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This paper presents novel insights into the influence of soluble surfactants on bubble
flows obtained by direct numerical simulation (DNS). Surfactants are amphiphilic
compounds which accumulate at fluid interfaces and significantly modify the
respective interfacial properties, influencing also the overall dynamics of the flow.
With the aid of DNS, local quantities like the surfactant distribution on the bubble
surface can be accessed for a better understanding of the physical phenomena
occurring close to the interface. The core part of the physical model consists
of the description of the surfactant transport in the bulk and on the deformable
interface. The solution procedure is based on an arbitrary Lagrangian–Eulerian (ALE)
interface-tracking method. The existing methodology was enhanced to describe a
wider range of physical phenomena. A subgrid-scale (SGS) model is employed in
the cases where a fully resolved DNS for the species transport is not feasible due
to high mesh resolution requirements and, therefore, high computational costs. After
an exhaustive validation of the latest numerical developments, the DNS of single
rising bubbles in contaminated solutions is compared to experimental results. The
full velocity transients of the rising bubbles, especially the contaminated ones, are
correctly reproduced by the DNS. The simulation results are then studied to gain
a better understanding of the local bubble dynamics under the effect of soluble
surfactant. One of the main insights is that the quasi-steady state of the rise velocity
is reached without ad- and desorption being necessarily in equilibrium.

Key words: boundary layers, bubble dynamics, multiphase flow

1. Introduction
Surface active agents, so-called surfactants, are present in most multiphase

contactors, either as contaminants or added on purpose to change the way how
phases interact. In froth flotation, for example, a so-called frother is used to separate
hydrophobic from hydrophilic particles. The frother is surface active and renders
the particles in question hydrophobic. The particles can then attach to air bubbles,
which rise to the surface of the floatation cell and form a froth that can be removed.
The efficiency of flotation cells is determined by the probability of bubble–particle
collisions, and therefore by the interaction of gas, liquid, particles and frother. The
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example of froth flotation demonstrates how complex a system involving surfactants
can be. But also systems as simple as a single air bubble rising in tap water may
be determined by the presence of surfactants. Experiments have shown that bubbles
rising in purified water can reach terminal velocities that are two times higher than
in tap water; see Clift, Grace & Weber (1978, p. 172, figure 7.3). This demands
that the used substance system must be well determined in order to obtain reliable
and reproducible results. The most challenging but also most astonishing property of
a surfactant is that even traces of it, which modify cohesion forces on a molecular
level, can cause a tremendous change in the macroscopically observed, sometimes
metre-sized, flow patterns.

Levich’s Physicochemical Hydrodynamics (Levich 1962) is one of the first
textbooks containing a theoretical treatment of surface forces resulting from an
inhomogeneous distribution of a surface active substance on the interface of a rising
bubble, and it also describes in much greater detail, for the interested reader, some of
the basic concepts outlined hereafter. Bubbles rising in a pure liquid are characterized
by a mobile interface, meaning that the fluid elements forming the gas–liquid interface
are movable and can be exchanged or displaced. Therefore, the velocity gradients
present in the liquid around a rising bubble are smaller than those around a solid
body, and less energy is dissipated in the liquid. Consequently, under the same
driving force, bubbles rise faster than solid particles. If impurities are present in the
surrounding liquid, however, the observed rise velocity varies somewhere between
that of particles with a fully mobile and fully immobile or rigid interface. This
observation gave rise to the idea of a partially immobilized interface, which is useful
to derive simplified models to account for the influence of surfactants, but which can
be misleading sometimes. It is important to clarify that the inhomogeneous surfactant
distribution causes additional surface specific forces which in turn change the flow
pattern around a rising bubble. The surfactant itself cannot render a fluid particle
(partially) rigid.

In this work a substance is called surface active if its molecules, present in the
liquid bulk phase, accumulate at the gas–liquid interface and lower the surface tension.
The process of accumulation is characterized by two steps (see Chang & Franses
(1995, § 4 and the reference therein)): (i) the exchange of molecules between a surface
and a subsurface layer, which is only a few molecule diameters in width, and (ii)
the transfer of molecules from the bulk liquid into the subsurface layer. The first
step is called adsorption and the latter (bulk) mass transfer. In this work we consider
only cases of diffusion-controlled adsorption, meaning that the diffusive transport of
surfactant molecules from the bulk into the subsurface layer is much slower than their
adsorption such that the surfactant concentrations in the surface and subsurface layer
are always locally in equilibrium. Because the interface of a rising bubble is mobile
and constantly entrained by the surrounding bulk liquid, the adsorbed surfactant is
transported to the rear of the bubble, where it accumulates. As a consequence, there
is a region in the rear part with high surfactant concentration and lowered surface
tension, while the upper part stays almost uncontaminated and the surface tension is
unchanged. In the transition zone between contaminated and uncontaminated interface
segments, strong gradients of surfactant concentration and surface tension result. These
surface tension gradients lead to additional, so-called Marangoni forces, acting from
points of low towards points of high surface tension. These tangential interface forces
have to be balanced by shear forces in the liquid phase. The arising viscous forces
act against the Marangoni forces from the top to the bottom and, hence, add to the
overall drag force.
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The described mechanisms and experimental observations led Davis & Acrivos
(1966) to propose a mathematical model which incorporates the idea of a ‘stagnant
cap’. The interface is divided at a certain polar angle into two rotationally symmetric
segments, one fully covered with surfactant and one completely clean. The
contaminated cap is stagnant, meaning that the velocity at the interface is zero
in a reference frame moving with the bubble centre, and the shear stress at the cap is
equal to the surface tension gradient. The clean bubble front instead is characterized
by zero shear stress. The dividing angle is often referred to as stagnant cap angle.
Such a clear separating circle is a strong idealization, assuming that the transition zone
from fully contaminated to uncontaminated surface is small compared to the bubble
size. A variety of theoretical and numerical studies based on the stagnant cap concept
have appeared in the last decades, e.g. He, Maldarelli & Dagan (1991), Fdhila &
Duineveld (1996), Liao & McLaughlin (2000), Zhang & Finch (2001), Dukhin et al.
(2015, 2016). One drawback of stagnant cap based models is that dynamic effects
cannot be easily included, especially when the assumption of rotational symmetry is
violated, as occurs in most applications. In fact, experiments show that the bubble
motion is highly transient, especially after the bubble release. Sam, Gomez & Finch
(1996) describe the typical transient rise of single bubbles under the influence of
different surface active agents (frothers) as a three stage process that was then
observed several times in experiments. After release, the bubble accelerates until a
maximum terminal velocity is reached; in the second stage, the rise velocity starts to
reduce until, given sufficient time, a plateau is reached. The constant plateau velocity
defines the third stage. Interestingly, the first and second stages depend on the liquid
bulk concentration of the surfactant, but the plateau velocity in the third stage seems
to be fully determined by the surfactant type alone. Furthermore, the authors observed
in their experiments that all investigated bubbles (bubble diameter db < 3 mm), after
an initial deformation to an ellipsoidal shape, were almost spherical at the top of
the column. Also, an influence of the frother concentration on the bubble path was
reported: for bubbles showing path instability, the oscillation frequency decreased
from the bottom to the top of the column with increasing frother concentration. Even
in the case of large bubbles, the path at the column top was rectilinear. Since the work
of Mougin & Magnaudet (2002), it is known that helical and zig-zagging trajectories
of bubbles in the spherical and ellipsoidal regimes are associated with pairs of rotating
or symmetric vortices in the bubble wake. Sometimes during the initial acceleration,
a transition from zig-zag to helical paths can be observed. The reverse transition,
from helical to zig-zag, was only reported recently by Tagawa, Takagi & Matsumoto
(2014) for contaminated systems. The authors infer that a similar transition between
different wake structures may happen. A strong surfactant influence on wake structure,
path and shape were also visualized and comprehensively studied by Huang & Saito
(2017a,b). The possible impact of Marangoni forces on lift and drag was deduced
from the bubble motion. All previously mentioned experimental results contribute to
a partial understanding of, and description for, processes occurring on the reactor
scale, for instance why the gas hold-up in flotation cells increases from the bottom
to the top. However, to fully understand the transient behaviour of contaminated
systems, complementary local field information of surfactant concentration, velocity
and pressure at the interface and in the liquid bulk is necessary, which is currently
only accessible via direct numerical simulations (DNS). Early numerical studies
assuming rotational symmetry, Fdhila & Duineveld (1996), Liao & McLaughlin
(2000), were only able to find a qualitative agreement with the previously described
experimental observations, presumably because of too many limiting assumptions in
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the mathematical model. However, more sophisticated, fully three-dimensional DNS
solving the coupled problems of two-phase hydrodynamics, and surfactant transport
in the bulk and on the interface, Tasoglu, Demirci & Muradoglu (2008), Tuković
& Jasak (2008), could also only partially reproduce and explain the typical three
stage process. As we will show in the following sections this is mainly due to the
studied parameter range. The authors study Péclet numbers (Pe) below 103 (calculated
with the kinematic viscosity of the bulk liquid and the molecular diffusivity of the
dissolved surfactant in the bulk). For typical systems instead, Pe ranges from 104 to
107. The Péclet number is a measure of the ratio of convective to diffusive transport
of a dilute species. High values of Pe are associated with thin boundary layers
forming along the bubble surface, which determine the surfactant transfer, and hence,
the ad- and desorption. The boundary layer width is approximately three to four
orders of magnitude smaller than the bubble size (Weiner & Bothe 2017) which is
why it is extremely demanding to resolve them in a DNS.

In this work we use an arbitrary Lagrangian–Eulerian (ALE) interface-tracking
approach (Muzaferija & Perić 1997; Jasak & Tuković 2006; Tuković & Jasak 2008,
2012) combined with a recently introduced subgrid-scale model methodology (Weiner
& Bothe 2017) for the surfactant transfer, which allows us to study realistic systems
and to find a good agreement with experimental results. The results for a single
rising bubble influenced by different amounts of soluble surfactant are discussed. We
present local and global quantities which explain how the surfactant distribution in the
bulk and on the interface is related to the macroscopically observed bubble motion,
and examine thoroughly different contributions to the overall drag and lift forces. It
is the authors’ intention to provide detailed information which could lead to better
scale-reduced models accounting for the influence of contamination in bubbly flows.

2. Mathematical model
The mathematical model for two-phase flows employs a sharp interface representa-

tion, meaning that the interface is represented as a surface of zero thickness with
unknown time-dependent shape and location. Consider a fluid domain Ω containing
two immiscible fluids, separated by a deformable interface. The interface, Σ(t),
separates the domain into two sub-domains, Ω+(t) and Ω−(t), corresponding to
the two bulk phases. The presence of surfactant in the denser phase and on the
interface is taken into account. Under the hypothesis of incompressible Newtonian
fluids, isothermal conditions and absence of phase change and chemical reactions,
the governing equations are based on the conservation of mass, momentum and
surfactant molar mass. For the latter, the additional assumption of negligible inertia
of the adsorbed surfactant on the interface is fundamental.

2.1. Hydrodynamics
The velocity and the pressure field are obtained from the standard two-phase
Navier–Stokes equations for incompressible Newtonian fluids. In local formulation,
the continuity equation and the momentum balance in the bulk phases Ω±(t) read

∇ · v = 0, (2.1)
∂t(ρv)+∇ · (ρv⊗ v)=−∇p+∇ · Svisc

+ ρg, (2.2)

where v is the barycentric velocity, p the pressure, ρ the density, Svisc
= µ(∇v +

(∇v)T) the viscous stress tensor with µ being the dynamic viscosity and g the
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S(t)

FIGURE 1. Domain representation for two-phase flows system.

acceleration due to gravity. The two bulk phases, separated by the moving interface
Σ(t), are coupled via transmission (or jump) conditions at the interface:

JvK= 0, (2.3)
v · nΣ = vΣ · nΣ , (2.4)

JpI − SviscK · nΣ = σκnΣ +∇Σσ , (2.5)

where vΣ is the interface velocity with vΣ = v|Σ (the notation ·|Σ denotes the trace
of a quantity defined in Ω± on the interface), and κ the surface curvature defined as
κ = −∇Σ · nΣ , with ∇Σ · representing the surface divergence. Note that the surface
gradient of a quantity φ(x) is defined as: ∇Σφ(x) = ∇φ(x) − nΣ(x)(∇φ(x) · nΣ(x))
at x ∈Σ , where φ is extended to a neighbourhood of Σ as a differentiable function.
Then, the surface divergence of a vector f is defined as (∇Σ · f )(x)= tr(∇Σ f )(x). The
symbol σ denotes the surface tension coefficient. In contaminated systems, the surface
tension coefficient depends on the local concentration of surfactant on the interface
σ = σ(cΣ). The notation J·K stands for the jump of a physical quantity, e.g. φ, across
the interface. The jump of φ is defined as JφK(t, x)= limh→0+(φ(t, x+ hnΣ)−φ(t, x−
hnΣ)), x ∈ Σ(t). The system of equations governing the hydrodynamic problem is
completed by appropriate initial and boundary conditions.

2.2. Surfactant transport
The core part of the mathematical model consists of the surfactant transport equations
in the liquid phase and on the interface for moving domains. Let V(t) be a control
volume moving with velocity w inside the fluid domain Ω . The boundary of the
control volume is denoted by ∂V(t), with n being the outer unit normal to V(t). The
intersection between the interface and the control volume Σ(t) ∩ V(t) is denoted as
S(t), with the boundary curve ∂S(t) and the outer unit normal m⊥ nΣ to ∂S(t); see
figure 1. The integral balance of surfactant molar mass for a moving control volume
V(t) in absence of chemical reactions or any other source term (Bothe, Prüss &
Simonett 2005) reads

d
dt

[∫
V(t)

c dV +
∫

S(t)
cΣ dS

]
= −

∫
∂V(t)

c(v −w) · n dS−
∫
∂V(t)

j · n dS+

−

∫
∂S(t)

cΣ(vΣ −w) ·m dl−
∫
∂S(t)

jΣ ·m dl, (2.6)
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where c is the molar concentration of surfactant in the bulk (mol m−3), cΣ is the
surface molar concentration of surfactant on the interface (mol m−2) and j and jΣ
are the diffusive fluxes in the bulk phase and on the interface, respectively. In local
formulation the equations for surfactant transport in the bulk phase and on the
interface read

∂tc+∇ · (cv + j)= 0 in Ω\Σ(t), (2.7)
∂Σt cΣ +∇Σ · (cΣvΣ + jΣ)= sΣ on Σ(t), (2.8)

where the sorption term sΣ satisfies

sΣ + Jj · nΣK= 0 on Σ(t), (2.9)

and (2.8) is a dynamic boundary condition for (2.7). The transport equations in the
bulk and on the interface are completed by appropriate initial and boundary conditions.

The system of equations (2.7)–(2.9) is not closed, i.e. additional relations are needed
to determine the diffusive fluxes and the source terms as functions of the primitive
variables. The derivation of the transport equations can be found, for instance, in Stone
(1990), Bothe et al. (2005), Alke & Bothe (2009).

2.2.1. Diffusive fluxes
Under the assumption of dilute species concentrations both in the liquid phase and

on the interface, the diffusive fluxes are modelled via Fick’s law, i.e.

j=−D∇c in Ω+(t), (2.10)
jΣ =−DΣ

∇ΣcΣ on Σ(t). (2.11)

Furthermore, homogeneous Neumann conditions (2.12) for the diffusive fluxes at the
outer domain boundary are assumed, i.e.

j · n= 0 on ∂Ω(t). (2.12)

2.2.2. Sorption process
To model the sorption process, two limiting situations can be considered: diffusion-

controlled sorption (fast) and kinetically controlled sorption (slow); see Miller et al.
(2014). In the first case, the sorption process is much faster than the diffusive transport,
while in the latter case the sorption process is slower than the diffusive transport,
typically due to the presence of a kinetic barrier. Thus, the transfer rate sΣ will be
determined in two different ways, while the transmission condition (2.9) always holds.
In both cases, the effect of surfactant on the interfacial surface tension is described
by the surface equation of state which in a general form reads

σ − σ0 =Π(cΣ). (2.13)

The function Π(cΣ) in (2.13) assumes a specific expression with respect to the
sorption model employed; see Pesci et al. (2015) for more details on the derivation
of (2.13) and the full set of sorption models available in our library. For instance, in
the Langmuir model, the surface tension equation of state reads

σ = σ0 + RTcΣ
∞

ln
(

1−
cΣ

cΣ
∞

)
, (2.14)
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where R is the universal gas constant equal to 8.3144 J (mol K)−1, T is the absolute
system temperature in Kelvin and cΣ

∞
is the saturated surfactant concentration, i.e. the

maximum number of adsorbed molecules per area. For the application case presented
in § 4 it has been proven that a fast model is adequate to describe the sorption
mechanism; see Aksenenko et al. (1998), Kovalchuk et al. (2004). For completeness
we also report in § 2.2.4 the equations for the slow sorption mechanism as they are
implemented in our solver.

2.2.3. Diffusion-controlled sorption
In the case of fast (as opposed to kinetically controlled transport) sorption, the ad-

and desorption rates are locally in equilibrium, i.e.

sads(c|Σ , cΣ)= sdes(cΣ). (2.15)

This equality leads to an additional local relationship between cΣ and c|Σ , the
so-called adsorption isotherm, which needs to be accounted for in the numerical
solution. For instance, the Langmuir adsorption isotherm relates the surface and bulk
surfactant concentrations by means of the Langmuir equilibrium constant a, expressed
in mol m−3, and the saturated surface concentration:

cΣ = cΣ
∞

c/a
1+ c/a

. (2.16)

2.2.4. Kinetically controlled sorption
In the case of kinetically controlled sorption, the source term at the interface is

computed as
sΣ = sads(c|Σ , cΣ)− sdes(cΣ), (2.17)

where sads(c|Σ , cΣ) and sdes(cΣ) describe the rate of ad- and desorption, respectively.
Note that the rate of adsorption is a function of the bulk concentration near the
interface and the concentration of the adsorbed species, while the desorption rate
is usually assumed to be a function of the adsorbed species only. From (2.9) and
the diffusive fluxes according to (2.10), a Neumann boundary condition for the bulk
species equation is derived, namely

(∇c)|Σ · nΣ =−sΣ/D. (2.18)

3. Numerical model
The solution procedure is based on the arbitrary Lagrangian–Eulerian (ALE)

interface-tracking method, originally presented by Hirt, Amsden & Cook (1974), later
further developed by Muzaferija & Perić (1997) and extended by Tuković & Jasak
(2012). Collocated finite volume/finite area methods are applied to solve the transport
equations on unstructured meshes of general topology with moving mesh support.
The interface is represented by a computational surface mesh (boundary mesh)
advected in a semi-Lagrangian manner under the enforcement of jump conditions at
the interface, whereas the volume mesh is updated through automatic mesh motion
with Laplacian smoothing in order to preserve a high mesh quality. The interface
divides the computational domain into two disconnected sub-domains. The coupling
between the two is enforced by the boundary conditions for pressure and velocity
at Σ(t) derived from the jump conditions (2.3) to (2.5). The governing equations
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are discretized in time using a second-order backward scheme known also as Gear’s
method; see Ferziger & Perić (1996). The two fluid domains Ω±(t) are discretized
by a finite number of convex polyhedral control volumes VP. The centroid of the
control volume is denoted by P and the one of the neighbouring cell by N. The
cell faces f are of polygonal shape with area Sf and area normal vector Sf . In
analogy to the volume discretization, the interface Σ(t) is subdivided into polygonal
control areas (the computational surface mesh can be seen as the boundary of the
volume mesh, that is the faces approximating the interface belong to the boundary
cells of the volume mesh). The centre of a control area is again denoted by P and
the neighbouring one by N. The two control areas are separated by the edge e,
characterized by the edge vector e, length Le and bi-normal me (perpendicular to both
e and the edge normal vector ne = (n1 + n2)/2).

3.1. Hydrodynamics and mesh motion
The pressure–velocity coupling is solved by applying the iterative pressure implicit
with splitting of operators (PISO) algorithm (Issa 1986). A modified version of the
Rhie–Chow interpolation suggested in Tuković & Jasak (2012) is employed to prevent
a decoupling of pressure and velocity. A detailed description of the flow field solution
and the mesh motion can be found in Tuković & Jasak (2012), Pesci et al. (2015).

3.2. Surfactant transport
In our system only one surfactant species is considered, while in Dieter-Kissling,
Marschall & Bothe (2015a,b) the methodology and the results for multicomponent
surfactant systems in free-surface flows were presented. For cases where a fully
resolved DNS for the species transport is not feasible due to high computational
costs and numerical stability issues, a subgrid-scale model is employed.

3.2.1. Equation discretization
A finite volume method is applied to discretize the species transport equation in the

liquid phase. In this case, the transported quantity is the surfactant molar concentration
c. The transport equation in integral form can be derived from (2.6). Applying Fick’s
law (2.10) to describe the diffusive fluxes it reads

d
dt

∫
V(t)

c dV +
∫
∂V(t)

(c(v −w)−D∇c) · n dS= 0. (3.1)

The fully discretized transport equation for the control volume VP then reads

3cn
PVn

P − 4co
PVo

P + coo
P Voo

P

1t
+

∑
f

φf cn
f =
∑

f

Df (∇c)nf · Sf , (3.2)

where φf = Sf · (u − w)f is the face flux. We denote the discrete velocity as u to
distinguish between the discrete and the continuous quantities. The superscripts n, o
and oo represent values evaluated at the new time instance tn and the two previous
time instance to

= tn
− 1t and too

= to
− 1t. The discretized concentration field is

defined in the cell centres P as cP. Then, as required by the discretization of the
diffusive and convective terms, the quantities (∇c)f and cf have to be approximated
at the face centres.
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The surfactant transport on the interface can also be derived from (2.6). Applying
the finite area method, the local discretized form of the equation is obtained for the
control surface SP,

3(cS
P)

n(SP)
n
− 4(cS

P)
o(SP)

o
+ (cS

P)
oo(SP)

oo

1t
+

∑
e

(φS
e cS,n

e )

=

∑
e

DΣ
e (∇ScS)ne · (meLe)+ sS

PSP (3.3)

with the relative edge flux φS
e = (meLe) · (u − w)‖ and ∇S representing the discrete

counterpart of the surface gradient operator ∇Σ . The quantity cS denotes the
discretized counterpart of the continuous quantity cΣ in the face centre cS

P or
interpolated on the edge centre cS

e . The terms sS
P is the discrete source term which

can be split in explicit sS
P,exp and implicit sS

P,imp parts, respectively. In case of fast
sorption processes the source term appears only in an explicit form, thus the splitting
is not necessary.

The diffusion terms (bulk and surface transport) can be decomposed into orthogonal
and non-orthogonal contributions, treating the first one implicitly and the second one
explicitly; see Tuković & Jasak (2008).

Equations in the bulk and on the interface are solved with a preconditioned bi-
conjugate gradient (PBiCG) linear solver, with a diagonal incomplete-LU preconditioner
(DILU) and tolerance 1× 10−12.

3.2.2. Sorption process
The coupling between bulk and interfacial surfactant, transport is achieved applying

a Dirichlet (fast sorption) or a Neumann (slow sorption) boundary condition to the
diffusive term in (3.2) and the respective constitutive equation for the source term
in (3.3) derived from the sorption model. In our code, a sorption model library
is available (Pesci et al. 2015) where multiple sets of models, both fast and slow
sorption models, are implemented. Depending on the chosen model, the solver will
automatically use the respective boundary conditions and source term. As in this
work we use a fast sorption model, slow sorption is not treated in this section, but
its numerical treatment can be found in Pesci et al. (2015, 2017).

For diffusion-controlled (fast) sorption processes, the source term for the surface
concentration equation is computed from the transmission condition (2.9) as

sΣ = j · nΣ =−D(∇c · n)Σ =: sΣfast. (3.4)

Then the discretized surface transport (3.3) is solved to obtain the new surface
concentration field of the surfactant species. Since the adsorption isotherm cΣ = f (c|Σ)
is known, e.g. equation (2.16), the value of

c|Σ = f−1(cΣ) at Σ (3.5)

is taken as a Dirichlet boundary condition for the discretized surfactant bulk (3.2).
After solving the interfacial and bulk surfactant transport equations, the surface tension
σ = σ(cΣ) is updated according to the chosen sorption model.
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3.2.3. Implicit SGS model
Consider the species, in this case surfactant, transport problem in the liquid

phase. The species transport along the bubble interface is mainly governed by two
transport processes, namely advection in the streamwise direction and diffusion in
the interface normal direction. To characterize the flow the following dimensionless
numbers are used. The Reynolds number defined as Re = uL/ν, the Péclet number
as Pe = Re · Sc = uL/D and the Schmidt number as Sc = ν/D, where u is the
velocity, L the characteristic length, ν the kinematic viscosity and D the molecular
diffusivity. For the bubbles under investigation (Reynolds number Re≈ 102 and Péclet
number Pe ≈ 107), the species transport is dominated by advection, leading to a
very thin concentration boundary layer around the bubble (δs ≈ 10−6 m). Thus, a
fully resolved three-dimensional (3-D) DNS for the species transport is not feasible
due to the high computational costs. In previous studies, for instance in Cuenot,
Magnaudet & Spennato (1997), this issue was faced using a very fine grid on the
axisymmetric case with bubbles at steady state, i.e. with a non-deformable interface.
Moreover, the hydrodynamics is solved only in the liquid phase. This approach is
not suitable for the study of the initial transient of the bubble rise and the effect of
surfactant on it. An effective solution to the thin species boundary layer problem is
the use of a subgrid-scale (SGS) model, a by now standard approach in mass transfer
problems (Bothe & Fleckenstein 2013) to approximate the surfactant boundary layer
in the vicinity of the bubble. The main idea behind the SGS model is to employ an
appropriate model function to compute the numerical (SGS) fluxes on all cell faces
of an interface cell. These SGS fluxes are used to correct the numerical fluxes to
accurately predict the species transport close to the interface, even if the concentration
boundary layer is fully embedded in a single cell layer. Our approach is based on the
latest development of the SGS model presented in Weiner & Bothe (2017), although
here the transport equation is coupled to the sorption process at the interface and
solved implicitly to improve the numerical stability and to allow for larger time steps.
In Weiner & Bothe (2017) the transport equations are solved explicitly with a direct
modification of diffusive fluxes and concentration values at the required faces. Since
our solution is implicit, i.e. the fluxes contain the unknown variable (cf )

n, (∇c)nf , we
modify the diffusion coefficient and the advective term as described in the § B.1. It
has been shown by Weiner & Bothe (2017) that the SGS model can reduce the mesh
resolution requirements near the interface by a factor of ten or more.

Applying the SGS model to the bulk surfactant transport results in the following
discretized transport equation (from (3.2)) solved with locally modified diffusion
coefficients and advection flux field:

3cn
PVn

P − 4co
PVo

P + coo
P Voo

P

1t
+

∑
f

φSGS
f cf =

∑
f

DSGS
f Sf · (∇c)f . (3.6)

The derivation of φSGS and DSGS is reported in § B.1.

3.2.4. SGS model and fast sorption
The inverse expression of the adsorption isotherm (3.5) serves as a Dirichlet

boundary condition for the bulk transport. The bulk transport is coupled to the
surface balance via the source term (3.4). Also, for computing the source term, we
apply the locally corrected SGS diffusion coefficients, i.e.

sΣfΣi =−DSGS
fΣi
(∂nc)num

fΣi
. (3.7)
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ρ+ (kg m−3) µ+ (kg (ms)−1) ρ− (kg m−3) µ− (kg (ms)−1) σ0 (N m−1)

997.3 9.3× 10−4 1.1965 1.83× 10−5 0.0724

TABLE 1. Fluid properties.

cΣ
∞
(mol m−2) aL (mol m−3) D (m2 s−1) DΣ (m2 s−1) T (K)

4.17× 10−6 4.85× 10−3 5× 10−10 5× 10−7 296

TABLE 2. Surfactant (C12DMPO) properties, fast Langmuir adsorption model parameters.

3.3. Validation
The validation of the pure hydrodynamics has been conducted comparing with the
experimental data by Duineveld (1995) for single bubbles rising in pure water and
can be found in Pesci et al. (2017). There, rise velocity and aspect ratio for bubbles
with radii ranging between 0.75 and 1.0 mm were considered and found in very good
agreement with the experimental data; see Pesci et al. (2017, p. 418, figure 15.13).
The validation for the sorption source term for fast and slow sorption processes can
also be found in Pesci et al. (2017). The validation of the implicit SGS model can
be found in appendix C.

4. Results and discussion
A single air bubble rising in aqueous solution contaminated by surfactant is

considered. For this prototypical problem, a direct comparison with experimental
results is possible. The experimental data and a short description of the corresponding
set-up can be found in Pesci et al. (2017). More details on the experimental set-up
are presented in Krzan & Malysa (2002), Krzan, Zawala & Malysa (2007). Briefly,
a digital camera was used to record the bubble motion at various distances from the
orifice. Four to eight images of the bubble were obtained for each camera position
illuminating the region of interest with a strobe frequency from 100 to 200 Hz.
The higher frequency was used for the initial acceleration stage. From the distances
between the subsequent positions of the bubble and knowing the strobe frequency,
the local bubble velocity is computed. The measurement at each camera position was
performed at least three times and mean local velocity values were calculated.

4.1. Simulations set-up
The material properties used in the simulations are reported in tables 1 and 2.
The bubble diameter is dB = 1.45 mm. The initial shape of the bubble is a sphere
positioned in the centre of a spherical domain with radius 20 times the bubble radius.
The computational domain is divided into two sub-domains, one representing the
gas phase and the other one representing the liquid phase. The meshes used for
the simulations consist of polyhedral cells in the gas phase and prismatic cells with
polyhedral base in the liquid phase, as can be seen in figure 2. The calculation
is performed in a moving reference frame (MRF) that follows the bubble centre
during its rise, while the interface is deformable. The presence of a non-inertial
reference frame located in the centre of the bubble is taken into account via a
correction in the momentum equation (ρaMRF added to the momentum equation) and
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x
y

z x
y z

(a) (b)

Full domain Enlarged view of the bubble region

FIGURE 2. Three-dimensional computational domain for a rising bubble. Inner, outer and
surface (dark grey on the right) meshes.

the velocity boundary condition at the outer domain boundary, vout = −vMRF (the
boundary condition inletOutlet available in OpenFOAM is used. The inlet velocity is
set to −vMRF, at the outlet a zeroGradient condition is set). A (constant) time step
1t ≈ O(10−6) s is chosen to fulfil the criterion for the interface numerical stability
(Tuković & Jasak 2012), i.e. 1t <

√
ρ+min(lPN)3/(2πσ) with min(lPN) being the

minimum distance between two face centres on the interface. The surfactant used in
the experiments is the non-ionic dodecyl-dimethyl-phosphine-oxide (C12DMPO). Its
sorption process is modelled via the fast Langmuir sorption model. For the simulations
the bubble shape is initialized as a sphere with zero initial velocity. To model the
surfactant transport in the bulk phase in the vicinity of the interface, the SGS model
described in § 3.2.3 and appendix B is used. From the available experimental data
we consider the clean case and three different initial surfactant concentrations as a
reference. The surface diffusivity DΣ is only an estimate since it is not possible to
accurately measure it. Nevertheless, a parameter study with DΣ varying in the range
of [10−6

· · · 10−9
] m2 s−1 confirmed that its variation has only a minor effect on the

sorption dynamics and rise velocity because the transport is advection dominated.
The selected experimental results from Pesci et al. (2017) are given in figure 3 and

they will be the base for our discussion of the simulation results. According to Pesci
et al. (2017), the average accuracy of the experimental data is ±5 %. Three different
initial concentrations in the liquid phase (the surfactant concentration in the gas
phase is set to zero) are considered, a relatively small one, c0,1 = 2× 10−3 mol m−3,
an intermediate one, c0,2 = 8 × 10−3 mol m−3, and a relatively high one, c0,3 =

5 × 10−2 mol m−3. To these three initial surfactant concentrations correspond
Marangoni numbers Ma of 34, 49 and 70, which express the ratio between surface
tension and viscous forces. Ma is computed as

Ma=
RTcΣ

∞

µ+Umax
, (4.1)

where Umax is the peak rise velocity reached by the bubble. Moreover, the respective
surface equilibrium concentrations computed from the Langmuir isotherm (2.16)
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FIGURE 3. Experimental bubble centre rise velocities in rise direction y. Data from
Pesci et al. (2017).

are cΣeq,1 = 1.2175 × 10−6 mol m−2, cΣeq,2 = 2.596 × 10−6 mol m−2 and cΣeq,3 =

3.801× 10−6 mol m−2. In figure 3, the well-known velocity profile of rising bubbles
under the effects of surfactants can be observed. The bubble rising in clean water
(crosses), thus with a fully mobile surface, after an initial acceleration reaches a
constant velocity that is the terminal velocity. The same can be observed for bubbles
rising in highly contaminated solutions (filled circles). After an initial acceleration,
the bubble velocity reaches a constant value, although it is much lower than the
velocity for a mobile surface. At intermediate concentrations (empty circles, triangles)
there is still an acceleration phase, but after reaching the peak velocity the bubble
decelerates. The bubbles keep decelerating until they reach a quasi-steady terminal
velocity which is similar to the case with very high contamination.

In applications involving bubbly flows, it is fundamental to correctly reproduce the
initial transient stage of the bubble rise, because it determines the position of the
bubble and perhaps also how it will interact with other bubbles. Thus in §§ 4.2–4.4
the attention is focused on correctly reproducing the transient velocity profiles.

4.2. Discussion on under-resolved species boundary layers
The simulation results for the clean case have already been compared to the
experimental ones in Pesci et al. (2017) showing a very good agreement. These
results are reproduced in § 4.5.1 with additional information about the bubble path.

The surfactant transport problem is a typical case with highly nonlinear concentration
profiles at the interface in a very thin boundary layer. Thus a standard linear
interpolation from the cell centres to the face centres leads to over- or underestimated
diffusive and convective fluxes normal to the interface, resulting in an unphysically
thick boundary layer. Only thanks to the application of the SGS model described
in § 3.2.3 it becomes possible to study cases with real diffusion coefficients for the
surfactant in the liquid phase. The usage of physical diffusivities is imperative to get
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FIGURE 4. Comparison between simulations without (black lines) and with SGS model
(grey line); c0 = 8× 10−3 mol m−3; simulated time t= 1 s.

the correct transient velocity since it not only affects the surfactant bulk transport but
also the sorption mechanism itself, as described in § 3 and in Pesci et al. (2017). A
comparison between the standard interpolation and the flux correction by the SGS
model is given in figure 4. The results there refer to the intermediate surfactant bulk
concentration c0,2 = 8 × 10−3 mol m−3. The first set of simulations is run without
SGS modelling to test the sensitivity to different diffusivities with a fixed mesh
resolution (first cell thickness l≈ 16 µm). For a realistic diffusivity, the rise velocity
is overpredicted; see figure 4. On the other hand, increased diffusion coefficients
result in thicker species boundary layers that can be resolved by this mesh, but at the
same time they speed up the adsorption process and, consequently, the rise velocity
approaches the steady-state value too quickly.

Figure 4 depicts also the velocity profile obtained with the SGS approach and
the physical diffusivity. The initial transient velocity is reproduced much better, but
the velocity peak is still overestimated. This difference can be explained considering
the bubble formation and detachment time in the experiments. As it is known from
experimental works, e.g. Krzan et al. (2007), Małysa et al. (2011), Ulaganathan
(2016), the initial transient velocity depends strongly on the time of bubble formation
and release. During the bubble formation process, the newly generated bubble surface
is exposed to the contaminated solution. Thus, when the bubble detaches from the
capillary, its interface holds already a certain amount of surfactant. This relatively
small (not above 10 % of cΣeq) initial surface contamination influences the peak rise
velocity. From the experiments, the adsorption time for detaching bubble is known
to be approximately 1.6 s, hence, during this time there would be a diffusion of
surfactant towards the growing bubble surface. The surface coverage at release is a
function of time and bulk surfactant concentration, and it can be estimated as

cΣ0 (t)=
1
3

(
2c0

√
3Dt
7π

)
, (4.2)
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FIGURE 5. Rise velocity for three initial surfactant bulk concentrations. Results for two
mesh resolutions (continuous lines – fine mesh; dotted lines – coarse mesh); simulated
time up to t= 0.6 s.

c0 (mol m−3) 2× 10−3 8× 10−3 5× 10−2

cΣ0 (trel) (mol m−2) 1.39× 10−8 5.57× 10−8 3.48× 10−7

or or or
1.14 %cΣeq,1 2.14 %cΣeq,2 9.16 %cΣeq,3

TABLE 3. Initial surface coverage estimates at release time trel = 1.6 s with
D= 5× 10−10 m2 s−1.

a formula taken from Dukhin, Kretzschmar & Miller (1995, pp. 118–119). A
summary of the estimated surface coverages at detachment is reported in table 3.
Within our simulation set-up, different detachment times can be investigated varying
the initial surfactant surface concentration. Before presenting these results, a mesh
sensitivity study of the full problem with SGS modelling is necessary. Note that for
the simulations corresponding to figures 4 and 5 the initial surface concentration was
set to zero, cΣ(t= 0)= 0 mol m−2.

4.3. Mesh sensitivity study
To study the dependence of the numerical results with respect to the mesh resolution,
simulations with different initial bulk concentrations and zero initial surface coverage
are performed on two different meshes, a fine one (≈320 000 cells) with a first layer
thickness of l≈ 8 µm and 3700 faces on the interface, and a coarser one (≈160 000
cells) with a first layer thickness of l≈ 16 µm and 2400 faces on the interface. As
can be noticed from figure 5 the biggest difference between fine and coarse mesh
is encountered in the decelerating phase for the smallest initial bulk concentration.
In fact, for higher c0, the bubble rises slower, thus the Reynolds number is smaller
and consequently the hydrodynamic boundary layer thicker. A thicker hydrodynamic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.723


724 C. Pesci, A. Weiner, H. Marschall and D. Bothe

0.05

0.10

0.15

0.20

 0.25

0.30

0.35

0.05

0.10

0.15

0.20

 0.25

0.30

0.180 0.100.02 0.04 0.06 0.08 0.12 0.14 0.16 0 0.100.02 0.04 0.06 0.08 0.12 0.14 0.16

0 0.100.02 0.04 0.06 0.08 0.12 0.14 0.16

0.08

0.10

0.12

0.14

0.16

0.18

0.06

0.04

0.02

y (m) y (m)

y (m)

(a) (b)

(c)

FIGURE 6. Study on the effects of the initial surface coverage on the rise velocity;
simulated time t= 1 s.

boundary layer is then well resolved by a coarser mesh, too. Even though there is
a small difference between the coarse and the fine mesh results, for the simulations
that are reported below we decided to use the coarser mesh because of the required
computational time. Only for the least contaminated bubble, the bubble path is
reported both for the coarse and the fine meshes, since the helical path was more
pronounced in the latter case. The fine and coarse cases ran in parallel (MPI) on
three and five cores, respectively, with the interface (liquid side) and its counterpart
(gas side) on the same processor. The computations took between thirty and sixty
days to reach 1 s of simulated physical time.

4.4. Bubble shape and path under the influence of surfactant
4.4.1. Initial surface coverage

We vary the detachment time via pre-contaminating the bubble surface, while the
initial shape deformation at detachment is neglected. Since (4.2) provides only an
estimate of the initial surface coverage at release, we found it appropriate to conduct
a parameter study varying cΣ0 for the different bulk concentrations to obtain a more
precise value of the initial surface contamination.

Figure 6(a) shows that for a small initial bulk surfactant concentration the surface
coverage at detachment must have been almost zero (estimated value ≈1 %cΣeq,1),
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since the simulation results for cΣ0 = 0 mol m−2 are the closest to the experimental
ones. After reaching the peak velocity, the bubble starts to decelerate until the
rise velocity oscillates around its steady-state value. The most noticeable difference
between the experimental and the numerical results for the case in figure 6(a) is
that in the simulation the bubble decelerates sooner than in the experiments. This
discrepancy can result from small perturbations occurring at different times for
simulations and experiments. In fact, the case studied is strongly sensitive to the
onset of path instability. Perturbations triggering path instabilities are caused by
different mechanisms in experiments and simulations. In experiments, perturbations
could derive for instance from initial shape deformations. In numerical simulations,
such perturbations can be numerical errors which are highly dependent on the
mesh topology. Moreover, the discrepancy between experiments and simulations
is only more pronounced for the least contaminated case which is also the case
with the highest oscillations in the experimental data; see figure 13(a) and table 5.
For intermediate and high initial surfactant bulk concentrations, the presence of
initial surface contamination is evident; see figure 6(b,c). The higher the initial bulk
concentration, the more contaminated the bubble surface at release and the lower the
velocity peaks. Figure 6(b) shows that the best agreement between numerical and
experimental results is obtained with an initial contamination of approximately 2 %cΣeq,2
which is in agreement with the estimated value in table 3. For the highest initial bulk
concentration, see figure 6(c), a very good agreement with the experimental results is
found already for cΣ0 ≈ 5 %cΣeq,3, which is a smaller value than the predicted one by
(4.2). In fact, with a further increase of the initial surface contamination above the
5 %cΣeq,3, the rise velocity profile almost does not change any more.

It is also interesting to note from figure 6 that after the initial transition period, all
the bubble rise velocity values present small amplitude oscillations around a similar
mean velocity value.

4.4.2. Effects of the initial surface coverage on bubble shape and path
In this section, the effects of the detachment time, or better the initial surface

coverage for the simulations, are investigated in terms of bubble shapes and paths.
Consider the intermediate initial bulk concentration, c0 = 8 × 10−3 mol m−3, that is
the case shown in figure 6(b). The velocity profiles for the different initial surface
coverages are plotted again in figure 7 but over time. In figure 7, five time instances
are marked where the bubble shape and the surface coverage are then compared and
studied in figure 8. In figure 8, from the bottom to the top, the five bubbles are
shown in their rise at the selected time instances (every column shows one of the
bubbles rising), while from left to right the initial surface concentration increases
(see the surface coverage at t = 0 s). The bubble surfaces are coloured by the
local surfactant surface concentration. From figures 7 and 8 it is clearly visible that
increasing cΣ0 results in a less deformed interface and a slower bubble. In fact, for
cΣ0 = 0 %cΣeq, 2.15 %cΣeq and 3.6 %cΣeq, respectively, the bubble surface is still deforming
and reaches its maximum aspect ratio (AR = 1.27, 1.1, 1.06, respectively) with the
peak velocity. During the deceleration phase the bubbles go back to a more spherical
shape; see t = 0.066 s. For the two cases on the right of figure 8 with the highest
initial surface coverage, the amount of surfactant on the interface is high enough to
result in an almost not deformed interface (AR= 1.04). These bubbles accelerate until
reaching the quasi-steady-state velocity and their shape remains spherical.

If we consider the latest time (t = 0.4 s) in figure 8, the bubbles have a similar
velocity although, surprisingly, they do not have the same surface coverage. Moreover,
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FIGURE 7. Influence of the detachment time for the initial bulk concentration, c0 = 8×
10−3 mol m−3.

with different cΣ0 (and/or different initial bulk concentrations c0, see figure 5) we
obtain similar terminal velocities, but with a different final surface coverage that is
not yet the equilibrium value, cΣeq, and not even close to it. To confirm this, we show
in figure 9 the total amount of surfactant on the interface with respect to time. Here
it can be seen that even at t = 1 s the total amount of surfactant on the interface is
less than 30 % of the equilibrium value. For the smallest initial surface concentration,
the total amount of surfactant on the interface grows more rapidly than in the
other cases. This behaviour can be explained by the fact that Péclet and Reynolds
numbers are higher for smaller cΣ0 . Also, the concentration difference between bulk
and interface is larger (for a given bulk concentration and varying the initial surface
concentration). This results in stronger advective transport, thus thinner concentration
boundary layers. Instead, from t ≈ 0.6 s, when the bubbles have approximately the
same terminal velocity, the total amount of surfactant on the interface grows similarly
for each bubble.

In figure 10 the respective bubble paths are depicted. From the top view in
figure 10(a) it can be observed that all the bubbles follow a zig-zag path, but the
onset of path instability occurs later for less contaminated surfaces, as shown by the
path front view, figure 10(b).

4.5. Effects of surfactant on the onset of path instability
The simulation results which agree best with the experimental ones from figure 6
(grey curves) are selected for the rest of the discussion and reported in figure 11.
All the simulations run until reaching t = 1 s of physical time. In figure 11, also
the estimated velocity from the correlation for fully contaminated systems proposed
by Tomiyama et al. (1998, equation (33)) is plotted. All the simulation results,
including the least contaminated case, are in very good agreement with this estimated
velocity at quasi-steady state. A further indicator of agreement between experimental
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FIGURE 8. Influence of the detachment time on the bubble shape and local surface
coverage for the initial bulk concentration c0 = 8× 10−3 mol m−3.

and numerical results at quasi-steady state may be the comparison of the standard
deviation of the rise velocities for 0.1 m < y < 0.16 m. In fact, the numerical
results show pronounced oscillations that are not clearly visible from the experiments.
The values for the standard deviation reported in table 4 show a similar trend,
i.e. oscillations decrease with increasing bulk concentration. The magnitude is in
agreement between simulations and experiments, too. For completeness, also the
frequency of the horizontal velocity and the vortex shedding from the rear part
of a rigid sphere are computed as reported in Tagawa et al. (2014) from Tsuge
& Hibino (1971) and Kim & Pearlstein (1990), respectively, and compared to the
simulation results. The frequency of the bubble horizontal velocity is computed
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FIGURE 9. Influence of the detachment time on the total amount of surfactant on the
interface divided by the respective equilibrium value for the initial bulk concentration c0=

8× 10−3 mol m−3.
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FIGURE 10. Effects of the initial surface coverage on the bubble path for the initial bulk
concentration c0 = 8× 10−3 mol m−3.

according to Tsuge & Hibino (1971) as f = (ub/de)0.1c0.734
D , where ub is the averaged

quasi-steady velocity and de is the bubble equivalent diameter. The frequency of the
vortex shedding from the rear part of a rigid sphere is fv = ωνlRe/πd2

e (from Kim
& Pearlstein 1990), where ω is taken equal to 0.30 as in Tagawa et al. (2014),
Kim & Pearlstein (1990) and Re is computed based on ub. The drag coefficient cD is
computed equating the drag to the buoyancy force as in Tagawa et al. (2014, equation
(2.7)), thus cD = 4deg/3u2

b, where g is the gravitational acceleration. From table 5 it
can be seen that the oscillation frequencies of the vertical velocity are approximately
twice the horizontal ones, as expected from de Vries, Biesheuvel & van Wijngaarden
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FIGURE 11. Bubble rise velocity, influence of the initial bulk concentration with
pre-contaminated surface.

Experiment Simulation

Ma= 34 0.00706 0.00668
Ma= 49 0.00430 0.00310
Ma= 70 0.00218 0.00247

TABLE 4. Standard deviation from the mean velocity value at quasi-steady state,
0.1 m< y< 0.16 m.

Simulations
cD Re f fv fux,uz fuy

Ma= 34 0.88 228 9.228 9.646 9.33 25.00
Ma= 49 0.82 237 9.074 9.999 8.86 16.67
Ma= 70 0.79 241 8.982 10.218 4.75 10.04

TABLE 5. Oscillation frequencies of the velocity components compared to the frequencies
f and fv reported in Tagawa et al. (2014) from Tsuge & Hibino (1971) and Kim &
Pearlstein (1990), respectively.

(2002), Mougin & Magnaudet (2006), Tagawa et al. (2014). Moreover, the least and
intermediate contaminated cases show a good agreement between the numerical and
literature results. The most contaminated case is not relevant for this comparison
since the velocity oscillations are not as regular as the other two cases.

4.5.1. Bulk concentration
The velocity components along the rise direction y and in the x–z plane for the three

bubbles under investigation are reported in figure 12. The respective bubble paths are
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FIGURE 12. Bubble rise velocity, influence of the initial bulk concentration with
ux′ =

√
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FIGURE 13. Study on the effects of the initial bulk concentration on the bubble path.

given in figure 13 (top view x–z in 13a and lateral view x′–y in 13b, where x′ =
√

x2 + z2).
Even though the bubbles reach a similar terminal velocity, their lateral velocity

components and paths show a significant difference. The bubble rising in the least
contaminated aqueous solution (c1

0, Ma= 34) follows first a helical path until it starts
to oscillate around its terminal velocity (t≈ 0.35 s) and then turns into a zig-zag path.
The amplitude of this zig-zag path is around one bubble diameter. While the shift from
zig-zag to a helical path was already observed for clean bubbles (Cano-Lozano et al.
2016) the transition from helical to zig-zag trajectory occurs only in presence of the
surfactant and was first reported by Tagawa et al. (2014). Our simulation results can
serve as a further confirmation of this phenomenon. For the intermediate surfactant
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FIGURE 14. Bubble rising in clean water, evidence of the later drift.

bulk concentration (c2
0, cΣ0 = 2.15 %cΣeq, Ma= 49), see also figure 10, after the initial

transient stage when the bubble accelerates and then decelerates towards its quasi-
steady state, the bubble follows a zig-zag path (starting from t ≈ 0.11 s) with an
amplitude around 0.7 bubble diameters.

The bubble rising in the most contaminated solution (c3
0, cΣ0 = 5 %cΣeq, Ma = 70),

after the initial acceleration, at t ≈ 0.22 s starts to follow a zig-zag path, but with
a pronounced drift towards one side. Lateral migration is a known effect both from
experimental and numerical works (de Vries et al. 2002; Albert et al. 2015) for
bubbles close to the path instability regime. Our own studies have confirmed this
trend, too. For small bubbles rising in clean systems, the lateral drift is almost
zero, while for larger bubbles (but not yet path unstable) a significant migration
can be observed. The lateral migration can be observed also for the bubble under
investigation (d = 1.45 mm) rising in clean water, as reported in figure 14. In fact,
looking at the lateral components of the rise velocity (figure 14a) it can be noticed
that they are non-zero. This causes the drift visualized in the top view of the bubble
path, see figure 14(b). We assume that in our set-up the instabilities are triggered by
the unstructured nature of the computational mesh.

The temporal evolution of the total amount of surfactant on the interface is depicted
in figure 15. It is remarkable that for all studied cases the surface coverage is much
smaller than the respective equilibrium concentration. Nonetheless, the quasi-steady
state terminal velocity is reached. This finding is relevant because it shows that
the steady-state velocity can be reached without an equilibrium between ad- and
desorption and without the bubble being ‘fully contaminated’. This situation will also
have a large impact on the mass transfer processes in contaminated systems. From the
slopes of the depicted curves in figure 15, it becomes visible that the bubble rising
in the most contaminated liquid is adsorbing the surfactant much quicker than in the
other two cases. The bubbles rising in low and medium contaminated liquid follow a
similar trend, even though the bulk concentration in the latter case is approximately
four times higher. There are mainly three effects causing this behaviour: (i) With
increasing surfactant bulk concentration the initial concentration difference between
interface and bulk increases, and therefore also the driving force for mass transfer
is higher. (ii) The first effect is mitigated because at the same time the bubble
accumulates surfactant quicker. (iii) Since the surfactant distribution on the interface
is coupled with the bubble hydrodynamics via the Marangoni forces, the shape of the
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FIGURE 15. Temporal evolution of the total amount of surfactant on the interface
divided by the respective equilibrium values for the three selected initial surface and bulk
concentrations.
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FIGURE 16. Global Sherwood number referred to surfactant transfer. The surface area
variation is less than 3 %.

surfactant boundary layer changes. In general, an increasing amount of surfactant will
slow down the bubble, and therefore decrease the advective transport which in turn
decreases the driving force for mass transfer. The last effect may be expressed as the
dimensionless surfactant gradient at the sub-layer in terms of the global Sherwood
number, figure 16. In the initial state, when the bubble is formed in the experiment,
or at the very beginning of the numerical simulation, the bubble is stagnant, and
a surfactant boundary layer forms very quickly at the liquid–gas interface, driven
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by pure diffusion. This process is not depicted in figure 16, since the concentration
difference is the highest and the boundary layer formation happens on a time scale
much smaller than the course of the bubble rise from the initial release up to the
quasi-steady state, i.e. O(1) s. When the bubble starts to rise it accelerates and
the initial boundary layer becomes thinner due to the strong convective transport.
The cleaner the system, the higher the maximum rise velocity, and hence the more
pronounced this effect will be. After the initial increase in the acceleration phase,
the Sherwood number decreases rapidly as the bubble decelerates. When the bubble
velocity reaches a quasi-steady state, the Sherwood number for the cases with low and
medium contamination keeps decreasing, but at a much slower rate. This is because
the Marangoni forces are constantly increasing with increasing surface contamination.
The Marangoni forces, in turn, influence the shape of the hydrodynamic boundary
layer, and therefore also of the surfactant boundary layer. For the most contaminated
bubble, a further increase of surfactant on the interface does not lead to an increase of
the Marangoni forces. A more detailed view of all forces acting on the bubble will be
given in the §§ 4.5.3 and 4.6. In figure 16 the correlations for mass transfer problems
based on the boundary layer theory from Lochiel & Calderbank (1964) are plotted,
too. Two limiting situations are considered, that is a fully mobile interface (Lochiel
& Calderbank 1964, equation (58)) and a solid particle (Lochiel & Calderbank 1964,
equation (86)). It is very interesting to notice that the global Sherwood number
computed for the adsorbed surfactant tends to a value very close to the predicted one
for solid particles. Moreover, for the least contaminated case, the global Sherwood
number at the beginning of the rise is comparable with the one of a clean bubble.
Note that there are only two reference lines given, based on the Reynolds number of
the clean case, Re=544, and the average Reynolds number for the contaminated cases,
Re= 235. We did not want to place much emphasis on the mass transfer similarity to
solid particles since the physical effects leading to a comparable quantitative outcome
in both cases are actually very different.

So far, we have described what we could observe from the simulation results in
terms of rise velocity, surface coverage and path. Nevertheless, to really disclose the
bubble dynamics, a study of the local flow field in the proximity of the interface and
the forces acting on the bubble surface, in particular, the local and global Marangoni
forces generated by a non-uniform surface tension and their interplay with deformable
interfaces, viscous and pressure forces is performed below.

4.5.2. Vorticity
The flow type around the bubble may be characterized by the vorticity (ω =∇ ⊗

u) contour plots in the rise direction reported here at various time instances for the
three different initial surfactant bulk concentrations; see figures 17–19. Common to
all the cases is the strong vorticity production already very close to the interface
due to the presence of Marangoni forces. This behaviour related to the surfactant
presence is not encountered for path unstable bubbles rising in clean water; see for
instance the vorticity distribution in Mougin & Magnaudet (2006, figures 8 and 9).
Moreover, at the end of each period, that is when the bubble completes a full turn
(from t1 to t5 in figure 17 for example), the streamwise vorticity does not vanish. In
the least contaminated case, the bubble follows first a helical and then a zig-zag path.
This behaviour is confirmed by the vorticity contour plots in figure 17. The figures
from 17(c) to 17(l) refer to time instances when the bubble path is helical, while the
figures from 17(m) to 17(q) refer to the zig-zag trajectory. As already observed by
other authors, Ellingsen & Risso (2001), Mougin & Magnaudet (2006), Cano-Lozano
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FIGURE 17. (Colour online) Vorticity contour plot (ωy =±20 s−1) at different time
instances, c0 = 2× 10−3 mol m−3, cΣ0 = 0.

et al. (2016), along with the helical trajectory, the vortical structure is formed by
two counter-rotating vortices of opposite sign that produce a bubble inclination in
both x and z directions. The two vorticity regions are wrapping around each other
without any symmetry plane. On the other hand, when the bubble exhibits a zig-
zag trajectory, the inclination changes only in one direction. In this case, the wake
structure consists of two counter-rotating vortices with a symmetry plane. Common to
both trajectories, at each cycle (from one velocity peak to another which corresponds
from one side to the other of the path in the x′–y view) the two vortices interchange
their signs. Due to the high mobility of the interface in the initial stage, the bubble
reaches a high terminal velocity and deforms. After the onset of the path instability,
the trajectory is helical. With increasing surface contamination, a symmetry between
the wake vortices is established and the trajectory changes from helical to zig-zag.
Interestingly this happens when the rise velocity is already very close to its quasi-
steady value. We, therefore, conclude that not only the pure deceleration but also the
indirect influence of the Marangoni forces on the flow pattern around the bubble cause
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FIGURE 18. (Colour online) Vorticity contour plot (ωy =±40 s−1) at different time
instances, c0 = 8× 10−3 mol m−3, cΣ0 = 2 %cΣeq,2.

the observed transition. A similar zig-zag trajectory can be observed for the bubble
in figure 18. Also in this case two counter-rotating vortices with a symmetry plane
are present. A different behaviour is observed for the most contaminated case; see
figure 19. The bubble follows a zig-zag trajectory, but the motion is accompanied by
a lateral migration. The vortical structure is composed by two counter-rotating vortices
with a symmetry plane, but the duration of each half-cycle is not constant any more,
as it was for the cases in figures 17 and 18, due to the drift. Considering figure 19
from t1 to t3, the vorticity production is much higher than from t4 to t7. This means
that a bigger portion of fluid around the interface is influenced by bubble motion.
Instead, at the sample times t5 and t6 the vorticity production is much less, thus the
fluid around the bubble will be less perturbed and the drift towards the left side lasts
longer. At t7 the same conditions as in t1 are restored. It seems to be a superimposition
of clean case migration and contaminated case oscillation. A possible explanation will
be given in § 4.5.3.

4.5.3. Forces acting on the interface
Several experimental works have derived correlations for the global lift and drag

coefficients of single rising bubbles, e.g. Tomiyama et al. (1998). In our work, we
focus on the local forces acting on the interface and how they influence the integral
lift and drag forces. The interfacial jump condition (2.5) is considered in order to
evaluate the forces acting on the interface:

JptotI − SviscK · nΣ = σκnΣ +∇Σσ , (4.3)

where ptot is the total pressure, the sum of dynamic and hydrostatic contributions.
Within the algorithm, equations (2.1) to (2.5) are solved for the modified pressure,
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FIGURE 19. (Colour online) Vorticity contour plot (ωy =±10 s−1) at different time
instances, c0 = 5× 10−2 mol m−3, cΣ0 = 5 %cΣeq,3.

or dynamic pressure pdyn as we will refer to it, that is the total pressure minus the
hydrostatic contribution,

pdyn
= ptot

− phydro (4.4)
with phydro

:= ρg · x. This means that in (2.2) the gravity term disappears and the
transmission condition (2.5) has to be adapted according to the relation (4.4), too. For
clarity, we recall that f ma

= ∇Σσ is the area specific Marangoni force, while f ca
=

σκnΣ is the area specific capillary pressure force. Equation (4.3) at each interface
element reads

f ptot
B − f ptot

A − f visc
B + f visc

A = f ca
+ f ma, (4.5)

where f ∗ are the area specific forces f ∗= f ∗(xΣ , t) (the superscript ‘*’ stands for ‘ptot’,
‘visc’, ‘ca’ or ‘ma’), A represents the liquid phase and B the gas phase. The symbols
f ptot

and f visc indicate the total pressure and viscous forces, respectively. Comparing
the magnitude of the forces between the sides A and B it can be noticed that f ∗B is
always at least one order of magnitude smaller than the respective force from the A
side, thus in the following analysis it will be neglected.

The local force balance at the interface (4.5) is projected in the normal and
tangential directions to the interface. For the liquid side (A, dropped from here
onwards) the two balances read

−f ptot + f visc
⊥
= f ca normal to Σ, (4.6)

f visc
‖
= f ma tangential to Σ. (4.7)
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FIGURE 20. Schematic representation of the lift and drag directions.

The total pressure force can be further decomposed into the hydrostatic and the
dynamic contributions, i.e.

f ptot = f phydro + f pdyn . (4.8)

Integrating the area specific forces f ∗(xΣ , t) over the interface, we get the resultant
force F∗(t) on Σ as

F∗(t)=
∫
Σ

f ∗(xΣ , t) dA. (4.9)

Thus, the following forces are acting on the bubble surface: the hydrostatic pressure
force Fphydro , the dynamic pressure force Fpdyn , normal and tangential viscous forces
Fvisc
⊥

, Fvisc
‖

, the Marangoni force Fma and the capillary pressure force Fma. The
hydrostatic pressure force is approximately constant over time, so we do not analyse
it. As can be observed from (4.6) and (4.7) the tangential viscous force is balanced
by the Marangoni force. Thus we can just consider one of them, say Fvisc

‖
. For the

same reason, we drop the capillary pressure force as it is equal in magnitude to the
sum of total pressure force and normal viscous force. We are left with three integral
forces, Fvisc

‖
, Fpdyn and Fvisc

⊥
, that are decisive for understanding the bubble dynamics.

Each force may be written as the sum of contributions parallel and perpendicular
to the bubble velocity vector. The parallel component we refer to as drag and the
remaining component as the lift force:

F∗(t)=F∗Lift +F∗Drag, (4.10)

as depicted in figure 20. The drag force governs the bubble acceleration/deceleration
and the lift force the bubble’s change in direction. Figures 21 and 22 show the
contributions from the three integral forces mentioned above to lift and drag. The
different line types correspond to the various initial bulk concentrations. In order to
have a common reference, the magnitude of the forces has been made non-dimensional
with respect to the buoyancy force. As can be noticed from figure 21, the major
contribution to the lift force is from the dynamic pressure force (up to 50 % of
the buoyancy force). The tangential viscous force contribution to the lift does not
exceed 5 %, while the normal viscous force contribution is below 1 %. Considering
the lift contribution of the dynamic pressure and the bubbles’ paths in figure 13,
one can see that a wider trajectory corresponds to a higher lift force (in terms of
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FIGURE 21. Integral lift force contributions, influence of the initial bulk concentration.

helical or zig-zag radius); the lower the Marangoni number, the higher the dynamic
pressure force and the wider the path. We can see that the lateral motion is mainly
driven by the dynamic pressure force. Whether or not the Marangoni forces/tangential
viscous forces decrease the lateral motion directly will be clarified in § 4.6. From
the plot of the force magnitude, we cannot draw any conclusion on the direction
of the bubble motion. For instance, it is not possible to deduce from this plot
when the least contaminated bubble (Ma = 34) changes its trajectory from helical
to zig-zag. These aspects will be investigated later in this section; see figures 23
and 24. Consider now the force contributions to the drag force, see figure 22. As
for the lift, the main contribution comes from the dynamic pressure force, although
for the drag, tangential and normal viscous forces cannot be neglected. In the first
graph in figure 22, the contribution of the tangential viscous force to the drag is
reported. Increasing Marangoni numbers, i.e. higher surfactant concentrations, lead to
a higher drag contribution of Fvisc

‖
. When the bubble reaches the quasi-steady state,

after approximately 0.4 s, the tangential viscous force (as the Marangoni force) is still
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FIGURE 22. Integral drag force contributions, influence of the initial bulk concentration.

slowly increasing. We believe that this is due to the fact that the equilibrium value
of the interfacial concentration has not yet been reached, and thus surfactant is still
accumulating on the interface, changing its properties and consequently the Marangoni
force. On the other hand, it can be seen from figure 22 that the drag contribution of
the normal viscous force decreases with time. At the beginning of the bubble rise,
there is a stronger change of the velocity normal to the interface, resulting in higher
viscous stresses. In fact, the drag due to viscous forces is the highest for the lowest
Marangoni number. For increasing Marangoni numbers, this contribution becomes
more and more negligible; see for instance the line corresponding to Ma = 70. To
conclude the analysis on the drag force, consider the dynamic pressure contribution
to it in figure 22(c). During the initial part of the acceleration phase at the beginning
of the rise, the dynamic pressure force contributions reach values comparable to the
gravitational force, being the highest for the least contaminated bubble, that is the one
with the highest rise velocity. After this initial phase, the contribution of the dynamic
pressure force to the drag drops and oscillates at approximately 60 % of the buoyancy
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FIGURE 23. Lift (grey) and drag (black) due to tangential viscous forces along the path.
Note that the lift force is depicted ten times larger than the drag force.

force. As pointed out in the previous section, all studied surfactant bulk concentrations
lead to a similar quasi-steady terminal velocity, even though ad- and desorption are
not in equilibrium and the total surface coverage varies significantly. The steady-state
terminal velocity is a consequence of the overall drag force. For higher surfactant
bulk concentrations, the viscous drag force increases due to higher surface tension
gradients. At the same time, the dynamic pressure force decreases as a result of
the decreasing mobility of the interface. These two counteracting effects lead to an
approximately constant overall drag force. In figures 23 and 24 the integral force
contributions to the lift and drag from the tangential viscous force and the dynamic
pressure force are depicted as vectors along the bubble path. In the two figures, the
coordinate x′ correspond to the direction along which each bubble is translating in
a horizontal plane. From these plots, one can clearly deduce how the forces are
changing the bubble trajectory. The main contribution to the lift comes from the
dynamic pressure; see figure 21. Thus, the deviation from a rectilinear path is mainly
caused by the dynamic pressure force and not directly by the tangential viscous force
(in response to the Marangoni force). Yet, with increasing contamination, the lateral
motion of the bubble decreases, and this effect may be caused by a non-axisymmetric
(with respect to the rise velocity vector) distribution of the surfactant on the interface.
As can be seen in figure 23, the Marangoni effect is actually adding to the lift.
However, the reduction of the dynamic pressure is much stronger, and consequently,
the overall lift is reduced. Regarding the drag component, the dynamic pressure force
is still the dominating contribution, but the tangential viscous force contributes in
comparable amounts to the drag.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.723


Computational analysis of single rising bubbles 741

0 2.2 0 1.9 0 2.6
90

100

110

120

130

140
y 

(m
m

)

(mm)

FIGURE 24. Lift (grey) and drag (black) due to dynamic pressure forces along the path.
Note that the lift force is depicted two times larger than the drag force.

Even though the dynamic pressure force is the dominating component, locally
the flow field is governed by the Marangoni stresses. A study of the local fields is
performed in § 4.6.

4.6. Local velocity and surface fields under the influence of surfactant
Figure 25 shows the velocity field in the liquid phase close to the bubble, while on
the bubble surface the local Marangoni force vectors are depicted for the three initial
concentrations at different time instances. At t = 0.072 s the bubble rising in the
most contaminated solution has already reached a surfactant distribution characteristic
of the steady state. In the lower hemisphere, where the surfactant concentration is
the highest and uniformly distributed, the Marangoni force is almost zero, while the
surface coverage is not yet the equilibrium one. In fact, the surfactant species is still
adsorbed, see figure 15. For the other two initial bulk concentrations, a longer initial
transient stage is visible. The surface coverage is much smaller at the beginning of
the rise, while much higher and more confined Marangoni stresses are visible. For
the cases on the left and in the middle of figure 25, it is clearly visible that the
line where the flow detaches corresponds to the region where the Marangoni forces
are the highest. As the bubbles are rising, more and more surfactant is adsorbed
and the region where the Marangoni stresses are present moves towards the upper
hemisphere. The bubble in the middle, at t = 0.9 s has reached a similar state as
the most contaminated bubble in terms of Marangoni stresses and terminal velocity,
even though the surface coverage is approximately 60 % less; see figure 15. It is
reasonable to predict that the least contaminated bubble, if simulated for a longer
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FIGURE 25. Velocity vectors (bulk) and Marangoni forces (interface) at different time
instances for Ma= 34, 49, 70.

time, would reach a similar state as the other two bubbles, but with an even lower
surface coverage.

To have a better understanding of the variation of the Marangoni forces and their
local distribution, one can consider the adsorption, advection and diffusion processes
on the interface; see figures 25 and 26. Three different stages during the bubble rise
can be identified.
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FIGURE 26. From left to right, surfactant distribution on Σ , interface velocity field and
sorption source term at different time instances for the intermediate bulk concentration
Ma= 49.

(i) After being released, the bubble undergoes a strong acceleration due to the
buoyancy force. The surface coverage is low and uniform and, therefore, the
interface is fully mobile. A thin concentration boundary layer forms at the
interface and the adsorption rates are the highest. The first stage may be very
short, depending on the initial surface and bulk concentrations.

(ii) Due to the high mobility of the interface, the surfactant is quickly advected to
the rear part of the bubble. As a consequence, the surface coverage becomes less
uniform and surface tension gradients that are strong enough to locally reduce the
tangential interface velocity in the rear part arise. The flow detaches, and vortices
are shed. The interface below the detachment ring is almost stagnant, and the
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adsorption rates are small because the concentration difference with respect to
the bulk decreases and no new surfactant is transported there by convection.
The front of the bubble is still mobile and the adsorbed surfactant is quickly
transported towards the cap. As a consequence, the transition from a very small
to a very high contamination happens in a small belt above the ‘stagnant cap’
zone. Here the highest surface tension gradient and hence Marangoni forces are
observed.

(iii) The transition from the second to the third stage happens on a larger time
scale than between the first two stages. The convective surfactant transport in
the bubble front slowly decreases. This happens, on the one hand, because the
bubble decelerates (for small Marangoni numbers), and on the other hand due to
the decreasing overall mobility of the interface. The narrow transition zone with
high concentration gradients widens and the surfactant distribution in the front
becomes approximately linear. Consequently, the resulting Marangoni forces have
a smaller magnitude but act almost uniformly on the entire upper hemisphere.
The integral tangential viscous force due to the Marangoni stresses is, therefore,
higher than in stage two.

To see a further transition to a fourth stage, a much longer physical time would
have to be simulated since also the adsorption steadily decreases. Such an investigation
shall be part of future studies.

5. Conclusion and outlook

The focus of the current work is on the dynamics of single bubbles rising in
a contaminated solution with surfactant. Within this study, it has been possible to
investigate realistic length and time scales thanks to a subgrid-scale model, and
the available experimental results for the rising bubble case could be reproduced
well. The necessity of a subgrid-scale model has been proven via specific test cases
involving thin species boundary layers. Note that the same methodology that allowed
us to simulate realistic surfactant systems can be applied to mass transfer problems
to eventually study the effect of surfactant on mass transfer.

We firstly investigated the influence of the initial surface coverage on the rise
velocity. In fact, in the experiments, there is a certain detachment time including the
bubble formation until the release. In this time adsorption mechanisms are already
occurring, such that the bubble is pre-contaminated at release. The results show that
the initial transient stage is very sensitive to the initial surface concentration. With
a parameter study varying the initial surface contamination, we could find the initial
surface coverage corresponding to the experiments, a value that was not known
a priori. For very high bulk concentrations, we demonstrated that a lower initial
surface contamination than the one suggested by the theory (equation (4.2)) was
already sufficient to obtain the correct bubble transient velocity. This information is
fundamental in view of application cases because from the initial stage depends, for
instance, the position of the bubble in a channel or column.

The focus then moved on to study the influence of the initial bulk concentration on
the rise velocity and bubble dynamics. From the simulation results, global and local
quantities can be evaluated. The bubble path depends both on the initial surface and
bulk contaminations. For the least contaminated case, a transition from helical to a
zig-zag path is observed, as in the experimental work by Tagawa et al. (2014).
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It has also been found that the quasi-steady-state velocity can be reached without
an equilibrium of ad- and desorption. Moreover, the transfer of surfactant in the
sub-layer in a steady-state regime for the bubble rise velocity is close to the mass
transfer at a solid particle. The local vorticity fields have been used to characterize
the flow type in the vicinity of the bubble to understand the formation of vortices in
the bubble wake.

The forces acting on the bubble surface have been studied considering their
contribution to lift and drag forces. The dynamic pressure force, being the major
contributor to the lift force, is responsible for the deviation from a rectilinear path.
The steady-state terminal velocity is a consequence of the overall drag force. In
fact, for higher surfactant bulk concentrations, the viscous drag force increases due
to higher surface tension gradients. At the same time, the dynamic pressure force
decreases due to the reduced mobility of the interface. These two counter-acting
effects lead to an approximately constant overall drag force. In other Reynolds
regimes, for example for very small bubbles such as those considered in Takemura
(2005) that rise along a straight path even if contaminated, these mechanisms could
perhaps be different.

From the local distribution of the Marangoni forces, it has been shown that the
detachment of the flow from the bubble surface occurs where the Marangoni stresses
are the highest. The quasi-steady-state situation corresponds to a more uniform
distribution of the Marangoni forces on the upper hemisphere of the bubble surface.
These findings are relevant for deriving simplified models such as an improved
stagnant cap model. In fact, one should refer to the quasi-steady state, not in terms
of ‘fully contaminated’ surface, but regarding a certain Marangoni stress distribution.
The latter depends on the surfactant distribution on the interface and, above a certain
threshold, not on the amount of surfactant on Σ . This implies that at steady state the
surface concentration is not necessarily equal to the equilibrium concentration.

Considering the local adsorption, advection and diffusion processes at the interface,
three different stages during the bubble rise have been identified. A first stage where
the adsorption rates are the highest, a second stage where the transport at the front
of the bubble is advection dominated while in the rear part it is diffusion dominated,
and a third stage with a uniform distribution of the Marangoni stresses in the upper
hemisphere of the bubble. A further transition to a fourth stage is foreseeable, but
a much longer physical time would have to be simulated since also the adsorption
steadily decreases. Such an investigation shall be part of future studies.
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Appendix A. Algorithm overview
In figure 27, a schematic overview of the numerical solution procedure is depicted.
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FIGURE 27. Overview of the algorithm to solve the full problem: hydrodynamics with
mesh motion, surfactant transport and sorption.

Appendix B. Implicit SGS model for advection-dominated problems
B.1. Implicit SGS model description

The SGS model for advection-dominated transport is based on a simplified 2-D
problem formulation of the species advection–diffusion equation (2.7). Consider the
species transport in the vicinity of a bubble surface. Close to the interface Σ , a
situation as sketched in figure 28 is encountered.

For high Péclet numbers, constant species concentration in the gas phase (the
diffusivity in the gas phase is much higher than that of the liquid phase) and a fully
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x

y

FIGURE 28. Simplified 2-D model for species transport close to the bubble surface, figure
based on Weiner & Bothe (2017).

developed and quasi-stationary boundary layer, equation (2.7) can be reduced to

v
∂c
∂y
=D

∂2c
∂x2

for x > 0 and y > 0 (B 1)

with the boundary conditions

c(x, y= 0)= c∞, c(x→∞, y> 0)= c∞, c(x= 0, y> 0)= c|Σ . (B 2a−c)

This problem has an analytical solution, describing the species distribution normal to
the interface for a given boundary layer thickness δ(y),

c(x, y)= c|Σ + (c∞ − c|Σ) erf
(

x
δ(y)

)
(B 3)

with δ(y) =
√

4Dy/v. The physical profile derived from the local substitute problem
is adopted to compute the fluxes over the faces in the interface cells. The free model
parameter δ is computed iteratively to be consistent with the cell centred concentration
value. The computation of the SGS model parameter is reported in § B.2.

Consider now the discretized species (surfactant) transport equation in the liquid
phase (3.2), and reported here in a condensed form,

3cn
PVn

P − 4co
PVo

P + coo
P Voo

P

1t
+

∑
f

FA
f =

∑
f

FD
f , (B 4)

where FA
f = φf cn

f and FD
f =Df (∇c)nf · Sf are the advective and diffusive species fluxes,

respectively. Recall from § 2 that this equation is completed by the initial condition

c(t= 0, x)= c0, x ∈Ω+(t= 0) (B 5)

and the Dirichlet boundary condition imposed at the bubble surface Σ(t) in case of
fast sorption (as outlined in § 2.2.2 and (3.5)), i.e.

c(t, x)= f−1(cΣ(t)), x ∈Σ(t). (B 6)

When applying the SGS model, the goal is to correctly represent the species
distribution around the interface, even if the concentration boundary layer is
completely contained in the first cell layer (i.e. when the DNS cannot resolve the
boundary layer). To achieve this, a correction of the diffusive and advective species
fluxes is introduced on the first cell faces normal to Σ to counteract the otherwise
overestimated numerical fluxes.
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FIGURE 29. Two-dimensional sketch for the SGS model with enlarged view of the
region near the interface. Ω̃±(t), Σ̃(t) are the discretized counterparts of Ω±(t), Σ(t).

B.1.1. Diffusion
The diffusive species fluxes FD

f at the faces belonging to Σ , fΣi and at the first cell
faces opposite to Σ , fΣ,oi , are considered; see figure 29 for the notation. We compute
the desired numerical diffusive fluxes at the relevant faces f ∗i = fΣi , fΣ,oi as

FD,num
f ∗i
=−Df ∗i Sf ∗i (∂nc)num

f ∗i
, (B 7)

where Df ∗i is a corrected diffusion coefficient to counteract the numerical effects of
the under-resolved species boundary layer. To derive an expression for Df ∗i we use
the diffusive fluxes coming from the SGS modelling

FD,SGS
f ∗i
=−DSf ∗i (∂nc)SGS

f ∗i
, (B 8)

where D is the molecular diffusivity and (∂nc)SGS
f ∗i

is provided by the SGS model; see
§ B.2 for the analytical expression. Our goal is to compute Df ∗i such that the numerical
diffusive fluxes, coming from the standard discretization, equal the SGS fluxes,

FD,num
f ∗i

!
= FD,SGS

f ∗i
. (B 9)

Thus, we impose
Df ∗i (∂nc)num

f ∗i

!
=D(∂nc)SGS

f ∗i
, (B 10)

to get an expression for the modified diffusion coefficients to be substituted in the
discretized transport equation,

Df ∗i =D
(∂nc)SGS

f ∗i

(∂nc)num
f ∗i

. (B 11)
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To simplify the notation, below we will address Df ∗i as DSGS, where DSGS contains
the modified local values from the SGS model in the required faces. For the other
faces the standard molecular diffusivity is kept. In case the estimated boundary layer
thickness is more than 1000 times larger than the first cell width, the SGS correction
is not applied to avoid non-physical diffusive fluxes; see § B.2.

B.1.2. Advection
The SGS correction of the advective species fluxes FA

f is necessary only at the first
cell faces opposite to Σ , fΣ,oi because the velocity normal to the interface in a moving
reference frame is zero. Our aim would be to correct directly the concentrations with
the prescribed value from the SGS model cSGS

fΣ,oi
. However, this cannot be done within

an implicit framework, thus we correct the advective fluxes to match the prescribed
SGS concentration. The numerical fluxes are computed as

FA,num
fΣ,oi
= cnum

fΣ,oi
φfΣ,oi

, (B 12)

where cnum
fΣ,oi

is the concentration value interpolated to the face centre and φfΣ,oi
is a

modified advective flux.
The species fluxes computed with the SGS face value are

FA,SGS
fΣ,oi
= cSGS

fΣ,oi
φnum

fΣ,oi
(B 13)

where cSGS
fΣ,oi

is provided by the SGS model. Enforcing the SGS fluxes to be equal to
the numerical ones

FA,num
fΣ,oi

!
= FA,SGS

fΣ,oi
, (B 14)

we get the equality

cnum
fΣ,oi
φfΣ,oi

!
= cSGS

fΣ,oi
φnum

fΣ,oi
(B 15)

from which we compute the corrected advective fluxes

φfΣ,oi
= φnum

fΣ,oi

cSGS
fΣ,oi

cnum
fΣ,oi

. (B 16)

Also for the advective term, to simplify the notation, we will address φfΣ,oi
as φSGS,

where φSGS contains the modified local values from the SGS model in the required
faces. For the other faces the original numerical fluxes are kept. Note that φSGS

=

φnum
fΣ,oi

cSGS
fΣ,oi
/cnum

fΣ,oi
. Thus, if cnum

fΣ,oi
and cfΣ,oi

are interpolated with the same scheme, the
modification of the advective term at the interested faces translates into enforcing the
cSGS

fΣ,oi
; in fact φnum

fΣ,oi
(cSGS

fΣ,oi
/cnum

fΣ,oi
)cfΣ,oi
=φnum

fΣ,oi
cSGS

fΣ,oi
. This also assures that our method remains

conservative.
The advection correction via the SGS model is applied only if the concentration

profile in the first three cell layers close to the interface is monotonic, see § B.3
for more details on exception handling. This condition is fundamental to avoid non-
physical (unbounded) concentrations; see Versteeg & Malalasekera (1995–2007).
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B.2. Algorithm for the SGS model parameter calculation
In this section, the main steps to compute the SGS model parameter δ are explained.
We adopt an iterative approach, as described in Weiner & Bothe (2017), to find the
model parameter δ that fulfils

η̄C =
c̄− c|Σ

c∞ − c|Σ
!
=

1
V

∫
V
η(x/δ) dV = ηSGS, (B 17)

where η̄C is the volume averaged cell-centred value coming from the finite volume
discretization, which has to be equal to the volume average computed with the SGS
model. Above, η is given as

η(x, y)=
c(x, y)− c|Σ

c∞ − c|Σ
= erf(x/δ(y)) (B 18)

according to (B 3). The quantity c̄ is the average concentration in an interface cell
(ci in figure 29), c|Σ is the bulk concentration at the interface (cfΣi

in figure 29).
The iterative solution based on (B 17) requires the evaluation of the volume integral.
Here only the main steps from Weiner & Bothe (2017) are reported. The iterative
algorithm is based on the work of Ahn & Shashkov (2008) and uses a combined
Newton–Bisection method to search for δ which converges very quickly, usually after
three iterations. The maximum number of iterations is set to 10. As initial guess for
δ0 the first two terms of a series expansion for the inverse error function are taken,
that is δ0= (l/2)/(0.5π(ηc+π/12η3

c)), with l being the first cell thickness. Bounding
values for δ are taken equal to δmin = 1 × 10−15 and δmax = 10δ0. The convergence
tolerance is set to tol= 1× 10−9.

In each time step, there is an initialization step for the required parameters. The
result of the iterative procedure will be a vector containing all the δ values (for all
the interface cells). The algorithm is displayed as pseudo-code in Algorithm 1. Note
that the formula to compute the residual has been corrected with respect to Weiner &
Bothe (2017).

Exception handling. Before the iterative procedure is started a check that the values
of ηc are between 0 and 1 is done. If the maximum number of iterations is reached
without a converged value for δ or if the computed δ is larger than the first cell
thickness by a factor of 1000, then δ is set to −1 and the SGS correction will not
be applied at the corresponding face.

B.3. Correction of diffusive and advective fluxes within the SGS modelling
After the iterative computation of the model parameter δ, the SGS correction is
applied to the diffusive and advective fluxes as explained in § 3.2.3. The various steps
for the flux correction are reported in Algorithm 2.

Exception handling. The diffusive and advective fluxes are corrected only if the
iterative procedure to compute δ converged, that is δ > 0. Furthermore, a check that
the gradient and the concentration close to the interface are non-zero is included,
|(∂nc)num

f ∗i
| > 10−15 and |cnum

fΣ,oi
| > 10−15. If these checks fail, the standard discretization

is used.
An additional exception handling is implemented specifically for the correction of

the diffusive fluxes at the second layer of faces fΣ,oi . The SGS correction is applied
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Algorithm 1 Iterative computation of δ with a Newton–Bisection method.
Data:
ηc = (c̄− c|Σ)/(c0 − c|Σ)
δ0 = l/[

√
π(ηc + (π/12)η3

c)]

δn = δ0
δmin = 1× 10−15

δmax = 10δ0
tol= 1× 10−9

ηSGS
= erf(l/δ)+ (δ/l)[e−(l/δ)2 − 1]/

√
π

resmin = η
SGS(δmin)− ηc

resmax = η
SGS(δmax)− ηc

repeat
Compute ηSGS(δn)

res= ηSGS(δn)− ηc

η′ = (e−(l/δ)2 − 1)/(l
√

π)

δn+1 = δn − (η̄
SGS(δn)− ηc)/η

′

if (δn+1 < δmin) or (δn+1 > δmax) then
if res · resmax > 0 then

δn+1 = (δmin + δn)/2
δmax = δn

else
δn+1 = (δmax + δn)/2
δmin = δn

end if
end if
δn = δn+1

until
(∣∣∣ ηSGS(δn)−ηc

ηc

∣∣∣6 tol
)

Return: δn

only if the ratio between the SGS gradient and the numerical one is smaller than
unity, |(∂nc)SGS

f ∗i
/(∂nc)num

f ∗i
|<1. If the correction factor is larger than one, the SGS model

application is not necessary and the diffusivity will not be corrected at the respective
face.

The last exception regards the correction of the advective fluxes. The SGS model
correction is applied only if the concentration profile within the first three cells
close to the interface is monotonic. If we number the cell centres from the interface
outwards as c1, c2, c3, then the SGS correction is applied only if (c1− c2)(c2− c3)> 0.

Appendix C. Validation of the SGS model for species transfer
To validate the solution of the species transfer problem with SGS modelling, four

test cases with increasing complexity are presented. The local Sherwood number Shloc
is used for comparison with the reference solution.

C.1. Two-dimensional model problem
This test case refers directly to the simplified problem formulation on which the SGS
model is based. The implementation of the SGS model has been validated against
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Algorithm 2 Correction of diffusive and advective fluxes within the SGS model.
for all (faces fΣi ) do

if (δ > 0) then

at fΣi : (∂nc)SGS
fΣi
=

2
√

π

c0−cfΣi
δi

at fΣ,oi : (∂nc)SGS
fΣ,oi
=

2
√

π

c0−cfΣi
δ

e−(li/δi)
2

cSGS
fΣ,oi
= cfΣ,oi

+ (c0 − cfΣ,oi
)erf(li/δi)

Diffusion correction: Df ∗i =Dmol
(∂nc)SGS

f∗i
(∂nc)num

f∗i

Advection correction: φfΣ,oi
= φnum

fΣ,oi

cSGS
fΣ,oi

cnum
fΣ,oi

end if
end for

Inlet Outlet

At

x

y

FIGURE 30. SGS 2-D model problem set-up.

the analytical solution taken from Weiner & Bothe (2017) and reported in § B.1.
The problem set-up under investigation is sketched in figure 30. All the simplifying
assumptions of the model problem are fulfilled if the computational domain size is
large enough. The distance between the interface and the boundaries in the x-direction
is approximately 50 times the maximum species boundary layer thickness, to ensure
that the presence of a finite domain is negligible. The presence of the gas phase is
modelled via the boundary condition for the species concentration at Σ . The boundary
and initial conditions can be found in figure 30. Four different mesh resolutions are
considered from 5 to 40 µm. As we are interested in advection-dominated problems,
a high Péclet number of Pe= 105 is chosen. The local Sherwood number is computed
as

Shloc(yi)= (∂nc)fΣi
Ly

ci|Σ − c∞
(C 1)

with the normal derivative at the interface (∂nc)fΣi , the concentration in the boundary
cell centre ci|Σ and the species concentration far away from the interface c∞. Without
the SGS model the gradient is computed as (∂nc)fΣi = (ci|Σ − cfΣi

)/di, where di is the
distance between the boundary face centre and the boundary cell centre, and cfΣi

is
the concentration at the interface face; otherwise (∂nc)SGS

fΣi
is used.
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FIGURE 31. Local Sherwood number for the 1-D model problem.

Figure 31 depicts the comparison between the analytical solution and the numerical
results obtained with and without the SGS model. When the problem is solved
with linear interpolation, the relatively coarse meshes are not able to predict the
solution precisely. The finest mesh (5 µm) provides a good approximation of the
local Sherwood number except for the region close to the inlet. All the cases where
the SGS model is applied are in very good agreement with the reference solution.
The enlarged view in figure 31 shows also mesh convergence for the SGS model
results.

C.2. Spherical bubbles at small Reynolds number
A spherical bubble at small Reynolds number is considered. For this case a
semi-analytical solution of the species transport equation is possible. The velocity
field is based on the solution of Satapathy & Smith (1960) (spherical particle of
radius rb rising in a larger sphere R). On top of this velocity field, the species
transport equation can be solved numerically using a very high grid resolution (cell
thickness l ≈ 0.06 µm close to the interface). Four different molecular diffusivities
are considered corresponding to Schmidt numbers of Sc = 104, 105, 106, 107, where
Sc is the ratio between viscous and molecular diffusion ν/D. The bubble radius is
rb= 1 mm and the Reynolds number is set to Re= 0.56. The local Sherwood number
Shloc(θi) is computed as in (C 1), where θi is the polar angle, i.e. the angle following
a streamline on the bubble surface from the top (θ = 0) to the bottom (θ = π). The
bubble equivalent diameter deq is taken as reference length.

C.2.1. Axisymmetric species transfer with given velocity field
The species transport is solved on top of the velocity field provided by the solution

of Satapathy and Smith for the different Schmidt numbers. The results obtained with
the SGS model are compared to the mesh independent direct numerical solution. The
set-up for these simulations is depicted in figure 32. The fluid properties for the liquid
side (identified with a +) can be found in table 6. Four different mesh resolutions are
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FIGURE 32. (Colour online) Domain used to solve the species transport with the given
analytical velocity field.
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500

1000

1500

2000

2500

3000

FIGURE 33. Local Sherwood number for the species transfer problem with given
Satapathy–Smith velocity profile.

considered with a cell thickness l close to the interface ranging from 5 to 40 µm.
The four different diffusion coefficients are 10−8, 10−9, 10−10 and 10−11 m2 s−1. The
species concentration at the interface Σ is set to c|Σ = 1 mol m−3, while the initial
bulk concentration in Ω is set to c0 = c∞ = 0.

In figure 33 an overview of the results obtained by applying the SGS model
compared to the reference solutions is reported. Figure 33 shows a very good
agreement between the numerical results using the SGS modelling and the respective
references for each tested Schmidt number. This test case shows that the two coarsest
meshes (l = 40, 20 µm) are not fully capable of properly resolving the species
transport for the highest Schmidt number, under-predicting the Sherwood number in
the upper part of the bubble. Such behaviour has to be considered in the application
case set-up with surfactant transport and sorption, mainly in the choice of the mesh
resolution.
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FIGURE 34. Local Sherwood number for the species transfer problem with given
Satapathy–Smith velocity profile. Black symbols: with SGS modelling, grey symbols:
linear interpolation.

ρ+ (kg m−3) ρ− (kg m−3) µ+ (kg (ms)−1) µ− (kg (ms)−1) σ0 (N m−1)

1000 1.1965 0.1 1.8× 10−5 0.0724

TABLE 6. Fluid properties for the Satapathy–Smith case.

For completeness, in figure 34 the comparison between the cases with and without
SGS modelling is reported. The results obtained applying the SGS model are coloured
in black, while the ones obtained with a linear interpolation method are grey. Already
for Sc= 105 the standard discretization is inadequate to correctly describe the species
transfer close to the interface for the given mesh resolutions. This comparison
confirms again that with the SGS model one can save several mesh refinement levels.

C.2.2. Species transfer with computed velocity field
The species transport problem from a rising bubble is considered. The full 3-D

problem, hydrodynamics and species transfer, is solved within the interface-tracking
framework, see the algorithm in figure 27. The case set-up follows the one
described in § 4.1. The interface consists of polyhedral faces with an edge length of
approximately 50 µm and first cell layer thicknesses of l = 12 µm and l = 25 µm.
The initial shape of the bubble is a sphere of radius rb = 1 mm. The bubble is
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FIGURE 35. Local Sherwood numbers for the species transfer problem with Satapathy–
Smith set-up. Black symbols: with SGS modelling, grey symbols: linear interpolation.

positioned in the centre of a spherical domain of radius 10rb. The fact that the
interface is deformable is not relevant to the Satapathy–Smith case, because due to
the choice of the fluid properties, the bubble does not deform significantly.

The initial and boundary conditions for the transferred species are the same as
for the semi-analytical solution. The fluids properties are given in table 6. For this
test case, the smallest and the highest Schmidt numbers are considered, i.e. Sc =
104,107. As a reference, the semi-analytical solution presented in the former paragraph
is used. The calculated velocity profile in the interface-tracking framework slightly
differs from the Satapathy–Smith solution (less than 1.2 %, see Weber (2016, § 4.1.2)),
because the latter is based on a Stokes flow. This small difference can have some
impact on the concentration profile close to the interface. In figure 35 the results
in terms of Sherwood number for the 3-D case are reported. As can be seen from
the two graphs there is a good agreement between the reference solution and the
numerical one employing the SGS model. As anticipated, the reference solution is
computed based on the Satapathy–Smith velocity profile, thus, since we are dealing
with highly nonlinear functions (species concentration close to Σ), small deviations
in the velocity field could be enough to produce the observed discrepancies in the
results. In figure 35 also the results without the SGS model are plotted. For small
Schmidt numbers, figure 35(a), the standard discretization provides results in good
agreement with the reference solution, while the Sherwood numbers resulting from
the SGS modelling show a sensitivity to the mesh resolution. On the other hand,
for high Schmidt numbers and the given mesh resolution, figure 35(b), the standard
discretization provides underestimated Sherwood numbers, while the ones obtained
with the SGS model are in good agreement with the reference.

C.3. Two-dimensional deformable bubbles at higher Reynolds number
As a final step to validate the SGS model, simulations of a 2-D bubble rising in
contaminated water are performed with and without SGS modelling for the surfactant
transport. This setting aims to demonstrate that the SGS model predicts the surfactant
transfer well under dynamic conditions, e.g. when the bubble deforms, accelerates
or decelerates or when the flow detaches and vortices form. As can be seen from
figure 37, the results where the SGS modelling was employed are matching the mesh
independent results obtained with standard interpolation.
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FIGURE 36. Flow field around and inside the rising bubble. The bubble surface is
coloured by the surfactant concentration; t= 0.2 s.

For these tests, the intermediate initial concentration is used, i.e. c0=0.008 mol m−3,
with cΣ0 =0 mol m−2. Different bulk diffusivities, D=5×10−7,5×10−8,5×10−9,5×
10−10 m2 s−1, and mesh resolutions, first cell thicknesses li= 16, 12, 8, 3, 1.7, 1.2 µm,
are considered. The changes between li= 1.7 µm and li= 1.2 µm in rise velocity and
surfactant transport are always less than 1.15 %. Therefore we consider the results on
the finest mesh employing standard discretization as mesh independent and use them
as reference solution (lines in the plots). The results for mesh resolutions with first
cell thicknesses equal to 16, 8, 3 and 1.2 µm are selected for the plots below. The
results for higher surfactant bulk diffusivities are not depicted in figure 37 because
they look qualitatively similar. In fact, if the mesh resolution is sufficient, then all
the results lay on the reference curve.

Figure 37(a) shows that the rise velocities obtained applying the SGS modelling
are all in agreement with the reference. On the other hand, the results obtained with
standard interpolation follow a very different trend. Only the 3 µm mesh gets close
to the reference. Not only the rise velocities are in good agreement with the reference,
but also the total amount of surfactant on the interface, as shown in figure 37(b) for
different diffusion coefficients. As can be seen from the graph, the results obtained
with the SGS modelling are all laying on the reference curves, while for D = 5 ×
10−10 m2 s−1, only the 3 µm case with standard interpolation tends to the correct
result. So far we considered global quantities for comparison. Further confirmation that
the SGS modelling is performing well and corresponding to the standard interpolation
results is given by the local Sherwood numbers for the different diffusivities at t =
0.2 s, see figure 37(c). Here it can be seen that all the cases where the SGS model has
been used deliver a very good approximation of the local Sherwood number. Moreover,
the shape of the local Sherwood number profile reflects the flow field around the
bubble, see figure 36.
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FIGURE 37. Simulation results for a 2-D bubble rising in contaminated water; comparison
between cases with and without SGS modelling. Black symbols: with SGS modelling, grey
symbols: linear interpolation.

Appendix D. Computation of the forces acting on the interface
The starting point for the derivation of the expression to compute the different

forces acting on the interface is the interfacial jump condition (2.5), namely

JptotI − SviscK · nΣ = σκnΣ +∇Σσ . (D 1)
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Equation (D 1) can be decomposed into normal and tangential components to the
interface, in order to better understand the meaning of each force acting on the
bubble. With some notions of tensor calculus and knowing the definition of the
surface operators, the projection of the jump condition in the direction normal (nΣ)
to the interface reads

JptotKnΣ + 2JµK(∇Σ · v)nΣ = σκnΣ , (D 2)

while in the direction tangential (tΣ) to Σ we obtain

− Jµn · ∇vK− Jµ(∇Σv) · nK− JµKnΣ(∇Σ · v)=∇Σσ . (D 3)

As before, if we indicate with A the liquid side and with B the gas side, we can
specify all the terms in the jump brackets as follows,

ptot,BnΣ − ptot,AnΣ + 2µB(∇Σ · v)nΣ − 2µA(∇Σ · v)nΣ = σκnΣ , (D 4)

for the normal direction, and

−µB[(n · ∇v)B − (∇Σv)B · nΣ + nΣ(∇Σ · v)]
+µA[(n · ∇v)A + (∇Σv)A · nΣ + nΣ(∇Σ · v)] =∇Σσ , (D 5)

for the tangential direction. Note that the interface normal is nΣ with nA= nΣ , while
nB =−nΣ . Each term in (D 4) and (D 5), when multiplied by the face area will give
a force contribution.

(I) Marangoni force

(i) area specific force at face i ∈Σ

f ma
i =∇Σσi (D 6)

(ii) resultant force on Σ

Fma
=

Nf∑
i

f ma
i Sfi, (D 7)

where Nf is the number of faces on the interface and Sfi the face area.

(II) Capillary pressure force

(i) area specific force at face i ∈Σ

f ca
i = σikinΣi (D 8)

(ii) resultant force on Σ

Fca
=

Nf∑
i

f ca
i Sfi . (D 9)

(III) Total pressure force jump

(i) area specific force at face i ∈Σ

f ptot
i = (ptot,Bi − ptot,Ai)nΣi (D 10)
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(ii) resultant force on Σ

Fptot =

Nf∑
i

f ptot
i Sfi . (D 11)

(IV) Dynamic pressure force jump

(i) area specific force at face i ∈Σ

f pdyn
i = (pdyn,Bi − pdyn,Ai)nΣi, (D 12)

where the dynamic pressure is computed as pdyn = ptot − phydro, with the
hydrostatic pressure phydro = ρg · xfi

(ii) resultant force on Σ

Fpdyn =

Nf∑
i

f pdyn
i Sfi . (D 13)

(V) Normal viscous force

(i) area specific forces at face i ∈Σ

f visc
⊥,Bi
= 2µB(∇Σ · v)inΣi (D 14)

f visc
⊥,Ai
=−2µA(∇Σ · v)inΣi (D 15)

f visc
⊥,i = f visc

⊥,Bi
+ f visc
⊥,Ai

(D 16)

(ii) resultant forces on Σ

Fvisc
⊥,B =

Nf∑
i

f visc
⊥,Bi

Sfi (D 17)

Fvisc
⊥,A =

Nf∑
i

f visc
⊥,Ai

Sfi (D 18)

Fvisc
⊥
=

Nf∑
i

f visc
⊥,i Sfi . (D 19)

(VI) Tangential viscous force

(i) area specific forces at face i ∈Σ

f visc
‖,Bi
=µB[−(n · ∇v)Bi + (∇Σv)Bi · nΣi − nΣi(∇Σ · v)i] (D 20)

f visc
‖,Ai
=µA[(n · ∇v)Ai + (∇Σv)Ai · nΣi + nΣi(∇Σ · v)i] (D 21)

f visc
‖,i = f visc

‖,Bi
+ f visc
‖,Ai

(D 22)

(ii) resultant forces on Σ

Fvisc
‖,B =

Nf∑
i

f visc
‖,Bi

Sfi (D 23)

Fvisc
‖,A =

Nf∑
i

f visc
‖,Ai

Sfi (D 24)

Fvisc
‖
=

Nf∑
i

f visc
‖,i Sfi . (D 25)
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If we write the jump condition in terms of global forces then we obtain the following
expression

Fptot +Fvisc
=Fca

+Fma (D 26)

that can serve as a check of the fulfilment of the jump condition at the interface at
the end of the simulation.
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