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Recent experiments with droplets impacting macro-textured superhydrophobic surfaces
revealed new regimes of bouncing with a remarkable reduction of the contact time.
Here we present a comprehensive numerical study that reveals the physics behind
these new bouncing regimes and quantifies the roles played by various external and
internal forces. For the first time, accurate three-dimensional simulations involving
realistic macro-textured surfaces are performed. After demonstrating that simulations
reproduce experiments in a quantitative manner, the study is focused on analysing
the flow situations beyond current experiments. We show that the experimentally
observed reduction of contact time extends to higher Weber numbers, and analyse the
role played by the texture density. Moreover, we report a nonlinear behaviour of the
contact time with the increase of the Weber number for imperfectly coated textures,
and study the impact on tilted surfaces in a wide range of Weber numbers. Finally,
we present novel energy analysis techniques that elaborate and quantify the interplay
between the kinetic and surface energy, and the role played by the dissipation for
various Weber numbers.
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1. Introduction
Impact of liquid drops on solid surfaces is a fascinating fluidics problem whose

complexity derives from the possible coexistence of a variety of phenomena occurring
at multiple temporal and spatial event scales (Yarin 2006; Roisman, Berberović &
Tropea 2009; Roisman 2009). These include but are not limited to splash (Xu,
Zhang & Nagel 2005; Xu 2007; Mani, Mandre & Brenner 2010; Mandre & Brenner
2012; Riboux & Gordillo 2014), phase-change-induced surface levitation (Wachters
& Westerling 1966; Biance, Clanet & Quéré 2003; Tran et al. 2012, 2013; Antonini
et al. 2013a), skating (Kolinski et al. 2012), rebounding (Richard, Clanet & Quéré
2002; Antonini et al. 2013b; Bird et al. 2013; Liu et al. 2014; De Ruiter et al. 2015),
prompt tumbling-rebound (Antonini et al. 2016) and the trampoline effect (Schutzius
et al. 2015).

Surfaces with special wetting properties have profound implications in engineering
including power generation, transportation, water desalination, oil and gas production
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and microelectronics thermal management. Particularly interesting are surfaces with
extreme wetting properties, which are efficient at either repelling (hydrophobic) or
attracting liquids (hydrophilic) such as water and oils but can also prevent formation
of biofilms or ice (Rykaczewski et al. 2012). The degree of surface wetting, typically
measured by a drop’s equilibrium contact angle, depends on the balance of the
products of corresponding interfacial surface areas and surface energies. From a
theoretical perspective, the contact angle of a liquid interacting with a flat solid
is predicted by Young’s equation. However, in order to achieve extreme wetting
properties, the interface between the droplet and the substrate must be structured
and often contains an additional gas or liquid phase (Rykaczewski et al. 2012). For
example, nano- and/or microscale roughening of a flat hydrophobic substrate yields
a superhydrophobic surface (SHS) through trapping gas. SHS are characterized by
high contact angle θ > 150◦ and negligible contact angle hysteresis. Drop repellence
by hydrophobic and superhydrophobic surfaces is an area of active research (Rein
1993; Richard et al. 2002; Blossey 2003; Okumura et al. 2003; Yarin 2006; Tuteja
et al. 2007; Jung et al. 2012; Bird et al. 2013; Liu et al. 2014, 2015a; Gauthier
et al. 2015; Schutzius et al. 2015).

The time during which the drop stays in a contact with the solid after impact is
termed the contact time (or rebound time). Minimization of contact time is important
for a rational design of hierarchically structured surfaces and has been the focus
of recent studies (Richard et al. 2002; Bird et al. 2013; Liu et al. 2014, 2015a;
Gauthier et al. 2015; Schutzius et al. 2015). Richard, Clanet and Quéré (Richard
et al. 2002) found that the conventional mechanism of rebound on macroscopically
flat superhydrophobic surfaces (impact–spread–recoil–rebound, (Richard & Quéré
2000; Richard et al. 2002; Okumura et al. 2003; Wang et al. 2007)) scales universally
with the inertia–capillarity time,

τ =

√
ρlR3

0

σ
, (1.1)

with ρl, R0 and σ the liquid density, drop radius and surface tension, respectively. This
scaling, tcontact/τ ≈ 2.2 ± 0.3, is notably independent on the drop kinetic energy and
holds in a range of Weber numbers (Richard et al. 2002),

We=
ρlR0U2

0

σ
, (1.2)

where U0 is the impact velocity. However, (Bird et al. 2013) demonstrated that by
adding a macro-texture (few hundred micrometres) as a ridge on the flat surface, the
contact time reduces by approximately 37 %. Recently, (Liu et al. 2014) demonstrated
that impact on a flat surface decorated with a lattice of sufficiently tall (almost a
millimetre) tapered posts with a nanoscale superhydrophobic coating results in an
unconventional mechanism where the drop rebounds even before the retraction takes
place. Because of the flattened droplet shape at rebound, this phenomenon was
referred to as pancake bouncing. A spectacular reduction in contact time by a factor
of four was reported. Further experimental studies of similar macro-textures can be
found in Gauthier et al. (2015), Liu et al. (2015a).

Although pancake bouncing was shown to reduce the contact time significantly,
questions remain regarding the physics behind the phenomenon, including the role
played by surface energy, viscous dissipation and the influence of air pockets that
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might be trapped between the droplet and the surface texture. Also a parametric study
including the dependence on the texture geometry, quality of coating, velocity of the
drop etc. can help to understand the limits and optimizations of the macro-texture
proposed in Liu et al. (2014).

Such detailed analysis and information regarding the complex droplet shape and its
deformation can be made possible through simulations. To this end, simulations of
Moevius et al. (2014) were able to capture pancake bouncing in a qualitative manner.
However, due to limitations of the lattice Boltzmann model used in Moevius et al.
(2014), a quantitative comparison was restrictive. First, only a quasi-three-dimensional
simulation was performed (cylindrical droplet instead of spherical) and only square
posts rather than the tapered posts were considered. Another limitation was due to
the high relative density of the gas phase which precluded the study of the actual
surface geometry.

In this paper, we report a comprehensive simulation study of the pancake
bouncing effect and outline a new energy analysis technique that could reveal the
interplay between kinetic, surface and viscous forces that influence droplet–wall
interactions. The recently introduced entropic lattice Boltzmann method (ELBM) for
two-phase flows (Mazloomi Moqaddam, Chikatamarla & Karlin 2015b) is free of
the aforementioned limitations and enables us to consider complex texture with a
realistic geometry. First, validity and accuracy of the ELBM is established through
comparison to recent experiments on pancake bouncing on SHS macro-textures (Liu
et al. 2014) and interaction of a droplet with a flat surface. After that, a detailed
parametric study is conducted by varying the geometry of macro-texture and the
contact angle on the substrate. Analysis of various forces and energies acting during
the collision process is also provided. It is important to note that the model used
here is free of tuning parameters and case-based modelling. The simulation algorithm
remains the same as in previous studies of binary droplets collisions, interaction
with flat or complex walls and tumbling rebound from inclined sublimating slope
(Mazloomi Moqaddam, Chikatamarla & Karlin 2015a; Mazloomi Moqaddam et al.
2015b; Mazloomi Moqaddam, Chikatamarla & Karlin 2015c, 2016; Antonini et al.
2016). Such accurate and reliable simulations combined with novel analysis techniques
can uncover the physics behind these droplet–wall interactions and lead to the design,
optimization and also discovery of new surfaces.

The outline of the paper is as follows: in § 2 we briefly explain our numerical
model. Main § 3 opens with the geometry of complex macro-texture and description of
physical parameters used in the simulation (§ 3.1). In § 3.2, simulations are validated
against experiments on the flat (Bird et al. 2013) and macro-textured SHS of Liu et al.
(2014). The pancake bouncing regime is further studied at higher Weber numbers in
§ 3.3. Influence of density of texture on the contact time reduction is studied through
simulation and scaling analysis in § 3.4, while in § 3.5 the nonlinear effect of coating
quality is revealed. In § 3.6, energy analysis is reported. Simulation of the impact on
a tilted macro-structure is reported in § 3.7. Finally, the paper is summarized in § 4.

2. Simulation method
We use the ELBM for two-phase flows (Mazloomi Moqaddam et al. 2015b).

The method was already discussed in detail elsewhere (Mazloomi Moqaddam et al.
2015b,c, 2016); a summary is given below. The ELBM equation for the populations
fi(x, t) of the discrete velocities vi, i= 1, . . . ,N, reads,

fi(x+viδt, t+ δt)= fi(x, t)+αβ[ f
eq
i (ρ,u)− fi(x, t)]+ [ f

eq
i (ρ,u+ δu)− f eq

i (ρ,u)]. (2.1)
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We use the lattice with N = 27 discrete velocities vi = (vix, viy, viz) where viξ =

{±1, 0}. The equilibrium populations f eq
i minimize the discrete entropy function

H =
∑N

i=1 fi ln( fi/Wi) under fixed density and momentum, {ρ, ρu} =
∑N

i=1{1, vi}{f
eq
i },

where Wi are the lattice weights (Karlin, Ferrante & Öttinger 1999; Ansumali, Karlin
& Öttinger 2003; Chikatamarla, Ansumali & Karlin 2006). Parameter 0 < β < 1 is
fixed by the kinematic viscosity ν through ν= c2

sδt[1/(2β)−1/2]. Here cs= δx/(
√

3δt)
is the lattice speed of sound; lattice units δx = δt = 1 are used. The relaxation
parameter α is computed at each lattice site and at every time step from the entropy
balance condition (Karlin et al. 1999). The latter provides numerical stability without
compromising on the accuracy thus significantly reducing the grid requirements for
the simulation at high Weber and Reynolds numbers.

Furthermore, in (2.1), the last term implements the phase separation and fluid–solid
interaction through evaluation of the flow velocity increment, δu= (F/ρ)δt, with the
force F= Ff + Fs. The mean-field force Ff =∇ · (ρc2

s I − P) implements Korteweg’s
stress (Rowlinson & Widom 1982; Korteweg 1901),

P =
(

p− κρ∇2ρ −
κ

2
|∇ρ|2

)
I + κ(∇ρ)⊗ (∇ρ), (2.2)

where κ is the coefficient which controls the surface tension, I is unit tensor and p
is the equation of state; the Peng–Robinson form is used for the latter (Mazloomi
Moqaddam et al. 2015b,c, 2016). Interaction between the fluid and the solid surface
is introduced with the help of a force Fs,

Fs(x, t)= κwρ(x, t)
N∑

i=1

wis(x+ viδt)vi, (2.3)

where the parameter κw reflects the intensity of the fluid–solid interaction. By
adjusting κw, solid surfaces with different wetting can be modelled. In (2.3), s(x+viδt)
is an indicator function that is equal to one for the solid domain nodes and is equal
to zero otherwise; wi are appropriately chosen weights (Yuan & Schaefer 2006;
Mazloomi Moqaddam et al. 2015c). Following Mazloomi Moqaddam et al. (2015c),
the equilibrium contact angle is set in accord with the Young–Laplace equation by
choosing coefficient κw in (2.3). In the simulations presented below, the equilibrium
contact angle was set at θ = 165◦, corresponding to κw =−0.1475 in (2.3). Since for
the SHS the contact angle hysteresis is small (∼2◦–3◦), the advancing and receding
contact angles are not explicitly modelled. Also, the numerical simulations presented
below demonstrate that this affects the dynamics of drop impact on neither flat
nor macro-textured SHS and that experimentally observed results are captured both
qualitatively and quantitatively.

3. Results
3.1. Geometry and simulation parameters

The set-up of the three-dimensional simulations is sketched in figure 1. A droplet
of radius R0 is placed above the surface in equilibrium with the vapour. A uniform
downward velocity is imposed on the drop while surrounding vapour is initialized
with zero velocity. Initially the drop is sufficiently elevated to allow the liquid–vapour
interface to equilibrate before the impact. No gravity is considered in the simulations
due to the small time scales involved. All simulations, unless otherwise stated, were
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FIGURE 1. (Colour online) Simulation set-up. The texture is represented as a surface
decorated with a lattice of tapered posts. The posts are represented by right conical
frustums with the base diameters b and B; w is the centre-to-centre spacing and h is the
height of the posts.

run on computational domain of 6R0 × 6R0 × 6R0. Parameters of the simulated fluid
are the same as the ones employed for investigation of droplets collisions (Mazloomi
Moqaddam et al. 2016) and the droplet–surface interactions (Mazloomi Moqaddam
et al. 2015c): ρl = 7.82 (liquid density), ρv = 0.071 (vapour density), σ = 0.353
(surface tension, corresponding to κ = 0.00468 in (2.2)) and µv = 0.01 (vapour
dynamic viscosity); all are in lattice units (see below the match to physical units).
The impact velocity was computed in accord with the Weber number We= ρlR0U2

0/σ ,
and the range 6 6 We 6 150 was studied. The dynamic viscosity of the droplet was
fixed at µl=0.415 corresponding to Ohnesorge number Oh=0.025 (Oh=µl/

√
ρlσR0).

This corresponds to a range of Reynolds number Re=
√

We/Oh as 98 6 Re 6 490.
A comment on the parameters of the simulated liquid and those used by the

experiment (Liu et al. 2014) (water) is in order. The density contrast ρl/ρv ≈ 100
and the Ohnesorge number Oh = 0.025 used in the ELBM simulations were shown
before to be sufficient to recover the pertinent flow dynamics of colliding droplets
and impacts on flat surfaces (Mazloomi Moqaddam et al. 2015c, 2016). The density
contrast for water is an order of magnitude higher, whereas the Ohnesorge number
is an order of magnitude lower than those of the simulation (Oh≈ 0.003 for water).
Nevertheless, similar to previously studied cases, we expect the essential dynamics to
be captured correctly also in the present simulations with complex textures since the
vapour state is too light to influence the liquid (Mazloomi Moqaddam et al. 2015c,
2016). Further evidence is provided below by comparing ELBM simulations with
experiments.
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FIGURE 2. Contact time on a flat superhydrophobic surface with the contact angle θ =
161◦ as a function of Weber number. Open symbols: ELBM simulations; solid symbols:
experiment (Gauthier et al. 2015). Dashed line: tcontact/τ = 2.5.

The structure of the substrate is a square lattice of tapered posts placed uniformly
with the centre-to-centre spacing w on a flat plate. Each post is modelled as a right
conical frustum of the height h, with the smaller and larger base diameters b and B,
respectively. The droplet radius R0 is the input of the simulations while the rest of
the geometry matches the experiment (Liu et al. 2014): R0/h= 1.8 (droplet radius to
post height), b/B≈ 0.28 and b= B− 2h tan ϕ (ϕ = 2.6◦ is the apex angle (Liu et al.
2014)). We introduce the density of the texture (DoT) Λ=R0/w (parameter Λ reflects
the relative number of posts ‘seen’ by the droplet at impact). The spacing between
the posts was chosen to reproduce Λexp≈ 7.25 (Liu et al. 2014) in the simulations of
§ 3.2 below. Both the surface of the conical frustum and the supporting flat plate are
considered SHS with a contact angle θ = 165◦.

Finally, in order to convert lattice time tLB into seconds, we first compute the inertia–
capillary time τLB=

√
ρlR3

0/σ using the density, droplet radius and surface tension in
lattice units. Next, τ is extracted from the experimental data and the reduced time
for both the experiment and the simulation are matched, tLB/τLB = t/τ . Thus, given
tLB (the number of time steps), we uniquely obtain the corresponding physical time
t= (τ/τLB)tLB. A droplet radius of R0=100 grid units was used unless stated otherwise.
All simulations were checked for grid convergence using R0= 100 and lower; only the
highest resolution results are reported here.

3.2. Validation with experimental data
In this section we validate the simulations with published data from experiments (Liu
et al. 2014; Gauthier et al. 2015). For a flat SHS, it was shown in Richard et al.
(2002) that the contact time tcontact is independent of Weber number in a wide range
and can be scaled with the inertial–capillary time scale: tcontact/τ ≈ 2.5. Figure 2
reports the variation of contact time on the flat SHS for a range of Weber numbers;
simulation results agree well with the experiment (Gauthier et al. 2015). In figure 3,
the history of the drop spread on a flat SHS at We = 26.6 is reported. Excellent
agreement between results obtained by numerical simulations and experimental
observations reported in Bird et al. (2013) is evident from figure 3.
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1.5

2.0

0 0.5 1.0 1.5 2.0

Experiment
Simulation

FIGURE 3. Lateral expansion of a water drop impacting on a flat superhydrophobic
surface at We = 26.6 (supplementary movie 1 available at https://doi.org/10.1017/
jfm.2017.306). Line: simulation; symbols: experiment (Bird et al. 2013).

We note that the flat SHS test validates the use of the Ohnesorge number of Oh=
0.025 for the ELBM fluid in the present context. Indeed, as it has been shown by
many authors, e.g. Antonini et al. (2013a), Maitra et al. (2014), that the Ohnesorge
number takes effect on the contact time at much higher values, Oh≈ 1 (i.e. for highly
viscous liquids such as glycerol (Oh ≈ 3) or silicon oil). For Oh < 0.1, there is no
effect of viscosity during impact on flat surfaces, and thus it is not surprising that
the present simulation agrees well with the experiments which use water. We refer to
Mazloomi Moqaddam et al. (2015c) for other comparisons of ELBM with experiments
on a flat SHS.

Now we proceed with the textured SHS. Following Liu et al. (2014), we introduce
characteristic time instances (t= 0 corresponds to the time of first contact): t↑ is the
time at which the texture is fully emptied (emptying time); at tmax the drop reaches its
maximal lateral extension; tcontact is the time at which the drop loses contact with the
surface (contact time). Snapshots of a drop impinging on a texture of tapered posts
at We = 14.1 are shown in figure 4(a) along with the images from the experiment
(Liu et al. 2014). Pancake formation and rebound is clearly seen in the simulation.
Simulation results for both the shape of the drop and the characteristic times are in
excellent agreement with experimental observations.

Along with the tapered posts texture of figure 1, we simulated a simpler case of
rectangular prism posts which was also considered in the experiment of Liu et al.
(2014). The droplet radius for this simulation was R0= 34 lattice units. The height of
posts h, the posts centre-to-centre spacing, w and the side of the square cross-section
b were computed according to the aspect ratios R0/h, R0/w and b/h of the experiment
(Liu et al. 2014) and the results are presented in figure 4(b) for We= 7.9. Also in this
case excellent agreement between simulation and experiment is observed.

For validation, simulations were performed within the experimentally accessed
range of Weber numbers 6 < We < 25. Dependence of characteristic times t↑, tmax,
and tcontact on Weber number is compared with the experiment in figure 5(a) (tapered
posts) and figure 5(b) (square posts). Also the so-called pancake quality Q= djump/dmax

is compared to the experiment, where djump and dmax are the diameters of the drop at
tcontact and tmax, respectively.
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(a)

(b)

FIGURE 4. (Colour online) Comparison of simulation (bottom) and experiment (Liu et al.
2014) (top) for the pancake bouncing of a drop impinging on (a) the tapered posts at
We= 14.1 and (b) the straight square posts at We= 7.9.

Simulations in figure 5(a) show that for We<12 the contact time is tcontact'16 (ms)
which is in good agreement with the conventional complete rebound from a flat
surface (Richard et al. 2002). The onset of the pancake bouncing regime at critical
Weber number We∗ ≈ 12 agrees well with experiment (Liu et al. 2014). Reduction
in contact time by a factor four is observed. We repeated the measurements of
the characteristic times scales for the drop impinging on the straight square posts.
Simulation results compare well with the experiment in figure 5(b).

Summarizing, ELBM simulation demonstrates excellent agreement with the existing
experimental data. In the remainder of this paper, we shall address regimes which
were so far not studied experimentally in order to gain a more comprehensive picture
of bouncing off macro-textured surfaces.

3.3. Textures with perfect coating
Liu et al. (2014) reported experiments in a narrow range of Weber numbers (We< 25).
When the Weber number is increased, penetration depth into the texture increases
and the deforming drop will eventually reach the base of the substrate. It is difficult
to study the liquid inside the texture in the experiments. Here we extend the ELBM
simulations to higher Weber numbers, 6 < We < 150. We first consider the same
geometry as in the previous section, and assume perfect coating, that is, both the
posts and the base are SHS with contact angle θ = 165◦.

Figure 6 shows snapshots of the impact on the perfectly coated texture at various
Weber numbers. For We> 40, the penetrated liquid interacts with the base plate at the
time tmpl (maximal penetration of the drop). Simulations show that pancake bouncing
is still observed for a much wider range of Weber numbers, 12<We< 150. Figure 7
shows that both the reduction of the contact time (squares) and the pancake quality
(circles) remain unaffected until at least We≈ 150. This can be attributed to the fact
that the base plate of the texture is also considered an SHS with a uniform contact
angle (see § 3.5).
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FIGURE 5. (Colour online) Drop rebound from macro-texture at various Weber numbers.
Symbol: simulation; line: experiment (Liu et al. 2014). Characteristic times: t↑ (emptying
time, blue), tmax (maximum lateral extension time, red), tcontact (contact time, magenta);
pancake quality Q = djump/dmax (green) where djump and dmax are the diameters of the
drop at tcontact and tmax, respectively. (a) Tapered posts. Geometry of the posts used in the
simulations matches the experiment: R0/h = 1.8 (droplet radius to post height), density
of texture R0/w ≈ 7.25 (droplet radius to centre-to-centre spacing), b/B ≈ 0.28 (smaller
to larger diameter of the bases) and b = B − 2h tan ϕ (ϕ = 2.6◦ is the apex angle)
(supplementary movies 2 and 3). (b) Square posts.

Summarizing, under the assumption of perfect SHS coating, we found that the
pancake bouncing extends to much higher Weber numbers, with the critical Weber
number clearly identified and in agreement with experimental observations.

3.4. Critical Weber number and density of texture
In the above simulations, the density of the texture, Λ = R0/w ≈ 7.25, matched the
experiment (Liu et al. 2014) and the critical Weber number We∗ ≈ 12 at the onset
of the contact time reduction was found in both simulation and experiment (see
figures 5a, 7). Next we study the effect of density of the texture (DoT) Λ = R0/w
on the contact time reduction by varying the centre-to-centre spacing w. Intuitively,
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(a)

(b)

(c)

(d)

FIGURE 6. (Colour online) Snapshots of the rebound from tapered posts at (a) We= 40,
(b) We= 50, (c) We= 80, (d) We= 120. Density of the texture Λexp= 7.25. Invading liquid
hits the base of the texture at We> 50. Perfect coating is assumed for both the posts and
the base plate (contact angle is set to θ = 165◦). After hitting the base, penetrated liquid
experiences a quick lateral extension, detaches from the base, returns to the top of the
posts and demonstrates pancake rebound (supplementary movies 4 and 5). Geometry of
the macro-texture is same as in figure 5(a).
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FIGURE 7. (Colour online) Contact time tcontact (squares) and pancake quality Q (circles)
of a drop impinging on perfectly coated tapered posts with the density of texture Λexp =

7.25, for a range 66We6 150. Geometry of the macro-texture is same as in figure 5(a).

one expects the limit of contact time of the flat SHS to be reached for both sparse
(Λ ≈ 1) and dense textures (Λ� 1; in the present simulation, the maximal texture
density is reached at Λ≈ 12.5 when the bases of the posts start to overlap). In the
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FIGURE 8. (Colour online) Square: dependence of the critical Weber number We∗ on the
density of texture Λ = R0/w; Line: quadratic fit of the critical Weber number for the
realizations between Λ=4 and Λ=12.5. Circle: contact time at We∗ for the corresponding
density of texture. Open symbols indicate that the critical Weber number was not observed
for the corresponding density of texture. Various Λ were realized by changing the post’s
centre-to-centre spacing w under fixed drop radius R0. At Λ = 12.5, the bases of the
conical posts touch each other. Dimensions of the posts are same as in the experiment.

intermediate range, the critical Weber number We∗ can be observed, at which the
reduction of the rebound time occurs.

Figure 8 shows the dependence of the critical Weber number on the density of
texture We∗(Λ), and the corresponding contact time, t∗(Λ) = tcontact(We∗(Λ)). From
figure 8, one can see that the critical Weber number and the associated contact time
reduction is first found at Λ = 4 and extends to higher DoT. Note that, while We∗
was found at DoT as high as Λ ≈ 12.5 in the simulation, the corresponding value
We∗(12.5) ≈ 42.5 is far off the range of Weber numbers probed in the experiment
(We < 30). In other words, if a limited range of Weber numbers is concerned, the
case of very dense textures (Λ = 12.5 was the most dense texture in the simulation
since the bases of the cones start to overlap) shows the limit of the flat SHS as the
drop resists to penetrate into the texture.

A qualitative estimate of the dependence We∗(Λ) can be based on the following
arguments. First, we recall the explanation of contact time reduction on the macro-
wedges in Gauthier et al. (2015). If the drop is deformed by the macro-structure
in such a way that it can be represented by a partition into N smaller blobs, the
inertia–capillary time τ ∼

√
ρR3

0/σ transforms to τ ∼
√
ρR3

0/Nσ , which explains
the experimentally observed scaling of contact time reduction, tcontact ∼ N−1/2 (see
Gauthier et al. 2015). In the present case, the ‘blobs picture’ pertains to the
penetrated liquid. The number of blobs (liquid filaments invading the spacing between
the posts) can be estimated as N ∼ Λ2, and thus the emptying time t↑ scales as
t↑ ∼

√
ρR3

0/Λ
2σ ∼ (R0/U)

√
We/Λ2. Second, the spreading time of the part of the

drop over the top of the texture t→ can be estimated by the crashing time (Clanet
et al. 2004), t→∼R0/U, that is, it does not depend on DoT Λ. Finally, following the
argument of Liu et al. (2014), at the critical Weber number, the spreading and the
emptying times should match (see figure 5a), t→ ≈ t↑. Using the above estimates, we
obtain We∗∼Λ2. Thus, the present simple arguments, although not universal, imply a
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quadratic dependence of the critical Weber number on the density of texture, which
is consistent with the simulation results in figure 8.

The blue circles in figure 8 shows the contact time as a function of DoT, measured
at the critical Weber number for each Λ. The onset of contact time reduction is clearly
visible at Λ= 4. Note that the critical t∗(Λ) is confined to a band between a two to
four times reduction with respect to the contact time of the flat SHS. In other words,
while the contact time reduction may be not as significant for lower DoT as compared
to the spectacular four times reduction at the close to optimal DoT Λ ≈ 7 of the
experiment (Liu et al. 2014), it is still clearly lower than the flat SHS values. In that
respect, the blue circles in figure 8 are reminiscent of the ‘quantization’ of the contact
time plots on the SHS wedge macro-structures (see figure 3a of Gauthier et al. 2015),
with relatively narrow band of reduced contact times for a range of DoTs.

Summarizing, under the assumption of perfect SHS coating, we find that the density
of the texture strongly affects the critical Weber number, with the transition to reduced
contact time growing nonlinearly (quadratically) with DoT. Hence, during a design
process, one needs to consider the trade-off between the amount of reduction in the
contact time and the critical Weber number at which the contact time reduction sets
in. Also, the observation of significant time reduction in a wide range of DoTs makes
it possible to avoid the perfect arrangements of pillars. In the next section we shall
investigate the effect of imperfect coating on the contact time reduction.

3.5. Imperfect coating
So far we have assumed that the SHS quality is maintained uniformly throughout the
texture and the base plate. However, this is unlikely to hold when, for example, the
SHS coating is produced by spraying a polymer solution on the texture. According
to Liu et al. (2014), controlling the quality and uniformity of coating throughout the
posts, and especially in the valleys between them, is a difficult task. Hence it is
reasonable to assume that the contact angle at the base plate is lower than that on the
upper part of the posts. Since the drop interacts with the base plate at We > 50 (see
figure 6), we probe the effect of imperfect coating by assigning a smaller contact angle
for the base plate and the bottom part of the posts (10 % of the height). Since SHS are
usually manufactured by coating hydrophobic surfaces with nano-scale structures, we
choose three different contact angles at the base plate and the bottom part of the posts,
θbottom = 132◦ (κw = −0.09625) (2.3), 140◦ (κw = −0.105) and 145◦ (κw = −0.115).
These values are reasonable for conventional hydrophobic surfaces. The upper part the
posts is maintained at the SHS contact angle θ = 165◦ as before, and the density of
texture is fixed at Λexp = 7.25.

Contact time for imperfectly coated textures is shown in figure 9. For We6 40, the
contact time is the same for all coatings considered; since liquid penetrates the texture
without touching the base, the quality of coating has no effect on the contact time.
However, for We > 40, the liquid reaches the substrate base, and degraded coating
alters significantly the contact time droplet dynamics and the pancake quality. As seen
from figure 9, deterioration of the contact time becomes progressively more severe
with lowering of the contact angle at the bottom, as expected. For the smallest contact
angle θbottom = 132◦, for We > 40, the impacting drop sticks to the substrate base.
Consequently, the drop rebounds in a conventional fashion, with approximately the
same contact time as for the flat SHS, in the entire range of Weber numbers We =
65− 150. However, for a less severe degradation, θbottom= 140◦ and 145◦, we observe
a nonlinear dependence of the contact time on the Weber number We> 40.
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FIGURE 9. (Colour online) Contact time tcontact (ms) for imperfectly coated textures at
three different contact angles at the substrate base, θbottom=145◦, θbottom=140◦ and θbottom=

132◦, as a function of Weber number. Reference data for perfectly coated texture θbottom=

165◦ are also shown. Geometry of the texture is same as in figure 5(a).

In order to elucidate this nonlinearity, in figure 10 we present snapshots of the
impact for θbottom = 140◦, for different Weber numbers. For We = 50, 80 and 120,
the drop contacts with the substrate base at tmpl. Due to lack of superhydrophobicity
at the bottom, the penetrated liquid tends to stick to the texture base before it is
pulled out by the rest of drop moving upward. In figure 10(b) (We= 50), although the
penetrated liquid sticks to the substrate base, it returns to the top of the texture quickly
thus enabling pancake bouncing but with an almost double contact time, tcontact ≈

7 (ms). At a higher Weber number We= 80, figure 10(c), due to a larger contact area
between the liquid and the texture base, the penetrated liquid returns to the top of
the posts with a delay. Consequently, the drop has enough time to retract and the
overall picture resembles the conventional bouncing rather than a pancake rebound.
The contact time tcontact ≈ 14 (ms) becomes closer to the conventional bouncing value
(see Supplementary Movie 6). However, as the Weber number is further increased,
figure 10(d), We= 120, the contact time reduces back to the value tcontact≈ 7 (ms). In
this case, since the contact area between the drop and the base becomes even larger,
also the number of invaded valleys increases. The force due to surface tension is thus
able to overcome the pinning effect of the imperfectly coated base and the texture is
emptied faster. This explains the return of a pancake-like bouncing at We= 120, and
the contact time becomes smaller than at We= 80.

Summarizing, a moderately degraded coating at the bottom of the texture features
a nonlinear dependence of the contact time on the Weber number and significantly
affects the rebound pattern.

3.6. Energy budget
Energy considerations were invoked in Liu et al. (2014) to quantify the mechanism
of pancake bouncing. The assumption behind this analysis was that the kinetic energy
of the drop is fully converted into the surface energy at the maximal penetration into
the texture. However, neglecting energy dissipation is less obvious for an impact on
textured surfaces. Indeed, since the shape of the droplet is considerably more distorted
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(a)

(b)

(c)

(d)

FIGURE 10. (Colour online) Snapshots of impact on imperfectly coated texture at (a)
We = 40, (b) We = 50, (c) We = 80, (d) We = 120. Contact angle at the base plate and
10 % above it set to θbottom = 140◦, and for the rest of the texture the contact angle is
θ = 165◦. For We > 50, the penetrated liquid reaches the base at tmpl. Geometry of the
macro-texture is same as in figure 5(a). (Supplementary Movies 6 and 7.)

as compared to the flat SHS (the flow ‘sees more walls’), stresses in the boundary
layers contribute more to the dissipation. On the other hand, ELBM was shown
to quantitatively capture the energy budget in binary droplet collisions (Mazloomi
Moqaddam et al. 2016). In this section we report and discuss the energy budget of
the pancake bouncing regime from the ELBM simulations. For a drop with volume V
and surface area A, let us introduce the kinetic energy, K=

∫
V(ρu2 dV)/2, the surface

energy S= σA and the energy loss due to viscous dissipation Ξ ,

Ξ =

∫ t

0
Φ dt where Φ =

µl

2

∫
V
(∇u+∇u†)2 dV. (3.1)

Further introducing normalized energies, K̃ = K/E0, S̃= S/E0 and Ξ̃ =Ξ/E0, where
E0 =K0 + S0 is the energy of the drop at t= 0, the energy balance is written as,

K̃ + S̃+ Ξ̃ = 1. (3.2)

All three components of the energy balance equation (3.2) were evaluated
individually for the impact on a perfectly coated texture with the texture density
Λexp = 7.25 (§§ 3.2 and 3.3). In figure 11 we present the time evolution of K̃, S̃
and Ξ̃ . We also show the normalized centre-of-mass kinetic energy K̃cm = Kcm/E0
where Kcm = (mU2

cm)/2 is the kinetic energy of centre-of-mass, with m the mass
of the liquid and Ucm the centre-of-mass velocity. Results for three representative
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We K̃exact
0 K̃num

0 S̃exact
0 S̃num

0

15 0.714 0.712 0.286 0.287
30 0.833 0.835 0.167 0.164
80 0.930 0.926 0.07 0.075

TABLE 1. Reduced kinetic and surface energy for the spherical drop.

Weber numbers are shown: We = 15 (shortly after the onset of pancake bouncing
at We∗ ≈ 12); We = 30 (at the limit of the experimentally accessed Weber numbers;
significant intrusion of liquid into the texture) and We= 80 (large intrusion).

Before discussing the results, a brief comment on the validation of the numerics is
in order. First, the numerical result at t= 0 (spherical unperturbed drop moving with
the velocity U0) satisfies well the exact relations, K̃0 = We/(We + 6), S̃0 = 6/(We +
6); see table 1. Also, the energy balance (3.2) is satisfied within 2 % for all times
and Weber numbers which is consistent within the accuracy of evaluation of velocity
gradients in the computation of energy dissipation.

The first observation concerns the kinetic energy K̃ and the centre-of-mass kinetic
energy K̃cm. While the latter vanishes at the maximal penetration of the drop into the
texture, the kinetic energy itself is different from K̃cm. This difference is attributed to
the flow inside the rim of the upper part of the drop remaining on top of posts as well
as the opposing flow directions observed inside the droplet. Flow inside the deformed
droplet is visualized by snapshots of velocity field in figure 12. The non-negligible
amount of kinetic energy carried by the flow of this type was indicated in Clanet
et al. (2004) for drop impact on a flat surface. With the increase of Weber number, a
greater part of the droplet penetrates the texture, hence the amount of energy carried
by this flow decreases. This is consistent with the result of simulation which shows
that the relative difference between K̃ and K̃cm decreases with the Weber number.

Second, the surface energy S̃ rapidly increases after the impact, as expected. For
We = 15 we see two maxima of S̃, a local maximum close to the zero of the
centre-of-mass velocity (the drop has stopped penetrating into the texture) and then
the global maximum at the time of maximum lateral extension. Note that in this
case, maximal extension comes after the droplet bounces off the texture. However,
with the increase of the Weber number, the second maximum tends to disappear and
is not present at We = 80. This situation can be termed a pseudo-pancake rebound
in order to distinguish it from the true rebound at We = 15: the maximal stretching
synchronizes with the maximum penetration time and does not affect the contact time,
as was shown above.

Finally, it is clear from the energy balance at all Weber numbers that the dissipation
is not negligible in any of the cases for the simulated Ohnesorge number Oh= 0.025.
While for the lower We = 15, the surface energy becomes dominant soon after the
impact, dissipation is not small even in that case with levels around 25 % at the
rebound. It is seen from figure 11 the fraction of energy loss at higher Weber numbers
is even larger and dominates others at We= 80.

Liu et al. (2015b) discussed a possibility that macroscopic air pockets get trapped
between the droplet and the substrate. Such trapped pockets of air or vapour can
undergo compression which could serve as an additional storage of energy to be
released into the kinetic energy during the capillary emptying. However, the energy
balance evaluation above suggests that such a scenario need not be present.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

30
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.306


Drops bouncing off macro-textured superhydrophobic surfaces 881

Normalized energy balance

Normalized kinetic energy

Normalized centre-of-mass kinetic energy

Normalized surface energy

Normalized dissipated energy

Reduced drop’s centre-of-mass velocity

0.25

0.50

0.75

1.00

0

0.5

1.0

0

0.25

0.50

0.75

1.00

0

0.5

1.0

0

–2 0 2 4 6

t (ms)

0 2 4 6

t (ms)

–2 0 2 4 6

t (ms)

N
or

m
al

iz
ed

 e
ne

rg
y

N
or

m
al

iz
ed

 e
ne

rg
y

(a)

(c)

0.25

0.50

0.75

1.00

0

0.5

1.0

0

(b)

FIGURE 11. (Colour online) (a,b) History of various components of the energy balance.
Circles: normalized kinetic energy K̃; downward triangles: normalized surface energy S̃;
upward triangles: normalized dissipated energy Ξ̃ . Squares: normalized energy balance
K̃ + S̃ + Ξ̃ . Diamonds: normalized centre-of-mass kinetic energy K̃cm. (c) Reduced
centre-of-mass velocity of the drop Ucm/U0. Impact on a perfectly coated SHS θ = 165◦
for low and high Weber numbers (supplementary movie 8).

Summarizing, for the macroscopically flat superhydrophobic surface, the scaling
of the contact time holds whenever the Ohnesorge number is not too large (Oh< 1)
(Antonini et al. 2016). Similar universality holds also in the case of tapered
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FIGURE 12. (Colour online) Visualization of the velocity vectors inside the middle plane
of the drop impacting on the tapered posts for different times, We= 30.

macro-texture: while the dissipation is not necessarily negligible for Oh = 0.025,
the contact time of the pancake bouncing scales the same way as in the experiment
with water droplets. The only important requirement for that mechanism to be
realized is the clear dominance of the surface energy over the kinetic energy at
the instance of maximal penetration into the texture. Thus, such energy balance
analysis could be very handy in estimating the role played by kinetic, surface and
viscous forces for a droplet–wall interaction. Such analysis is of greater use when
the underlying mechanisms of droplet bouncing are not well understood, for example
complex macro-textured surfaces. Moreover, imbalance in energy analysis could lead
to a better understanding of the role played by external factors such as trapped
air pockets, thus enabling the design and optimization of novel surface textures.
However, the study of the compressibility effects due to presences of the air pockets
is not within the scope of this paper. Indeed, full access to compressibility effects
requires a viable compressible flow lattice Boltzmann (LB) model and thus further
advancements are required to extend the present quasi-incompressible LB model to
capture these effects. A reliable compressible LB model for single-phase flows was
recently introduced in (Frapolli, Chikatamarla & Karlin 2015, 2016) and incorporation
of this model into the multiphase/multicomponent setting should be the subject of
future work.

3.7. Impact on a tilted macro-texture
Finally, we apply our model to capture the impact of a drop on tilted macro-textured
surface. Figure 13 demonstrates that pancake bouncing takes place also for the
surface tilted at φ = 30◦. Both the snapshots and the contact time tcontact = 3.6 (ms)
for the situation shown in figure 13 are in good agreement with those observed in
the experiment (Liu et al. 2014). Figure 14 reports the contact time for an inclined
surface for different tilt angles in a range of Weber numbers from We= 6 to We= 150.
From figure 14, at a tilt angle of φ = 30◦, the pancake bouncing sets in at We > 25,
that is, at an almost twice as high Weber number as compared to the normal impact
(φ= 0◦). This happens since the motion along the slope delays the penetration of the
liquid into the texture. It is also noted that by increasing the inclination angle, the
transition to the pancake bouncing is more gradual than a sharp transition observed
for the horizontally aligned substrate.

4. Conclusions
The dynamic behaviour of a liquid drop impacting a surface with tapered posts

was numerically investigated over a wide range of Weber numbers using two-phase
entropic lattice Boltzmann method. Superior stability of the ELBM and the flexibility
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(a) (b) (c) (d ) (e)

FIGURE 13. (Colour online) Snapshots of an impact on tapered posts tilted at φ = 30◦;
We= 31.2. The drop rebounds at tcontact = 3.6 (ms) which is in excellent agreement with
the experiment (Liu et al. 2014). Snapshots correspond to figure 1(d) of Liu et al. (2014)
(supplementary movie 9).
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FIGURE 14. (Colour online) Contact time of a liquid drop impinging on tapered surface
for two tilt angles, φ = 30◦ and φ = 45◦ in a range of Weber numbers, 6 6 We 6 150.
Reference data for the normal impact, φ= 0◦ are also shown. Significant reduction in the
contact time occurs at larger Weber numbers by increasing the tilt angle.

of the wall boundary conditions allow us to study, for the first time, the pancake
bouncing phenomenon in detail. Quantitative comparisons of ELBM simulations with
previous experiments demonstrate the predictive nature of the multiphase entropic
lattice Boltzmann model (Mazloomi Moqaddam et al. 2015b).

Apart from varying the surface parameters such as the spacing between posts
and contact angle, this simulation technique allows us to accurately account for the
transformation of kinetic energy into surface energy and vice versa. We presented
numerical evidence that reduction in contact time occurs entirely due to increase
of droplet surface area which acts as a storage of kinetic energy during the impact
process. Such energy balance analysis, for the first time, allows us to accurately
design and optimize surfaces and to understand the role played by various physical
phenomena involved in droplet–wall interactions. Furthermore the impact of a
surface superhydrophobic coating can be quantitatively accessed through numerical
simulations.
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