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Abstract

In the present analysis we study the time dependent, self-consistent propagation of nonlinear electromagnetic pulses in
plasmas. Interactions of the electromagnetic pulses and wakefields are fully taken into account, from which one obtains
accurate information on pulse time dependent dynamics and stability. While wide pulses may or may not retain the
localized shape depending on their power, narrower pulses always tend to delocalize as time evolves.
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1. INTRODUCTION

Propagation of intense electromagnetic pulses in plasmas is a
subject of current interest in a variety of areas that make use
of the available modern laser technologies, among which we
include particle and photon acceleration, nonlinear optics,
laser fusion and other nonlinear processes. (Kozlov et al.,
1979; Tajima & Dawson, 1979; Mofiz & de Angelis,
1985; Shukla et al., 1986; Esarey et al., 1998; Farina &
Bulanov, 2001; Mendonça, 2001; Poornakala et al., 2002;
Bingham, 2003; Joshi & Katsouleas, 2003).
Intense electromagnetic pulses displace plasma electrons

and create a resulting ambipolar space-charge field with the
associated density fluctuations. The ambipolar field here is
known as the wakefield and can be used as an accelerating
structure if stable and coherent enough that witnesses
particles can absorb energy in a resonant fashion. Since the
pulse couples with the wakefield, generation of the latter
can affect the behavior of the former. Therefore, it is of
interest to examine the coupled dynamics involving both
fields.
This sort of investigation has been done in the literature.

However, since focus has been mostly directed to fast
pulses propagating nearly at the speed of light c, underdense
plasma approximations are frequently used where the plasma
frequency ωp is taken as small quantity. In this case, phase
and group velocity are approximated by the speed of light

(Duda & Mori, 2000) and pulse distortions are either some-
times neglected, or treated under stationary wave assump-
tions (Bonatto et al., 2005).

A series of results of laser-plasma interactions are thus
very specific to the underdense approximations, and our in-
tention is therefore to examine how the system behaves
when the approximation is relaxed. In particular, underdense
approximations turn out to be too restrictive if one desires to
follow the time dependent dynamics of laser pulses along the
direction of modulation. In more specific terms, we shall
investigate to what extent can an electromagnetic pulse
retain its initial shape following its interaction with the wake-
field, a relevant issue not only to accelerators but also to all
sort of transmission of information using electromagnetic so-
litons (Gibbon, 2007).

For a given pulse power, the dynamics is largely dictated
by the pulse width. One of the findings here is that while
wider pulses with widths sufficiently larger than the
plasma wave length c/ωp may keep their shapes even in
the presence of space-charge fields, narrow pulses with
widths comparable to the plasma wavelength always tend
to spread as time evolves. All depends ultimately on the
pulse power and on relative roles played by relativistic and
ponderomotive nonlinearities.

The paper is organized as follows. In Section 2, we define
the relevant set of equations, in Section 3, we draw analytical
estimates from approximate forms of the full theory identify-
ing the regimes of interest, in Section 4, we compare esti-
mates with full simulations, and in Section 5, we
summarize and conclude the work.
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2. THE MODEL

We initially follow previous works and the modulational
formalism to reach the point we wish to discuss (Shukla
et al., 1986; de Oliveira et al., 1995; Duda & Mori, 2000).
Let us then consider our system as consisting of a mobile

cold electronic fluid and a neutralizing fixed ionic back-
ground. We shall see that in terms of particle dynamics,
even the smallest frequency scales analyzed in present
model are on the order of the electron plasma frequency,
which indeed allows to neglect ion motion.
All fields, radiation and wakes, propagate along the x axis

of our coordinate system. The laser field is described by the
associated vector potential A that takes the form

A = ẑA(x, t)ei(k0x−ω0 t) + c.c., (1)

where A is the slowly varying complex amplitude of the field,
with k0 and ω0, respectively, as the wavevector and frequency
of the high-frequency carrier.
From the wave equation for the vector potential

1
c2

∂2A
∂t2

− ∂2A
∂x2

= μ0j, (2)

and the equations of motion for the electron fluid that allows
to write the current j in terms of the vector potential, one can
write the governing equation for the weakly relativistic am-
plitude A (|qA/mc2|≪1, with m and q as the electron mass
and charge, respectively) in the form

(k20 − ω2
0)A+ 2iω0

∂A
∂t

− 2ik0
∂A
∂x

− ∂2A
∂t2

+ ∂2A
∂x2

= (−1+ n− |A|2
2

)A,

(3)

where we have migrated to dimensionless quantities defined
in the form ωpx/c→ x, ωpt→ t, qA/mc2→A, and (n− n0)/
n0→ n. n0 is the equilibrium density, ωp= n0q

2/ε0m
denotes the plasma frequency, and μ0 and ε0 are the magnetic
and electric vacuum permeabilities. We note that the fre-
quency and wavevector of the carrier are normalized
likewise.
On the right-hand-side of Eq. (3), one can devise the non-

linear features of the theory: the ponderomotive nonlinearity
represented by the coupling involving density and vector
potential, and the cubic relativistic nonlinearity which has
its origins in the weakly relativistic expansion of the relativi-
sitc factor γ.
Under the same set of approximations and normalizations,

an equation for the slowly varying density fluctuations can be
obtained in the form

∂2n
∂t2

+ n = 1
2
∂2|A|2
∂x2

, (4)

where the term on the right-hand-side reflects the pondero-
motive drive exciting the density wakefield.
We now proceed to reduce the equations into a simpler

form, but taking care to avoid the occasional assumption
used in underdense plasmas where the velocity of the laser
pulse is approximated by the speed of light. We first of all
note that in the slow modulational regime, it is convenient
to introduce the wave frame coordinates τ= t and ξ= x−
vgt where the group velocity of the radiation, vg, can be writ-
ten as vg= k0/ω0. If one moves to the new coordinates, and
realizes that due to the slow modulations ∂/∂τ≪vg∂/∂ξ, and
that without loss of generality the dimensionless dispersion
relation ω0

2= 1+ k0
2 is obeyed, Eqs. (3) and (4) for laser

and density fields take the form

−2iω0
∂A
∂τ

+ (v2g − 1)
∂2A

∂ξ2
= (−n+ |A|2

2
)A, (5)

v2g
∂2n

∂ξ2
+ n = 1

2
∂|A|2
∂ξ2

. (6)

Finally, we combine the nonlinear term |A|2/2 and the den-
sity field in Eqs. (5) and (6) into a new wakefield potential
function φ≡ vg

2n− |A|2/2 (and define κ≡ vg
2− 1) to write

the final form of the dynamical equations

−2iω0
∂A
∂τ

+ κ
∂2A

∂ξ2
− 1

2v2g
|A|2A

( )
+ 1

v2g
φA = 0, (7)

∂2f

∂ξ2
+ 1

v2g
φ = − 1

2v2g
|A|2, (8)

which is similar to derivations found in the literature (Shukla
et al., 1986; Gibbon, 2007). We note that Eq. (8) governing
the wakefield becomes time independent and no longer de-
pends on derivatives of the laser pulse, which certainly
helps to construct solutions for the problem. In addition,
Eq. (7) now contains a cubic nonlinearity multiplied by the
coefficient κ. In underdense approximations or in self-
focusing studies, this term is occasionally neglected, but
we shall see that its presence here is substantial to determine
the dynamical regimes of the interaction.
All in all, the set (7) and (8) incarnates our basic model

and shall now be the subject of our investigation.

3. INTEGRAL EXPRESSION FOR THE
WAKEFIELD AND ANALYTICAL ESTIMATES

We first of all observe that since Eq. (8) is time independent,
it can be integrated once the configuration of the laser pulse is
given at any time, and proper boundary conditions are estab-
lished. The proper boundary conditions results from the re-
quirement that ahead of the pulse the wake is null, and the
final expression for the wakefield can be written with help
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of Green’s function as (Gibbon 2007)

φ(ξ) = 1
2vg
∫
∞

ξ sin
ξ− ξ′

vg

( )
|A(ξ′)|2dξ′. (9)

Eq. (9) shall be used in its full form in the coming simu-
lations, but let us focus presently on two limits that can be
examined.

3.1. Wide Pulses

The first case is the one where the width of the laser pulse—
let us call it Δ — is much larger than the plasma wavelength
c/ωp — in our dimensionless variables, Δ≪1. Under this
condition the intensity |A(ξ)|2 varies slowly in Eq. (9) and
integration by parts shows that φ→−|A|2/2 and n→ 0, if
one approximates ∂|A|2/∂ξ→ 0. The wide pulse dynamics
therefore turns out to be described by a nonlinear Schrödin-
ger equation (NLS) of the form

−2iω0
∂A
∂τ

+ κ
∂2A

∂ξ2

( )
− |A|2A

2
= 0. (10)

Modeling the pulse as a Gaussian with time dependent am-
plitude and width, Lagrangian average methods (Duda &
Mori, 2000; Rizzato et al., 2003; Nunes et al., 2009) quickly
reveal that under the present circumstances a stable pulse sol-
ution to Eq. (10) does exist, which can be found as the mini-
mum of the effective potentialUeff resulting from the method.
The method generically allows to obtain an approximated dy-
namical equation for the pulse width Δ in the form

Δ̈ = − ∂Ueff

∂Δ
, (11)

where in the wide pulse approximation Ueff reads

Uwide
eff = κ

2π2ω2
0Δ

4κ
Δ

+W

( )
, (12)

W= ∫|A|2dx measuring the photon number within the pulse.
κ< 0 and Ueff

wide has exactly one minimum. One can write the
equilibrium width Δw at the potential minimum of the stable
pulse in the form

Δw = 8|κ|/W , (13)

and the oscillatory frequency of slightly perturbed pulses
around the minimum in the form

Ω = W2

32|κ|πω0

. (14)

To illustrate for further purposes the general form of the wide
pulse effective potential, the function Ueff

wide is plotted in
Figure 1 for vg

2= 0.99 and W= 0.01.
If Δw≫1 the stable solution is located in the wide pulse

region and the wide pulse approximation should be expected
to remain valid for all times if the initial condition lies suffi-
ciently close to the stable solution and satisfies Δ̇= 0. On the
other hand, when Δw≲1, even if one starts with an initially
wide pulse Δ (τ= 0) >1 the off-equilibrium pulse will
drift toward the equilibrium Δw at the potential minimum.
However, since the equilibrium now sits in a region where
the wide pulse approximation does not hold, the fate of the
pulse is uncertain and we shall resort to numerical simu-
lations to investigate the dynamics there.

3.2. Narrow Pulses

Narrow pulses act like delta functions. Therefore φ≈ 0 inside
the pulse, although it can be large behind where it reads φ
(ξ, τ)≈ (1/2vg)W sin [(ξ− ξ0 (τ))/vg] with ξ0(τ) as the
pulse position. Since φ→ 0 inside the pulse, the full
expression (7) can then be approximated by

−2iω0
∂A
∂τ

+ κ
∂2A

∂ξ2
− |A|2A

2v2g

( )
= 0. (15)

Dispersive and nonlinear terms have opposite signs and the
Lagrangian average method now reveals that regardless of
the pulse power no static solution is to be found, with any
pulse-like initial condition always spreading out as time
evolves. The effective potential in this case reads

Unarrow
eff = κ2

2π2v2gω
2
0Δ

4v2g
Δ

+W

( )
, (16)

which indeed indicates that Ueff
narrow has no local minimum

along the positive Δ axis. Since no fixed point is foundFig. 1. Ueff
wide versus Δ for vg

2= 0.99 and W= 0.01.
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here, the width grows until it reaches the transition region
Δ∼ 1 where the approximation again fails and numerical
work is once more required. Ueff

wide is represented in Figure 2
for the same parameters of Figure 1.
To summarize, our estimates show the existence of a fixed

point Δw only in the wide pulse approximation. If Δw≫1, the
position of the fixed point is consistent with the
approximation and any condition launched sufficiently
close to the equilibrium will remain there. If Δw≲1 the
fixed point is no longer consistent with the approximation.
In this case, wide initial conditions will still drift toward
Δw initially, but since the wide pulse approximation does
not hold at Δ∼ Δw the pulse shall be accompanied numeri-
cally there.

On the other hand, the narrow pulse approximation does
not offer any new fixed point. The respective effective poten-
tial clearly shows that any initial condition launched in the
narrow pulse region always tends to move toward the wide
region, across the transition region Δ∼ 1 where both
approximations fail. Although the pulse initially behaves
like a delta function, it is bound to reach the transition
region where numerical analysis is again required.

4. COMPARING THE FULL SYSTEM AND
ESTIMATES

With the previous estimates at our disposal, we now proceed
to investigate the full system defined by Eqs. (7), and (8) or
(9).
One particularly clear way to perform the analysis is

through the construction of contour plots for the relevant
fields. Let us do that for the laser intensity |A(ξ, τ)|2.
In Figure 3, we display the contour plots in the case where

a fixed point can be found in the wide pulse region. Panel (a)
depicts the approximation obtained from integration of the
NLS equation, Eq. (10), and in panel (b) we plot the full sol-
ution to the set (7) and (9). We take the photon number as
W= 0.01 with vg

2= 0.99. In that case, κ= 0.01 and Δw=
8, which indeed places the equilibrium solution in the wide
pulse regime. As an initial condition, we launch a pulse
with the shape of a hyperbolic secant of width Δ(τ= 0)=
10. It is important to note that in all cases numerically inves-
tigated in this paper, for each initial Δ, we start sitting
precisely on top of the potential curves depicted either in
Figure 1 or Figure 2; in this case, the initial momentum
associated with the pulse expansion or contraction is null.
Here one observes a nice agreement between the NLS
approximation (10) and the full theory, with the pulse oscil-
lating in a steady fashion around the equilibrium solution in

Fig. 2. Ueff
narrow versus Δ for the same parameters of Figure 1.

Fig. 3. (Color online) Countour plots of |A(ξ, τ)|2 forW= 0.01, vg
2= 0.99 and Δ(0)= 10. In (a) the NLS wide approximation (10) and in

(b) the full dynamics. The agreement is remarkable. In all countour plots, brighter shades correspond to higher amplitudes.
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both cases. The oscillatory frequency also agrees well with
the value obtained from expression (14), at least for shorter
times where radiation from the oscillating pulse is not yet
significant.
If we hold all the parameters unchanged, but now start

from a narrow width Δ< 1, Δ(0)= 0.25, the case can be in-
vestigated with help of Figure 4. Comparision of the dy-
namics generated by the approximated NLS (15) as shown
in panel (a), and by the full system (7) and (9) in panel (b),
reveals that for short times the pulse starts opening up, as pre-
dicted by the narrow pulse approximation. For later times,
panel (c) shows that the pulse crosses the transition region
Δ∼ 1 mostly unhindered, and keeps opening up as it reaches
and moves further into the wide region. The slight distortion
of the full system, marginally seen in panel (c) as a leftward
bending, takes place as the transition Δ∼ 1 is approached. It
is actually a little surprising that the transition region should
have only little effect on the pulse. But if one comes to think
on the situation more carefully, as the pulse width reaches the
transition, it is already opening up rapidly thanks to the fact
that the initial condition sits on a much higher effective
potential, as suggested by expression (16) for Ueff

narrow. As a
consequence of the acquired “momentum,” or inertial dy-
namics, the pulse therefore gets across the transition essen-
tially undeterred. As a rule that can be checked with
further numerical discussion, the smaller the initial Δ, the
smaller the pulse distortion as it crosses the transition; this
agrees well with that view that smaller widths departs from
higher effective potentials.
We next investigate the case where W= 0.1, keeping the

previous value for vg. Now Δw∼ 0.8< 1, which means

that no stable solution exists in the wide region either.
Pulses starting off wide configurations initially have their
width reduced as commented earlier, but ultimately reach
the transition region where are strongly affected by the wake-
field as demonstrated in Figure 5. Panels (a) and (b) once
again, respectively, refer to the NLS (10) and the full
system for short times, while panel (c) depicts the full
system for long enough times that allow the pulse reaches
the transition region. In this case, the initial effective poten-
tial is not large enough to provide sufficient “momentum”

with which the pulse could clear the transition region, and
pulse distortion is thus appreciable.

Pulses starting off with a narrow configurations however
have the same sort of behavior as in the previous case of a
narrow initial condition. We start again from Δ(0)= 0.25
and the pulse simply keeps opening up, now with larger
distortion as it traverses the transition region. The respective
space-time history can be appreciated in the panels of
Figure 6 — panel (a) now represents the short time,
narrow pulse approximation provided by the NLS (15),
panel (b) again represents the short time story of the full
system, and panel (c) the long time story of the full
system, where the pulse crosses the transition and submerge
into the wide pulse region. For short times, full and approxi-
mated dynamics coincide, and at later times the more promi-
nent distortion, as compared with that of Figure 4, results
from the higher intensity wakefields generated here.

As a last view of the process, and to investigate issues
related to pulse distortion in settings allowing all initial con-
ditions to reach Δ∼ 1, in Figure 7, we display widths and
spatial configuration of the laser squared amplitude |A|2

Fig. 4. (Color online) Contour plots of |A(ξ, τ)|2, again for W= 0.01 and vg
2= 0.99. All cases now depart from a narrow initial condition

Δ(0)= 0.25. Panels (a) and (b) compare the NLS (10) and the full dynamics for short times. Panel (c) depicts the full dynamics for long
times; notice the different time scale of (c) as compared to (a) and (b). Space on all horizontal axes, and time on vertical axes.
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and wakefield φ at various instants of time, all for the case
W= 0.1, vg

2= 0.99 when Δw lies within the transition
region. In the upper row of panels, we represent full time
evolution of the width Δ in (a), and a series of snapshots of
the fields, (b) to (d), all for the initial condition Δ(0)= 10,

away from the respective attracting transition region. In the
lower row, we do the same for the narrow initial condition
Δ(0)= 0.25 in (e) and (f) to (h), respectively.
From the panels of Figure 7, once again one observes the

asymmetry regarding the initial position at which the pulse is

Fig. 5. (Color online) Contour plots of |A(ξ, τ)|2 now for W= 0.1, keeping vg
2= 0.99. All cases depart from the wide initial condition

Δ(0)= 10. As in the previous figure panels (a) and (b) compare the NLS (15) and the full dynamics for short times, and panel (c) depicts
the full dynamics for long times.

Fig. 6. (Color online) Contour plots of |A(ξ, τ)|2, again forW= 0.1 and vg
2= 0.99. All cases here depart from the narrow initial condition

Δ(0)= 0.25. Once again panels (a) and (b) compare the NLS (15) and the full dynamics for short times, and panel (c) depicts the full
dynamics for long times.
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launched. Narrow pulses clear the transition and wider pulses
are trapped and highly distorted there.

5. CONCLUSIONS

The present paper was devoted to the study of the coupled
dynamics of laser pulses and wakefields in laser-plasmas
systems.
Average Lagrangian methods have been employed to

create estimates with which one can be guided in the
investigation.
Briefly, restoring dimensions to the physical quantities,

stable laser pulses were found in low power regimes where
pulse width is much larger than the plasma wavelength,
Δ≫c/ωp. In that case, estimates and full simulations of the
coupled system agree to a large extent.
In cases of high power pulses, stable solutions are absent.

Pulses initially launched from wide initial conditions shrink
until it reach the transition region Δ∼ c/ωp where they are
heavily distorted. On the other hand, pulses launched from
narrow initial conditions Δ≪c/ωp traverse the transition
region and keep spreading as they move deeper into the
wide regimes. The asymmetry is credited to the fact that
initially narrower pulses always depart from higher effective
potentials, enabling the pulses to transverse the transition
region Δ∼ c/ωp due to inertial effects.
If Δ∼ c/ωp, wakes are strongly excited. When narrow

pulses traverse the transition region, wakes are briefly excited
for as long as the pulse stays in the transition region. When
the pulse comes from the wide pulse side and is allowed to
reach the transition in higher power regimes such that Δw∼
c/ωp, it remains partially trapped there. Wakes are excited
for longer stretches of time, albeit in an incoherent form.
Wework with low power levels and neglect wavebreaking,

which ought to be considered when |qA/mc2|∼ 1. For such a

large laser amplitude, fluid models must give way to PIC
codes that deal directly with particle or kinetic models. The
smaller amplitudes analyzed in this paper are however pre-
sent in models and experiments (Gibbon, 2007; Luttikhof
et al., 2009), and the associated fluid models can certainly
help to clarify the corresponding physics. Depending on
pulse power and on how far from the transition region the
initial conditions are launched, the modulational process
described here may not be neglected. In the fastest cases
considered in this work the time needed to produce appreci-
able distortion in the laser pulse ranges from 10–100 plasma
periods, which indeed suggests an accurate description of the
laser-wakefield self-consistent dynamics.

As a final comment on the subject of time scales, we note
that our longest pulses satisfy (Δw/c)ωp= τpωp∼ 8 (τp=
Δw/c is the pulse duration time) which is still short enough
to preclude ion motion.
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