
Vaccine development for protecting swine
against influenza virus

Qi Chen1, Darin Madson2, Cathy L. Miller1 and D.L. Hank Harris2,3,4*
1Department of Veterinary Microbiology and Preventive Medicine, Ames, College of Veterinary

Medicine, Iowa State University, Iowa, USA,
2Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary

Medicine, Iowa State University, Ames, Iowa, USA,
3Department of Animal Science, College of Agriculture, Iowa State University, Ames, Iowa, USA,
4Harrisvaccines Inc., Ames, Iowa, USA

Received 1 August 2012; Accepted 5 November 2012

Abstract
Influenza virus infects a wide variety of species including humans, pigs, horses, sea mammals

and birds. Weight loss caused by influenza infection and/or co-infection with other infectious

agents results in significant financial loss in swine herds. The emergence of pandemic H1N1

(A/CA/04/2009/H1N1) and H3N2 variant (H3N2v) viruses, which cause disease in both humans

and livestock constitutes a concerning public health threat. Influenza virus contains eight

single-stranded, negative-sense RNA genome segments. This genetic structure allows the virus

to evolve rapidly by antigenic drift and shift. Antigen-specific antibodies induced by current

vaccines provide limited cross protection to heterologous challenge. In pigs, this presents

a major obstacle for vaccine development. Different strategies are under development

to produce vaccines that provide better cross-protection for swine. Moreover, overriding

interfering maternal antibodies is another goal for influenza vaccines in order to permit

effective immunization of piglets at an early age. Herein, we present a review of influenza virus

infection in swine, including a discussion of current vaccine approaches and techniques used

for novel vaccine development.
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Influenza in swine

Influenza is a zoonotic disease caused by influenza virus

which infects a wide variety of species including humans,

pigs, horses, sea mammals and birds. Influenza virus was

first isolated in the United States in 1930 (Shope, 1931)

and transmission between species happens occasionally

(Vincent et al., 2008a). Sero-archeological studies of human

samples from 1918 to 1920 showed the original causative

virus of the 1918 pandemic flu was closely related to

influenza virus A/Swine/Iowa/30 (H1N1) strain, which is

now referred to as classic H1N1 (cH1N1) (Webster, 1999).

Viral characteristics

Influenza virus belongs to the family Orthomyxoviridae.

Three types of influenza virus, types A, B and C, are

differentiated on the basis of antigenic characteristics

of the nucleoprotein (NP) (Mahy, 1997; Alexander and

Brown, 2000). Pathogenic influenza viruses in domestic

animals are type A viruses (Maclachlan and Dubovi,

2011). Influenza A viruses (IAV) are enveloped and

pleomorphic, with a size of around 80–120 nm and

possess eight single stranded, negative-sense RNA

genome segments packaged within virions (Maclachlan

and Dubovi, 2011). Twelve proteins are encoded by

these eight segments, including hemagglutinin (HA),

neuraminidase (NA), matrix protein 1 (M1) and 2 (M2),

polymerase basic 1(PB1) and 2 (PB2), NP, polymerase

acidic (PA), PB1-F2, N-terminally truncated version of*Corresponding author. E-mail: hharris@harrisvaccines.com
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polypeptide translated from codon 40 of PB1 (PB1-N40)

and non-structural protein 1 (NS1) and 2 (NS2) (Wise

et al., 2009; Maclachlan and Dubovi, 2011). Structural

proteins HA, NA, M1 and M2 form the envelope of IAV

with the cellular lipid bilayer. HA protein plays a critical

role during IAV cell entry. HA attachment to permissive

cell sialic acid receptor on the plasma membrane initiates

virus entry into cells via receptor-mediated endocytosis

(Murphy et al., 1999). NA also binds to cell receptor sialic

acid. During the detachment of mature progeny virus

from host cells, the binding of NA and sialic acid on the

same host cell prevents progeny virus self-aggregation

back to the same host cell mediated by HA (Grienke et al.,

2012). In addition, the surface glycoproteins HA and NA

induce protective-specific immune responses in the host,

but are not highly conserved (Alexander and Brown,

2000). At present, 17 distinct HA antigenic subtypes and

10 NA subtypes are identified (Bouvier and Palese, 2008;

Tong et al., 2012), allowing further sub-typing according

to the combination of HA and NA proteins present on the

virion surface.

PB1, PB2 and PA form a trimeric RNA polymerase

complex that binds one end of RNA segments and forms

ribonucleoprotein (RNP) complexes with NP (Klumpp

et al., 1997). RNP is required to transcribe positive strand

messenger RNA (mRNA) and complementary RNA

(cRNA), because negative strand RNAs cannot serve as

translation templates directly (Baltimore et al., 1970;

Conzelmann, 1998). Segments 7 and 8 each encode two

proteins (M1 and M2, NS1 and NS2, respectively) by

differential splicing of mRNAs (Backstrom et al., 2011).

NS1 protein plays multiple roles during viral replication

and is not incorporated in progeny virus (Hale et al.,

2008; Shaw et al., 2008; Matsuda et al., 2010; Nivitch-

anyong et al., 2011). For example, NS1 interacts with

phosphorylated serine threonine kinase Akt in cells and

enhances Akt promoting anti-apoptotic activity (Matsuda

et al., 2010). NS1 also inhibits interferon production

and antiviral effects, subsequently induced by interferon

and enhances viral protein translation (Hale et al., 2008).

NS2 is also known as nuclear export protein (NEP)

(Shaw et al., 2008). Both M1 and NS2 are involved in

mediating export of RNPs from the nucleus (O’Neill et al.,

1998; Akarsu et al., 2011). M2 tetramers in the virus

capsid serve as ion channels after virion entry into the

endosome. Changes in endosomal pH cause a conforma-

tional change in HA which allows fusion with the

endosomal membrane. In an independent event, M2

pumps protons into the virion, which causes M1 (which

is tightly associated with the RNPs) to release the RNPs

so they can traffic to and enter the nucleus (Wang et al.,

1993; Maclachlan and Dubovi, 2011). M2 has an extra-

cellular domain (M2e) that has been considered a

potential vaccine component (Neirynck et al., 1999).

N40 is non-essential for viability and lacks transcriptase

function, but interacts with other polymerases in the

cellular environment and contributes to virus replication

(Wise et al., 2009). Since influenza is an enveloped

virus, antibodies can only easily bind to protein domains

spiking out of the virus membrane. HA, NA and M2

proteins all have extracellular domains outside of the

virus membrane. These three proteins all have the

potential to be vaccine candidates that might induce

humoral responses.

Swine IAV disease

When pigs are infected with IAV, an acute disease in

the respiratory tract develops, similar to human infection.

The incubation period of the disease is 1–3 days followed

by sudden onset of clinical signs and recovery. Recovery

usually occurs within 7–10 days following infection

(Vincent et al., 2008a). High morbidity and low mortality

rates are observed for most swine IAV strains (Vincent

et al., 2008a). Characteristic clinical signs include fever,

respiratory distress, coughing, sneezing, labored breath-

ing, anorexia and prostration (Richt et al., 2003; Ma et al.,

2011). Purple to red multifocal or coalescing consoli-

dated areas are observed as gross lesions in the cranio-

ventral lung lobes (Richt et al., 2003; Vincent et al.,

2008a). Acute epithelial necrosis with subsequent attenua-

tion or reactive proliferation, bronchointerstitial pneumo-

nia, atelectasis, bronchiolitis, proteinaceous fluid and

peribronchiolar lymphocytic infiltration are typical micro-

scopic changes within the lung (Richt et al., 2003; Vincent

et al., 2008a; Ma et al., 2010, 2011). Virus shedding

can be detected from nasal swabs and bronchoalveolar

lavage (BAL) fluids. Young pigs are more susceptible

to IAV than are adult pigs (Richt et al., 2003). IAV co-

infection with porcine reproductive and respiratory

syndrome virus (PRRSV), porcine circovirus type 2

(PCV2), Mycoplasma hyopneumoniae (MHYO), Pasteur-

ella multocida (PMULT) and other secondary bacterial

infections in the respiratory tract of pigs leads to a

syndrome known as porcine respiratory disease complex

(PRDC) (Thacker et al., 2001; Ellis et al., 2004; Opriessnig

et al., 2011; Fablet et al., 2012).

Swine IAV subtypes

IAV evolves continuously in two ways termed antigenic

drift and antigenic shift. Minor changes of HA and NA

proteins constitute antigenic drift involving the results of

point mutations (substitutions, insertions and deletions)

of nucleotides (Murphy et al., 1999). Such minor mu-

tations are due to polymerase errors that are common in

RNA virus replication (Domingo et al., 1998; Gauger and

Vincent, 2011). Antigenic drift may result in HA and NA

types that are not recognized by antibodies induced prior

to mutation. Antigenic shift constitutes major changes in

gene combination or reassortment caused by exchange of

whole gene segments between different strains which
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co-infect the same animal (Murphy et al., 1999; Vincent

et al., 2008a). These two mechanisms of evolution give

rise to the emergence of variant viruses. Pigs are

susceptible to challenge by many subtypes of IAV (Kida

et al., 1994). Before 1998, cH1N1 was the predominant

subtype that caused most influenza infection in swine and

had a predictable pattern similar to human influenza with

high prevalence in late fall and early winter (Easterday

and Van Reeth, 2007). In 1998, an influenza outbreak in

swine herds occurred in several US states.

The causative subtype was identified as H3N2 (Vincent

et al., 2008a), a triple reassortant of gene segments

from human-like H3N2 HA, NA, PB1 genes, avian-like

PB2 and PA genes and cH1N1-like NS, NP, and M genes

(Zhou et al., 1999; Webby et al., 2000). With time, triple

reassortant H3N2 mutated and reassorted with cH1N1 to

form new genotypes including new clusters of H3N2,

H1N2 (HA from cH1N1 and other segments from H3N2),

H3N1 and reassortant H1N1 (rH1N1, HA and NA from

cH1N1 and other segments from H3N2) (Choi et al., 2002;

Richt et al., 2003; Webby et al., 2004). Reassortment of

H3N2 with HA and NA from human virus lineages H1N1

and H1N2 form huH1N1 and huH1N2 has been reported

as spreading in US swine herds (Vincent et al., 2009;

Lorusso et al., 2011). Within the H3N2 subtype, there are

four phylogenetic clusters of H3N2 strain: I, II, III and IV

(Richt et al., 2003; Olsen et al., 2006; Hause et al., 2010).

Four phylogenetic clusters of swine H1 subtype have

been identified in America: a (cH1N1), b (rH1N1),

d (huH1N1, huH1N2) and g (H1N2), other than pan-

demic H1N1 (pH1N1) which forms clusters separated

from North American viruses; cluster d can be differ-

entiated into two subclusters, d1 (huH1N2) and d2

(huH1N1) (Lorusso et al., 2011).

Reassortment of MA and NA genes from Eurasian IAV

with North American triple reassortant virus resulted in

pH1N1, which caused disease in both humans and

swine in 2009 (Garten et al., 2009; Moreno et al., 2010).

Further reassortment of H3N2 and pH1N1, which is

termed as rH3N2p, resulting in new IAV strains has

been reported in 2010 (Tremblay et al., 2011). rH3N2p

contains up to five gene segments derived from pH1N1

(Kitikoon et al., 2012; Liu et al., 2012). H3N2 variant

(H3N2v), which resulted from the reassortment of H3N2

and M gene of pH1N1, has been circulating in U.S. pig

herds since 2010 and human infection has been reported

(CDC, 2012; Nelson et al., 2012). This strain appears to

spread more easily from pig to human, rather than

from human-to-human and to infect humans associated

with exposure to pig outbreaks since July 2012 (CDC,

2012).

It has been reported that pigs were infected by avian

influenza virus H4N6 subtype in 1999, but this infection

did not spread in swine herds (Karasin et al., 2000).

Therefore, surveillance of emerging influenza subtype in

pigs is critical to prevent and control influenza outbreaks

in swine, and possibly humans.

The main subtypes of IAV circulating in North

American swine are H1N1, H1N2 and H3N2 Cluster IV

(Richt et al., 2003; Vincent et al., 2009; Kumar et al.,

2011). According to the data from 2001 to 2007 from the

University of Minnesota Veterinary Diagnostic Labora-

tory, among H1 subtypes, cluster a has been replaced

with clusters b , d and g , and among H3N2 subtypes,

cluster IV became dominant (Rapp-Gabrielson et al.,

2008). Data from the University of Minnesota Veterinary

Diagnostic Laboratory also indicate that of all IAV

isolates from swine in 2010, 27.8% were H3N2 cluster

IV, 22.4% were pH1N1, 18% were huH1N2 d1, 9% were

huH1N1 d2, 15.7% were H1N1g and the percentage of

isolates belonging to a , b and other H3N2 clusters was

less than 10% (Pfizer Inc., 2012). Influenza viruses of

different clusters are antigenically divergent (Lorusso

et al., 2011). Serologically, there is HA antibody-antigen

cross-reactivity between classical H1 and reassorant

H1 cluster b and H1 cluster g , but limited cross-

reactivity among cluster b , g and d or within d clusters

(Vincent et al., 2006, 2008a, 2009; Lorusso et al., 2011).

For H3N2 IAV, clusters I and III, but not II, have HA

antibody-antigen cross-reactivity between each cluster,

and good reactivity within each cluster (Richt et al.,

2003).

The limited cross-reactivity of HA antibodies to HA

antigens between different subtypes and clusters is one of

the obstacles to development of vaccines to prevent all

IAV viruses infecting swine. Pathogenicity, transmission,

genetic and antigenic properties of a human H3N2v

isolate and a swine rH3N2p isolate have been studied in

pigs (Kitikoon et al., 2012). Phylogenetically, rH3N2p HA

is closely related to cluster IV of H3N2 subtype (Kitikoon

et al., 2012). Antibodies against cluster IV H3N2-TRIG and

rH3N2p had reduced cross-reactivity with H3N2v

(Kitikoon et al., 2012), but more information on antibody

cross-activity against rH3N2p is needed. Currently, avail-

able commercial vaccines are prepared with H3N1-TRIG

whole virus (inactivated) or the HA gene in RNA particle

(RP) vaccines from H3N2-TRIG isolates. Challenge studies

with these vaccines should be conducted to evaluate

protection against rH3N2p strains.

In Europe, there are three circulating IAV subtypes

(H1N1, H3N2 and H1N2), which are genetically different

from cH1N1 and triple reassortant H3N2 in North America

(Brown, 2000; Kyriakis et al., 2009). The predominating

H1N1 IAV of Europe is known as ‘avian-like’, since

genetic material from an avian genome was introduced

into H1N1 IAV in 1979. Reassortment of HA and NA of

‘Hong Kong flu’ H3N2 and internal genes of avian-like

H1N1 form the current human-like H3N2 subtype in

Europe (Harkness et al., 1972). H1N2 originated from

H3N2 by acquiring HA from human-like H1N1 or avian-

like H1N1 and NA from swine H3N2 (Brown et al., 1998;

Hjulsager et al., 2006). These three subtypes have given

rise to further reassortment strains including pH1N1 (Zell

et al., 2012).
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Immune responses to influenza infection in swine

Influenza virus infection induces both cellular and

humoral immune responses. Soluble effectors including

cytokines are secreted as a part of the innate immune

response to IAV infection. Pro-inflammatory cytokines,

including interferon a (IFN-a), tumor necrosis factor a
(TNFa) and interleukin-1 (IL-1), are secreted in the

lung in association with virus titers in pigs infected by

IAV (Van Reeth, 2000). Cell-mediated immune responses

participate in protecting swine from IAV infection.

Proliferation of cross-reactive memory T-cells was

detected in IAV recovered pigs that were free of maternal

antibodies during infection, but not those with maternal

antibodies present during infection (Kitikoon et al., 2006).

IAV infected pigs with reactive memory T-cells recovered

faster than those without such memory T-cells, so these

cells in pigs may participate in rapid recovery from IAV

infection (Kitikoon et al., 2006).

In adaptive humoral immunity, systemic and mucosal

immune responses are induced following IAV infection,

both of which are essential for the prevention and

recovery from IAV infection (Cox et al., 2004). IAV-

specific IgG and IgA antibodies are believed to signifi-

cantly contribute to virus clearance. Antibodies against

HA are the most important in preventing infection,

although antibodies against NA contribute as well (Ma

and Richt, 2010). Testing HI antibody titers in serum has

been used widely to predict humoral immune response

and protection against IAV infection because vaccinated

pigs are protected from IAV infection by high HI anti-

body titers (Larsen et al., 2000;Vander Veen et al., 2009).

Furthermore, testing serum HI titers for different IAV virus

subtypes can predict cross-protection efficacy. Given IAV

targets mucosal cells in the respiratory tract, antibodies

need to be transported to mucosal sites. Short-lived serum

IgG antibodies and more durable local IgA antibodies

occur in pigs recovering from influenza infection or when

vaccinated via a mucosal route. Pigs were protected from

a subsequent IAV challenge (Charley et al., 2006).

Swine influenza vaccines

Vaccination can be an effective way to decrease IAV

infection, gross lesions of pneumonia, and economic

losses due to influenza virus. Vincent et al. (2008a) noted

that ‘There are three major problems with the control and

prevention of SI in the U.S.: (a) SIV is changing faster than

traditional vaccines can be developed, (b) There is a need

for vaccines that can induce better cross protection

among SIV isolates, and (c) Passively acquired immunity

is believed to block vaccine efficacy in pigs’.

A similar point of view was expressed in another

publication (Ma and Richt, 2010). Different types of IAV

vaccine and strategies have been developed in order to

address the problems associated with influenza vaccina-

tion in swine (Table 1). Commercial inactivated IAV

vaccine for swine use became available in 1994 (Vincent

et al., 2008a; Platt et al., 2011). Inactivated whole virus

IAV vaccines were the only commercially available

vaccine used worldwide in swine herds (Ma and Richt,

2010). However, Swine Influenza Vaccine, RNA (an

RP vaccine expressing HA protein of H3N2 subtype) has

recently been approved as a commercial vaccine in the

U.S. (USDA, 2012a).

Inactivated virus vaccines

Although inactivated whole virus IAV vaccines protect

pigs fully against homologous IAV challenge, they only

partially protect pigs against heterologous challenge

(Vincent et al., 2010a, b).

Embryonated hen’s eggs are generally used to propa-

gate live virus for manufacturing inactivated IAV (Gorres

et al., 2011). Live virus is harvested from the eggs and

killed with chemical treatment (Sanofi Pasteur, 2009).

Since frequent antigenic shift and drift of IAV occurs and

older vaccines may not protect against infection with

the current circulating viruses, regulatory procedure

for updating IAV strains in United States Department of

Agriculture (USDA)-licensed veterinary vaccines is possi-

ble (Rapp-Gabrielson et al., 2008). It currently takes at

least 1 year to update a commercial IAV vaccine (D. L.

Harris, Iowa State University, personal communication).

The procedure for changing virus strains in vaccines is

based on the demonstration of efficacy and safety (Rapp-

Gabrielson et al., 2008).

The most common vaccination route for influenza

vaccines is intramuscular (IM) injection. IM vaccination

induces a high level of specific IgG antibody in serum and

lung but the antibody lacks cross protection against other

virus strains of different subtypes (Heinen et al., 2001).

Immune responses of pigs, naturally immunized by virus

(A/Sw/Oedenrode/96 H3N2) infection or immunized by

inactivated vaccine (A/Port Chalmers/1/73 H3N2, anti-

genically different from A/Sw/Oedenrode/96 H3N2) were

compared following post A/Sw/Oedenrode/96 challenge

by Heinen et al. (2001). The results showed that serum HI

antibody titers, virus neutralizing antibody titers and NP-

specific IgG antibody titers developed by vaccinated

pigs were similar or higher than those in naturally

immune pigs. However, vaccinated pigs developed lower

nasal IgA titers and lower cell-mediated immune

responses than did naturally immune pigs (Heinen

et al., 2001). Protection by this A/Port Chalmers/1/73

derived vaccine against A/Sw/Oedenrode/96 challenge

was sub-optimal, because virus shedding was detected for

a short period in vaccinated pigs compared with no virus

shedding from naturally immune pigs (Heinen et al.,

2001). The result of this study indicated the limited

cross-protection induced by inactivated IAV vaccine to
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Table 1. Summary of characteristics of different types of influenza vaccines and vaccine candidates for swine use

Vaccine types Features
Preferred route
of administration Advantages Disadvantages Selected references

Inactivated
vaccines

Commercial Inactivated
whole virus

IM Commercially
available; good
homologous protection
by humoral antibodies

Limited cross-protection;
mismatch of strains
enhances severity of
disease; maternal
antibody interference;
slow manufacture

(Heinen et al. 2001;
Lim et al., 2001;
Kitikoon et al., 2006)

Autogenous Specific to circulating
strains; rapid updating

Virus source herd
only; efficacy
unknown until used

Vincent et al. (2008a)

MLV Live whole virus,
reduced virulence

IN Partial cross-protection;
mucosal antibodies

Safety concern;
impractical IN
administration

(Solorzano et al., 2005;
Richt et al., 2006;
Vincent et al., 2007;
Masic et al., 2010)

DNA Nucleic acid only,
without protein

Intradermal/subcutaneous
(gene gun or needleless
injection)

Multivalent; non-infective;
CMI responses; potential
to override maternal
antibodies; DIVA

High dose is
required to provide
sufficient protection

(Larsen et al., 2001;
Gorres et al., 2011)

Subunit Viral protein only,
without nucleus acid

IM Safe; pure target proteins;
rapid manufacture;
DIVA; possible to be
available as autogenous
vaccine

Potential for
interference by
maternal antibodies

(Bright et al., 2007;
Cox and Hollister, 2009;
Vander Veen et al., 2009)

Vectored Vectors containing
vaccine genes,
expressing vaccine
proteins; vectors:
adenovirus alphavirus
PRV Vaccinia virus

IM RP vaccine is
commercially available;
Efficient transportation
of GOI into host
cell; multivalent;
CMI responses;
safe; (potential to)
overriding maternal
antibodies; rapid
manufacture; DIVA

Immunity to
some vectors;

(Foley, 2001;
Tian et al., 2006;
Wesley and Lager, 2006;
Kyriakis et al., 2009;
Bosworth et al., 2010;
Erdman et al., 2010;
Li et al., 2010;
Vander Veen et al., 2011,
2012b)

CMI, cell-mediated immunity; DIVA, differentiate infected from vaccinated animals; GOI, gene of interest; RP, RNA particle.
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heterologous challenge. This is the major problem in

development of swine influenza vaccines. Vaccine strain

mismatch with circulating strains may even enhance the

severity of disease (Vincent et al., 2008b; Gauger et al.,

2011). Therefore, HA antigenic match of the vaccine strain

and challenge strain is the key to providing protection by

inactivated IAV vaccine. Inactivated commercial vaccines

are often bivalent or trivalent, containing several circulat-

ing strains to increase the chances of matching the

challenge viruses. For example, Flusure XP (Pfizer, Inc.,

New York, NY USA), which is an IAV vaccine for swine,

contains up to four swine influenza virus strains to pro-

vide protection against a range of virus strains (Lee et al.,

2007; Pfizer Inc., 2011). However, it is difficult to cover

all strains in a single dose of vaccine and manufacturing

cost rises with increasing numbers of IAV strains in

vaccines.

Another problem encountered in IAV vaccination

is the interference of maternal antibodies in piglets.

Anti-influenza serum IgG is transferred to piglets from

maternal antibodies in sow’s colostrum. If sows are

vaccinated with an IAV vaccine before farrowing, a

significant level of IAV maternal antibodies (>40-fold in

HI) can be detected in suckling piglets up to 14 weeks of

age (Markowska-Daniel et al., 2011). Swine influenza

virus maternal antibodies are important for protecting

young piglets but can be the cause of immunization

failure (Wesley and Lager, 2006). Pigs vaccinated with

commercial bivalent vaccine had better partial protection

facing heterologous H1 challenge when maternal anti-

bodies were absent than when maternal antibodies were

present (Kitikoon et al., 2006). It has been shown that

IAV-specific humoral responses and cellular responses in

vaccinated pigs have both been suppressed in the

presence of maternal antibodies (Kitikoon et al., 2006).

Mucosal responses, including IgA antibodies and

cellular responses, have been the focus of much study

to attempt to provide wider cross-protection and over-

ride maternal antibodies. Intranasal (IN) administration of

IAV vaccines has been attempted as an alternative method

to protect pigs and induce local immune responses (Lim

et al., 2001). Four doses in consecutive weeks of IN

vaccination with inactivated influenza vaccine provided

complete protection to pigs from homologous challenge,

and IgG and IgA were detected in mucosal secretions and

serum (Lim et al., 2001). IgG antibodies were detected

after the second vaccination, while IgA antibodies were

detected following the fourth vaccination (Lim et al.,

2001). The efficacy of mucosal administration of inacti-

vated influenza vaccine to override the interference of

maternal antibodies in piglets needs further evaluation.

Four doses of vaccine are not convenient for practical

vaccination on pig farms, and four doses may not be

economically feasible. It would be helpful to determine

the reason(s) that IgG induction requires fewer doses

than mucosal IgA induction by inactivated vaccine in

order to improve IN vaccine development.

Romagosa et al. (2011) have shown that both inacti-

vated commercial heterologous vaccine and inactivated

autogenous homologous vaccine were able to reduce

transmission of IAV. As a critical property of a vaccine,

the extent of reduction in IAV transmission needs to

be evaluated in other types of IAV vaccine in pigs. More

information on whether IAV vaccine is able to shorten

the infectious period, or decrease the reproductive ratio

(‘the number of secondary infections caused by an

infectious individual’) (Romagosa et al., 2011) also needs

to be generated.

Live attenuated vaccines

Recombinant modified influenza viruses can be obtained

with reverse genetics technology and provide a novel way

to make modified live-attenuated virus (MLV) vaccines.

HA0 protein, the precursor of HA, must be cleaved

into HA1 and HA2 in order to fuse with endosomal

membranes (Skehel and Wiley, 2000). HA0 modified live-

attenuated virus (Dha0MLV) was achieved by introducing

a mutation to the HA cleavage site (Stech et al., 2005;

Gabriel et al., 2008; Masic et al., 2010). Masic et al. (2009)

showed that Dha0MLV could infect pigs without live virus

being shed, proving that Dha0MLV is attenuated in pigs.

The H1N1 strain of Dha0MLV administrated IN induced a

significant cross protection to H1N1 and H3N2 challenge.

Both macroscopic and histopathologic lung lesion

scores were significantly reduced in both homologous

challenge and heterologous challenge groups (Masic

et al., 2010). Virus shedding was not detected in 5/6 pigs

from homologous H1 strain challenge and in 3/6 pigs

from heterologous H3N2 challenge (Masic et al., 2010).

Vaccinated pigs had considerable IgA in the lower

respiratory tract and IgG in serum after either homo-

logous or heterologous challenge (Masic et al., 2010).

Two dose vaccinations were required to induce protec-

tion with Dha0MLV (Masic et al., 2010).

NS1 of swine influenza virus has been shown to be

a virulence factor with the function of antagonizing

type I interferon (IFN-a/b) (Talon et al., 2000). Introdu-

cing mutations into the gene encoding the NS1 protein

causes the loss of IFN-a/b inhibiting potency (Talon

et al., 2000; Solorzano et al., 2005). A NS1 modified

influenza strain (Sw/TX/98D126) has been shown to be

virulence attenuated in inoculated pigs in which lung

lesions were reduced and live virus shedding was

reduced (Solorzano et al., 2005). Induction of HI

antibodies by this Dns1MLV indicated it was immuno-

genic (Solorzano et al., 2005). To test the efficacy of

Dns1MLV as an influenza vaccine candidate, pigs were

vaccinated twice intratracheally with Dns1MLV, then

challenged with the homologous virus or a heterologous

virus. Pigs challenged with the homologous virus

were completely protected by Dns1MLV and the virus

was confirmed to be attenuated (Richt et al., 2006).
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In heterologous subtype challenge with a cH1N1 strain,

macroscopic lung lesion scores in vaccinated pigs and

unvaccinated pigs were similar, while microscopic lung

lesion scores and virus shedding in respiratory tract were

reduced compared with the unvaccinated group (Richt

et al., 2006).

In another study, two doses of IN Dns1MLV vaccine

were administered in an attempt to evaluate the efficacy

of heterologous protection. Attenuated live influenza

virus with truncated NS1 (TX98 H3N2) was administrated

IN by dripping the vaccine into the nares to evaluate

homologous and heterologous protection. CO99 H3N2

(antigenic variant from TX98) and IA04 (H1N1) were the

heterologous strains that were evaluated (Vincent et al.,

2007). The results demonstrated that IN administration of

Dns1MLV (TX98) significantly reduced rectal temperature,

and live virus shedding and lung lesions following

challenge with TX98 (cluster I) and CO99 (cluster II)

(Gramer et al., 2007; Vincent et al., 2007). Modest levels of

HI antibodies specific to TX98, but not CO99 or IA04 were

detected in serum, and robust IgA and IgG antibodies

with cross-reactivity to CO99 were detected in the mucosa

(Vincent et al., 2007). The cross-reactive local antibodies

induced by IN Dns1MLV vaccination indicate the potential

for induction of universal protection by IN vaccination.

In addition, modest HI antibodies in serum indicate the

potential to reduce IAV antibodies from sows to piglets

through colostrum.

MLV vaccines have not been approved for use in pigs.

Cold-adapted MLV has been approved in the US for

human (FluMist) and equine (FluAvert) use via the IN

route (Belshe, 2004; Paillot et al., 2006). Cold-adapted

MLV is achieved by inducing combination mutations

in genes encoding PB1 and PB2 proteins of IAV, which

cause virus replication to be temperature sensitive

(Solorzano et al., 2005). The FluMist vaccine strain is not

only a cold adapted virus but also a reassorted virus

strain. It contains six segments (PB1, PB2, NP, M, PA and

NS) from human H2N2 (A/Ann Arbor/6/60) that contri-

bute to virus attenuation and two segments encoding

HA and NA proteins from circulating wild-type influenza

virus (Chan et al., 2008).

Safety is a major concern regarding the use of

attenuated live virus as a vaccine. Given genome seg-

ments are able to reassort, there is concern that modified

live vaccines will reassort with wild-type strains in the

field to produce novel virulent influenza strains. The

reassortment of viral strain and vaccine strain requires

the replication of both genomes within a single cell at the

same time. In all the vaccines studies above, live virus was

not recovered from the upper respiratory tract or the lung

after vaccination. Whether there was live virus in the lung

before challenge was not examined. Another concern is

that MLVs may revert to virulence over time if natural

mutations occur (Babiuk et al., 2011).

The route of administration is another concern for

the use of MLV in pigs. To induce local antibodies in

respiratory mucosa, MLV normally requires IN adminis-

tration. Commercial IN influenza vaccine for humans or

horses is administrated in the form of a mist. The narrow

space in the swine nasal cavity results in low efficiency

of delivery of a mist deeply into the respiratory tract.

Dripping vaccine into the nose, which is only commonly

performed in an experimental setting, is time consuming

and not likely to be efficient in a commercial farm setting.

DNA vaccines

Recombinant DNAs coding IAV proteins have been

evaluated as vaccine candidates for swine. The era of

gene vaccines was started by Wolff et al. in 1990. They

demonstrated that protein can be expressed upon direct

inoculation of plasmid DNA into mouse muscle (Wolff

et al., 1990). The advantages of DNA vaccination are:

(i) one recombinant DNA molecule can encode multiple

genes of interest, thereby reducing manufacturing cost;

(ii) DNA vaccines do not carry infection risks associated

with MLV vaccines; (iii) recombinant DNA can express

high levels of proteins of interest in cells; (iv) DNA

vaccines have the capacity to induce both humoral and

cellular immune responses; (v) there is potential for DNA

vaccines to override maternal antibodies which mainly

recognize IAV surface proteins but not genomes (Dhama

et al., 2008); (vi) there is the capacity to differentiate

infected from vaccinated animals (DIVA), because

the DNA vaccine does not express all the proteins of the

pathogens, and will induce different immune responses

than those which occur in naturally infected animals. The

barrier to developing efficacious DNA vaccines is low

DNA transportation efficiency into target cells using a

traditional IM vaccination route (Pertmer et al., 1995;

Olsen, 2000; Dhama et al., 2008).

Gene gun delivery has been shown to enhance the

efficiency of DNA transfection by Olsen and colleagues in

2000. Two doses of gene gun administration of HA DNA

vaccine to either pig skin or tongue resulted in high

levels of HI antibodies after virus challenge; however,

virus shedding was not completely prevented even with

the co-administration of porcine interleukin-6 (Olsen,

2000; Larsen et al., 2001). This type of DNA vaccine

immunization strategy may prime the pig immune system

(Olsen, 2000; Larsen et al., 2001; Larsen and Olsen, 2002).

Gene gun delivered DNA vaccine as prime and inacti-

vated commercial vaccine as boost was found to reduce

viral shedding to an extent similar to that of a two-dose

inactivated commercial vaccination strategy (Larsen et al.,

2001).

Gorres et al. (2011) designed an IAV DNA vaccine by

constructing a backbone with cytomegalovirus enhancer/

promoter and the human T-cell leukemia virus type 1 R

region recombined with trivalent HA genes (cH1N1,

H3N2 and pH1N1) or monovalent HA gene (pH1N1).

Using three doses of IM or needle-free (NF) for 0.5-ml
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subcutaneous vaccination of pigs, similar levels of HI

antibodies to vaccine strain virus and cellular immune

responses were induced in both trivalent and monovalent

vaccine groups with both IM and NF methods (Gorres

et al., 2011). After H1 challenge, only IM and NF

monovalent DNA vaccination reduced virus shedding

at 3 days post challenge (dpc) and both NF trivalent and

monovalent DNA vaccination completely protected

against virus shedding at 5 dpc (Gorres et al., 2011). Post

H3 challenge, both IM and NF trivalent DNA vaccination

reduced virus shedding at 3 dpc and fully prevented virus

shedding on 5 dpc. Minimal lung lesions were observed

in vaccinated pigs that were examined (Gorres et al.,

2011).

Nanoparticles such as chitosan have been tested as IAV

DNA vaccine adjuvants for sustained release of vaccine;

however, low transfection efficiency of the chitosan-DNA

vaccine is a disadvantage of this approach (Zhao et al.,

2011). There remains a need for identification of a more

efficient method to deliver DNA vaccines in order to

better evaluate this vaccination approach. So far, a high

dose of DNA vaccine has been required for vaccination,

which is expensive and not practical.

Subunit IAV vaccines

A subunit vaccine is an immunizing agent containing viral

proteins, but no viral nucleic acid (Myers, 2010). Subunit

vaccines can contain higher concentrations of specific

proteins than inactivated vaccines (Cox and Hollister,

2009). The major component of subunit swine influenza

vaccine is one or more than one recombinant IAV protein,

the viral structural proteins that are not present in subunit

vaccines or the antibodies against them can be detected

to differentiate infected from vaccinated animals. Thus

subunit vaccines have the potential to be DIVA. IAV

structural protein HA is expressed in subunit influenza

vaccines as it is able to induce HI antibodies (Cox and

Hollister, 2009; Vander Veen et al., 2009; Shoji et al.,

2011). Employing DNA recombinant technology, IAV

proteins can be expressed in other platforms (Bachrach,

1982). Several platforms have been developed to express

IAV subunits to replace traditional egg-based vaccine

manufacturing.

A baculovirus expression system was used to produce

influenza virus HA protein in insect cells as a vaccine to

induce protection against influenza infection in humans

(Cox and Hollister, 2009). Trivalent recombinant HAs, a

combination of HAs derived from influenza A subtypes

H1N1, H3N2 and influenza B are present in a vaccine to

achieve cross protection (Cox and Hollister, 2009). In

another method, HA, NA and M1 proteins of influenza

virus expressed individually by baculovirus-insect plat-

form self-assemble into high molecular-weight enveloped

influenza virus-like particles (VLPs) (Bright et al., 2007).

The capacity of such VLPs to induce cellular and humoral

immune responses has been demonstrated in preclinical

trials (Bright et al., 2007). Nicotiana benthamiana, a close

relative of the tobacco plant, was also developed as a

subunit expressing platform, in which H5N1 HA protein

formed H5 VLPs (D’Aoust et al., 2008). Cross-reactive

antibodies to influenza H5 VLP were induced in a ferret

model and a safety study in humans showed no

significant induction of naturally occurring serum anti-

bodies to plant-specific sugar moieties (Landry et al.,

2010). Both of the above platforms are now employed

to produce experimental influenza subunit vaccines for

human use, and may be candidates for production of

vaccines for swine use.

An alphavirus replicon RNA has also been employed

to express IAV HA for swine vaccination (Vander Veen

et al., 2009). There are two open reading frames (ORFs)

in the alphavirus genome (Rayner et al., 2002). All non-

structural proteins responsible for replicating viral RNA

are encoded in the first ORF (Rayner et al., 2002). The

second ORF of alphavirus normally encodes structural

proteins that are responsible for the assembly of virus

particles. An engineered virus genome, or replicon RNA,

containing the alphavirus ORF1 combined with hetero-

logous genes in ORF2 electroporated into VERO cells was

able to express the heterologous proteins in high levels

in the cultured cells (Rayner et al., 2002). IAV HA protein

expressed by the alphavirus replicon RNA platform in

VERO cells was combined with adjuvant and tested as

an IAV vaccine for swine (Vander Veen et al., 2009). This

HA subunit IAV vaccine induced specific HI antibodies in

vaccinated pigs and was efficacious in reducing virus

shedding and gross and histopathologic lung lesions after

homologous virus challenge (Vander Veen et al., 2009).

These subunit vaccines made from alphavirus replicon

RNA are free of the possibility of replicating virus, since

no structural genes of the alphavirus are present (Vander

Veen et al., 2009).

Vectored vaccines

Vectors are utilized to transport genes into cells. Vectored

vaccines containing genomic material can express high

levels of the encoded protein after cell entry. Vectors may

be replicative or replication defective. Replication de-

fective vectors have the ability to infect cells but lack

essential genes for production of new virus particles.

Thus, vectored vaccines need two essential features. The

first is that the vectors are able to infect cells and transport

the recombinant genome into cells. The second essential

feature is that the recombinant genomes are able to

replicate by themselves and express the gene of interest in

high levels in infected cells. Since the genes of interest

in a vectored vaccine are not all the genes of the target

pathogen, vectored vaccines can be DIVA vaccines. A

wide host range of the virus vector and lack of pre-

existing antibodies in the target species are two other
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important features to be considered for good vector

candidates. Besides transporting the gene that encodes

the antigen into cells, vector particles are able to stimulate

cellular immunity to the vaccine component, providing

them with an advantage over subunit protein vaccines

(Macklin et al., 1998; Rayner et al., 2002; Wesley et al.,

2004). Also, because they are expressed within cells,

vectored vaccine antigens have the potential to avoid

interference from maternal antibodies. Another advan-

tage is that a vector can express several genes encoding

different antigens (Vander Veen et al., 2012a).

Human adenovirus serotype 5 (Ad5) has been exam-

ined as an IAV vector for pigs (Wesley and Lager, 2006).

As the early transcription region 1 is deleted, Ad5 virus is

replication-defective (Wesley et al., 2004). However, the

recombinant gene of interest is able to be transcribed as

it is under the control of constitutive promoters (Wesley

et al., 2004). Pigs vaccinated with a 1-dose mixture of Ad5

expressing the IAV H3N2 HA gene (Ad5 HA) and Ad5

expressing the H3N2 NP gene (Ad5 NP) were completely

protected from virus shedding and lung lesion develop-

ment after homologous challenge. Pigs vaccinated with

Ad5 HA shed low levels of virus and had low lung lesion

scores which were not significantly different from that

of Ad5 HA+Ad5 NP vaccinated pigs. Pigs vaccinated

with Ad5 NP shed significantly lower levels of virus than

unvaccinated pigs on 3 of 5 days after challenge (Wesley

et al., 2004). Furthermore, Ad5 expressing IAV H3N2

HA and NP proteins (Ad5-HA&NP) was shown to be

able to prime the immune response in the presence of

maternal IAV antibodies in piglets (Wesley and Lager,

2006). Piglets receiving maternal antibodies from gilts

were administrated Ad5-HA&NP as a priming IM vaccine

when suckling milk containing IAV maternal antibodies

from gilts and were boosted by an inactivated commercial

vaccine (End-FLUence 2, Intervet Inc., Millsboro, Dela-

ware) administered by the IM route. Sows had antibodies

to IAV H3N2 strain and End-FLUence 2 comprising

H1N1 and H3N2 strains. Piglets were then challenged

with a heterologous IAV H3N2 strain after a booster

vaccination. Better protection was induced in the pigs

that received the priming vaccine compared with piglets

without the A5-HA&NP priming vaccine (Wesley and

Lager, 2006). After a single dose of an IN A5-HA

vaccine, pigs were fully protected against homologous

pH1N1 challenge, and partially protected against hetero-

logous delta1 subtype challenge, indicated by limited

reduction in the duration and amount of viral shedding;

Vaccine associated enhanced respiratory disease was not

observed in these pigs which received the heterologous

challenged (Braucher et al., 2012). A disadvantage of

adenovirus vectors is the development of vector immunity

(Pandey et al., 2012). Pigs can only be primed with the

adenovirus vector vaccine, the efficacy of a booster

injection will be reduced by antibodies to the vector.

Alphavirus has also been developed as a vaccine

vector based on an alphavirus replicon RNA. Since genes

coding structural proteins of alphavirus are deleted in

the alphavirus replicon RNA, new alphavirus particles

cannot be produced. To make vaccine alphavirus particle

vectors, alphavirus structural protein genes as helper

RNAs are transported into cells in trans along with

the replicon RNA during electroporation. Alphavirus-like

particles, now known as either replicon particles or RP are

formed subsequently (Rayner et al., 2002; Vander Veen

et al., 2012a).

The replication-deficient feature of RPs was achieved

by several techniques: (1) dividing the structural protein

genes into two elements (Pushko et al., 1997; Smerdou

and Liljestrom, 1999); (2) deleting the 26S promoters and

a large portion of non-coding sequences in front of 26S

including start codons and stop codons in each helper

element (K.I. Kamrud, Harrisvaccines Inc., personal com-

munication). There are several advantages of alphavirus

RP which make it an attractive vaccine platform candi-

date. Firstly, vector safety has been proven as RPs are not

shed or spread to cohorts or into the environment by

vaccinated animals (Vander Veen et al., 2012b). Secondly,

anti-alphavirus vector immunity is minimal, thus the same

animal can be vaccinated several times with RP vector-

based vaccines. Thirdly, rapid development of a new

vaccine is possible with the RP system (Vander Veen

et al., 2012a). Within 6 weeks from receiving virus

samples, an IAV subunit or RP vaccine can be prepared

with the RP system (R.L. Vander Veen, Harrisvaccines

Inc., personal communication). This feature of the RP

system offers great potential for developing autogenous

IAV vaccines. In addition, the RP vector has dendritic cell

tropism, and can express multivalent genes of interest

(Vander Veen et al., 2012a). As with other vectors, RP-

based vaccines have the capacity to be DIVA, and are able

to express high levels of heterologous genes.

Venezeulan equine encephalitis virus (VEEV), a

member of the alphavirus family, was selected as an IAV

vaccine vector expressing the HA protein. The VEEV has

been shown to infect pigs, but only induces a transient

viremia (Dickerma et al., 1973). Attenuated TC-83 VEEV

strain, which is a biosafety level (BL) 2 pathogen, has

been developed as an RP vector (Erdman et al., 2010).

This makes manufacturing of RP-based vaccines easier

and safer than using the original BL3 pathogenic 3014

VEEV strain. Pigs receiving two doses of RP vaccine

expressing HA (HA RP) produced a high level of HI

antibody from 7 days post booster vaccination and

maintained this level for at least 40 days (Erdman et al.,

2010). HA RP encoding the HA gene of cluster IV H3N2

or pH1N1 protected pigs from homologous IAV challenge

in two other studies, thereby confirming the efficacy of

the RP vaccine (Vander Veen, 2011, 2012b). In pigs

vaccinated with HA RPs, HI antibodies and cell mediated

immunity (CMI) were induced, live virus was not isolated

from nasal swabs and BAL samples, and lung lesions

were significantly reduced (Vander Veen et al., 2012b).

Mucosal antibodies specific to vaccine antigen were
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induced by adjuvanted alphavirus RP vaccine injected in

the rear footpads in mice (Thompson et al., 2008).

RPs encoding the NP gene homologous to that of the

challenge virus were shown to reduce virus replication

in pigs and to stimulate both humoral antibodies and

CMI; the CMI responded to both homologous and

heterologous IAV antigens in vitro (Vander Veen, 2011).

Homologous NP RP itself did not protect pigs against

homologous challenge as well as HA RP; NP RP along with

HA RP has the potential to help piglets override maternal

antibodies, which could be determined in a future study

(Wesley and Lager, 2006; Vander Veen, 2011).

Pseudorabies virus (PRV), in the Alphaherpesvirinae

subfamily of the Herpesviridae family, has been used as

a vaccine vector to express IAV HA as well. PRV consists

of a linear double-stranded DNA genome with a length of

143 kb (Klupp et al., 2004). Several non-essential genes

exist in the PRV genome, most of which can be deleted

to reduce virulence and can be replaced by other genes

without affecting virus replication (Tian et al., 2006).

Based on these features, a commercial attenuated PRV

DIVA vaccine was developed with gE deletion (Pensaert

et al., 2004). In addition, the attenuated PRV vaccine strain

(Bartha-K61) was employed as an influenza vaccine

vector expressing HA (Tian et al., 2006; Li et al., 2010).

Recombinant PRV expressing H3N2 HA (rPRV-HA)

protected mice against homologous virus challenge (Tian

et al., 2006). In the rPRV-HA vaccinated group, live virus

was not isolated from lung tissues from 4 dpc until the

end of the study and lung lesions were mild (Tian et al.,

2006). Since this PRV vector is not suitable to be used

multiple times due to immunity to the vector, prime/boost

immunization with DNA expressing soluble HA fused

with three copies of murine complement C3d (HA/C3d

DNA) and rPRV-HA was investigated (Li et al., 2010). This

regimen induced better protection than a 1-dose vaccina-

tion with rPRV-HA in mice (Li et al., 2010). However, the

protection provided to pigs by PRV vector influenza

vaccine needs further evaluation. Attenuated PRV strain

has a good safety record and broad host range (Klupp

et al., 2004; Yuan et al., 2008). These advantages further

support PRV as an influenza vaccine vector candidate.

However, immunity to the vector limits the PRV vector

use with multiple doses. Furthermore, the use of atten-

uated PRV strain as a vector may interfere with the

surveillance of PRV (Ma and Richt, 2010). To ensure PRV-

free status the use of a PRV vector that induces antibodies

against PRV may be restricted in countries that are free

of PRV.

Poxvirus vectored vaccines expressing HA are licensed

for preventing influenza in equines and poultry (Kyriakis

et al., 2009). Modified vaccinia Ankara (MVA) is an

attenuated vaccinia strain used widely to eradicate human

smallpox (Rimmelzwaan and Sutter, 2009). The attenuation

of MVA is created by continuous passages on primary

chicken embryo fibroblast cells (Verheust et al., 2012).

Recombinant MVA virus containing HA and NP genes

of classical H1N1 IAV (A/Sw/IN/1726/88) or containing HA

and NP genes of a human strain (A/PR/8/34) administered

IN or IM to pigs was followed by challenge with

homologous classical H1N1 IAV (Foley, 2001). All vaccina-

tions, except with A/PR/8/34 IM, resulted in a shortened

virus shedding period and much lower virus titers in pigs

(Foley, 2001). MVA virus containing HA and NP genes of

classical H1N1 IAV (A/Sw/IN/1726/88) administered IM or

IN both reduced or completely prevented lung lesion

development following homologous challenge (Foley,

2001). These results indicate that MVA is competent as an

influenza vaccine vector (Rimmelzwaan and Sutter, 2009).

Other poxvirus vectors including a fowlpox vector

(TROVAC1 Merial, Duluth, Georgia, USA), a canarypox

vector (ALVAC1, Sanofi Pasteur, Swiftwater, Pennsylvania,

USA), and another vaccinia vector (NYVAC) were also

shown to be safe and effective as HA protein vectors in pigs

(Kyriakis et al., 2009). All these vectors expressing H5N1

HA protein, when combined with an oil-in-water adjuvant,

induced homologous HI antibodies in pigs and induced a

cross-reactive immunity by inhibiting virus replication

following a heterologous H5N2 influenza challenge

(Kyriakis et al., 2009). In addition, multiple doses of

poxvirus vectored vaccines can be used in the same animal

(Kyriakis et al., 2009).

Autogenous vaccines

Autogenous vaccines are prepared from field virus

strains, and normally are inactivated virus. In general, it

takes 8–12 weeks to produce an inactivated autogenous

vaccine (R.L. Vander Veen, Harrisvaccines Inc., personal

communication). The use of autogenous vaccines has

increased in recent years because of rapid mutation rates

of IAV and the difficulty vaccine manufacturers have in

updating their vaccine strains for commercial availability

(Vincent et al., 2008a). An estimated $16.06 million in

swine autogenous vaccines were sold in the US from

May 1999 to April 2000 (Draayer, 2004). IAV and porcine

reproductive and respiratory syndrome disease vaccines

consisted of more than half of the autogenous vaccines

produced (Draayer, 2004). In 2006, more than 20% of all

known IAV-vaccinated breeding sows and more than 9%

of IAV vaccinated nursery-age pigs were vaccinated with

autogenous IAV vaccines (USDA, 2007). Up to 2010,

around 50% of IAV vaccines used for swine in US markets

were autogenous vaccines (Ma and Richt, 2010). Use of

autogenous vaccines is only allowed under a veterinar-

ian’s direction in the herd from which the vaccine virus

was recovered (Vincent et al., 2008a). Two to four

different subtype viruses are typically contained within

an autogenous vaccine mixture, but there can be up to

five viruses. Efficacy of the vaccines is not evaluated when

they are manufactured, but they may be monitored under

a veterinarian’s supervision at the time of use. Recently,

the USDA Center for Veterinary Biologics (CVB) has

190 Q. Chen et al.

https://doi.org/10.1017/S1466252312000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1466252312000175


notified vaccine manufacturers that recombinant non-

living vaccines may be licensed as autogenous vaccines

(USDA, 2012b). Autogenous vaccine production is

normally achieved by inactivating live virus isolated from

an infected herd and propagating the virus (Vincent et al.,

2008a). The virus replication efficiency of different strains

varies, especially for new emerging strains, and the

propagation characteristics may be unknown. For exam-

ple, propagating H17N10 strain in cell culture or embryo

eggs has not been successful so far (Tong et al., 2012).

Such unpredictable factors may delay the production

of inactivated live virus autogenous vaccines. However, if

a vectored vaccine can be provided as an autogenous

vaccine, this issue can be avoided, since there is no need

for live virus propagation in the production procedure.

Conclusion

Experiments with vaccines have identified several alter-

native methods for safer and more rapid vaccine pro-

duction (e.g., subunit vaccine, DNA vaccine or vectored

vaccine) than are available for traditional egg-based

manufacture. Without expressing all proteins from the

pathogen, these vaccines have the capability to be DIVA.

Most of the experimental vaccines, which are intended

to protect against infection by various influenza subtypes,

have achieved considerable efficacy. IN MLV induces

mucosal antibodies and nearly complete cross-protection

to heterologous challenge; however, safety is a concern

and a practical IN method needs to be developed.

DNA vaccines may be an improved version of subunit

vaccines as a result of high level expression of influenza

protein(s) in hosts, although delivering DNA vaccine into

cells erodes the efficiency of DNA vaccines. Vector

vaccines may be regarded as superior to DNA vaccines,

and are an alternative approach for DNA delivery into

cells. The experience of Ad5 vectored vaccine indicates

that vectored vaccines expressing HA protein may not

cause vaccine-associated enhancement of respiratory

disease. Whether other vectored vaccines have this

advantage needs to be assessed. Since RP vectored H3

subtype vaccine is approved as a commercial vaccine,

and it has the capacity to be produced as an autogenous

vaccine, the RP platform has the potential to supplement

or take the place of traditional inactivated IAV vaccines to

rapidly provide safe IAV vaccines in the future.

The HA protein is the major antigenic component for

induction of humoral HI antibodies through expression

by these advanced vaccines. Unfortunately, there remains

the question of limited cross protection to heterologous

challenge.

The current method for protecting against diverse

influenza virus strains for commercial inactivated vaccines

is to include various HAs in the same inactivated vaccine.

An alternative way is to use an autogenous vaccine that

can be prepared rapidly and is specific to the virus strain

in the swine herd. However, a universal IAV vaccine

that can protect pigs is still desirable. IAV proteins that

can induce cross protection against AIV may be the key

for the universal IAV vaccine. Once these proteins are

discovered, the RP technique will be able to express these

proteins rapidly as a universal IAV vaccine. IN and other

routes of administration also need to be considered as an

approach to providing cross protection.
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