At|St , u). (7)

Because the variance of return is high in Monte Carlo policy
gradient, the learned value function can reduce the gradient var-
iance and provide an informative direction for policy optimiza-
tion. The actor represents the learned policy, whereas the critic
is the learned value function. The critic estimates the state-action
value function as an approximator with parameters w, that is
Q̂pu (s, a; w) ≈ Qpu (s, a), where Qpu (s, a) is the state-action
value function using policy pu. Correspondingly, Vpu (s) can be
estimated as V̂pu (s; w) = Ea�p[Q̂

pu(s, a; w)]. By introducing an
advantage function to the critic,

Apu (s, a) = Qpu(s, a)− Vpu (s), (8)

In this way, the policy optimization will be more directional. It
leads to the advantage actor-critic (A2C) method. The gradient
is changed to the following:

∇uJ (u)/ E
∑
a

Apu (s, a)∇ulnp(a|St , u)
[ ]

. (9)

The actor updates the policy parameters by

ut+1 = ut + aApu(St , At)∇uln p(At|St , u). (10)

The critic updates its weights by

wt+1 = wt + bApu (St , At)∇wV̂
pu (s; w). (11)

Fig. 10. A2C agent architecture for element extraction.
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By the definition of the value function Vpu (s), advantage
function Apu(St , At) can be estimated as

dt = Rt+1 + gV̂pu(St+1; w)− V̂pu (St ; w), (12)

which is also called temporal difference (TD) error for state value
at time t. For a more detailed description of the A2C model please
refer to (Sutton and Barto, 2018). For the specific description of
our A2C RL model for mesh, please refer to the next subsection.
Advantage Actor-Critic (A2C) network is a class of A2C model,
in which an artificial neural network is used as an approximator
for the policy or the value function. We use this approach for
mesh generation.

A2C RL network for element extraction
In the proposed self-learning element extraction system, the A2C
network is responsible for the preliminary sampling of the ele-
ment extraction rules (a set of three rules in Figure 2). Its network
structure is shown in Figure 11. The actor and critic are the two
heads of the network and share the same input and hidden layer.
The input is the partial boundary St. The value head of the critic is
the estimation of the state-value function. The policy head of the
actor will output two variables (i.e., two means) to form two nor-
mal distributions in which both the variances are set to 1, to sam-
ple the coordinates, x and y, of the candidate point, respectively.
The training process of the A2C network is illustrated in
Algorithm 1. For a given 2D domain environment, the A2C net-
work updates the parameters of the actor and the critic during
each episode using the temporal difference (TD) method [i.e.,
Eq. (12)]. Each episode terminates when the domain is full of

quadrilateral elements or exceeds the maximum step. The episode
number M indicates the maximum iteration. The maximum step
in each episode is defined by T. Symbol λ is the discount factor
during reward accumulation.

Algorithm 1: A2C reinforcement learning System

Input: Episode number M; each episode’s max step number T; discount
factor λ; and step size α and β.

Output: Constructed A2C

1: Initialize the network policy parameter vector θ with random weights.

2: for episode i = 1, 2, …, M do

3: get an initial state S(i)1 (i is omitted hereafter) of the environment at
episode i;

4: for t = 1, 2, …, T do

5: sample action At ∼ π( |St, θ);

6: get a next state St+1 after the environment is updated with its
boundary for action At;

7: get the reward Rt+1 by calculating the quality of the formed
element and remaining boundary;

8: calculate TD error dt = Rt+1 + gV̂pu (St+1; w)− V̂pu (St ; w)

9: update the critic: wt+1 = wt + bdt∇wV̂pu (s; w)

10: update the actor policy: ut+1 = ut + adt∇uln p(At |St , u).
11: endfor

12: endfor

Fig. 11. A2C network structure. In general, the actor will simulate three primitive rules, as shown in Figure 2a–c. In the current implementation, the extraction rule
in Figure 2a is not considered, and it will be implemented in the next version of the system.

188 Jie Pan et al.

https://doi.org/10.1017/S089006042100007X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042100007X


State representation. The state is the actor’s observation of the
environment, which is defined as a partial boundary St, expressed
as Eq. (2). Two fundamental steps are needed to determine which
part of the boundary is considered the state: (1) to identify the ref-
erence point P0 from the existing boundary; and (2) to find the
remaining points according to Eq. (2). A new element will be
extracted around this formed partial boundary. First, the reference
point is calculated by iterating all the points on the boundary,
computing the angle of each point formed by its left and right
connected points, and selecting the point having the least angle
as the P0. Then, the other points in St will be determined by
Eq. (2). The absolute coordinates of all points selected for repre-
senting a state will be transformed into a new coordinate system
that assumes the reference point P0 as the origin, and the vector
from the reference point to the first neighboring point along
the counter-clock direction as the unit vector, along the positive
direction of the x-axis (Yao et al., 2005). The transformation
(i.e., rotation, scaling, and transit) from the original coordinate
system Oxy to the new one O’x’y’ is shown in Figure 12, and
can be represented as:

x′
y′

1

( )
=

cos u sin u 0
−sin u cos u 0

0 0 1

⎡⎣ ⎤⎦
1
d

0 0

0
1
d

0

0 0 1

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

1 0 −x0
0 1 −y0
0 0 1

⎡⎣ ⎤⎦

×
x
y
1

( )
,

d =

(x0 − xr1)

2 + (y0 − yr1)
2

√
. (13)

Reward function. The actor will receive reward feedback from the
environment to indicate how good the performed action is at the
current state St, which the environment in RL refers to as the
mesh domain boundary. The reward function is defined as follows:

1) if the point (action) is outside the domain, the reward is set to
be −0.1;

2) if the generated element has straddled segments with itself or
other elements, as shown in Figure 13, the reward is set to be
−0.1;

3) if the element has no situation with (1) and (2), the reward is
the combination of current ith element quality he

i and the
quality of the remaining boundary hb

i , which is calculated by
he
i∗hb

i

√
. The element quality he

i is measured by both its
edge quality and angle quality, and calculated as follows,
which are adapted from (Zeng and Yao, 2009),

he
i =


qe∗qa√

, (14)

qe =
∏4
j=1

lj
Ai

√
( )sign


Ai

√ −lj( )
4

√√√√ , (15)

qa =
∏4
j=1

1− |aj − 90|
90

( )
4

√√√√ , (16)

where qe refers to the quality of edges of this element; lj is the
length of the jth edge of the element; Ai is the area of the ith ele-
ment; qa refers to the quality of the angles of the element; and aj is
the degree of jth inner angle of the element. The quality he

i will
range from 0 to 1, which is better if greater. Examples of various
element qualities are shown in Figure 14.

The quality of remaining boundary, hb
i , is calculated as follows,

hb
i =

∏2
k=1

Min(uk, 60)
60

( )√√√√ , (17)

where θk refers to the degree of the kth generated angle, as shown
in Figure 15. The quality hb

i also ranges from 0 to 1, which the
higher value is, the better.

Finally, we have the reward function as

Rt =
−0.1, if the generated point is outside the domain or
the formed elements has straddled segments;
he
i∗hb

i

√
, otherwise.

⎧⎨⎩
(18)Fig. 12. Coordinate transformation.

Fig. 13. Invalid situations of the element. P0 is the reference point, and P is the newly
generated point.
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To have a negative reward prevents the actor from performing
inappropriate actions and generating invalid elements. Once the
actor generates a valid element, it will immediately receive a
reward value to tell how good that action is. This is a stepwise
reward signal, which smoothly guides the actor to achieve the
final goal. The reason to consider both the quality of the current
element and the remaining boundary is that the actor needs to
learn the trade-off between them to achieve an overall good
mesh quality and complete the meshing task.

Actor representation. In a fully observable MDP, the agent
observes the true state of the environment at each time t and
acts according to a parameterized policy pu. The actor constantly
chooses actions and produces the best one for a given environ-
mental state St overtime. Typically for type (b) action shown in
Figure 2, the selected action At (line 5 of Algorithm 1) is to sam-
ple a point Pt within a specified area with the reference point P0
as the center. The selection is sampled from the parameterized
policy, At = Pt � pu(st). Finally, a new element is formed by
four points, Pt, Pl1, P0, and Pr1, after the environment receives
the point Pi.

The actor will also update (line 10 of Algorithm 1) the policy
distribution at each time step concerning the parameter vector θ
by using the sampled policy gradient:

∇uJ (pu) =
∑
s, a

[∇ulnpu(a|s)Apu(s, a)], (19)

in which the direction Apu (s, a) is suggested by the critic (Section
“Critic representation”).

Critic representation. The critic is used to observe the states and
rewards from the environment and estimates the value function
V̂pu(s; w) accounting for both immediate and future reward to
be received by the following policy pu. The value function will
determine whether the selected point’s position can achieve the
best performance in both the quality of the extracted element
and the remaining boundary in the long run. The advantage func-
tion is adopted to reduce state value estimation variance and pro-
duce a positive direction for optimization, as shown in Eq. (8).
Since the temporal-difference (TD) error, defined in Eq. (12),
can be used as the unbiased estimation of the advantage function,
it will guide the updating of parameter vector θ in the actor. The
updating of the critic’s parameters in Figure 10 is shown in Line 9
of Algorithm 1.

FNN as policy approximator for fast learning and meshing

A2C network can acquire new knowledge with a slow
trial-and-error process; hence, it is practically infeasible to do ele-
ment extraction directly using RL. To address this challenge, A2C
is used to generate good meshes to extract successful (state,
action) pairs as samples for training a multilayer FNN. The
FNN can be seen as an RL policy approximator. The architecture
of the integrated approach is shown in Figure 16.

The architecture in Figure 16 provides a policy-only approach
without consulting value functions. This entire process simulates
the human learning process, which acquires successful samples
from trial-and-error, extracts experience from those samples,
and enhances the extracted experience’s decision-making
ability. It is a novel combination of two methods to form a
human-like learning schema to solve the mesh generation prob-
lem. The learning process consists of experience extraction and
FNN learning. Experience extraction is a prerequisite for the
FNN component. When the learning finishes, the trained
model applies to various domain boundaries for generating
mesh elements.

FNN learning
The FNN module can learn from the acquired data from the expe-
rience extraction module to (1) decide which extraction rule
should be applied and (2) determine the position of the newly
generated point for a new element when necessary. Its network
structure is shown in Figure 17 and mathematically described as

Fig. 14. Different quality of elements.

Fig. 15. New boundary angles.
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follows (Yao et al., 2005):

[typei, Pi]= f ([P(l,N), . . . , Pl2, Pl1, P0, Pr1, . . . , P(r,N), Pu1 , Pu2 ,Pu3 ]),

(20)
where typei is the output type, as shown in Figure 18, which
equals to one of the three values (i.e., 0, 1, and 2); Pi is the output
point, consisting of (xi, yi); the input points are the state; and N
equals 2 in this paper. The objective function used in FNN is
denoted in the following formula:

MSE= 1
n

∑n
i

[(xi− x̃i)
2+ (yi− ỹi)

2+ (typei− ˜typei)2], (21)

where x̃i, ỹi, ˜typei are the FNN model output for ith input and
MSE is the sum of the mean squared errors of these three variables.

Through supervised learning, these element extraction rules
are quickly acquired. The trained model can easily distinguish
which rule should be applied under a specific environment state
(input) and can generate a point (output) to form a high-quality
element correspondingly. In this way, the experience is transferred
from the slow trial-and-error A2C process to the fast one-step
FNN. This process also simulates the human decision process
as specified by Kahneman (2011).

Experience extraction
The experience extraction (EE) module intends to extract samples
from existing elements derived from the A2C model for the FNN
model training. A sample here is an instance of extraction rules,
which is represented by the mappings from a state (input) to
the output type and point, as shown in Figure 17. For the meshing
result generated in each episode by the A2C, EE will check if they
are qualified to be extracted as samples. Two criteria are hence
used to determine the quality of samples: (1) element quality he

i
is used to filter out unqualified elements, and; (2) the number
of total qualified elements in a meshing result of A2C should
exceed a threshold η.

An example of the sample extraction process is shown in
Figure 19. A trajectory stops when no valid elements are generated
within the maximum step T. A trajectory from the A2C module is
illustrated in Figure 19a, which meets the second criterion (e.g., η
= 20) as previously mentioned. Each element has a property
defined by a tuple <element id; element quality>, where
Element id is defined as the order of the element extracted.
Many mesh elements can be used for EE based on the first criter-
ion (i.e., he

i . 0.7), such as elements 0, 1, 3, 7, 14, 15, 19 and 23
while some other elements will be excluded, such as 5, 12, 13, and
17. For example, element 15 with element quality 0.91 in
Figure 19a is used to show the experience extraction process.

Fig. 16. FNN agent architecture.

Fig. 17. FNN module structure.
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Three types of extracted samples are shown in Figure 19b–d. Eight
points are selected as the input for each rule type, where points
Pl2, Pl1, P0, Pr1, and Pr2 (in red), are points in the boundary
from left to right with P0 as the reference point, and points
Pu1 , Pu2 , and Pu3 (in blue) are collected from the fan-shaped
area θ1, θ2 and θ3 with radius d=3 with the unit length being

P0Pr1, as shown in Figure 9; and the output point is chosen as
Pi (in black). It should be noted that the point Pr2 is Pi in
Figure 19c and the point Pl2 is Pi in Figure 19d.

The input-output pair for each training sample will be
arranged according to Eq. (20). Ten training samples with the
same reference point and output point are shown in Table 1.

Fig. 18. Three types of outputs.

Fig. 19. Example of experience extraction of one element. In (a), each element has a tuple < element id; element quality > inside, where element id refers to the
generation order of the element; and element quality is calculated by he

i ; (b)–(d) show three types of patterns collected for training samples: (b) type 0; (c) type 1;
(d) type 2.
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Table 1. Examples of extracted samples for element 15: the reference point P0(x0, y0) and output point Pi(xi, yi) are the same across these samples, respectively

Input Output

xl2 yl2 xl1 yl1 x0 y0 xr1 yr1 xr2 yr2 xθ1 yθ1 xθ2 yθ2 xθ3 yθ3 typei xi yi

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.27 −2.35 6.72 −3.25 6.72 −1.05 5.57 0.94 0 8.02 −0.93

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.27 −2.35 6.72 −3.25 6.72 −1.05 5.57 0.94 0 8.02 −0.93

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.27 −2.35 6.95 −3.55 5.65 −1.49 5.57 0.94 0 8.02 −0.93

8.02 −0.93 8.87 0.55 10.09 −0.13 9.39 −1.51 10 −2 6.94 −2.14 7.38 −1.19 5.57 0.94 1 8.02 −0.93

8.02 −0.93 8.87 0.55 10.09 −0.13 9.39 −1.51 10 −2 8 −4 7.12 −0.56 5.57 0.94 1 8.02 −0.93

8.02 −0.93 8.87 0.55 10.09 −0.13 9.39 −1.51 10 −2 6.72 −3.25 6.72 −1.05 5.57 0.94 1 8.02 −0.93

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.02 −0.93 6.94 −2.14 7.38 −1.19 5.57 0.94 2 8.02 −0.93

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.02 −0.93 8 −4 7.12 −0.56 5.57 0.94 2 8.02 −0.93

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.02 −0.93 6.72 −3.25 6.72 −1.05 5.57 0.94 2 8.02 −0.93

10 2 8.87 0.55 10.09 −0.13 9.39 −1.51 8.02 −0.93 6.95 −3.55 5.65 −1.49 5.57 0.94 2 8.02 −0.93

Table 2. Examples of extracted samples in Table 1 after coordinate transformation following Eq. (13)

Input Output

x′l2 y′l2 x′l1 y′l1 x′0 y′0 x′r1 y′r1 x′r2 y′r2 x′u1 y′u1 x′u2 y′u2 x′u3 y′u3 typei x′i y′i

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.81 −0.4 2.84 −0.07 1.12 −1.59 0.71 −2.92 0 1.07 −0.96

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.81 −0.4 2.78 −1.03 1.52 −1.67 0.71 −2.92 0 1.07 −0.96

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.81 −0.4 2.89 −0.81 2.08 −2.16 0.71 −2.92 0 1.07 −0.96

1.07 −0.96 −0.04 −0.9 0 0 1 0 1.1 0.49 2.08 −1.23 1.4 −1.25 0.71 −2.92 1 1.07 −0.96

1.08 −0.96 −0.04 −0.9 0 0 1 0 1.1 0.49 2.84 −0.07 1.12 −1.59 0.71 −2.92 1 1.07 −0.96

1.09 −0.96 −0.04 −0.9 0 0 1 0 1.1 0.49 2.78 −1.03 1.52 −1.67 0.71 −2.92 1 1.07 −0.96

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.07 −0.96 2.08 −1.23 1.4 −1.25 0.71 −2.92 2 1.07 −0.96

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.07 −0.96 2.84 −0.07 1.12 −1.59 0.71 −2.92 2 1.07 −0.96

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.07 −0.96 2.78 −1.03 1.52 −1.67 0.71 −2.92 2 1.07 −0.96

−1.2 −0.67 −0.04 −0.9 0 0 1 0 1.07 −0.96 2.89 −0.81 2.08 −2.16 0.71 −2.92 2 1.07 −0.96
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Those input-output pairs will be normalized and transformed
from the original coordinate system Oxy to the new one O’x’y’
(see Fig. 12). The transformation results are shown in Table 2.
Consequently, all the sampling points’ coordinates are constructed
into the same scale, and their relationships remain unchanged.

The extraction process will be repeated for all the qualified
elements in an existing mesh to gather training samples. In this
way, a large number of training data can be easily extracted with
a single mesh. Furthermore, the training data contains sufficiently
diversified situations in meshing any complex geometric domain.

Summary

Using quadrilateral mesh generation as an example, the self-
learning element extraction system, FreeMesh-S, demonstrates
how the extraction rules are acquired by combining an A2C
and an FNN. The general architecture is illustrated in Figure 20.
Through considering the mesh generation as a design problem,
three atomic design rules (i.e., three extraction rules) are proposed
to recursively extract quadrilateral elements by Zeng and Cheng
(1993), which are complete and sufficient to mesh various com-
plex boundary shapes. Given these defined rules, the agent of
RL (i.e., A2C here) learns their transition relationships through
continuously self-evolving, known as the policy. The FNN serves
as a policy-only approach to extract samples from those high-
quality elements from the trial-and-error, enabling the agent to
choose one of the three extraction rules to apply and position
the coordinates of newly added points.

The generalized architecture is not only limited to quad mesh
generation, but any problem that can be formulated into atomic
design problems and sequential decision-making problems.

Experiments

To comprehensively evaluate the learned element extraction rules’
performance by the proposed self-learning system, FreeMesh-S,
two experiments were conducted. Experiment 1 tests the train-
ing’s performance and the impact of the training parameters on
the quality of the generated mesh. Experiment 2 compares the

quality of meshes by FreeMesh-S against three widely adopted
meshing approaches over ten predefined 2D domain boundaries.
The following subsections will discuss the experiment details and
results.

Experiment settings

Experimental domain boundaries
To provide comprehensive and various challenging situations for
meshing, testing domain boundaries are chosen based on whether
a boundary includes sharp angles, bottleneck regions, unevenly
distributed segments, and holes. Hence, ten domain boundaries
are selected to test the proposed system’s performance (see
Fig. 21 and Table 3).

Mesh performance evaluation metrics
The meshing performance is measured by seven mesh quality
metrics, including six geometric metrics and one topological
metric, as shown in Table 4.

Seven quality metrics are:

• Singularity: the number of irregular nodes in the interior of a
mesh. A node is considered irregular if it does not have four
incident edges (Verma and Suresh, 2017);

• Element quality ηe: an index defined by Eq. (14);
• |MinAngle-90|: the absolute differences between the smallest
internal angle of an element and 90°; The smaller differences
imply a better element;

• |MaxAngle-90|: the absolute differences between the largest
internal angle of an element and 90°; The smaller differences
imply a better element;

• Scaled Jacobian: the minimum Jacobian (Knupp, 2000) at each
corner of an element divided by the lengths of the two edge vec-
tors, which varies from minus one to plus one, where a higher
value implies a better element; the negative value, typically,
means the element is inverted;

• Stretch: an index referring to the ratio between the shortest ele-
ment edge length and the longest diagonal length;

Fig. 20. Proposed self-learning system FreeMesh-S: architecture.
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• Taper: the maximum absolute difference between the value one
and the ratio of two triangles’ areas are separated by a diagonal
within a quadrilateral element. The smaller value represents that
the element becomes closer to a triangular shape.

All the metrics are averaged for all elements in the mesh,
respectively. Some indices (e.g., scaled Jacobian, stretch, and
taper) are calculated using Verdict software (Pébay et al., 2008).

Experiment 1: training effectiveness and efficiency

The proposed self-learning meshing system’s training consists of
two parts: A2C model training and FNN model training. For
the A2C network, the actor and critic share the same hidden
layer (128 nodes). Since the environment state consists of 8 2D
points, the input layer has 16 nodes. For the action is the coordi-
nates of the candidate point, which is continuous in a 2D
space, the policy is represented by two normal distributions to
estimate x, y coordinates, respectively. Two mean values of the
normal distributions are the actor’s outputs, and two variance
values are set to 1. The final x, y coordinates are sampled from
these two distributions according to the obtained mean and var-
iance pairs. To accelerate the learning speed, the sampled x, y
coordinates are clipped into [-1.5, 1.5]. The learning rate of
0.0001 is set for the network, and the reward discount rate is
set as 0.99.

Fig. 21. 10 experimental domains.

Table 3. Description of 10 testing domains

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Sharp angles √ √ √ √ √

Bottleneck region √ √ √ √ √

Unevenly distributed segments √ √ √ √ √ √

Hole √

Vertex numbers 120 196 272 92 128 286 140 269 110 358

Perimeter 17.2 40.9 19.5 24.8 26.6 46.9 19 26.5 24.9 40.1

Unit boundary vertex numbers 6.9 4.8 13.9 3.7 4.8 6.1 7.4 10.2 4.4 8.9

Table 4. Mesh quality metrics

Topological
Metric Singularity

Geometric
Metrics

Element quality, |MinAngle−90|, |MaxAngle−90|,
Scaled Jacobian, Stretch, and Taper
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Self-sampling and evolving of A2C and FNN training
There are two steps to complete the FNN network’s training, as is
shown in Figure 22. In Step 1, the A2C module will generate a
mesh, covering only a partial domain to mesh. The generated
mesh is then used to produce initial training samples for
FNN. In Step 2, the FNN will be trained, applied, and further
evolved.

In this presented research, an empty domain, such as shown in
Figure 23a, is used to generate elements without any prior

knowledge about the parameters in the extraction rules in
Figure 2. The A2C network can generate high-quality elements in
the domain after some rounds of trial and error. Those high-quality
elements in each episode of training can be extracted as training
samples for the FNN network, which can be reused for the boundary
of different shapes. Figure 23d–f are episodes that include sufficient
good samples to train the FNN. An episode can be selected as a
source for element sampling if two criteria are met: he

i > 0.7 and
η > 20, as introduced in Section “Experience extraction”.

Fig. 22. Model training process.

Fig. 23. Partial results of sampling.
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Table 5 shows the total number of elements (#tE), number of
valid elements (#vE), number of extracted samples (#eS), and the
number of samples per valid element (#S2E) for each episode.
The samples are extracted using the experience extraction (EE)
module introduced in Section “FNN learning”. It can be seen
from Table 5 that the episode in Figure 23d has 37 valid elements,
which allows the extraction of 10,369 different samples (see the
extraction process in Figure 19 ), where the number of samples
per valid element has reached 280. Similar information can be
observed in Figure 23e, f. This significant number of leverage
over an element brings the EE module’s tremendous efficiency
and effectiveness in collecting samples. This effectiveness and effi-
ciency in data collection ensure that the FNN model can be suffi-
ciently trained.

Then trained FNN model can be applied to another domain,
such as domain D2, to do the meshing even though the extracted
samples are from a different domain (see Fig. 23a). The meshing
result of this FNN model is shown in Figure 24.

The meshing, however, is not complete in this domain. In step
2 of the training process, as illustrated in Figure 22; therefore,
there is a self-evolving process of the FNN model by learning
from the meshing results generated by itself. While repeating
step 2, the element extraction rules simulated by the model are
gradually evolved and adapted to the characteristics of the bound-
ary shape. For example, the training process of the subsequent
four rounds of step 2 is shown in Table 6. In each round, the
same FNN model will be trained using the extracted samples
from the previous meshing result (i.e., sample source), and then

the trained model is applied to generate a new mesh. Obviously,
the meshing performance is getting improved and adapted to
the boundary shape continuously while a significantly high num-
ber of valid samples can be extracted.

Efficiency of A2C training
The time cost for training the A2C network on the domain (see
Fig. 23a) is shown in Figure 25. It shows the temporal changes
in the average number of elements per continuous 100 episodes
during the training process. The red line accounts for the total
number of elements whose quality meets ηe> 0. The black,
green, and blue lines refer to ηe > 0.3, ηe > 0.5, and ηe > 0.7,
respectively. All the lines show an increasing trend over time,
which means that the learning process is successful. The black
and red lines are very close, which indicates that almost every
element has a quality bigger than 0.3. The number of elements
with quality ηe > 0.7 accounts for around 30% of total number
of elements when the training is converged. At the end of the
training period, the domain has an average element number of
about 75, and the average number of elements with ηe > 0.7 is
around 22.

Impact of training parameters on mesh metrics
Element quality thresholds comparison. In the module of experi-
ence extraction, the quality threshold is used to control the selec-
tion of elements and determines whose experience is valuable for
subsequent learning. To compare the different performances of
the trained FNN model against the quality of selected samples,
three different element selection thresholds (ηe> 0.5, ηe> 0.7,
and ηe> 0.8) are tested on the three experimental domains (D1,
D2, and D3). The seven quality metrics measure the performance.

The comparison results are shown in Table 7. Taking the qual-
ity threshold ηe> 0.7 achieves best performance in 4 metrics (i.e.,
Singularity, |MaxAngle - 90|, Scaled Jacobian, and Taper); taking
the threshold ηe> 0.8 has best results in Element quality,
|MinAngle – 90|, and Scaled Jacobian; and the last threshold has
the best performance only in Stretch. Understandably, the FNN
model has better performance in most metrics when the experi-
ence of elements with higher quality is sampled. However, the
FNN model with a higher element quality threshold may not pro-
duce sufficient training data because the number of extracted
samples will decrease when the threshold is raised. The other
metrics, such as Stretch, are not sensitive to whether the higher
quality elements are chosen. Therefore, this paper chooses quality
ηe> 0.7 as the ideal and balanced threshold for experience extrac-
tion, which trains FNN models.

FNN structures comparison. To compare different performances
of FNN models against the network structures, 4 different hidden
layer structures ([64, 64], [256, 256], [64, 128, 64, 32, 16], and [32,
64, 128, 64, 32, 16]) are tested on three experimental domains.
Four FNN models are trained using the four different structures
according to the process introduced at the beginning of this sec-
tion. The seven quality metrics measure the model performance.
The comparison results are shown in Table 8, where each metric
value is the average of values for three respective domains. The
models have better performance in slender structures than the
structures of [64, 64] and [256, 256]; and especially, the model
having the structure of [64, 128, 64, 32, 16] achieves the best per-
formance in the six metrics. This paper, therefore, chooses this
structure as the optimal FNN network structure and uses this

Table 5. Extracted sample records from valid elements

Episode #tE #vE #eS #S2E

Figure 23b 20 2 54 27

Figure 23c 35 6 1,174 195

Figure 23d 56 37 10,369 280

Figure 23e 56 41 12,230 298

Figure 23f 62 45 14,906 331

#tE – total number of elements;
#vE – number of valid elements with quality ηe > 0.7;
#eS – number of extracted samples;
#S2E – the number of samples per valid element

Fig. 24. The first meshing result of the FNN model.
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Table 6. Self-evolving process of FNN model

Sample source #tE #vE #eS Meshing result

Round 1 241 124 35,324

Round 2 558 419 279,770

Round 3 605 477 295,039

Round 4 678 530 345,158

The hidden layer of this FNN model is [256, 256];
#tE: total number of elements;
#vE: number of valid elements with quality ηe > 0.7;
#eS: number of extracted samples.

Fig. 25. Temporal training cost of A2C network.
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trained FNN model to compare the meshing performance with
other meshing approaches.

Comparison of meshing speed for A2C and FNN
The mesh generation speed is essential to finite element analysis
applications. In this paper, an extra indicator, elements per sec-
ond, is adopted to measure the performance differences between
the A2C and FNN models, both of which were developed by the
same team under similar resources. Other methods are not com-
pared since they are developed by different teams of various soft-
ware development capabilities and with different programming
languages, which will significantly impact the system’s perfor-
mance. These two models are tested on the ten domains given

in Figure 21. The comparison result is shown in Table 9. The
average speed for A2C over ten domains is 19.71 elements per
second, while FNN equals 28.73. The FNN model excels A2C
by almost nine elements per second. The performance difference
is that FNN can directly predict the coordinate of the candidate
point to form an element and the A2C model still needs two sam-
pling operations from two normal distributions to get the x and y
coordinates. Besides, the A2C model may not be adaptable to all
domains and could require some trial-and-error to generate a
valid element, which causes a significant drop in the speed. For
example, the meshing speed of A2C is only 3.82 elements per sec-
ond in domain D7. The standard deviations of A2C and FNN are
high, and both the meshing speeds increase when the domain has
fewer vertex numbers. This trend’s probable reason is that the
proposed method will update the boundary and find the following
reference point every time after an element was extracted. Hence,
the iteration number will be correspondingly greater for more
boundary vertices.

Experiment 2: comparisons of the proposed method with
existing methods

The effectiveness comparison experiment is conducted with the
other three approaches to examine the proposed FreeMesh-S sys-
tem’s performance.

Experimental comparison approaches
The meshing performance of the self-learning system will be com-
pared with three popular quad meshing approaches,
Blossom-Quad (Remacle et al., 2012), Delquad (Remacle et al.,
2013), and Paving algorithm (Blacker and Stephenson, 1991;
White and Kinney, 1997). Blossom-Quad and DelQuad are two
indirect algorithms to generate quad meshes in 2D domains.
The former takes advantage of the blossom algorithm to find
the perfect matching of a pair of triangles generated by the
Delaunay triangulation algorithm and then combine matched
pairs into quadrilateral elements. The latter improves the triangu-
lation process of Blossom-Quad by building triangular elements
that are more suitable to recombine into quadrilaterals. Paving
and its redesigned version are direct methods to generate quadri-
laterals from domain boundaries. They generate layered quadrilat-
eral elements from the boundary toward the interior until only six
boundary nodes are left, tackled following predefined patterns.

In the following, two widely used software systems, Gmsh
(Geuzaine and Remacle, 2009) (implements the Blossom-Quad
and Delquad algorithms) and CUBIT (Blacker et al., 2016)
(implements the Paving approach), are used as quad element gen-
erator to compare meshing performance with the proposed self-
learning system FreeMesh-S. Gmsh and CUBIT are both preva-
lent meshing software and have been developed by researchers for
many years since 1991. CUBIT is developed at Sandia National
Laboratories and even has a commercial product (Csimsoft). The
comparisons will be made only on the quality indices, while the

Table 7. Different element quality threshold comparison: L, H indicates if the
lower value or higher value is preferred, respectively.

Quality ηe> 0.5 Quality ηe> 0.7 Quality ηe> 0.8

Singularity (L) 65.7 57.3 62

Element quality (H) 0.78 0.82 0.84

|MinAngle – 90| (L) 15.3 11.6 11.3

|MaxAngle – 90| (L) 16.6 12 12.1

Scaled Jacobian (H) 0.93 0.95 0.95

Stretch (L) 0.82 0.84 0.85

Taper (L) 0.08 0.06 0.07

The hidden layer of this FNN model is [32, 64, 128, 64, 32, 16]. Each metric value is the
average value of the three domains (D1, D2, and D3).

Table 8. Comparison of FNN network structures: L, H indicate if the lower value
or higher value is preferred, respectively.

Hidden
layers
[64, 64]

Hidden
layers

[256, 256]

Hidden
layers

[64, 128, 64,
32, 16]

Hidden
layers

[32, 64, 128,
64, 32, 16]

Singularity (L) 72.6 84.7 52.3 57.3

Element
quality (H)

0.84 0.84 0.87 0.82

|MinAngle -
90| (L)

11.5 11.2 9.3 11.6

|MaxAngle -
90| (L)

12.6 12.1 10 12

Scaled
Jacobian (H)

0.95 0.95 0.97 0.95

Stretch (L) 0.85 0.86 0.89 0.84

Taper (L) 0.08 0.09 0.06 0.06

Each metric value is the average value over the three domains (D1, D2, and D3).

Table 9. Meshing speed (elements per second) of A2C and FNN for all ten domains.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Avg. STD

A2C 31.84 16.73 11.71 38.36 28.43 13.25 3.82 12.41 33.95 6.63 19.71 11.69

FNN 35.66 20.78 17.62 55.16 40.03 18.32 26.94 16.17 42.1 14.48 28.73 13.08

Avg. Indicates the average speed; STD indicates the standard deviation.
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computational time will not be considered since it depends on how
the systems are designed and implemented and which programming
language is used. The computational complexity of FreeMesh-S and
Paving is O(n2), which is calculated using their respective proce-
dures, whereas that of Blossom-Quad and DelQuad is reported to
be O(n2) (Johnen 2016).

Model applicability validation
The ten experimental domains are tested to validate if the trained
FNN model can be applied to arbitrary domain boundaries with-
out any additional training. The meshing results of FreeMesh-S
are shown in Figure 26. All the domains are discretized into high-
quality quadrilateral elements successfully, and the transition of
elements is smooth, which demonstrates the excellent

applicability to various boundary shapes without additional
A2C and FNN training.

Comparing results and analysis
All the meshing results of four methods, Gmsh-Blossom (GB),
Gmsh-DelQuad (GD), and CUBIT-Pave (CP), and the proposed
self-learning system FreeMesh-S (SS), on the ten experimental
domains, are shown in Figures 27–29, and 21, respectively. All
the domains have been successfully discretized into mesh ele-
ments, in which the methods CP and SS have more regular
quadrilateral elements than GB and GD; and GD performs better
than GB. The increase of meshes’ regularity can reduce computa-
tional consumption and improve the analysis results’ accuracy.
GD and CP methods, however, cannot mesh all the domains

Fig. 26. All the meshing results of freeMesh-S.
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into quadrilaterals. There are triangles in certain experimental
domains, which require extra cleanup operations to eliminate
them.

The statistics of the seven metrics are illustrated in Table 12 to
measure the different performances of the four methods quantita-
tively. Each value in the table is the average over 10 domains (see
detailed statistics in Table 10). The proposed SS method achieves
the best performance in 2 quality metrics (Scaled Jacobian and
Taper); CP method achieves the best performance in 5 quality
metrics (Singularity, Element quality, Min angle, Max angle,
and Scaled Jacobian); and GB is the best method from the aspect
of Stretch. Moreover, the number of domains that each method
achieves the best in each metric is shown in Figure 30. For each
metric there are the following results.

• Singularity: Even though the CP method obtains the
best-averaged performance against other methods, the self-
learning system FreeMesh-S (SS) has very close results and
excels in 2 domains when counting domains with best perfor-
mances. GB and GD methods are less likely to handle the irre-
gular vertices during meshing because of their dependence on
triangulation. They cannot achieve good performance in all
the domains. GD method, however, is better than GB
because it conducts a pre-processing on the triangulation to
make the triangular elements more suitable to be merged into
quadrilaterals. Singularity impacts the numerical stability in
CFD applications, wrinkles in subdivision surfaces, and break-
down of structured patterns on manifolds (Suresh and Verma,
2019).

Fig. 27. Meshing results of GB method.
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• Element quality: FreeMesh-S (SS) resembles GD method and
outperforms GB in this metric, while the CP method is the
best one and excels in 7 domains. Nevertheless, SS is still
comparable with other methods in the four domains. This mea-
sure is to identify how good a single element is, which can be
calculated by Eq. (14).

• |Min/Max Angle - 90|: CP is better than the other three methods.
FreeMesh-S (SS) has a similar performance with the GD method
and outperforms GB. These two metrics show the difference
between the minimal or maximum internal corners of an element
and the degree of 90 because a square is considered the perfect
element in quad meshing, that is, both of them are 90°.

• Scaled Jacobian: CP and SS have better results than the other
two methods, while SS is slightly better than CP by excelling
in 1 domain with the best performance. GB is the worst one.

Scaled Jacobian relates to the interpolation error of finite ele-
ment solution, for which the value of the best shape is 1.

• Stretch: GB is the best among the four methods and defeats all
the methods in 10 domains. FreeMesh-S (SS) has a very similar
performance with GD, while CP is slightly worse than the two
methods by 0.01. Stretch is calculated by the ratio between the
shortest edge and longest diagonal length, which indicates the
degree of deformation.

• Taper: SS outperforms all the other methods and excels in 9
domains. Taper represents the ratio of the two triangles’ areas
separated by a diagonal within a quadrilateral element, which
indicates the balanced shape of an element.

In general, the proposed system, FreeMesh-S (SS), achieves
high performance in all the metrics. All the values are within

Fig. 28. Meshing results of GD method.
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acceptable ranges as specified by the Verdict (Pébay et al., 2008)
and outperform the other three approaches in Scaled Jacobian
and Taper metrics. The CP approach has the best performance
in Singularity, Element quality, |MinAngle - 90|, |MaxAngle -
90|, and Scaled Jacobian metrics. Even though almost losing all
the competitions with other methods, the GB method has the
best performance in the aspect of Stretch. The GD method
exceeds the GB method in all the other metrics except the
Stretch but is still poorer than SS and CP. GD is a quad-dominant
method, which cannot discretize the whole domain into quadri-
lateral elements. Without extra cleanup operations (i.e., element
deleting and insertion), CP and GD methods are challenging to
generate a full-quad mesh. The proposed FreeMesh-S (SS) directly
generates full-quadrilateral elements by the simulated extraction
rules from A2C and FNN modules, which does not require any

heuristic operations to handle exceptional triangle elements and
inverted or flat quadrilateral elements.

Summary

The meshing performance of the proposed self-learning system is
thoroughly evaluated by comparing it with the other three popu-
lar meshing approaches over ten complex domain boundaries. As
been indicated in the introduction section, there is no single
method that could perform the best in every measurement metric.
This paper chooses seven commonly used indices to quantify
meshing performance. The proposed FreeMesh-S achieves high
in all of them and outperforms other methods in Scaled
Jacobian and Taper metrics. FreeMesh-S also has a similar perfor-
mance in Singularity with the best method – CP, which is suitable

Fig. 29. Meshing results of CP method.
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for applications needing regular meshes. Moreover, by analyzing
the four methods’ computational efficiency, all of them have sim-
ilar time complexity.

In the model training stage, the A2C shows that the agent can
gradually generate good quality elements via trial-and-error learn-
ing, which is knowledge-free and needs no human intervention.
The experience extraction module successfully extracts samples
(i.e., input-output pairs) for the FNN training, which can turn
several hundred elements into several hundred thousand samples.
That is essential for the FNN model to get sufficient data and con-
verge fast. The success of the combination of A2C and FNN
demonstrates that the proposed self-learning schema is efficient
in obtaining the extraction rules and sheds light on its applicabil-
ity to other computational geometric problems.

Discussion

The proposed self-learning system, FreeMesh-S, has achieved high
performance in meshing various complex domain boundaries
compared to other meshing approaches, as illustrated in the pre-
vious experiment section. Furthermore, there are a few important
implications of the proposed system from practical and theoretical
system design perspectives.

Domain knowledge dependency

It requires researchers or developers to be equipped with equiva-
lent knowledge for the selected method to develop an approach or
mesh generation system. The mesh generation’s lifecycle can be
divided into four phases: pre-processing, element generation,
quality measurement, and post-processing. The primary geometry
knowledge required during the different development phases is
shown in Table 11, respectively. For each stage, there are the fol-
lowing results:

• Pre-processing: Since the GB and GD are indirect methods to
produce mesh elements, they need to generate triangulations
in handling domains first. They need knowledge (e.g.,
Delaunay triangulation) to generate those triangles. GD intends
to find ways to optimize the triangles to recombine them into
high-quality quadrilateral elements. It requires, therefore, at
least ten kinds of knowledge in the pre-processing phase;
instead, the GB only needs Delaunay triangulation. CP and SS
are direct quad meshing methods, which do not need any pre-
processing operations.

• Element generation: GD and GB have a similar procedure to
generate elements. The required knowledge for them is the
same, including eight main categories. CP method requires
less knowledge and needs four categories. SS needs the least
knowledge to generate elements, which is also easy to
understand.

• Quality measurement: All the approaches require two classes of
knowledge. However, the required categories in SS, aspect, and
taper ratio, are the simplest ones.

• Post-processing: GB and GD both need operations, including
swapping the edges and removing the duplicated vertex in ele-
ments. GD also needs to smoothen the mesh using Lp Central
Voronoi Tesselation (LPCVT) algorithm (Lévy and Liu, 2010).
Moreover, GD is a quadrilateral-dominant method, which
means that triangles may exist. CP method also requires geome-
trical operations, such as deleting and inserting elements andTa
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smoothing. SS does not involve any extra operations, and only
needs smoothing, which is cleanup-free.

Generally, SS, being easy to understand, needs far less domain
knowledge than others while maintaining promising meshing
results. GD method has the most complicated geometry-related
concepts to learn. GB is slightly less complex than GD in the pre-
processing stage. Since CP and SS are direct meshing methods,
they do not need any pre-processing knowledge. However,

because CP relies on heuristic post-processing, it needs more
knowledge in developing those cleanup operations. Therefore,
SS is a development-friendly method for especially novice
developers or researchers. This vital benefit makes it less
knowledge-dependent in the method development and relieves
humans from defining the input-output relations implied in the
element extraction rules.

Designing a geometric algorithm is usually extremely difficult
and time-consuming because the learning cost of geometric
knowledge is high, especially for novel researchers. The self-
learning and self-evolving FreeMesh-S system take two steps
(i.e., defining the primitive rules and the self-learning process)
in developing the algorithm, which smartly balances the human
efforts and machine intelligence in the solution development.

The relation between smart design and smart system

The experiment found that the derived element extraction rules
are applicable to 2D domains with almost any shape. The final
obtained model can meshing domains with arbitrary boundaries
without any additional training to fit their geometric specialty.
Many existing meshing algorithms have difficulty in achieving
high-quality elements in domains with sharp angles or restricted
domains, such as one side of the geometric boundary (Rushdi
et al., 2017). Even within a more regular geometric domain,
they usually create flat or inverted elements that require heavy
post-processing operations. It is challenging to guarantee that a

Fig. 30. Number of domains that each method achieves the best performance in each metrics.

Table 11. Comparison of geometry knowledge required to develop and implement the algorithms and system

Gmsh-Blossom Gmsh-DelQuad CUBIT-Pave
Self-learning
system

Pre-processing Delaunay triangulation Surface; Parametrization/
reparametrization; Surface curvature;
Laplace equation; Dirichlet boundary
conditions; L∞ norm; frontal
Delaunay; Delaunay triangulation

Element
generation

Mesh size field; blossom algorithm;
cross-field; perfect matching of a
graph; Tutte’s theorem; cubic graph;
quad-vertex-merge optimization;
doublet collapse optimization

Mesh size field; blossom algorithm;
cross-field; perfect matching of a
graph; Tutte’s theorem; cubic graph;
quad-vertex-merge optimization;
doublet collapse optimization

Boundary shape;
isoparametric smooth;
Laplacian smoothing;
segment intersection

Segment
intersection;
boundary shape;
Laplacian
smoothing

Quality
measurement

Adimensional length; mesh size field Adimensional length; mesh size field Oddy ratio; distortion
metric

Aspect ratio; taper
ratio

Post-processing Edge swap; vertex duplication LPCVT smoothing, edge swap; vertex
duplication

Element deletion;
element insertion,
Laplacian smoothing

Laplacian
smoothing

Table 12. Averaged mesh quality metrics of four methods on ten domains：L,
H indicate if the lower value or higher value is preferred, respectively. The value
in bold means the best among other approaches in a domain. GB refers to
Gmsh-Blossom; GD indicates Gmsh-DelQuad; CP is CUBIT-Pave; and SS
means the proposed self-learning system, FreeMesh-S

GB GD CP SS

Singularity (L) 215.2 120.9 61.2 62.8

Element quality (H) 0.78 0.84 0.86 0.84

|MinAngle - 90| (L) 14.96 12.16 10.3 11.4

|MaxAngle - 90| (L) 17.7 13.5 11.6 12.2

Scaled Jacobian (H) 0.84 0.95 0.96 0.96

Stretch (L) 0.82 0.86 0.87 0.86

Taper (L) 0.13 0.09 0.08 0.07
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method works on domains with arbitrary shapes while maintain-
ing high quality. One of the most important properties of a smart
system is that it can make adaptive decisions to maintain the sys-
tem’s overall performance. In the proposed FreeMesh-S system,
the element extraction rules can be adaptive to various mesh bound-
aries. Three types of atomic rules were conceptually designed for the
meshing problem through human intelligence, which is supported
by a design methodology (Zeng and Cheng, 1991; Zeng and Yao,
2009). This primitive property of the solution provides the founda-
tion for smart applicability to arbitrary domains.

However, manually obtaining these rules is time-consuming
and cannot meet the specified quality requirements. For example,
human designers spend a lot of time observing various kinds of
errors and come up with many heuristic operations such as ele-
ment splitting, swapping, and collapsing to refine the overall
mesh quality (Blacker and Stephenson, 1991; White and
Kinney, 1997; Rushdi et al., 2017). Therefore, these rules should
be smartly designed to be obtained automatically. It is also
another important property of a smart system to self-evolve
from trial-and-error. The proposed FreeMesh-S can automatically
improve the extraction rules’ performance by integrating
trial-and-error learning and supervised learning. The formed self-
learning schema by A2C and FNN can quantitatively and auto-
matically construct the atomic rules’ input-output relations with-
out any human intervention.

In summary, the smart system can make adaptive decisions
according to the external environment’s changes and can be self-
evolved from experiences. The smart design will greatly balance
human efforts and machine intelligence and equip the system
with these two properties. The FreeMesh-S has shed light on
how to design such a smart system smartly and can be extended
to other fields where the problem can be cast as recursive or
atomic design problems.

Limitations

There are still a few limitations for the proposed self-learning sys-
tem to resolve in the future. One challenge is that a domain with a
very sharp angle is difficult to mesh. For example, a domain has a
corner with a 1° angle. It is, however, a common problem for
almost every meshing method (Shewchuk, 2012). The problem
can be solved by cutting off the sharp corners or adding heuristic
rules to form a quadrilateral element before applying the standard
meshing method to the remaining boundary. The FreeMesh-S is
also limited to mesh in single-connected domains. For a multi-

connected domain (e.g., domain D9), the comprised solution
taken by FreeMesh-S is to insert a cutting line to transform it
into a single-connected domain, as shown in Figure 31. If there
is more than one hole inside the domain, the same operation
can be applied to each one of them.

Conclusions

This paper aims to solve a challenging problem – learning from
experience about the element extraction rules for achieving high-
quality meshes in both the boundary and interior of complex geo-
metric domains. Conventionally, to guarantee the overall mesh
quality, element extraction methods rely heavily on heuristic
operations, which is extremely difficult, expensive, and time-
consuming for human algorithm designers. In this paper, a self-
learning system FreeMesh-S is proposed to generate quadrilateral
elements by automatically acquiring robust and high-quality ele-
ment extraction rules. Firstly, according to the recursive logic,
the extraction rules are categorized into three types (i.e., adding
1, 2, and 3 edges, respectively). A novel learning schema formed
by A2C and FNN is then used to construct the input-output rela-
tions quantitatively and automatically. A2C simulates human
trial-and-error learning to generate effective samples for training
the three element-extraction rules using FNN. The experiment
results demonstrate that derived element extraction rules can be
adaptive to various boundary shapes and achieve high-
performance quality metrics. Especially, the proposed method
performs the best in Scaled Jacobian and Taper metrics, compared
with the other three widely used meshing methods while requir-
ing the minimal and most straightforward geometric knowledge.

Furthermore, this paper, for the first time, formulates the mesh
generation problem as a Markov Decision Process (i.e., sequential
decision making) problem. It closely bridges machine learning
techniques with mesh generation and provides a smart way to bal-
ance the human efforts and machine intelligence in algorithm
development, which could shed light on how to design a smart
system smartly.
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