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Abstract

Relative ageing describes how one system ages with respect to another. The ageing faster
orders are used to compare the relative ageing of two systems. Here, we study ageing
faster orders in the hazard and reversed hazard rates. We provide some sufficient condi-
tions for one coherent system to dominate another with respect to ageing faster orders.
Further, we investigate whether the active redundancy at the component level is more
effective than that at the system level with respect to ageing faster orders, for a coherent
system. Furthermore, a used coherent system and a coherent system made out of used
components are compared with respect to ageing faster orders.
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1. Introduction and preliminaries

Ageing is a common phenomenon experienced by both living organisms and mechanical
systems. It largely describes how a system or living organism improves or deteriorates with
age. The study of stochastic ageing has received considerable attention from researchers in the
past few decades. In the literature, different types of stochastic ageing concepts (e.g. increas-
ing failure rate (IFR), increasing failure rate on average (IFRA), etc.) have been developed to
describe different ageing characteristics of a system. There are broadly three types of ageing,
namely positive ageing, negative ageing, and no ageing. A brief discussion of different ageing
concepts can be found in [4] and [31]. Similar to these ageing concepts, there is another use-
ful notion of ageing, called relative ageing, which describes how one system ages relative to
another.

The proportional hazard (PH) rate model, commonly known as Cox’s PH model (see [10]),
is widely used to analyze the failure time data in reliability and survival analysis. Subsequently
other models were introduced, namely the proportional mean residual lifetime model, the pro-
portional reversed hazard rate model, the proportional odds model, etc. (see [18], [31], and
[35]). In many real-life scenarios, the phenomenon of crossing hazards and mean residual lives
has been observed (see [9], [34], and [50]). Motivated by this, Kalashnikov and Rachev [26]

Received 24 January 2019; revision received 28 November 2019.
∗ Postal address: Department of Mathematics, Indian Institute of Technology Jodhpur, Karwar-342037, India.
Email address: nilkamal.nilu@gmail.com
∗∗ Postal address: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016,
India.

348

https://doi.org/10.1017/apr.2019.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.63
http://www.appliedprobability.org
https://orcid.org/0000-0003-3210-6101
https://doi.org/10.1017/apr.2019.63


Relative ageing of coherent systems 349

introduced a stochastic order (called the ageing faster order in the hazard rate) based on the
concept of relative ageing. Indeed, this approach could be considered as a reasonable alter-
native to the PH model. A detailed study of this order has been provided by Sengupta and
Deshpande [54], who also introduced ageing faster stochastic orders based on the cumula-
tive hazard and cumulative reversed hazard rate functions. Later, Finkelstein [17] proposed a
stochastic order based on mean residual lifetime functions, and Rezaei [52] introduced a simi-
lar stochastic order in terms of the reversed hazard rate functions. Some generalized orderings
in this direction were proposed by Hazra and Nanda [24].

The basic structures of most real-life systems match the so-called coherent system. A sys-
tem is called coherent if its all components are relevant and its structure function (see [4]
for the definition) is monotonically non-decreasing in each argument (which means that an
improvement in performance of a component cannot decrease the lifetime of the system). The
well-known k-out-of-n system is a special case of coherent systems. A system of n compo-
nents is said to be a k-out-of-n system if it functions as long as at least k of its n components
function. Two extreme cases of k-out-of-n systems are the 1-out-of-n system (called the paral-
lel system) and the n-out-of-n system (called the series system). Further, there is a one-to-one
correspondence between a k-out-of-n system and an (n − k + 1)th order statistic (of lifetimes
of n components). Thus the study of k-out-of-n systems is essentially the same as the study of
order statistics.

Stochastic comparisons of coherent systems are considered to be one of the important prob-
lems in reliability theory. A comprehensive list of results so far developed on various stochastic
comparisons of k-out-of-n systems with independent components can be found in [3], [25],
[49], [51], and the references therein. Further, stochastic comparisons of general coherent sys-
tems have been considered in [1], [6], [16], [30], [42], [43], [44], [45], [47], and [53], to name
a few. Note that all these results were developed under different stochastic orders, namely,
usual stochastic order, hazard rate order, likelihood ratio order, etc. However, the study of
coherent systems using ageing faster orders has not yet been adequately completed. Misra and
Francis [36], Li and Li [32], and Ding and Zhang [14] developed some results on behavior
of k-out-of-n systems under ageing faster orders. Later, Ding, Fang and Zhao [15] gave some
sufficient conditions, in terms of signature, for comparison of the lifetimes of two coherent
systems (with independent components) with respect to ageing faster orders. However, there
is no such result where the sufficient conditions are given in terms of reliability functions.
Furthermore, coherent systems with dependent components have not yet been considered. Thus
one of the major goals of our paper is to provide some sufficient conditions (in terms of reliabil-
ity functions) under which one coherent system dominates another with respect to ageing faster
orders.

One of the effective ways to enhance the lifetime of a system is to incorporate spares (or
redundant components) into the system. Then the key question is how to allocate spares into
the system so that the system’s lifetime will be optimal in some stochastic sense. Barlow and
Proschan [4] showed that the allocation of active redundancy at the component level (of a
coherent system) is superior to that at the system level with respect to the usual stochastic order.
Later, many other researchers studied this problem in different directions (see [8], [11], [21],
[38], [40], [56], [57], and the references therein). However, to the best of our knowledge, this
problem using ageing faster orders has not yet been studied. Thus another goal of this paper
is to derive some necessary and sufficient conditions under which the lifetime of a coherent
system with active redundancy at the component level is larger (smaller) than that at the system
level with respect to ageing faster orders.
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Real-life systems are made from either new components or used components. Consider two
coherent systems, namely a used coherent system (i.e. a coherent system made from new com-
ponents, and which has been used for time t > 0) and a coherent system of used components
(i.e. a coherent system made from a set of components which have already been used for time
t > 0). It is a fact that a coherent system of new components does not always have a longer
lifetime than a coherent system made out of used components (see [46]). Similarly, a used
coherent system may or may not perform better than a coherent system of used components.
Stochastic comparisons between these two systems have been made in numerous papers; see
e.g. [19], [20], [23], and [33], to name a few. However, to the best of our knowledge, the age-
ing faster orders have not yet been used as a tool for comparing these two systems. Thus the
study of stochastic comparisons between a used coherent system and a coherent system of used
components is another approach we will focus on. We now describe a real-life situation where
such a comparison is meaningful. In today’s competitive world, the demand for highly reliable
systems is ever increasing. A common approach to enhancing the reliability of a system is to
plan some maintenance and replacement strategies. Consider a coherent system consisting of
n components, whose random lifetimes are denoted by random variables X1, . . . , Xn. For any
fixed x = (x1, . . . , xn) ∈ (0, ∞)n, let τ (x) denote the lifetime of the system when the observed
component lifetimes are x1, . . . , xn. Then the random variable τ (X) denotes the lifetime of the
systems consisting of brand new components, and let (τ (X))t = (τ (X) − t|τ (X) > t) denote its
residual lifetime after it has lived to age t. To test the reliability of components to be used in
the system, samples of these components are tested in an ideal environment without interaction
effects from other components. These tested components of various ages are commonly used
as spares for the replacement of components in the system. Let the residual lifetime of the ith
spare, which was tested for time t, be denoted by (Xi)t

def= (Xi − t|Xi > t), i = 1, . . . , n. If a new
system is assembled out of the spares of age t, then τ (Xt) denotes the lifetime of the corre-
sponding system, where Xt = ((X1)t, . . . , (Xn)t). Suppose that X and Xt share the same copula.
One replacement policy might be to replace all the components of a system that have lived up
to age t with corresponding spares of age t. In order to judge the effectiveness of the replace-
ment strategy, it may be of interest to compare two lifetimes (τ (X))t (lifetime of used system of
age t) and τ (Xt) (lifetime of system of used components of age t).

In what follows, we introduce some notation that will be used throughout the paper. For a
random variable W (with absolutely continuous cumulative distribution function), we denote
its probability density function (PDF) by fW (·), the cumulative distribution function (CDF) by
FW (·), the hazard rate function by rW (·), the reversed hazard rate function by r̃W (·), and the
survival/reliability function by F̄W (·); here F̄W (·) = 1 − FW (·).

Let us consider a coherent system, with lifetime τ (X), made from n components having
dependent and identically distributed (d.i.d.) lifetime vector X = (X1, X2, . . . , Xn), where the
Xi’s are identically distributed, say Xi

d= X, i = 1, 2, . . . , n, for some non-negative random
variable X; here

d= means equality in distribution. Then the joint reliability function of X is
given by

F̄X(x1, x2, . . . , xn) = P(X1 > x1, X2 > x2, . . . , Xn > xn)

= K(F̄X(x1), F̄X(x2), . . . , F̄X(xn)), x = (x1, x2, . . . , xn) ∈Rn,

where K(·, ·, . . . , ·) is a survival copula describing the dependency structure among com-
ponents of the system and Rn denotes the n-dimensional Euclidean space. Indeed, this
representation is well known via Sklar’s theorem (see [48]). In the literature, many different
types of survival copulas have been studied in order to describe different dependency structures
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among components. Some of the widely used copulas are the Farlie–Gumbel–Morgenstern
(FGM) copula, the Archimedean copula with different generators, the Clayton–Oakes (CO)
copula, etc. We refer the reader to [48] for a detailed discussion of the copula theory and its
various applications. In what follows, we give a lemma that describes a fundamental bridge
between a system and its corresponding components through the domination function.

Lemma 1.1. (Navarro et al. [44]) Let τ (X) be the lifetime of a coherent system made from n
d.i.d. components with lifetime vector X = (X1, X2, . . . , Xn). Then the reliability function of
τ (X) can be written as

F̄τ (X)(x) = h(F̄X(x)),

where h(·) : [0, 1] → [0, 1], called the domination (or dual distortion) function, depends
on the structure function φ(·) (see [4] for a definition) and on the survival copula K of
X1, X2, . . . , Xn. Furthermore, h(·) is an increasing continuous function in [0, 1] such that
h(0) = 0 and h(1) = 1.

Below we give an example (borrowed from [44]) that illustrates the result given in the above
lemma.

Example 1.1. Let τ (X) = min{X1, max{X2, X3}}, where the reliability function of X =
(X1, X2, X3) is described by the FGM copula (see Nelsen [48])

K(p1, p2, p3) = p1p2p3(1 + θ (1 − p1)(1 − p2)(1 − p3)), pi ∈ (0, 1), i = 1, 2, 3,

where θ ∈ [ − 1, 1]. Further, let X1, X2, and X3 be identically distributed with Xi
d= X,

i = 1, 2, 3, for some non-negative random variable X. Then the minimal path sets (see [4])
of τ (X) are given by {1, 2} and {1, 3}. Let X{1,2}, X{1,3}, and X{1,2,3} be the lifetimes of the
path sets {1, 2}, {1, 3}, and {1, 2, 3}, respectively. Then the reliability function of τ (X) can be
written as

F̄τ (X)(x) = P({X{1,2} > x} ∪ {X{1,3} > x})
= P(X{1,2} > x) + P(X{1,3} > x) − P(X{1,2,3} > x)

= F̄X(x, x, 0) + F̄X(x, 0, x) − F̄X(x, x, x)

= K(F̄X(x), F̄X(x), 1) + K(F̄X(x), 1, F̄X(x)) − K(F̄X(x), F̄X(x), F̄X(x))

= h(F̄X(x)),

where, for θ ∈ [ − 1, 1],

h(p) = K(p, p, 1) + K(p, 1, p) − K(p, p, p)

= 2p2 − p3 − θp3(1 − p)3, p ∈ (0, 1).

The theory of stochastic orders is an effective tool for comparing two random variables
(or two sets of random variables) stochastically. Stochastic orders have been extensively
studied in the literature due to their applications in different branches of science and engi-
neering. Encyclopedic information on this topic is nicely encapsulated in the book by Shaked
and Shanthikumar [55] (see also [7]). For the sake of completeness, we give the following
definitions of the stochastic orders that are used in our paper.

Definition 1.1. Let X and Y be two absolutely continuous random variables with cumulative
distribution functions FX(·) and FY (·), respectively, supported on [0, ∞). Then X is said to be
smaller than Y in:

https://doi.org/10.1017/apr.2019.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.63


352 N. K. HAZRA AND N. MISRA

(a) the hazard rate (hr) order, denoted by X ≤hr Y , if

F̄Y (x)/F̄X(x) is increasing in x ∈ [0, ∞);

(b) the reversed hazard rate (rhr) order, denoted by X ≤rhr Y , if

FY (x)/FX(x) is increasing in x ∈ [0, ∞).

Similar to the above discussed stochastic orders, there are two more sets of stochastic orders
that are useful for describing the relative ageing of two systems. The first set of stochastic
orders, known as transform orders (namely, convex transform order, quantile mean inactivity
time order, star-shaped order, super-additive order, DMRL order, s-IFR order, etc.), describe
whether one system is ageing faster than another in terms of the increasing failure rate, the
increasing failure rate on average, the new better than used, etc. A detailed discussion of these
orders can be found in [2], [4], [5], [12], [29], [41], and the references therein. The second set
of stochastic orders, called ageing faster orders, are defined based on monotonicity of ratios of
some reliability measures, namely, hazard rate function, reversed hazard rate function, mean
residual lifetime function, etc. For motivation and usefulness of these orders, we refer the
reader to [13], [17], [24], [26], [28], [37], [39], [52], and [54]. Below we give the definitions
of the ageing faster orders that are used in our paper.

Definition 1.2. Let X and Y be two absolutely continuous random variables with failure rate
functions rX(·) and rY (·), respectively, and reversed failure rate functions r̃X(·) and r̃Y (·),
respectively. Then X is said to be ageing faster than Y in:

(a) the failure rate, denoted by X ≺
c

Y , if

rX(x)/rY (x) is increasing in x ∈ [0, ∞);

(b) the reversed failure rate, denoted by X ≺
b

Y , if

r̃X(x)/r̃Y (x) is decreasing in x ∈ [0, ∞).

The theory of totally positive functions has various applications in different areas of prob-
ability and statistics (see [27]). Below we give the definitions of TP2 and RR2 functions.
Different properties of these functions are used in proving the main results of our paper.

Definition 1.3. Let X and Y be two linearly ordered sets. Then a real-valued function κ(·, ·)
defined on X ×Y is said to be TP2 (resp. RR2) if

κ(x1, y1)κ(x2, y2) ≥ (resp. ≤ ) κ(x1, y2)κ(x2, y1),

for all x1 < x2 and y1 < y2.

Throughout the paper, increasing and decreasing, as usual, mean non-decreasing and non-
increasing, respectively. Similarly, positive and negative mean non-negative and non-positive,
respectively. Assume that all random variables considered in this paper are absolutely contin-
uous and non-negative (i.e. distributional support is [0, ∞)). By a

sgn= b, we mean that a and b
have the same sign, whereas a

def= b means that a is defined by b. Further, we use bold sym-
bols to represent vectors. We use the acronyms i.i.d. and d.i.d. for ‘independent and identically
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distributed’ and ‘dependent and identically distributed’, respectively. For any positive integers
r and s (1 ≤ r ≤ s), we write τr|s(W) to represent the lifetime of an r-out-of-s system made from
components having the lifetime vector W = (W1, W2, . . . , Ws).

The rest of the paper is organized as follows. In Section 2 we discuss some useful lemmas
which are intensively used in the proofs of the main results. In Section 3 we provide some
sufficient conditions under which the lifetime of one coherent system is larger than that of
another system with respect to ageing faster orders in terms of the hazard and reversed hazard
rates. In Section 4 we discuss a redundancy allocation problem in a coherent system. We derive
some necessary and sufficient conditions under which the allocation of active redundancy at
the component level (of a coherent system) is superior to that at the system level with respect to
ageing faster orders. Stochastic comparisons of a used coherent system and a coherent system
made from used components are discussed in Section 5. Some concluding remarks are given
in Section 6.

The proofs of various lemmas and theorems, wherever given, are deferred to the Appendix.

2. Useful lemmas

In this section we discuss some lemmas which will be used in proving the main results of
this paper. In the first lemma we discuss the sign change property of the integral of a function.
The following lemma is adopted from [27, Theorem 11.2, pp. 324–325] and [22, Lemma 3.5].

Lemma 2.1. Let κ(x, y) > 0, defined on X ×Y , be RR2 (resp. TP2), where X and Y are sub-
sets of the real line. Assume that a function f (·, ·) defined on X ×Y is such that the following
hold.

(i) For each x ∈X , f (x,y) changes sign at most once and, if the change of sign does occur,
it is from positive to negative, as y traverses Y .

(ii) For each y ∈Y , f (x,y) is increasing (resp. decreasing) in x ∈X .

(iii) ω(x) = ∫
Y κ(x, y) f (x, y) dμ(y) exists absolutely and defines a continuous function of x,

where μ is a sigma-finite measure.

Then ω(x) changes sign at most once and, if the change of sign does occur, it is from
negative (resp. positive) to positive (resp. negative), as x traverses X .

In the following lemma we state an equivalent condition of a monotonic function. The proof
is straightforward, and hence omitted.

Lemma 2.2. Let f (·) and g(·) be two non-negative and real-valued functions defined on
(a, b) ⊆ (0, ∞). Then f (x)/g(x) is increasing (resp. decreasing) in x if and only if, for any
real number c, the difference f (x) − cg(x) changes sign at most once and, if the change of sign
does occur, it is from negative (resp. positive) to positive (resp. negative), as x traverses from a
to b.

Some properties of the reliability functions of k-out-of-n and l-out-of-m systems are dis-
cussed in the next two lemmas. Lemma 2.3(i) is given in [16], whereas Lemma 2.4(i) is given
in [42]. The other proofs are deferred to the Appendix.

Lemma 2.3. Let hk|n(·) and hl|m(·), respectively, be the reliability functions of the k-out-of-n
and l-out-of-m systems with i.i.d. component lifetimes, where 1 ≤ k ≤ n and 1 ≤ l ≤ m. Further,
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let Hk|n(p) = ph′
k|n(p)/hk|n(p) and Hl|m(p) = ph′

l|m(p)/hl|m(p), p ∈ (0, 1), 1 ≤ k ≤ n, 1 ≤ l ≤ m.
Then the following results hold.

(i) Hk|n(p) is decreasing in p ∈ (0, 1), for all 1 ≤ k ≤ n.

(ii) Hk|n(p)/Hl|m(p) is decreasing in p ∈ (0, 1), for all l − k ≥ max{0, m − n}.
(iii) (1 − p)H′

k|n(p)/Hk|n(p) is decreasing in p ∈ (0, 1), for all 1 ≤ k ≤ n.

Lemma 2.4. Let hk|n(·) and hl|m(·), respectively, be the reliability functions of the k-out-of-
n and l-out-of-m systems with i.i.d. component lifetimes, where 1 ≤ k ≤ n and 1 ≤ l ≤ m.
Further, let Rk|n(p) = (1 − p)h′

k|n(p)/(1 − hk|n(p)) and Rl|m(p) = (1 − p)h′
l|m(p)/(1 − hl|m(p)),

p ∈ (0, 1), 1 ≤ k ≤ n, 1 ≤ l ≤ m. Then the following results hold.

(i) Rk|n(p) is increasing in p ∈ (0, 1), for all 1 ≤ k ≤ n.

(ii) Rk|n(p)/Rl|m(p) is increasing in p ∈ (0, 1), for all k − l ≥ max{0, n − m}.
(iii) pR′

k|n(p)/Rk|n(p) is decreasing in p ∈ (0, 1), for all 1 ≤ k ≤ n.

3. Stochastic comparisons of two coherent systems

In this section we will compare two coherent systems with respect to ageing faster orders
based on the failure and the reversed failure rates. We will show that the proposed results hold
for the k-out-of-n and l-out-of-m systems with i.i.d. components.

Let τ1(X) and τ2(Y) (resp. τk|n(X) and τl|m(Y)) be the lifetimes of two coherent systems (resp.
k-out-of-n and l-out-of-m systems) made from two different sets of d.i.d. components with
lifetime vectors X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Ym), respectively. For simplicity
of notation, let us assume that Xi

d= X, i = 1, 2, . . . , n, for some non-negative random variable
X, and Yj

d= Y , j = 1, 2, . . . , m, for some non-negative random variable Y . Further, let h1(·) and
h2(·) be the domination functions of τ1(X) and τ2(Y), respectively. In what follows, we use the
following notation. For p ∈ (0, 1),

Hi(p) = ph′
i(p)

hi(p)
, i = 1, 2 (3.1)

and

Ri(p) = (1 − p)h′
i(p)

1 − hi(p)
, i = 1, 2. (3.2)

In the following theorem we provide a set of sufficient conditions to show that τ1(X) ages
faster than τ2(Y) in terms of the failure rate.

Theorem 3.1. Suppose that the following conditions hold.

(i) H1(p) and H1(p)/H2(p) are decreasing in p ∈ (0, 1).

(ii) (1 − p)H′
1(p)/H1(p) or (1 − p)H′

2(p)/H2(p) is decreasing in p ∈ (0, 1).

(iii) X ≺
c

Y and Y ≤rh X.

Then τ1(X) ≺
c

τ2(Y).
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FIGURE 1: Plot of k(x) against x ∈ (0, 2).

The next corollary follows from Theorem 3.1 and Lemma 2.3. It is worth mentioning here
that Theorem 3.1(a) of [36] is a particular case of this corollary (k = l and m = n).

Corollary 3.1. Suppose that the Xi’s are i.i.d., and that the Yj’s are i.i.d. If X ≺
c

Y and Y ≤rh X,

then τk|n(X) ≺
c

τl|m(Y), for l − k ≥ max{0, m − n}.

Remark 3.1. Under the assumptions of Corollary 3.1, the following statements hold true.

(i) τk|n(X) ≺
c

τl|n(Y), for 1 ≤ k ≤ l ≤ n.

(ii) τk|n(X) ≺
c

τk|m(Y), for 1 ≤ k ≤ m ≤ n.

(iii) τl−r|m−r(X) ≺
c

τl|m(Y), for 1 ≤ r ≤ l ≤ m.

One natural question that arises here is whether the result stated in Theorem 3.1 can be
proved without the condition Y ≤rh X. Below we cite a counterexample that shows that this
condition cannot be relaxed.

Example 3.1. Consider two coherent systems

τ1(X) = max{X1, X2, X3}, τ2(Y) = max{Y1, Y2, Y3},
where the Xi’s are i.i.d. with the common reliability function given by F̄X(x) = exp{−2x3},
x > 0, and the Yi’s are i.i.d. with the common reliability function given by F̄Y (x) =
exp{−0.1x2}, x > 0. Then it can easily be verified that X ≺

c
Y but Y �rh X (in fact Y �st X).

Now, by writing k(x) = rτ1(X)(x)/rτ2(Y)(x), we have

k(x) = 30x e−(2x3−0.1x2)
[

1 − (1 − e−0.1x2
)3

1 − (1 − e−2x3 )3

] [
(1 − e−2x3

)2

(1 − e−0.1x2 )2

]
, x > 0.

Figure 1 shows that k(x) is not monotone on (0, ∞), and hence τ1(X) ⊀
c

τ2(Y).
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Henceforth τ1(X) denotes the lifetime of a coherent system made from components having
lifetimes X1, X2, . . . , Xn, whereas τ2(X) denotes the lifetime of another coherent system made
from components having lifetimes X1, X2, . . . , Xm. Note that the failure rate function of τi(X)
can be written as

rτi(X)(x) = rX(x)Hi(F̄X(x)), x > 0, i = 1, 2,

where Hi(·) (given in (3.1)) is a function defined in terms of the domination function. Then we
have the following proposition, where we provide the necessary and sufficient condition under
which τ1(X) ages faster (resp. slower) than τ2(X) in terms of the hazard rate. The proof of the
proposition is immediate on using the above expressions and Definition 1.2(a).

Proposition 3.1. Let the Xi’s be identically distributed. Then τ1(X) ≺
c

(resp. �
c

) τ2(X) if and

only if
H1(p)/H2(p) is decreasing (resp. increasing) in p ∈ (0, 1).

The following result proved in [36] (see Theorem 2.1) follows from Proposition 3.1 and
Lemma 2.3.

Corollary 3.2. Suppose that the Xi’s are i.i.d. Then τk|n(X) ≺
c

τl|m(X), for l − k ≥ max{0,

m − n}.

Remark 3.2. Under the assumption of Corollary 3.2, the following statements hold true.

(i) τk|n(X) ≺
c

τl|n(X), for 1 ≤ k ≤ l ≤ n.

(ii) τk|n(X) ≺
c

τk|m(X), for 1 ≤ k ≤ m ≤ n.

(iii) τl−r|m−r(X) ≺
c

τl|m(X), for 1 ≤ r ≤ l ≤ m.

The next corollary, proved in [14], follows from Proposition 3.1. It shows that a parallel
system ages faster (in terms of the hazard rate) as its number of components increases, whereas
the reverse scenario is observed for the series system.

Corollary 3.3. Suppose that the Xi’s are d.i.d. with the joint distribution function described
by the Archimedean copula with generator φ(·). If x ln ′[ − φ′(x)/(1 − φ(x))] is decreasing in
x > 0, then

(i) τ1|n(X) ≺
c

τ1|m(X), for 1 ≤ m ≤ n,

(ii) τn|n(X) ≺
c

τm|m(X), for 1 ≤ n ≤ m.

Below we give an example that illustrates an application of Proposition 3.1.

Example 3.2. Consider two coherent systems τ1(X) = min{X1, max{X2, X3}} and τ2(X) =
min{X1, X2, X3}, each of which is made up of three components having d.i.d. lifetimes X1, X2,
and X3. Further, let the joint distribution function of (X1, X2, X3) be described by the FGM
copula

K(p1, p2, p3) = p1p2p3(1 + θ (1 − p1)(1 − p2)(1 − p3)), 0 < pi < 1, i = 1, 2, 3,

where θ ∈ [ − 1, 1]. Then the domination functions of τ1(X) and τ2(X) are, respectively,
given by

h1(p) = 2p2 − p3 − θp3(1 − p)3, 0 < p < 1
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FIGURE 2: Plot of sθ (p) against p ∈ (0, 1), for θ = −0.9, −0.8, . . . , 0.4, 0.5 (from bottom to top).

and
h2(p) = p3 + θp3(1 − p)3, 0 < p < 1.

These give

H1(p) = ph′
1(p)

h1(p)
= 4p2 − 3(1 + θ )p3 + 12θp4 − 15θp5 + 6θp6

2p2 − (1 + θ )p3 + 3θp4 − 3θp5 + θp6
, 0 < p < 1

and

H2(p) = ph′
2(p)

h2(p)
= 3(1 + θ )p3 − 6θp6 − 12θp4 + 15θp5

(1 + θ )p3 − θp6 − 3θp4 + 3θp5
, 0 < p < 1.

Writing sθ (p) = H1(p)/H2(p), we have, for θ ∈ [ − 1, 1] and 0 < p < 1,

sθ (p) = (4p2 − 3(1 + θ )p3 + 12θp4 − 15θp5 + 6θp6)((1 + θ )p3 − θp6 − 3θp4 + 3θp5)

(2p2 − (1 + θ )p3 + 3θp4 − 3θp5 + θp6)(3(1 + θ )p3 − 6θp6 − 12θp4 + 15θp5)
.

Now consider the following two cases.

Case I. Let θ = −0.9, −0.8, . . . , 0.4, 0.5. Then Figure 2 shows that sθ (p) = H1(p)/H2(p) is
decreasing in p ∈ (0, 1), and hence τ1(X) ≺

c
τ2(X), using Proposition 3.1.

Case II. Let θ = 0.75, 0.80, . . . , 0.95, 1. Then Figure 3 shows that sθ (p) = H1(p)/H2(p) is
not monotone on (0,1). Using Proposition 3.1, we conclude that neither τ1(X) ≺

c
τ2(X) nor

τ1(X) �
c

τ2(X) holds.

In the following theorem we compare τ1(X) and τ2(Y) with respect to the ageing faster order
in the reversed hazard rate.
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FIGURE 3: Plot of sθ (p) against p ∈ [0.05, 0.45], for θ = 0.75, 0.80, . . . , 0.95, 1 (from bottom to top).

Theorem 3.2. Suppose that the following conditions hold.

(i) R1(p) and R1(p)/R2(p) are increasing in p ∈ (0, 1).

(ii) pR′
1(p)/R1(p) or pR′

2(p)/R2(p) is decreasing in p ∈ (0, 1).

(iii) X ≺
b

Y and X ≤hr Y .

Then τ1(X) ≺
b

τ2(Y).

The next corollary immediately follows from Theorem 3.2 and Lemma 2.4. Note that
Theorem 3.1(b) of [36] is a particular case of this corollary (k = l and m = n).

Corollary 3.4. Suppose that the Xi’s are i.i.d., and that the Yj’s are i.i.d. If X ≺
b

Y and X ≤hr Y,

then τk|n(X) ≺
b

τl|m(Y), for k − l ≥ max{0, n − m}.

Remark 3.3. Under the assumptions of Corollary 3.4, the following statements hold true.

(i) τk|n(X) ≺
b

τl|n(Y), for 1 ≤ l ≤ k ≤ n.

(ii) τk|n(X) ≺
b

τk|m(Y), for 1 ≤ k ≤ n ≤ m.

(iii) τk|n(X) ≺
b

τk−r|n−r(Y), for 1 ≤ r ≤ k ≤ n.

The following counterexample shows that the result given in Theorem 3.2 may not hold in
the absence of the condition X ≤hr Y .

Example 3.3. Consider the coherent systems τ1(X) = min{X1, X2} and τ2(Y) = min{Y1, Y2},
where the Xi’s are i.i.d. with the common cumulative distribution function given by FX(x) =
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FIGURE 4: Plot of l(x) against x ∈ [1.4, 2.45].

exp{−(2.1/x)7}, x > 0, and the Yi’s are i.i.d. with the cumulative distribution function given by
FY (x) = exp{−(2/x)3}, x > 0. Then it is easy to verify that X ≺

b
Y but X �hr Y (in fact X �st Y).

Now, by writing l(x) = r̃τ2(Y)(x)/r̃τ1(X)(x), we have

l(x) =
[

24x4 e−(2/x)3
(1 − e−(2/x)3

)

7 × 2.17 e−(2.1/x)7 (1 − e−(2.1/x)7 )

] [
1 − (1 − e−(2.1/x)7

)2

1 − (1 − e−(2/x)3 )2

]
, x > 0.

Figure 4 shows that l(x) is not monotone on (0, ∞), and hence τ2|2(X) ⊀
b

τ2|2(Y).

In the following proposition we discuss an analog of Proposition 3.1 for the ageing faster
order in the reversed hazard rate. Note that the reversed hazard rate function of τi(X) can be
written as

r̃τi(X)(x) = r̃X(x)Ri(F̄X(x)), x > 0, i = 1, 2,

where Ri(·) (given in (3.2)) is a function defined in terms of the domination func-
tion. The proof of the proposition is immediate on using the above expressions and
Definition 1.2(b).

Proposition 3.2. Let the Xi’s be identically distributed. Then τ1(X) ≺
b

(resp. �
b

) τ2(X) if and

only if
R1(p)/R2(p) is increasing (resp. decreasing) in p ∈ (0, 1).

The following result proved in [36] (see Theorem 2.2) follows from Proposition 3.2 and
Lemma 2.4.

Corollary 3.5. Suppose that the Xi’s are i.i.d. Then τk|n(X) ≺
b

τl|m(X), for k − l ≥ max{0,

n − m}.
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Remark 3.4. Under the assumption of Corollary 3.5, the following statements hold true.

(i) τk|n(X) ≺
b

τl|n(X), for 1 ≤ l ≤ k ≤ n.

(ii) τk|n(X) ≺
b

τk|m(X), for 1 ≤ k ≤ n ≤ m.

(iii) τk|n(X) ≺
b

τk−r|n−r(X), for 1 ≤ r ≤ k ≤ n.

The following corollary proved in [14] immediately follows from Proposition 3.2. It shows
that, under certain conditions, a parallel system ages faster (resp. slower) in terms of the
reversed hazard rate as its number of components decreases (resp. increases), whereas the
reverse scenario is observed for the series system.

Corollary 3.6. Suppose that the Xi’s are d.i.d. with the joint distribution function described
by the Archimedean copula with generator φ(·). If x ln ′[ − φ′(x)/φ(x)] is decreasing (resp.
increasing) in x > 0, then we have the following.

(i) τ1|n(X) �
b

(resp. ≺
b

) τ1|m(X) for 1 ≤ m ≤ n.

(ii) τn|n(X) �
b

(resp. ≺
b

) τm|m(X) for 1 ≤ n ≤ m.

The result stated in Proposition 3.2 is revealed via the following example.

Example 3.4. Consider two coherent systems which are discussed in Example 3.2. Then

R1(p) = (1 − p)h′
1(p)

1 − h1(p)
= 4p − (7 + 3θ )p2 + 3(1 + 5θ )p3 − 27θp4 + 21θp5 − 6θp6

1 − 2p2 + (1 + θ )p3 − 3θp4 + 3θp5 − θp6
, 0 < p < 1

and

R2(p) = (1 − p)h′
2(p)

1 − h2(p)
= 3(1 + θ )p2 − 3(1 + 5θ )p3 + 27θp4 − 21θp5 + 6θp6

1 − (1 + θ )p3 + θp6 + 3θp4 − 3θp5
, 0 < p < 1.

Writing vθ (p) = R2(p)/R1(p), we have

vθ (p) = 3(1 + θ )p2 − 3(1 + 5θ )p3 + 27θp4 − 21θp5 + 6θp6

1 − (1 + θ )p3 + θp6 + 3θp4 − 3θp5

× 1 − 2p2 + (1 + θ )p3 − 3θp4 + 3θp5 − θp6

4p − (7 + 3θ )p2 + 3(1 + 5θ )p3 − 27θp4 + 21θp5 − 6θp6
, 0 < p < 1.

In Figure 5 we plot vθ (p) against p ∈ (0, 1), for θ = −1, −0.8, . . . , 0.8, 1. This shows that
vθ (p) is increasing in p ∈ (0, 1). Hence τ1(X) �

b
τ2(X), using Proposition 3.2.

4. Stochastic comparisons of coherent systems with active redundancy at the component
level versus the system level

Let X = (X1, X2, . . . , Xn) be a vector of d.i.d. random variables representing the lifetimes
of n components, where Xi

d= X, i = 1, 2, . . . , n, for some non-negative random variable X.
Further, let Y1, Y2, . . . , Ym be a collection of n-dimensional random vectors representing the
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FIGURE 5: Plot of vθ (p) against p ∈ (0, 1), for θ = −1, −0.8, . . . , 0.8, 1 (from bottom to top).

lifetimes of m sets of n spares (or redundant components) each, where Yj
d= X, j = 1, 2, . . . , m,

and Y1, Y2, . . . , Ym and X are independent. We write TC = τ (X ∨ Y1 ∨ Y2 ∨ . . . ∨ Ym)
to denote the lifetime of a coherent system with active redundancies at the component
level, where, for Yj = (Yj1, Yj2, . . . , Yjn), j = 1, 2, . . . , m, the symbol X ∨ Y1 ∨ Y2 ∨ . . . ∨ Ym
stands for an n-tuple vector Z = (Z1, Z2, . . . , Zn) such that Zi = Xi ∨ Y1i ∨ · · · ∨ Ymi repre-
sents the lifetime of a parallel system made from (m + 1) independent components having
lifetimes {Xi, Y1i, . . . , Ymi}, i = 1, 2, . . . , n; here the symbol ∨ stands for maximum. Further,
we write TS = τ (X) ∨ τ (Y1) ∨ τ (Y2) ∨ · · · ∨ τ (Ym) to denote the lifetime of a coherent sys-
tem with active redundancies at the system level. We let h(·) denote the domination function
of τ (X) (and hence also that of the τ (Yj)). In what follows, we use the notation R(p) =
(1 − p)h′(p)/(1 − h(p)), p ∈ (0, 1).

In the following theorem, we provide a necessary and sufficient condition for allocation of
redundancy at the component level to be better/worse than that at the system level with respect
to the ageing faster order in terms of the hazard rate.

Theorem 4.1. For any positive integer m, TS ≺
c

(resp. �
c

) TC holds if and only if

(
(1 − h(p))mh′(p)

1 − (1 − h(p))m+1

)(
h(1 − (1 − p)m+1)

(1 − p)mh′(1 − (1 − p)m+1)

)
(4.1)

is decreasing (resp. increasing) in p ∈ (0, 1).

The following corollary (for m = 1) follows from Theorem 4.1.

Corollary 4.1. If all the Xi’s and Yji’s are i.i.d., then τn|n(X) ∨ τn|n(Y1) �
c

τn|n(X ∨ Y1).

In the next theorem we discuss an analog of Theorem 4.1 for the ageing faster order in terms
of the reversed hazard rate.
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Theorem 4.2. For any positive integer m, TS ≺
b

TC holds if and only if

R(p)

R(1 − (1 − p)m+1)
is increasing in p ∈ (0, 1).

The condition given in Theorem 4.2 may sometimes be difficult to verify. In the following
proposition we suggest a sufficient condition that is easy to verify.

Proposition 4.1. If pR′(p)/R(p) is decreasing and positive for all p ∈ (0, 1), then TS ≺
b

TC.

The next corollary follows from Proposition 4.1 and Lemma 2.4.

Corollary 4.2. Suppose that all the Xi’s and Yji’s are i.i.d. Then, for 1 ≤ k ≤ n,

τk|n(X) ∨ τk|n(Y1) ∨ · · · ∨ τk|n(Ym) ≺
b

τk|n(X ∨ Y1 ∨ . . . ∨ Ym).

Below we provide an application of Proposition 4.1.

Example 4.1. Let m = 1. Consider a coherent system τ (X) = min{X1, X2, . . . , Xn} made from
n components having d.i.d. lifetimes. Further, let {X1, X2, . . . , Xn} have the Gumbel–Hougard
copula given by

K(p1, p2, . . . , pn) = exp

{
−
(

n∑
i=1

( − ln pi)
θ

)1/θ}
, 0 < pi < 1, i = 1, 2, . . . , n,

where θ ∈ [1, ∞). Then the domination function of τ (X) is given by h(p) = pa, where a = n1/θ

(≥ 1). This gives

R(p) = (1 − p)h′(p)

(1 − h(p))
= a(pa−1 − pa)

1 − pa
, 0 < p < 1

and
pR′(p)

R(p)
= a − 1 − ap + pa

1 − p − pa + pa+1
, 0 < p < 1.

Since ((1 − pa)/(1 − p)) ≤ a, for all a ≥ 1 and p ∈ (0, 1), we have pR′(p)/R(p) ≥ 0, for all p ∈
(0, 1). Further, [

pR′(p)

R(p)

]′
= γ1(p)

(1 − p − pa + pa+1)2
, 0 < p < 1,

where
γ1(p) = a2pa−1 + 2(1 − a2)pa + a2pa+1 − p2a − 1, 0 < p < 1.

Clearly
γ ′

1(p) = pa−2γ2(p), 0 < p < 1,

where
γ2(p) = a2(a − 1) − 2a(a2 − 1)p + a2(a + 1)p2 − 2apa+1, 0 < p < 1.
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Differentiating γ2(p) twice, we get

γ ′
2(p) = −2a(a2 − 1) + 2a2(a + 1)p − 2a(a + 1)pa, 0 < p < 1

and
γ ′′

2 (p) = 2a2(a + 1)(1 − pa−1) ≥ 0, 0 < p < 1.

Thus we have γ ′
2(p) ≤ γ ′

2(1) = 0, for all p ∈ (0, 1), and γ2(p) ≥ γ2(1) = 0, for all p ∈ (0, 1).
Consequently, γ ′

1(p) ≥ 0, for all p ∈ (0, 1), and γ1(p) ≤ γ1(1) = 0, for all p ∈ (0, 1). Hence
pR′(p)/R(p) is decreasing in p ∈ (0, 1). Thus TS ≺

b
TC follows from Proposition 4.1.

5. Stochastic comparisons of a used coherent system and a coherent system of used
components

Let X be a random variable representing the lifetime of a component or system. Then its
residual lifetime at time t (> 0) is denoted by Xt and is defined by

Xt = (X − t | X > t).

We call Xt a used component or system. Let X = (X1, X2, . . . , Xn) be a vector of random
variables representing the lifetimes of n d.i.d. components. Then we write

Xt = ((X1)t, (X2)t, . . . , (Xn)t), t > 0

to represent a vector of n used components {(X1)t, (X2)t, . . . , (Xn)t}, t > 0. Consequently, we
write τ (Xt) to denote the lifetime of a coherent system made from a set of components with
lifetime vector Xt. Further, by (τ (X))t = (τ (X) − t|τ (X) > t), we mean the lifetime of a used
coherent system made from a set of components with lifetime vector X. For simplicity we

assume that all the Xi’s are identically distributed with Xi
d= X, i = 1, 2, . . . , n, for some non-

negative random variable X. In what follows, we denote the reliability function of τ (X) by h(·),
and we write H(p) = ph′(p)/h(p), 0 < p < 1.

In the following theorem we derive a necessary and sufficient condition for a coherent sys-
tem of used components to be ageing faster than a used coherent system in terms of the hazard
rate.

Theorem 5.1. For any fixed t ≥ 0, τ (Xt) ≺
c

(τ (X))t holds if and only if

pH′(p)/H(p) is decreasing in p ∈ (0, 1).

As an immediate consequence of Theorem 5.1, we have the following proposition.

Proposition 5.1. For any fixed t ≥ 0, τ (Xt) ≺
c

(τ (X))t holds if

(1 − p)H′(p)/H(p) is decreasing and negative in p ∈ (0, 1).

The next corollary follows from Proposition 5.1 and Lemma 2.3.

Corollary 5.1. If the Xi’s are i.i.d., then τk|n(Xt) ≺
c

(τk|n(X))t, for any fixed t ≥ 0, and 1 ≤ k ≤ n.

The following theorem is an analog of Theorem 5.1 for the ageing faster order in terms of
the reversed hazard rate.
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Theorem 5.2. For any fixed t ≥ 0, τ (Xt) ≺
b

(resp. �
b

) (τ (X))t holds if and only if, for all q ∈
(0, 1), [

h′(p/q)

h′(p)

] [
h(q) − h(p)

1 − h(p/q)

]
is increasing (resp. decreasing) in p ∈ (0, q). (5.1)

As a consequence of Theorem 5.2, we have the following corollary.

Corollary 5.2. If the the Xi’s are i.i.d., then τ1|n(Xt) ≺
b

(τ1|n(X))t, for any fixed t ≥ 0.

6. Concluding remarks

In this paper we study ageing faster orders (in terms of the hazard and reversed hazard rates)
which are useful for comparing the relative ageing of two systems. To be more specific, we pro-
vide sufficient conditions under which one coherent system is ageing faster than another with
respect to the hazard and reversed hazard rates. Further, we consider a problem of allocation
of redundancies into a coherent system. We show that, under some necessary and sufficient
conditions, the allocation of active redundancy at the component level of a coherent system is
superior (inferior) to that at the system level with respect to ageing faster orders. Furthermore,
a used coherent system and a coherent system made out of used components are compared
with respect to these ageing faster orders. Apart from these, we also show that most of our
developed results hold for the well-known k-out-of-n and l-out-of-m systems. Nevertheless,
we provide a list of examples to illustrate the proposed results. Some counterexamples are also
given wherever needed.

Even though there is a vast literature on the study of usual stochastic orders, there is a limited
literature on the ageing faster orders. Since the ageing faster orders compare the relative ageing
of two systems, and ageing is a common phenomenon experienced by any system, the study of
ageing faster orders deserves adequate attention. We believe that our study not only enriches
the literature on ageing faster orders but also has applications.

Similar to the problems considered in this paper, the study of other stochastic orders (as
discussed in the introduction), which describe the relative ageing of two systems, is under
investigation, and will be reported in the future.

Appendix A

Proof of Lemma 2.3(ii). Note that, for 1 ≤ k ≤ n,

hk|n(p) = 1

B(k, n − k + 1)

∫ p

0
uk−1(1 − u)n−k du, 0 < p < 1, (A.1)

where B(·, ·) is the beta function. Then, for 1 ≤ k ≤ n and 1 ≤ l ≤ m,

1

Hk|n(p)
=
∫ 1

0
uk−1

(
1 − up

1 − p

)n−k

du, 0 < p < 1 (A.2)

and

Hl|m(p)

Hk|n(p)
=

∫ 1

0
uk−1

(
1 − up

1 − p

)n−k

du

∫ 1

0
ul−1

(
1 − up

1 − p

)m−l

du

, 0 < p < 1.
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For any fixed real constant c, consider

Hl|m(p) − cHk|n(p)
sgn=
∫ 1

0
ξ1(u, p)η1(u, p) du, 0 < p < 1,

where

ξ1(u, p) = ul−1
(

1 − up

1 − p

)m−l

, 0 < u < 1, 0 < p < 1

and

η1(u, p) = uk−l
(

1 − up

1 − p

)n−k−m+l

− c, 0 < u < 1, 0 < p < 1.

Note that
ξ1(u, p) is RR2 in(u, p) ∈ (0, 1) × (0, 1), (A.3)

and
η1(u, p) is increasing in p ∈ (0, 1), (A.4)

for all u ∈ (0, 1). Further, since l − k ≥ max{0, m − n},

uk−l
(

1 − up

1 − p

)n−k−m+l

is decreasing in u ∈ (0, 1),

for all p ∈ (0, 1). Using Lemma 2.2 we have that, for all p ∈ (0, 1), η1(u, p) changes sign at most
once and, if the change of sign does occur, it is from positive to negative, as u traverses from
0 to 1. Also, using this together with (A.3) and (A.4) in Lemma 2.1, we find that Hl|m(p) −
cHk|n(p) changes sign at most once and, if the change of sign does occur, it is from negative to
positive, as p traverses from 0 to 1. Now, using Lemma 2.2, we conclude that Hl|m(p)/Hk|n(p)
is increasing in p ∈ (0, 1), that is, Hk|n(p)/Hl|m(p) is decreasing in p ∈ (0, 1). Hence the result
is proved. �

Proof of Lemma 2.3(iii). Differentiating both sides of (A.2), we get

− H′
k|n(p)

[Hk|n(p)]2
= n − k

1 − p

∫ 1

0
uk−1

(
1 − up

1 − p

)n−k−1(1 − u

1 − p

)
du, 0 < p < 1,

that is,

(1 − p)
H′

k|n(p)

Hk|n(p)
= −

(n − k)
∫ 1

0
uk−1

(
1 − up

1 − p

)n−k−1(1 − u

1 − p

)
du

∫ 1

0
uk−1

(
1 − up

1 − p

)n−k

du

, 0 < p < 1.

To prove the result it suffices to show that

N1(p)

D1(p)
def=

∫ 1

0
uk−1

(
1 − up

1 − p

)n−k−1(1 − u

1 − p

)
du

∫ 1

0
uk−1

(
1 − up

1 − p

)n−k

du

is increasing in p ∈ (0, 1).
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For any fixed real constant α, consider

N1(p) − αD1(p)
sgn=
∫ 1

0
ξ2(u, p)η2(u, p) du, 0 < p < 1,

where

ξ2(u, p) = uk−1
(

1 − up

1 − p

)n−k

, 0 < u < 1, 0 < p < 1

and

η2(u, p) =
(

1 − u

1 − up

)
− α, 0 < u < 1, 0 < p < 1.

Note that
ξ2(u, p) is RR2 in (u, p) ∈ (0, 1) × (0, 1) (A.5)

and
η2(u, p) is increasing in p ∈ (0, 1), (A.6)

for all u ∈ (0, 1). Further, for every fixed p ∈ (0, 1),(
1 − u

1 − up

)
is decreasing in u ∈ (0, 1).

Then, using Lemma 2.2 it follows that, for every fixed p ∈ (0, 1), η2(u, p) changes sign at most
once and, if the change of sign does occur, it is from positive to negative, as u traverses from 0
to 1. Using this together with (A.5) and (A.6) in Lemma 2.1, we conclude that N1(p) − αD1(p)
changes sign at most once and, if the change of sign does occur, it is from negative to positive,
as p traverses from 0 to 1. Now, using Lemma 2.2, we get that N1(p)/D1(p) is increasing in
p ∈ (0, 1), and hence the result is proved. �

Proof of Lemma 2.4(ii). From (A.1), we have, for 1 ≤ k ≤ n and 1 ≤ l ≤ m,

1

Rk|n(p)
=
∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−1

du, 0 < p < 1 (A.7)

and

Rl|m(p)

Rk|n(p)
=

∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−1

du

∫ 1

0
um−l

(
1 − u(1 − p)

p

)l−1

du

, 0 < p < 1.

For any fixed real constant β, consider

Rl|m(p) − βRk|n(p)
sgn=
∫ 1

0
ξ3(u, p)η3(u, p) du, 0 < p < 1,

where

ξ3(u, p) = um−l
(

1 − u(1 − p)

p

)l−1

, 0 < u < 1, 0 < p < 1
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and

η3(u, p) = un−k−m+l
(

1 − u(1 − p)

p

)k−l

− β, 0 < u < 1, 0 < p < 1.

Note that
ξ3(u, p) is TP2 in (u, p) ∈ (0, 1) × (0, 1) (A.8)

and
η3(u, p) is decreasing in p ∈ (0, 1), (A.9)

for all u ∈ (0, 1). Further, for any fixed p ∈ (0, 1),

un−k−m+l
(

1 − u(1 − p)

p

)k−l

is decreasing in u ∈ (0, 1).

Using Lemma 2.2 we infer that, for any fixed p ∈ (0, 1), η3(u, p) changes sign at most once and,
if the change of sign does occur, it is from positive to negative, as u traverses from 0 to 1. Also,
using this together with (A.8) and (A.9) in Lemma 2.1, we get that Rl|m(p) − βRk|n(p) changes
sign at most once and, if the change of sign does occur, it is from positive to negative, as p
traverses from 0 to 1. Now, using Lemma 2.2, we conclude that Rl|m(p)/Rk|n(p) is decreasing
in p ∈ (0, 1), that is, Rk|n(p)/Rl|m(p) is increasing in p ∈ (0, 1). Hence the result is proved. �

Proof of Lemma 2.4(iii). On differentiating both sides of (A.7), we get

R′
k|n(p)

[Rk|n(p)]2
= k − 1

p

∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−2(1 − u

p

)
du, 0 < p < 1,

or equivalently

p
R′

k|n(p)

Rk|n(p)
=

(k − 1)
∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−2(1 − u

p

)
du

∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−1

du

, 0 < p < 1.

To prove the result it suffices to show that

N2(p)

D2(p)
def=

∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−2(1 − u

p

)
du

∫ 1

0
un−k

(
1 − u(1 − p)

p

)k−1

du

is decreasing in p ∈ (0, 1).

For any fixed real constant γ , consider

N2(p) − γ D2(p)
sgn=
∫ 1

0
ξ4(u, p)η4(u, p) du, 0 < p < 1,

where

ξ4(u, p) = un−k
(

1 − u(1 − p)

p

)k−1

, 0 < u < 1, 0 < p < 1
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and

η4(u, p) =
(

1 − u

1 − u(1 − p)

)
− γ, 0 < u < 1, 0 < p < 1.

Note that
ξ4(u, p) is TP2 in (u, p) ∈ (0, 1) × (0, 1) (A.10)

and, for every fixed u ∈ (0, 1),

η4(u, p) is decreasing in p ∈ (0, 1). (A.11)

Moreover, for any fixed p ∈ (0, 1),

1 − u

1 − u(1 − p)
is decreasing in u ∈ (0, 1).

Using Lemma 2.2 we get that, for any fixed p ∈ (0, 1), η4(u, p) changes sign at most once and,
if the change of sign does occur, it is from positive to negative, as u traverses from 0 to 1. Also,
using this together with (A.10) and (A.11) in Lemma 2.1, we get that N2(p) − αD2(p) changes
sign at most once and, if the change of sign does occur, it is from positive to negative, as
p traverses from 0 to 1. Now, using Lemma 2.2, we conclude that N2(p)/D2(p) is decreasing
in p ∈ (0, 1), and hence the result is proved. �

Proof of Theorem 3.1. Note that

F̄τ1(X)(x) = h1(F̄X(x)) and F̄τ2(Y)(x) = h2(F̄Y (x)), x > 0,

which gives failure rates of τ1(X) and τ2(Y) as

rτ1(X)(x) = fX(x)h′
1(F̄X(x))

h1(F̄X(x))
= rX(x)H1(F̄X(x)), x > 0

and

rτ2(Y)(x) = fY (x)h′
2(F̄Y (x))

h2(F̄X(x))
= rY (x)H2(F̄Y (x)), x > 0,

respectively. Then τ1(X) ≺
c

τ2(Y) holds if and only if

rτ1(X)(x)

rτ2(X)(x)
=
[

rX(x)

rY (x)

] [
H1(F̄X(x))

H2(F̄Y (x))

]
is increasing in x > 0.

To prove the theorem it suffices to show that

rX(x)

rY (x)
is increasing in x > 0 (A.12)

and
H1(F̄X(x))

H2(F̄Y (x))
is increasing in x > 0. (A.13)

Note that (A.12) holds as X ≺
c

Y . Further, (A.13) holds if and only if

r̃Y (x)

[
(1 − F̄Y (x))

H′
2(F̄Y (x))

H2(F̄Y (x))

]
≥ r̃X(x)

[
(1 − F̄X(x))

H′
1(F̄X(x))

H1(F̄X(x))

]
for all x > 0. (A.14)
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Since Y ≤rh X, we have

r̃Y (x) ≤ r̃X(x) and F̄Y (x) ≤ F̄X(x) for all x > 0. (A.15)

Now consider the following two cases.

Case I. Let (1 − p)H′
1(p)/H1(p) be decreasing in p ∈ (0, 1). Then

(1 − F̄Y (x))
H′

2(F̄Y (x))

H2(F̄Y (x))
≥ (1 − F̄Y (x))

H′
1(F̄Y (x))

H1(F̄Y (x))
≥ (1 − F̄X(x))

H′
1(F̄X(x))

H1(F̄X(x))
for all x > 0,

where the first inequality follows from condition (i) and the second inequality follows from
(A.15) and condition (ii).

Case II. Let (1 − p)H′
2(p)/H2(p) be decreasing in p ∈ (0, 1). Then

(1 − F̄Y (x))
H′

2(F̄Y (x))

H2(F̄Y (x))
≥ (1 − F̄X(x))

H′
2(F̄X(x))

H2(F̄X(x))
≥ (1 − F̄X(x))

H′
1(F̄X(x))

H1(F̄X(x))
for all x > 0,

where the first inequality follows from (A.15) and (ii) and the second inequality follows from
(i). Now, from Cases I and II, we obtain

−(1 − F̄Y (x))
H′

2(F̄Y (x))

H2(F̄Y (x))
≤ −(1 − F̄X(x))

H′
1(F̄X(x))

H1(F̄X(x))
for all x > 0. (A.16)

Further, (i) implies that

−(1 − F̄X(x))
H′

1(F̄X(x))

H1(F̄X(x))
≥ 0 for all x > 0. (A.17)

Combining (A.15), (A.16), and (A.17), we get (A.14). Hence the result is proved. �

Proof of Theorem 3.2. Note that

Fτ1(X)(x) = 1 − h1(F̄X(x)) and Fτ2(Y)(x) = 1 − h2(F̄Y (x)), x > 0,

which gives reversed failure rates of τ1(X) and τ2(Y) as

r̃τ1(X)(x) = fX(x)h′
1(F̄X(x))

1 − h1(F̄X(x))
= r̃X(x)R1(F̄X(x)), x > 0

and

r̃τ2(Y)(x) = fY (x)h′
2(F̄Y (x))

1 − h2(F̄X(x))
= r̃Y (x)R2(F̄Y (x)), x > 0,

respectively. Then τ1(X) ≺
b

τ2(Y) holds if and only if

r̃τ1(X)(x)

r̃τ2(X)(x)
=
[

r̃X(x)

r̃Y (x)

] [
R1(F̄X(x))

R2(F̄Y (x))

]
is decreasing in x > 0.
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To prove the theorem it suffices to establish that

r̃X(x)

r̃Y (x)
is decreasing in x > 0 (A.18)

and
R1(F̄X(x))

R2(F̄Y (x))
is decreasing in x > 0. (A.19)

Note that (A.18) holds as X ≺
b

Y . Further, (A.19) holds if and only if

rY (x)

[
F̄Y (x)

R′
2(F̄Y (x))

R2(F̄Y (x))

]
≤ rX(x)

[
F̄X(x)

R′
1(F̄X(x))

R1(F̄X(x))

]
for all x > 0. (A.20)

Since X ≤hr Y , we have

rY (x) ≤ rX(x) and F̄X(x) ≤ F̄Y (x) for all x > 0. (A.21)

Now consider the following two cases.

Case I. Let pR′
1(p)/R1(p) be decreasing in p ∈ (0, 1). Then

F̄Y (x)
R′

2(F̄Y (x))

R2(F̄Y (x))
≤ F̄Y (x)

R′
1(F̄Y (x))

R1(F̄Y (x))
≤ F̄X(x)

R′
1(F̄X(x))

R1(F̄X(x))
for all x > 0,

where the first inequality follows from (i) and the second inequality follows from (A.21)
and (ii).

Case II. Let pR′
2(p)/R2(p) be decreasing in p ∈ (0, 1). Then

F̄Y (x)
R′

2(F̄Y (x))

R2(F̄Y (x))
≤ F̄X(x)

R′
2(F̄X(x))

R2(F̄X(x))
≤ F̄X(x)

R′
1(F̄X(x))

R1(F̄X(x))
for all x > 0,

where the first inequality follows from (A.21) and (ii) and the second inequality follows from
(i). Now, from Cases I and II, we obtain

F̄Y (x)
R′

2(F̄Y (x))

R2(F̄Y (x))
≤ F̄X(x)

R′
1(F̄X(x))

R1(F̄X(x))
for all x > 0. (A.22)

Further, (i) implies that

F̄X(x)
R′

1(F̄X(x))

R1(F̄X(x))
≥ 0 for all x > 0. (A.23)

Combining (A.21), (A.22), and (A.23), we get (A.20). Hence the result is proved. �

Proof of Theorem 4.1. We have

F̄TC (x) = h(1 − (1 − F̄X(x))m+1), x > 0

and
F̄TS (x) = 1 − (1 − h(F̄X(x)))m+1, x > 0.

Consequently the failure rates of TC and TS are given by

rTC (x) = (m + 1) fX(x)(1 − F̄X(x))m h′(1 − (1 − F̄X(x))m+1)

h(1 − (1 − F̄X(x))m+1)
, x > 0

https://doi.org/10.1017/apr.2019.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.63


Relative ageing of coherent systems 371

and

rTS (x) = (m + 1) fX(x)(1 − h(F̄X(x)))m h′(F̄X(x))

1 − (1 − h(F̄X(x)))m+1
, x > 0,

respectively. Then TS ≺
c

(resp. �
c

) TC holds if and only if

rTS (x)

rTC (x)
=
(

(1 − h(F̄X(x)))mh′(F̄X(x))

1 − (1 − h(F̄X(x)))m+1

)(
h(1 − (1 − F̄X(x))m+1)

(1 − F̄X(x))mh′(1 − (1 − F̄X(x))m+1)

)

is increasing (resp. decreasing) in x > 0, that is, if and only if(
(1 − h(p))mh′(p)

1 − (1 − h(p))m+1

)(
h(1 − (1 − p)m+1)

(1 − p)mh′(1 − (1 − p)m+1)

)

is decreasing (resp. increasing) in p ∈ (0, 1). Hence the result is proved. �

Proof of Corollary 4.1. The reliability function of an n-out-of-n system with i.i.d. compo-
nent lifetimes is given by h(p) = pn. Thus, to prove the result it suffices to show that (4.1) holds
for h(p) = pn with m = 1 and n ≥ 2. Thus proving the result boils down to showing that

(2 − p)(1 − pn)

(1 − p)(2 − pn)
is increasing in p ∈ (0, 1),

or equivalently
1 + ζ1(p) is increasing in p ∈ (0, 1),

where

ζ1(p) = p − pn

2 − 2p − pn + pn+1
, 0 < p < 1.

We have
ζ ′

1(p)
sgn= 2 − ζ2(p), 0 < p < 1,

where
ζ2(p) = 2npn−1 − 3(n − 1)pn + npn+1 − p2n, 0 < p < 1.

Clearly
ζ ′

2(p) = npn−2ζ3(p), 0 < p < 1,

where

ζ3(p) = 2(n − 1) − 3(n − 1)p + (n + 1)p2 − 2pn+1

≥ (n − 1)(2 − 3p + p2)

= (n − 1)(2 − p)(1 − p) ≥ 0, 0 < p < 1.

From the above we conclude that ζ2(p) is increasing in p ∈ (0, 1) with ζ2(0) = 0 and ζ2(1) = 2.
Consequently 0 ≤ ζ2(p) ≤ 2. This, in turn, implies that ζ1(p) is increasing in p ∈ (0, 1), and
hence the result is proved. �

Proof of Theorem 4.2. We have

FTC (x) = 1 − h(1 − (1 − F̄X(x))m+1), x > 0
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and
FTS (x) = (1 − h(F̄X(x)))m+1, x > 0.

Consequently the reversed failure rates of TC and TS are given by

r̃TC (x) = (m + 1) fX(x)(1 − F̄X(x))m h′(1 − (1 − F̄X(x))m+1)

1 − h(1 − (1 − F̄X(x))m+1)
, x > 0

and

r̃TS (x) = (m + 1) fX(x)
h′(F̄X(x))

1 − h(F̄X(x))
, x > 0,

respectively. Then TS ≺
b

TC holds if and only if

r̃TS (x)

r̃TC (x)
=
(

h′(F̄X(x))

1 − h(F̄X(x))

)(
1 − h(1 − (1 − F̄X(x))m+1)

(1 − F̄X(x))mh′(1 − (1 − F̄X(x))m+1)

)
is decreasing in x > 0,

or equivalently(
(1 − p)h′(p)

1 − h(p)

)(
1 − h(1 − (1 − p)m+1)

(1 − (1 − (1 − p)m+1))h′(1 − (1 − p)m+1)

)
is increasing in p ∈ (0, 1),

that is, if and only if

R(p)

R(1 − (1 − p)m+1)
is increasing in p ∈ (0, 1),

and hence the result is proved. �

Proof of Proposition 4.1. Since pR′(p)/R(p) is decreasing in p ∈ (0, 1), and p ≤ 1 − (1 −
p)m+1, for all p ∈ (0, 1), we have

p
R′(p)

R(p)
≥ (1 − (1 − p)m+1)

R′(1 − (1 − p)m+1)

R(1 − (1 − p)m+1)
for all p ∈ (0, 1). (A.24)

Further, it can be easily checked that, for all p ∈ (0, 1),

1 − (1 − p)m+1 ≥ (m + 1)p(1 − p)m.

Since pR′(p)/R(p) is positive for all p ∈ (0, 1), we get from the above inequality that, for all
p ∈ (0, 1),

(1 − (1 − p)m+1)
R′(1 − (1 − p)m+1)

R(1 − (1 − p)m+1
≥ (m + 1)p(1 − p)m R′(1 − (1 − p)m+1)

R(1 − (1 − p)m+1)
. (A.25)

Combining (A.24), and (A.25), we get

p
R′(p)

R(p)
≥ (m + 1)p(1 − p)m R′(1 − (1 − p)m+1)

R(1 − (1 − p)m+1
for all p ∈ (0, 1),

or equivalently
R(p)

R(1 − (1 − p)m+1)
is increasing in p ∈ (0, 1).
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Now the result follows using Theorem 4.2. �

Proof of Theorem 5.1. Note that, for any fixed t > 0,

F̄τ (Xt)(x) = h

(
F̄X(t + x)

F̄X(t)

)
, F̄(τ (X))t (x) = h(F̄X(t + x))

h(F̄X(t))
, x > 0,

rτ (Xt)(x) =
fX(t + x)h′

(
F̄X(t + x)

F̄X(t)

)

F̄X(t)h

(
F̄X(t + x)

F̄X(t)

) = rX(t + x)H

(
F̄X(t + x)

F̄X(t)

)
, x > 0,

(A.26)

and

r(τ (X))t (x) = fX(t + x)h′(F̄X(t + x))

h(F̄X(t + x))
= rX(t + x)H(F̄X(t + x)), x > 0.

Then τ (Xt) ≺
c

(τ (X))t holds if and only if

rτ (Xt)(x)

r(τ (X))t (x)
= H(F̄X(t + x)/F̄X(t))

H(F̄X(t + x))
is increasing in x > 0,

which is equivalent to the fact that, for every fixed q ∈ (0, 1),

H(p/q)

H(p)
is decreasing in p ∈ (0, q).

Further, this holds if and only if

p

q

(
H′(p/q)

H(p/q)

)
≤ p

H′(p)

H(p)
for all 0 < p ≤ q < 1,

or equivalently

p
H′(p)

H(p)
is decreasing in p ∈ (0, 1).

Hence the result is proved. �

Proof of Theorem 5.2. Let t > 0 be fixed. From (A.26) we have

r̃τ (Xt)(x) =
fX(t + x)h′

(
F̄X(t + x)

F̄X(t)

)

F̄X(t)

(
1 − h

(
F̄X(t + x)

F̄X(t)

)) , x > 0

and

r̃(τ (X))t (x) = fX(t + x)h′(F̄X(t + x))

h(F̄X(t)) − h(F̄X(t + x))
, x > 0.
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Then τ1(Xt) ≺
b

(resp. �
b

) (τ2(X))t holds if and only if

r̃τ (Xt)(x)

r̃(τ (X))t (x)
=
[(

h′
(

F̄X(t + x)

F̄X(t)

))/(
F̄X(t)

(
1 − h

(
F̄X(t + x)

F̄X(t)

)))] [
h(F̄X(t)) − h(F̄X(t + x))

h′(F̄X(t + x))

]

is decreasing (resp. increasing) in x > 0, which is equivalent to (5.1). Hence the result is
proved. �

Proof of Corollary 5.2. The reliability function of a 1-out-of-n system is given by h(p) =
1 − (1 − p)n, 0 < p < 1. Thus, to prove the result it suffices to show that (5.1) holds for h(p) =
1 − (1 − p)n, 0 < p < 1, that is, the result will be proved if we can show that, for every fixed
q ∈ (0, 1),

(1 − p)n − (1 − q)n

(1 − p)n−1(q − p)
is increasing in p ∈ (0, q),

or equivalently

ζ5(y)
def= yn − 1

(y − 1)yn−1
is decreasing in y > 1.

We have
ζ ′

5(y)
sgn= yn−2ζ6(y), y > 1,

where
ζ6(y) = −yn + ny − (n − 1), y > 1.

Note that ζ6(·) is a decreasing function with ζ6(1) = 0, and hence ζ6(y) ≤ 0 for all y > 1.
Further, this implies that ζ5(y) is decreasing in y > 1. Hence the result is proved. �
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