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Abstract

Many bundle gerbes are either infinite-dimensional, or finite-dimensional but built using submer-
sions that are far from being fibre bundles. Murray and Stevenson [‘A note on bundle gerbes and
infinite-dimensionality’, J. Aust. Math. Soc. 90(1) (2011), 81–92] proved that gerbes on simply-connected
manifolds, built from finite-dimensional fibre bundles with connected fibres, always have a torsion
DD-class. I prove an analogous result for a wide class of gerbes built from principal bundles, relaxing the
requirements on the fundamental group of the base and the connected components of the fibre, allowing
both to be nontrivial. This has consequences for possible models for basic gerbes, the classification of
crossed modules of finite-dimensional Lie groups, the coefficient Lie-2-algebras for higher gauge theory
on principal 2-bundles and finite-dimensional twists of topological K-theory.
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1. Introduction

A bundle gerbe [13] is a geometric object that sits over a given space or manifold
X classified by elements of H3(X,Z), in the same way that (complex) line bundles
on X are classified by elements of H2(X,Z). Just as line bundles on manifolds have
connections giving rise to curvature, a 2-form giving a class in H2

dR(X), bundle gerbes
have a notion of geometric ‘connection’ data, with curvature a 3-form and hence a
class in H3

dR(X). Since de Rham cohomology sees only the nontorsion part of integral
cohomology, bundle gerbes that are classified by torsion classes in H3 are trickier
in one sense to ‘see’ geometrically. The problem is compounded by the fact that
bundle gerbes with the same 3-class may look wildly different, as the correct notion of
equivalence is much coarser than isomorphism. Thus, different constructions that lead
to the same class are still of interest, due to the flexibility this introduces.

One wide class of bundle gerbes, so-called lifting bundle gerbes, arises from
the following data. Given a Lie group G, a principal G-bundle P→ X and a
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central extension

U(1)→ Ĝ→ G (1.1)

of Lie groups, there is a bundle gerbe on X that is precisely the obstruction to the
extension of a Ĝ-bundle lifting P. One can see the cohomology class corresponding to
the bundle gerbe as analogous to the class w2 ∈ H2(M,Z/2) obstructing the lifting of
the frame bundle F(M) to a spin bundle.

For a nontrivial example, consider the central extension U(1)→ U(n)→ PU(n)
and P a principal PU(n)-bundle. The lifting bundle gerbe associated to such a
PU(n)-bundle has torsion class in H3(X,Z). Conversely, by a result of Serre published
by Grothendieck [9, Théorème 1.6], every torsion class in H3(X,Z) is associated to at
least one lifting bundle gerbe of this form. Given a torsion element, it is nontrivial to
find ranks n where this is possible.

In the other direction, one can consider the extension U(1)→ U(H)→ PU(H)
of infinite-dimensional groups, where H � L2[0, 1], and lifting bundle gerbes of
principal PU(H)-bundles. These bundle gerbes are infinite-dimensional and every
class in H3(X,Z) can be realised by some lifting bundle gerbe of this form. There
are also constructions of bundle gerbes on compact, simply-connected, simple Lie
groups G that use lifting bundle gerbes for the infinite-dimensional Kac–Moody
central extensions U(1)→ Ω̂kG→ ΩG and these are also nontorsion gerbes.

Between these examples, then, one might wonder when an a priori given
finite-dimensional lifting bundle gerbe on X has a torsion class in H3(X,Z). That
is, given a finite-dimensional central extension (1.1) and a principal G-bundle P→ X,
is the lifting bundle gerbe classified by a torsion class? There are explicit and easy
examples where it is nontorsion, for instance over X = S2 × S1 (see Example 4.4
below). However, under a mild condition on X, it is true.

Murray’s original paper [13] claimed a sufficient condition for a finite-dimensional
bundle gerbe to be torsion, though the proof had a subtle error. Murray and Steven-
son later [15] gave a correct proof of a slightly stronger result, demanding (i)
simple-connectivity of the base manifold X and (ii) that the fibres of a certain
submersion Y → X (part of the bundle gerbe data) are connected. This result was
not specifically about lifting bundle gerbes, but it suffices to prove that lifting gerbes
for G-bundles on simply-connected spaces X, where G is a connected Lie group, are
torsion. The proof in [15] is more general and does not use anything specific about
lifting bundle gerbes, which are somewhat more rigid than the general case.

In this note I shall prove the following result.

THEOREM 1.1. Given any connected manifold X with finite fundamental group, any
central extension (1.1) of finite-dimensional Lie groups and any principal G-bundle
P→ X, the corresponding lifting bundle gerbe is torsion.

In fact, the proof suffices to give a slightly stronger result for topological spaces,
assuming a group-theoretical fact about homomorphisms π1(X)→ π0(G). We shall
give this result below as Theorem 3.7 and some applications in the final section.
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2. Preliminaries

We first recall the definition of a bundle gerbe.

DEFINITION 2.1 [13]. A bundle gerbe on a manifold M consists of the following
data.

• A surjective submersion Y → M.
• A principal U(1)-bundle E → Y [2] := Y ×M Y .
• An isomorphism μ : pr∗12 E ⊗U(1) pr∗23 E → pr∗13 E of U(1)-bundles, called the bundle

gerbe multiplication. The tensor product is defined, for arbitrary U(1)-bundles E, F
on X, to be (E ×X F)/U(1), where U(1) acts via the anti-diagonal action on Y [3] :=
Y ×M Y ×M Y .

• This isomorphism satisfies an associativity condition, namely that the diagram

E12 ⊗ E23 ⊗ E34
id×μ ��

μ×id
��

E12 ⊗ E24

μ

��
E13 ⊗ E34 μ

�� E14

of isomorphisms of U(1)-bundles on Y [4] commutes. Here Eij = pr∗ij E, with
prij : Y [4] → Y [2], and I have suppressed some canonical isomorphisms for clarity.

A bundle gerbe will be denoted by (E, Y) with the other data implicit. A bundle gerbe
on a topological space is defined in the same way, except that we require instead that
Y → M admits local sections.

Here is the only type of example we will need. Fix a locally trivial central
extension U(1)→ Ĝ→ G of Lie groups (so that, ignoring group structures, it is a
principal bundle). Recall that the multiplication map of Ĝ induces an isomorphism
pr∗1 Ĝ ⊗U(1) pr∗2 Ĝ � m∗Ĝ over G × G, where m : G × G→ G is the multiplication map.

EXAMPLE 2.2 [13]. Let P→ X be a principal G-bundle. The lifting bundle gerbe
associated to this bundle (and the fixed central extension) is given by the following
data.

• The submersion is P→ X. Recall that the action map induces an isomorphism
P × G � P ×X P over X; we will use this silently from now on.

• The U(1)-bundle is P × Ĝ→ P × G.
• Using the isomorphism P × G × G→ P[3], (p, g, h) �→ (p, pg, pgh), the multiplica-

tion is given by the composite

pr∗12(P × Ĝ) ⊗U(1) pr∗23(P × Ĝ) � P × pr∗1 Ĝ ⊗U(1) pr∗2 Ĝ � P × m∗Ĝ � pr∗13(P × Ĝ).

• The associativity condition follows from associativity in the group Ĝ.
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Given a bundle gerbe on a space X and a map f : X′ → X, there is a bundle gerbe
on X′ given by the data f ∗Y → X′ and (p[2])∗E, where p : f ∗Y → Y is the projection.
Moreover, the maps

(p[2])∗E → E, ( f ∗Y)[2] → Y [2], p : f ∗Y → Y

are compatible with all the bundle gerbe structure. This is the pullback of (E, Y)
by f, denoted f ∗(E, Y). If (P × Ĝ, P) is a lifting bundle gerbe, then f ∗(P × Ĝ, P) �
( f ∗P × Ĝ, f ∗P).

More generally, given bundle gerbes (F, Z) and (E, Y) on X, one can take a map
g : Z → Y commuting with the projections to X and a map k : F → E of U(1)-bundles
covering g[2] as in the diagram

F

��

k �� E

��
Z[2]

���
��

��
��

�

���
��

��
��

�

g[2]
�� Y [2]

���
��

��
��

�

���
��

��
��

�

Z
g ��

���
��

��
��

� Y

�����
���

���
���

���
�

X

such that the bundle gerbe multiplications are respected. The data of g and k is
then a morphism of bundle gerbes, denoted (k, g) : (F, Z)→ (E, Y). In this case, F �
(g[2])∗E, as k is a map of principal bundles. An isomorphism (E, Y) � (F, Z) of bundle
gerbes on X will be meant in the strictest possible sense, namely where g and k are
isomorphisms.

DEFINITION 2.3. Given a bundle gerbe (E, Y), a stable trivialisation consists of a
principal U(1)-bundle T → Y and an isomorphism pr∗1 T∗ × pr2 T � E of bundles on
Y [2], making an isomorphism of bundle gerbes along with idY .

EXAMPLE 2.4. Given a lifting bundle gerbe associated to P→ X and U(1)→ Ĝ→ G,
a stable trivialisation is equivalent data to a principal Ĝ-bundle P̂→ X lifting P. The
quotient map P̂→ P is the required principal U(1)-bundle and vice versa.

There is a general notion of tensor product of a pair of bundle gerbes, analogous to
the tensor product of U(1)-bundles, but we will not need it here. However, the notion
of a power of a single given bundle gerbe is easier to describe. Namely, if (E, Y) is a
bundle gerbe, then (E, Y)⊗n := (E⊗n, Y) is also a bundle gerbe, using the tensor powers
of the U(1)-bundle E.

EXAMPLE 2.5. Let P→ X and U(1)→ Ĝ→ G be the data necessary to build a lifting
bundle gerbe. Then (P × Ĝ, P)⊗n � (P × Ĝ⊗n, P), where U(1)→ Ĝ⊗n → G is the n-fold
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central product of Ĝ with itself, which is the same as the n-fold tensor power of the
underlying U(1)-bundle over G.

Associated to each bundle gerbe (E, Y) on X there is a class DD(E, Y) ∈ H3(X,Z),
the Dixmier–Douady or DD-class, with the following properties (see [13], and [14] for
the last item).

LEMMA 2.6. (1) Given f : X′ → X, then f ∗DD(E, Y) = DD( f ∗(E, Y)).
(2) Given a morphism (k, g) : (F, Z)→ (E, Y) of bundle gerbes on X, then DD(F, Z) =

DD(E, Y).
(3) For all integers n, DD((E, Y)⊗n) = n · DD(E, Y), where a negative tensor power

involves the dual U(1)-bundle.
(4) DD(E, Y) = 0 if and only if the bundle gerbe (E, Y) has a stable trivialisation.
(5) Given a central extension U(1)→ Ĝ→ G classified by α ∈ H3(BG,Z) �

H2(BG, U(1)) and a principal G-bundle classified by some map χ : X → BG,
the lifting bundle gerbe has class in H3(X,Z) corresponding to χ∗α.

We shall say that a bundle gerbe (E, Y) is torsion if DD(E, Y) is a torsion element.
Bundle gerbes of this form are the main focus of this note. The reader can rephrase
all the results of this paper without mentioning gerbes, if desired, using the following
easy result.

COROLLARY 2.7. Given a principal G-bundle P→ X and a central extension U(1)→
Ĝ→ G, the associated lifting bundle gerbe (P × Ĝ, P) is torsion if and only if there is
some n > 0 such that the G-bundle P lifts to a principal Ĝ⊗n-bundle.

3. Main results

The relatively short proof of Theorem 1.1 serves to illustrate the idea of the more
complex proof of Theorem 3.7.

PROOF OF THEOREM 1.1. Let us fix a lifting bundle gerbe (E, P) associated to
a principal G-bundle P→ X and an extension U(1)→ Ĝ→ G. Let G0 denote the
connected component of the identity. We can induce a principal π0(G)-bundle on X by
defining Q := P/G0, where we use the fact that π0(G) = G/G0. Let π : X̃ → X denote
the universal covering space of X and recall that for any covering space on X, the
pullback to X̃ is trivialisable. Hence, if we form the covering space π∗Q→ X̃, it is
trivialisable. From this it follows that the structure group of the G-bundle P̃ defined
by P̃ := π∗P→ X̃ reduces to G0. Thus, we can find a subbundle P′ ⊂ P̃ that on fibres
looks like the inclusion G0 ↪→ G.

If we denote by Ĝ0 ⊂ Ĝ the preimage of G0, then we can form the lifting bundle
gerbe on X̃ associated to P′ → X̃ and the central extension U(1)→ Ĝ0 → G0. By the
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construction of a lifting bundle gerbe, there is a morphism of bundle gerbes on X̃:

P′ × Ĝ0

��

�� P̃ × Ĝ

��
P′ × G0

���
��

��
��

���
��

��
��

�� P̃ × G

���
��

��
��

���
��

��
��

P′ �� P̃

Thus, the DD-class DD(P′) of the lifting gerbe of P′ is equal to DD(P̃).
Following [18, Section 4.1], the central extension of G0 is classified by an element

of Segal–Mitchison cohomology H2
SM(G0; U(1)) and the lifting bundle gerbe on BG0

is classified by its image α under H2
SM(G0; U(1))→ H3

SM(G0;Z) � H3(BG0,Z). This
latter cohomology group is pure torsion [2, Lemme 26.1], where we use the fact
that the (singular) cohomology of the classifying space of a connected Lie group
is isomorphic to the cohomology of the classifying space of the maximal compact
subgroup. More precisely, the torsion subgroup of H∗(BG0,Z) is exactly the kernel
of the restriction map H∗(BG0,Z)→ H∗(BT ,Z) [6], where T ⊆ G0 is a maximal
torus of G0 (and H∗(BT ,Z) is torsion-free). Now DD(P′) is the image of α under
χ∗ : H3(BG0,Z)→ H3(X̃,Z), where χ : X̃ → BG0 is a classifying map. Thus, the lifting
gerbe associated to P′ is torsion and so is the lifting gerbe (on X̃) associated to P̃. Now
we can apply the following lemma, as π1(X) is finite, and conclude that the lifting
gerbe associated to P is also torsion, since DD(P̃) = π∗DD(P). �

LEMMA 3.1. Given a k-sheeted covering space π : Y → X and a class c ∈ Hn(X,Z), if
π∗c ∈ Hn(Y ,Z) is torsion, then c is torsion.

PROOF. The composite Hn(X,Z) ⊗ Q π∗−→ Hn(Y ,Z) ⊗ Q π∗−→ Hn(X,Z) ⊗ Q is multipli-
cation by k, which is invertible, so the pushforward map π∗ is a retraction of π∗ and
hence the latter is injective. Now, given a class c ∈ Hn(X,Z), if π∗c is torsion, then
π∗c ⊗ Q is zero; hence, c ⊗ Q is zero and hence c is a torsion class. �

REMARK 3.2. The proof of Theorem 3.6 of [15] actually tells us a tiny bit more
than is claimed. What it shows is that instead of demanding the base space M
is simply-connected, it is sufficient to ask that the composite π3(M)→ H3(M)→
H3(M)/tors is surjective; this is because Hom(H3(M)/tors,Z) � Hom(H3(M),Z) and
it is the latter group that is used in the proof.

In applying Lemma 3.1, we need only ask that there is a finite-sheeted covering
space M̃ → M with π3(M̃)→ H3(M̃)/tors a surjective map.

Returning to the case of lifting gerbes, we can make a sharper claim, leaving the
smooth category altogether. We first need a preparatory technical lemma.
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H3(BG0)K ∗ E2

H2(BG0)K H1(K,H2(BG0)) ∗

0 0 0 0

t ∗ ∗ ∗ H3(K)

s

FIGURE 1. The E2 page of the Serre spectral sequence associated to the fibre sequence
BG0 → BG→ BK. Boxed entries lie on the line s + t = 3.

LEMMA 3.3. Let K be a discrete group such that H3(K,Z), Ext(H2(K,Z),Z) and
H1(K, A) are torsion, where A is any K-module with underlying abelian group A � Zn.
If G is a finite-dimensional Lie group with π0(G) � K, then H3(BG,Z) is torsion.

PROOF. For the rest of the proof, unspecified coefficients for cohomology should be
taken as Z. Given a Lie group as in the statement, there is a short exact sequence of
Lie groups G0 → G

π−→ K, where G0 is the connected component of the identity. This

gives a fibration BG0 → BG
Bπ−−→ BK, where the fibre BG0 is connected. There is a

(first-quadrant) Serre spectral sequence for this fibration given by

Es,t
2 = Hs(K,H t(BG0)) =⇒ Hs+t(BG),

where H t(BG0) is the K-module arising from the local system on BK with fibre over
x ∈ BK given by Ht(Bπ−1(x)) � Ht(BG0). Note in particular thatH0(BG0) � Z carries
the trivial K-action, since it can be identified with the constant Z-valued functions on
BG0. Recall that Hk(BG0) is finitely generated and is torsion for odd k [2].

Figure 1 shows part of the E2 page, making the substitutions that H0(K, A) = AK ,
the invariants of the K-action on the module A and that H1(BG0) = H1(BG0) = 0, as
G0 is connected, giving the zeros in the 1-row. The asterisk entries are not needed.

By the universal coefficient theorem (UCT), there is a short exact sequence

0→ Ext(H2(K),Z)→ H3(K)→ Hom(H3(K),Z)→ 0

and, hence, if H3(K) is torsion, the right-hand term vanishes and so H3(K) is torsion,
by the assumption on the Ext group.
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The short exact sequence H2(BG0)tors ↪→ H2(BG0)→ H2(BG0)/tors of groups is
also a short exact sequence of K-modules, so there is a long exact sequence which
reads in part

· · · → H1(K,H2(BG0)tors)→ H1(K,H2(BG0))→ H1(K,H2(BG0)/tors)→ · · · .

As H2(BG0)tors is finite, the left-hand term is torsion and so it suffices to know that
H1(K,H2(BG0)/tors) is torsion to conclude that H1(K,H2(BG0)) a torsion group.

There is a version of the UCT for cohomology with local coefficients that generally
only holds under slightly special extra assumptions. Notice that while everything here
is in terms of group cohomology of K, this is the same as the singular cohomology of
BK. Finding this UCT was set as an exercise by Spanier [19, Ch. 5, Exercise J.4] and
can be completed by using [5, Ch. VI, Theorem 3.3a] under the special assumption
(3a’) there. The formulation I use here was given in [17]; a detailed conceptual
derivation is given in [16]. The special assumptions are satisfied by the setup here,
as we are working over the integers and the local coefficient systemH2(BG0)/tors has
fibres that are finitely generated free abelian groups. The latter fact means that we can
also rely on the local system being reflexive, in that it is naturally isomorphic to its
double dual.

The upshot is that there is a short exact sequence

0→ Ext(H0(K, A∗),Z)→ H1(K, A)→ Hom(H1(K, A∗),Z)→ 0,

where A∗ = HomZ(A,Z) is the dual module, also with underlying abelian group
isomorphic to Zn. Then H0(K, A∗) is a quotient of A∗; hence, it is finitely generated
and so Ext(H0(K, A∗),Z) is torsion (as it only sees the torsion subgroup of H0(K, A∗),
which is finite). Thus, if H1(K, A∗) is torsion, the right-hand term vanishes and so
H1(K, A) is torsion, as needed, where we take A = H2(BG0)/tors.

We thus know that all the boxed groups are torsion groups and so the groups Es,t
∞

for s + t = 3, being subquotients of them, are also torsion. Further, this implies that
H3(BG,Z), being an iterated extension of torsion groups, is torsion, as needed. �

Note that nontrivial coefficients for H1 are essential in this result, since the action
of K onH2(BG0) is nontrivial in general.

EXAMPLE 3.4. For the group G = U(1) � Aut((U(1)), the Aut(U(1)) � {±1}-action on
H2(BU(1)) � Z is nontrivial, as the inversion map on U(1) induces a map on BU(1)
that pulls back the Chern class of the universal line bundle to its negative. More
generally, given a group K with a surjection K → {±1}, we get a nontrivial semidirect
product U(1) � K wherebyH2(BU(1)) is a nontrivial K-module.

It is not immediately obvious what the action can be for our class of examples
appearing in Example 4.3, so this is not a redundant assumption.

REMARK 3.5. Given more specific information about the torsion in H∗(BG0,Z),
for instance if it vanishes, or is all P-torsion for some class P of primes, and K

https://doi.org/10.1017/S000497272100071X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272100071X


[9] Lifting bundle gerbes 331

is a P-torsion group, then more information about what sort of torsion appears in
H3(BG,Z) is available.

Recall that a locally finite group is a discrete group that is the filtered colimit of
finite groups or, equivalently, the direct limit of its finite subgroups. For instance, an
infinite direct sum of finite groups is locally finite.

COROLLARY 3.6. Let K be a locally finite group such that Ext(H2(K),Z) is torsion. If
G is a finite-dimensional Lie group with π0(G) � K, then H3(BG,Z) is torsion.

PROOF. The key fact we need is that homology of groups commutes with taking
filtered colimits, and this is true even with nontrivial coefficients, assuming that the
coefficients are also expressed as a direct limit. For a locally finite group K acting on
an abelian group A, we can restrict the action on A to finite subgroups Kα ⊂ K and so
then A as a K-module is the colimit of Kα-modules.

Now, since the group homology of a finite group is torsion, the homology groups
Hn(K,Z), n = 2, 3, of a locally finite group are also torsion. By the observation about
homology with nontrivial module coefficients, we can even conclude that H1(K, A) is
torsion for A a K-module.

Thus, if we also know that Ext(H2(K),Z) is torsion, then we have all the hypotheses
for Lemma 3.3 and so we can conclude that H3(BG,Z), as required. �

With Lemma 3.3 in hand, we can prove the sharper version of the main result.

THEOREM 3.7. Fix a finite-dimensional Lie group G and a connected topo-
logical space X such that there is a finite-sheeted covering space Y → X
such that every homomorphism π1(Y)→ π0(G) factors through a group K
satisfying the algebraic properties in Lemma 3.3. Then, for any central extension
U(1)→ Ĝ→ G and principal G-bundle P→ X, the associated lifting gerbe is
torsion.

PROOF. The proof is similar to that for Theorem 1.1, except that instead of reducing
the structure group to G0, we proceed as follows.

Fix a central extension U(1)→ Ĝ→ G. First note that the lifting bundle gerbe for
the universal G-bundle EG→ BG has DD-class given by the the class in H3(BG,Z)
classifying the central extension, by Lemma 2.6(5) applied to the identity map
of BG.

Then, given a group K satisfying the hypothesis of Lemma 3.3 and a homo-
morphism K → π0(G), the pullback group GK := K ×π0(G) G has a central extension
U(1)→ K ×π0 Ĝ→ GK . Since H3(GK ,Z) is torsion (as π0(GK) � K), all lifting gerbes
associated to GK-bundles are torsion. Further, the lifting gerbe of the pulled-back
G-bundle BGK ×BG EG→ BGK is also torsion. Hence, if the classifying map of a
G-bundle factors through BGK , even up to homotopy, then the G-bundle has a torsion
lifting gerbe.
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Now fix a G-bundle P→ X and take the covering space Y → X as in the statement
of the theorem and the classifying map Y → X → BG. The diagram

Y ��

��

BG

��
Bπ1(Y) ��

		�
��

��
��

� Bπ0(G)

BK



								

commutes (up to homotopy), where K is as in the theorem statement. Since BGK is
the (homotopy) pullback BK ×Bπ0(G) BG, the classifying map Y → BG factors through
BGK , up to homotopy. Thus, the lifting gerbe for Y ×X P→ Y is the pullback of the
torsion lifting gerbe on BGK and hence is torsion.

The rest of the proof of Theorem 1.1 applies, to arrive at the conclusion that DD(P)
is torsion. �

REMARK 3.8. The hypothesis on homomorphisms π1(Y)→ π0(G) is stated so that one
recovers both the cases K = π1(Y) and K ⊆ π0(G), which are what will presumably
occur most often in practice.

4. Examples and applications

4.1. Examples. Theorem 3.7 applies fairly trivially when G is a finite-dimensional
Lie group with π0(G) finite, so the interesting cases are when π0(G) is infinite.

COROLLARY 4.1. If X is a topological space with a locally finite fundamental group
π = π1(X) and with Ext(H2(π),Z) torsion and G is a finite-dimensional Lie group, then
every lifting gerbe arising from a G-bundle on X is torsion.

Similarly, if G is a finite-dimensional Lie group with π = π0(G) locally finite with
Ext(H2(π),Z) torsion, then for any topological space X, every lifting gerbe associated
to a G-bundle on X and central extension of G is torsion.

The main difficulty thus lies in arranging that the Ext group is torsion. But there are
certainly infinite groups where this is so.

LEMMA 4.2. Let K be a locally finite group given by a countable direct limit of finite
abelian groups Kα, the exponents of which are bounded, but whose orders can be
unbounded. Then K is an infinite group satisfying the hypotheses of Lemma 3.3.

PROOF. The hypotheses imply that K has finite exponent, namely the least common
multiple of the exponents of the groups Kα, and also that H2(K,Z) � colimαH2(Kα,Z)
is torsion, since each H2(Kα,Z) is finitely generated and torsion, hence finite, and the
torsion in H2(Kα,Z) is bounded in terms of the exponent of Kα, so there is a uniform
bound on the torsion as α varies.

Using the fact that a countable directed diagram has a cofinal subsequence (An)n∈N,
the colimit defining K can be assumed without loss of generality to be sequential. We
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can then consider the exact sequence (all homology with integer coefficients)

0→ lim1 Hom(H2(Kn),Z)→ Ext(H2(K),Z)→ lim
N

Ext(H2(Kn),Z)→ 0.

Now Hom(H2(Kn),Z) = 0 for all n, as H2(Kn,Z) is finite, and hence the lim1 term
is trivial. Now we use the fact that the sequence H2(Kn,Z) has bounded exponent,
and hence Ext(H2(Kn),Z) has bounded torsion, so that limN Ext(H2(Kn),Z) is still
torsion. This, finally, shows that Ext(H2(K,Z),Z) is torsion and hence we can apply
Corollary 3.6. �

EXAMPLE 4.3. Consider the infinite direct sum
⊕

n∈N A for any finite abelian group
A. This is locally finite, as it is the colimit of the subgroups given by finite direct
sums, and its exponent is the same as that of A. More generally, if K0 ⊂ K1 ⊂ K2 ⊂ · · ·
is a countable increasing sequence of finite abelian groups with eventually constant
exponent e, then

⋃
n Kn is locally finite with exponent e.

In the other direction, here is a counterexample to Theorem 3.7 that was used in
[15]. The specific hypothesis of [15, Theorem 3.6] that is violated – connectivity of
G – is not one required for the version of the theorem here, but it still breaks our
hypotheses in other ways.

EXAMPLE 4.4 [3, Section 4.1] and [11, Section 3.5]. Take a principal U(1)-bundle
Q→ X and a function X → U(1) with classes α ∈ H2(X,Z) and β ∈ H1(X,Z). The
bundle gerbe classified by the cup product α ∪ β is given by the lifting bundle gerbe
corresponding to the principal (U(1) × Z)-bundle Q ×X f ∗R→ X and central extension

U(1)→ (U(1) × Z)×̃U(1)→ U(1) × Z

with product (n1, z1; w1) · (n2, z2; w2) = (n1 + n2, z1z2; w1w2zn2
1 ) (see [3, Equation

(4.10)]; there is a typo in the definition of the product in [15]).
If X = M × S1, then every finite-index subgroup H < π1(M × S1) � π1(M) × Z

admits a surjection onto a finite-index subgroup of Z (for example, the one induced
by the composite Y → M × S1 pr2−−→ S1). Thus, for every finite-sheeted covering space
Y → M × S1, every nontrivial homomorphism φ : π1(Y)→ π0(U(1) × Z) = Z fails to
factor through a subgroup satisfying Lemma 3.3, as im(φ) � Z and H1(Z,Z) = Z.

If H2(M,Z) contains nontorsion classes, then, by Künneth, H3(M × S1,Z) �
H2(M,Z) ⊗ H1(S1,Z) ⊕ H3(M,Z) ⊗ H0(S1,Z), which means that there are cup product
classes that are nontorsion and correspond to finite-dimensional lifting gerbes by the
above construction.

What happens if we are in the situation where we know that K is locally finite and
so Corollary 3.6 has a chance of applying?

EXAMPLE 4.5. Even if K is locally finite, if there is a nontorsion class in H3(K,Z),
this gives rise to a nontrivial central extension U(1)→ K̂ → K. Given any semidirect
product G = G0 � K, we can form the pullback G ×K K̂, which is then a nontrivial
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central extension of G. In fact, it is classified by a nontorsion class in H3(BG,Z), since
H3(K,Z)→ H3(BG,Z) has a retraction induced by the section of G→ K.

How might one get nontrivial classes in H3(K,Z) for a locally finite group K? If
there is some nontrivial c ∈ Ext(H2(K),Z), then, using the exact sequence

0 = Hom(H2(K),R)→ Hom(H2(K),R/Z)
�−→ Ext(H2(K),Z)→ Ext(H2(K),R) = 0,

we get a nontrivial homomorphism φc : H2(K)→ R/Z � U(1) (here using the fact
that R is divisible and hence an injective group, and H2(K) is torsion). Further,
since H2(K, H2(K))→ Hom(H2(K), H2(K)) has a section, by the universal coefficient
theorem for group homology, the identity map on H2(K) corresponds to a nontrivial
central extension H2(K)→ K̂ → K classified by class in H2(K, H2(K)). We can then
induce a central extension of K by U(1) using the homomorphism φc and central
extensions by U(1) are classified by H3(K,Z). All of these constructions are induced
by homomorphisms, so all up we have an injective homomorphism

Ext(H2(K),Z) � Hom(H2(K), U(1)) ↪→ H2(K, U(1))
�−→ H3(K,Z)→ H3(BG,Z)

and so nontorsion elements in Ext(H2(K),Z) are a source of nontorsion elements in
H3(BG,Z).

Now the E3 page of the spectral sequence in Figure 1 has a potentially non-
trivial differential d0,2

3 : H2(BG0)K → H3(K,Z). Moreover, im(d0,2
3 ) is the kernel of

the edge homomorphism H3(K,Z)→ H3(BG,Z), since H3(K,Z)/ im(d0,2
3 ) � E3,0

∞ ⊂
H3(BG,Z). Without more specific analysis of the differential d0,2

3 , it is not immediately
obvious that a nontorsion element remains nontorsion in H3(BG,Z), in general.

Some simple examples can be calculated directly.

EXAMPLE 4.6. Take K some locally finite group with a surjection α : K → {±1}
and define G = U(1) � K as in Example 3.4, so that H2(BU(1))K = {0} and so that
Ext(H2(K),Z) injects into H3(BG).

We can even give a concrete example of a locally finite group K where
Ext(H2(K),Z) has many nontorsion elements, giving nontorsion elements in
H3(U(1) � K). This is despite π0(U(1) � K) being purely torsion, in contrast to
U(1) × Z in Example 4.4.

EXAMPLE 4.7. Consider the locally finite group

K := Z/2 ⊕
⊕

p prime

(Z/p)2,

which is the colimit of the groups Kp := Z/2 ⊕ (Z/2)2 ⊕ (Z/3)2 ⊕ · · · ⊕ (Z/p)2. It is a
classical result that H2((Z/p)2,Z) � Z/p and H2(Z/2,Z) = 0, so that

H2(K,Z) � Z/2 ⊕
⊕

p prime

Z/p.
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These follow from the formula H2(G × H,Z) � H2(G,Z) ⊕ H2(H,Z) ⊕ (Gab ⊗ Hab).
Since Ext sends direct sums to direct products,

Ext(H2(K,Z),Z) � Z/2 ×
∏

p prime

Z/p

and so H3(K,Z) and hence H3(U(1) � K,Z) have plenty of nontorsion elements.
For the sake of concreteness, take the element (1; 1, 1, 1, . . .) ∈ Ext(H2(K,Z),Z) and

from this induce a central extension

U(1)→ T → U(1) � K

with nontorsion characteristic class in H3(B(U(1) � K),Z). This class is the DD-class
of a lifting bundle gerbe following Lemma 2.6(5).

As a result of this example, we can see that the assumption of torsion Ext(H2(K),Z)
in Corollary 3.6 is necessary if one wants to make a statement about all possible
finite-dimensional Lie groups with group of connected components K.

4.2. Applications. These results give strong obstructions to finding finite-
dimensional lifting bundle gerbes. Namely, take a manifold or space X satisfying
the hypotheses of Theorem 3.7 with H3(X,Z) torsion-free. Then all finite-dimensional
lifting gerbes on X have a stable trivialisation.

An example of particular focus in the literature considers a generic connected,
compact simple Lie group, not necessarily simply-connected, which always has
nontrivial third integral cohomology.

PROPOSITION 4.8. The only connected, compact simple Lie groups G that admit a
nontrivial lifting bundle gerbe are the groups PSO(4n) for n > 1 and in this case
there is precisely one, up to stable isomorphism. (It is enough to know that stable
isomorphism in this context is equivalent to having the same DD-class.)

PROOF. First recall that for a Lie group as in the proposition, the fundamental group
is finite, so we can apply Theorem 1.1. Then, for all G � PSO(4n), H3(G,Z) � Z and
hence any lifting gerbe must be trivial and, for PSO(4) � SO(3) × SO(3), H3 � Z ⊕ Z,
with the same conclusion.

For G = PSO(4n) with n > 1, as H3(PSO(4n),Z) � Z ⊕ Z/2, there is only one
nontrivial torsion class and this can be realised by a lifting gerbe, following [12,
Remark 5.1]. Namely, there is a nontrivial central extension

U(1)→ Ẑ → Z/2 × Z/2 =: Z,

where the underlying manifold of Ẑ is U(1) × Z/2 × Z/2 with multiplication arising
from the nontrivial 2-cocycle β : Z × Z → U(1) with β((n1, n2), (m1, m2)) = (−1)n1+m2

[8]. Then there is a nontrivial lifting bundle gerbe arising from the (Z/2 × Z/2)-bundle
Spin(4n)→ PSO(4n) and this has torsion DD-class in H3(PSO(4n),Z). �
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The following corollary is immediate, as a basic gerbe on a Lie group is, by
definition, a nontorsion generator of H3(G,Z) [7].

COROLLARY 4.9. No basic gerbe on a connected, compact simple Lie group G, not
necessarily simply-connected, can be constructed as a lifting bundle gerbe.

REMARK 4.10. Note, however, that the pullback of a basic gerbe can be a
finite-dimensional lifting bundle gerbe. For example, the basic gerbe on SU(2) can
be constructed via a carefully constructed submersion and is not a lifting gerbe. Its
pullback along the Weyl map U(1) × SU(2)/U(1)→ SU(2) (where U(1) ⊂ SU(2) are
the diagonal matrices), however, is stably isomorphic to the Weyl bundle gerbe [1],
which is a lifting bundle gerbe.

This theorem has algebraic consequences, as well. Recall that a crossed module of
Lie groups consists of a homomorphism t : K̂ → L of Lie groups such that ker(t)→
K̂ → t(K̂) =: K is a central extension, K is a normal closed subgroup of L, and a lift
of the adjoint action of L on K to K̂, such that K̂ → L→ Aut(K̂) agrees with the
adjoint action of K̂ on itself. Moreover, L→ coker(t) is a principal K-bundle and we
can consider the corresponding lifting bundle gerbe.

COROLLARY 4.11. Let G be a finite-dimensional connected, compact simple Lie
group. Then there is no finite-dimensional crossed module t : K̂ → L of Lie groups with
ker(t) � U(1) and coker(t) � G whose associated lifting bundle gerbe is nontrivial.
More generally, no multiplicative bundle gerbe on G can be stably isomorphic to a
finite-dimensional lifting bundle gerbe with nontorsion DD-class.

PROOF. By Proposition 4.8, if K̂ → L is a crossed module with coker(t) = G, then the
corresponding lifting bundle gerbe must be torsion and hence we can consider just the
case of G = PSO(4n), n > 1.

The lifting bundle gerbe arising from a crossed module K̂ → L is multiplicative
[4], as it fits into a strict 2-group extension corresponding to the extension of crossed
modules

U(1)

��

�� K̂

��

�� 1

��
1 �� L �� coker(t)

of coker(t) by BU(1) (as strict Lie 2-groups). By [4, Proposition 5.2], the DD-class
of a multiplicative bundle gerbe on G is in the image of the transgression map
H4(BG,Z)→ H3(G,Z). But, by [10, Theorem 6], for any connected compact Lie group
G, the restriction map H4(BG,Z)→ H4(BT ,Z) induced by a maximal torus T ⊂ G is
injective and hence H4(BG,Z) is torsion-free, including for G = PSO(4n). Thus, the
only class in H3(PSO(4n),Z) represented by some lifting gerbe is not the DD-class of
the lifting gerbe arising from a crossed module.

The more general statement follows, as multiplicative bundle gerbes on G are
classified by H4(BG,Z) [4, Proposition 5.2] (see also [8], where the image of
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the injective map H4(BG,Z)→ H4(BG̃,Z) is characterised for all possible compact
connected simple Lie groups). �

This tells us that for any finite-dimensional crossed module t : K̂ → L as in
Corollary 4.11, there is a principal U(1)-bundle T → L whose restriction to K ⊂ L
is K̂ → K and there is a K̂-action of T covering the action on L by multiplication via t.
This corollary places a constraint on the structure of a crossed module analogous to
that for group extensions that are topologically trivial but still algebraically nontrivial.
There may still be algebraically nontrivial crossed modules with cokernel G.

As Corollary 4.11 constrains the structure of finite-dimensional crossed modules,
it means that the higher geometry of principal 2-bundles with strict structure 2-group
(that is, a crossed module), as in [20], for example, really must use infinite-dimensional
constructions. A connection for such a bundle takes its values in the truncated
L∞-algebra that is the crossed module of Lie algebras associated to the given crossed
module of Lie groups [20, Definition 5.1.1]. As a result of the preceding corollary,
finite-dimensional crossed modules τ : k̂→ l of Lie algebras where coker(τ) is simple
are insufficient to capture all examples of interest.

Finally, recall that twisted K-theory is a particular cohomology theory generalising
topological K-theory, where a twist is an extra piece of data. Homotopy-theoretically
a twist is a map to the classifying space for bundles of spectra with fibre the K-theory
spectrum. The most well-studied twists arise from a factor of K(Z, 3) of this classifying
space and, hence, when constructing K-theory using geometric objects, geometric
objects classified by maps to K(Z, 3) are used. As such, bundle gerbes are one model
for twists, as are principal PU(H)-bundles. The latter give rise to lifting bundle gerbes
and, as noted in the introduction, every bundle gerbe is (noncanonically) the lifting
gerbe of some PU(H)-bundle. But finite-dimensional bundle gerbes coming from
PU(n)-bundles can be used as well and, more generally, the lifting bundle gerbes of
principal G-bundles for other groups G.

COROLLARY 4.12. Given a space X as in Theorem 3.7, a finite-dimensional G-bundle
P and central extension Ĝ, the twist τ = τ(P, Ĝ) of the K-theory of X coming from this
data is a torsion twist. In particular, if H3(X,Z) is torsion-free, the resulting twisted
K-theory K∗,τ(X) is just ordinary K-theory.

We can view this result as putting strong constraints on the maps

H1(X, G) × H3(BG,Z)→ {twists of K-theory on X}.

For instance, in the case that π1(X) is locally finite and Ext(H2(π1(X)),Z) is torsion,
arbitrary finite-dimensional Lie groups give only torsion twists.
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