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106.25 Three discs for the incentre

The orthocentroidal disc, the Brocard disc and the incentre
Let  be a triangle with incentre , orthocentre , centroid  and

symmedian point . The last centre , sometimes referred to as the
Lemoine point after the French civil engineer and geometer Emile Lemoine
(1840-1912), is the point of concurrency of the three symmedians.
Symmedian is a cevian which is a reflection of the median in the
corresponding angle bisector. The theory of the symmedian point is
discussed in several books [1], [2], the best being [3].
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Since Euler's time it is well-known that the incentre  is always within
the orthocentroidal disc  − the disc with diameter . The symmedian
point  lies in  as well. The proof given in [4] uses areal coordinates. In
[5] we proved that the incentre is interior to the Brocard disc . This
second disc for  with diameter  is named after the French geometer
Henri Brocard (1845-1922), known in triangle geometry for the Brocard
points and the Brocard angle (see [3]).
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The symmedicentroidal disc and the incentre
The incentre  lives in yet another, third, disc . This disc with

diameter  we shall call the symmedicentroidal disc. Being confined to
three discs, the space for the incentre  is pretty well bounded. See Figure 1.
The image of a point within a disc (half-disc, to be precise) corresponds, in
the world of inequalities, to a squared diameter being at least the sum of the
squared distances of the point to the diametrically opposite points. In our
case for the symmedicentroidal disc, , that is
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GK2 ≥ GI2 + KI2. (1)

The diameter of the symmedicentroidal disc
In order to prove (1), we need to find the distances between the triangle

centres ,  and . Let  be triangle with sides , semiperimeter ,
circumradius  and inradius . We begin with finding the diameter of .
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FIGURE 1: The three discs, I ∈ �GH ∩ �OK ∩ �GK
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Theorem 1
The distance between the centroid  and the symmedian point  isG K

GK2 =
s6 − 3r (4R − 3r)s4 − 3r2(20R2 + 8Rr + 3r2)s2 − r3(4R + r)3

9(s2 − r (4R + r))2 (2)

Proof
To calculate  we use the Leibniz formulaGK2

GP2 =
1
3 ∑ AP2 −

a2 + b2 + c2

9
,

where  is an arbitrary point in the plane of .P ABC

AK2 =
b2c2 (−a2 + 2b2 + 2c2)

(a2 + b2 + c2)2

follows from the equation for the length of the symmedian

s2
a = AK2

A =
b2c2 (−a2 + 2b2 + 2c2)

(b2 + c2)2

and 
AK

KKA
=

b2 + c2

a2
,

see [3, p. 102]. Hence from the Leibniz formula

GK2 =
1
3 ∑ AK2 −

a2 + b2 + c2

9

=
−15a2b2c2 + 3 ∑ a2b4 − ∑ a6

9 (a2 + b2 + c2)2 . (3)

To find the sums  and , we use the identity∑ a2b4 ∑ a6

∑ a3b3 = s6 − 3r (4R − r) s4 + 3r4s2 + r3 (4R + r)3 .

This follows from

∑ a3b3 = (∑ ab)3

− 3abc ∑ ab2 − 6a2b2c2, ∑ ab = s2 + r (4R + r) ,

abc = 4Rrs and ∑ ab2 = 2s (s2 − 2Rr + r2)

(see [6]). Hence

∑a2b4 = (∑ab2)2

− 2abc ∑ab2 − 2 ∑a3b3 − 2abc ∑a3 − 6a2b2c2

= 2[s6 − r (12R − r)s4 + r2(24R2 + 8Rr − r2)s2 − r3(4R + r)3] , (4)
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where we used the known identity . The other
sum is

∑ a3 = 2s (s2 − 6Rr − 3r2)

∑a6 = (∑a3)2

− 2 ∑a3b3

= 2[s6 − 3r (4R + 5r)s4 + 3r2(24R2 + 24Rr + 5r2)s2 − r3(4R + r)3] . (5)
Putting (4) and (5) in (3) gives (2).

The distance between the centroid  and the incentre  is [7]G I
9GI2 = s2 − 16Rr + 5r2. (6)

Immediate consequence from  is the Gerretsen's inequalityGI2 ≥ 0

s2 ≥ 16Rr − 5r2, (7)
which is of utmost importance in the theory of triangle inequalities. In our
proof of the next theorem it will deliver the decisive blow to the inequality
we need to show.

The distance between the symmedian point  and the incentre  is
obtained in [5]

K I

KI2 =
8Rr2 (4R + r)
a2 + b2 + c2

−
3a2b2c2

(a2 + b2 + c2)2

=
4Rr2 ((R + r) s2 − r (4R + r)2)

(s2 − r (4R + r))2 . (8)

The proof
Now we have collected all the ingredients to prove the following:

Theorem 2
The incentre  lies within the symmedicentroidal disc .I �GK

Proof
It is sufficient to prove (1). By (2), (6) and (8),

is equivalent to
GK2 − GI2 − KI2 ≥ 0

(2R + r) s4 − 10Rr (4R + r) s2 + r2 (4R + r)2 (8R − r) ≥ 0. (9)
This fifth degree inequality doesn't look very nice. Transforming the

left-hand side of (9), we obtain

(2R + r) s4 − 10Rr (4R + r) s2 + r2 (4R + r)2 (8R − r)

= (2R + r)(s2 − 16Rr + 5r2)2
+ 2r (12R2 + Rr − 5r2)(s2 − 16Rr + 5r2)

 + 12r3(2R − r)(R − 2r) ≥ 0.
The first term is non-negative. The second term is non-negative by
Gerretsen's inequality (7) and the third term is non-negative by Euler's
inequality . The proof is complete.R ≥ 2r

To finish, we ask as a problem for research to look for another, fourth,
disc, formed from the classical triangle centres in which the incentre  isI
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contained. We note that the centroid  and the symmedian point  are
isogonal conjugates and conjecture that for any interior point  with
isogonal conjugate , the incentre  is within the disc with diameter .
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106.26 The nested polygons problem revisited

The title refers to the following puzzle popularised recently by Ian
Stewart in [1]; his account is based on [2].

A circle of unit radius is circumscribed by an equilateral triangle which
is then circumscribed by another circle. Repeat, but on successive stages use
a square, regular pentagon, and so on. Does the figure (shown in Figure
1(a)) become arbitrarily large or does it remain bounded in size?

(a) (b)

 FIGURE 1: (a) Nested outward polygons; (b) nested inward polygons
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