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GAUSSIAN CURVATURE AND UNICITY PROBLEM OF
GAUSS MAPS OF VARIOUS CLASSES OF SURFACES

PHAM HOANG HA

Abstract. In this article, we establish a new estimate for the Gaussian curva-

ture of open Riemann surfaces in Euclidean three-space with a specified confor-

mal metric regarding the uniqueness of the holomorphic maps of these surfaces.

As its applications, we give new proofs on the unicity problems for the Gauss

maps of various classes of surfaces, in particular, minimal surfaces in Euclidean

three-space, constant mean curvature one surfaces in the hyperbolic three-

space, maximal surfaces in the Lorentz–Minkowski three-space, improper affine

spheres in the affine three-space and flat surfaces in the hyperbolic three-space.

§1. Introduction

One of the well-known problems in minimal surface theory is to under-

stand the global behavior of the Gauss map. In 1988, Fujimoto [8] proved

Nirenberg’s conjecture that if M is a complete nonflat minimal surface in

R3, then its Gauss map can omit at most four points in the unit two-sphere

S2, and there are a number of examples showing that the bound is sharp.

Later, Fujimoto improved the previous result by giving a curvature bound

for a minimal surface, which is not necessarily complete, when all of the

multiple values of the Gauss map are totally ramified. Here, a value α of a

map or function g is said to be totally ramified if the equation g = α has no

simple roots. He proved the following theorem.

Theorem 1.1. (See [9]) Let x :M → R3 be a minimal surface immersed

in R3 with its Gauss map g :M → C. Let {aj}qj=1 be q distinct points in C.
Suppose that g is ramified over aj with multiplicity at least mj for each j

and
q∑
j=1

(
1− 1

mj

)
> 4.
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Then there exists a constant C, depending on the set of points {aj}qj=1 but

not the surface, such that

|K(p)|1/2d(p) 6 C,

where K(p) is the Gaussian curvature of the surface at p and d(p) is the

geodesic distance from p to the boundary of M.

After that, the relations of the omitted properties or ramifications of the

Gauss map and the Gaussian curvature of minimal surfaces have been

studied (see [14, 18, 20, 30, 34, 36] for some newest results).

On the other hand, Fujimoto [10] gave some uniqueness theorems for the

Gauss maps of minimal surfaces, which are analogous to the Nevanlinna

unicity theorem [33] for meromorphic functions on the complex plane C.
Precisely, he proved the following theorem.

Theorem 1.2. (See [10]) Let M and M̂ be two nonflat minimal surfaces

in R3 with their Gauss maps g and ĝ, respectively. Suppose that there is a

conformal diffeomorphism Ψ from M onto M̂ and there are q distinct points

α1, α2, . . . , αq in C such that g−1(αj) = (ĝ ◦Ψ)−1(αj) for every 1 6 j 6 q.

Then we have necessarily g ≡ ĝ ◦Ψ if q > 7 and either M or M̂ is complete.

He also gave an example to show that number 7 is the best possible.

Recently, many results on the unicity problems of the Gauss maps of

minimal surfaces were introduced (see [11, 15, 17, 20, 22, 35, 37] for more

details).

A natural question is whether there is a relation between the Gaussian

curvature and the unicity problem of the Gauss maps of minimal surfaces

of a nonflat minimal surface in R3. In this paper, we will give an affirmative

answer to that question.

Moreover, there exist several classes of immersed surfaces whose Gauss

maps have these function-theoretic properties. For instance, Yu [43] showed

that the hyperbolic Gauss map of a nonflat complete constant mean

curvature one surface in hyperbolic three-space H3 can omit at most four

values, Kawakami and Nakajo [23] obtained that the maximal number of

omitted values of the Lagrangian Gauss map of weakly complete improper

affine spheres (or improper affine fronts) in the affine three-space R3 is 3,
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unless it is an elliptic paraboloid, or Kawakami [19] gave similar results for

flat fronts in H3. Furthermore, Kawakami [18, 20] elucidated the geometric

interpretation of function-theoretic properties for the Gauss maps of several

classes of immersed surfaces in three-dimensional space forms, for example,

minimal surfaces in Euclidean three-space, constant mean curvature one

surfaces in the hyperbolic three-space, maximal surfaces in the Lorentz–

Minkowski three-space, improper affine spheres in the affine three-space

and flat surfaces in hyperbolic three-space (also see the review article [21]

for instance).

We first want to show the relation of the Gaussian curvature and the

unicity problem of the Gauss maps of minimal surfaces. But, motivated by

the recent works of Kawakami (which are mentioned above), we would like

to study the same situations for the various classes of surfaces. The main

purpose of this article is to construct a new estimate for the Gaussian curva-

ture of several classes of immersed surfaces in three-dimensional space forms

regarding the uniqueness of the holomorphic maps of these surfaces. After

that, we use it to give new proofs on the unicity problems for the Gauss maps

of those surfaces. The paper is organized as follows. In Section 2, we first give

a curvature bound for the conformal metrics ds2 = (1 + |g|2)m|ω|2, dŝ2 =

(1 + |ĝ|2)m|ω̂|2 on open Riemann surfaces M, M̂ , respectively, where m

is a positive integer, ω and ω̂ are holomorphic 1-forms, and g and ĝ are

holomorphic maps into C on M and M̂ , respectively (Theorem 2.5). After

that, we give some examples to show that our main result is optimal

(Examples 2.6 and 2.7). As a corollary of it, we give a unicity theorem

(Theorem 2.8) for g on M with the complete metric ds2. We will prove

the main result in Section 3. In Section 4, we recall the backgrounds of the

several classes of immersed surfaces in three-dimensional space forms based

on the terminology in [20, 21]: minimal surfaces in R3 (Section 4.1), constant

mean curvature one surfaces in H3 (Section 4.2), maximal surfaces in the

Lorentz–Minkowski three-space R3
1 (Section 4.3), improper affine spheres in

R3 (Section 4.4) and flat surfaces in hyperbolic three-space H3 (Section 4.5).

The reason is the convenience of the reader to realize that our main results

can give some unicity theorems of Kawakami in [20]. We thus show some

value-distribution-theoretic properties for the Gauss maps of the following

classes of surfaces as applications of our main results.
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§2. Statements of the main results

2.1 Curvature bound for specified conformal metrics on open

Riemann surfaces

Let M be a Riemann surface with a metric ds2 which is conformal,

namely, represented as

ds2 = λ2
z|dz|2

with a positive C∞ function λz in terms of a holomorphic local coordinate.

Definition 2.1. (See [12]) For each point p ∈M, we define the Gaus-

sian curvature of the metric ds2 of M at p by

K ≡Kds2 :=−∆z log λz
λ2
z

.

Definition 2.2. (See [5]) A curve p(t), 0 6 t < 1, on a Riemann surface

M is called divergent if for every compact subset K on M, there exists t0 < 1

such that p(t) 6∈K for every t > t0.

Definition 2.3. (See [5]) The Riemann surface M with a metric ds2 is

complete if the length of every divergent curve on M is infinite.

Definition 2.4. Let M, M̂ be two open Riemann surfaces with the

conformal metrics ds2, dŝ2, respectively. The map Ψ: M → M̂ is called

a conformal diffeomorphism if Ψ is biholomorphic and there exists a

(local) nowhere zero holomorphic function ζ such that ds2 = |ζ|2Ψ∗(dŝ2)

on coordinate charts.

The main theorem of this article is the following:

Theorem 2.5. Let M, M̂ be two open Riemann surfaces with the

conformal metrics

ds2 = (1 + |g|2)m|ω|2, dŝ2 = (1 + |ĝ|2)m|ω̂|2

where ω and ω̂ are holomorphic 1-forms, g and ĝ are holomorphic maps

into C on M and M̂ , respectively, and m is a positive integer. We

assume that there exists a conformal diffeomorphism Ψ: M → M̂ and

g, ĝ are nonconstant. Suppose that there exist q(> 5 +m) distinct values

α1, . . . , αq ∈ C such that g−1(αj) = (ĝ ◦Ψ)−1(αj) (j = 1, . . . , q). Then there

exists a constant C, depending on m and α1, . . . , αq but not the surface, such
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that for all p ∈M , we have

(1) |Kds2(p)|1/2 · d(p) · |g(p), ĝ ◦Ψ(p)|6 C

where d(p) is the geodesic distance from p to the boundary of M, that is, the

infimum of the lengths of the divergent curves in M emanating from p and

|α, β| is the chordal distance between two values in the Riemann sphere C.

Now we give an example to show that we cannot remove the part |g(p), ĝ ◦
Ψ(p)| in (1):

Example 2.6. For an arbitrarily given ε > 0, we give an example of a

family of minimal surfaces which shows that there is no positive constant

C, not depending on the minimal surfaces, which satisfies the following

condition:

|Kds2(p)|1/2 · d(p) 6 C.

Consider Enneper surface M ≡ M̂ whose domain of definition is restricted

to the disc of radius R. Namely, for the functions f(z)≡ f̂(z)≡ 1 and g(z)≡
ĝ(z) = z on the disc ∆R := {z; |z|<R}, setting

x1 := Re

∫ z

0
f(1− g2) dz, x2 := Re

∫ z

0

√
−1f(1 + g2) dz,

x3 := 2Re

∫ z

0
fg dz,

we define the surface x= (x1, x2, x3) : ∆R→ R3 in R3. Then, this is a

minimal surface immersed in R3 whose Gauss map is the function g and

whose metric is given by ds2 = (1 + |z|2)2|dz|2. Consider the quantities K(p)

and d(p) as in the main theorem at the point p= 0. We have

d(0) =

∫ R

0
(1 + x2) dx=R+

1

3
R3

and

|K(0)|1/2 =
2|g′(0)|

|f(0)|(1 + |g(0)|2)2
= 2.

So |K(0)|1/2d(0) = 2(R+ (1/3)R3), which converges to∞ as R tends to∞.

Therefore, there is no positive constant C satisfying condition (1) without

|g(p), ĝ ◦Ψ(p)| which does not depend on the minimal surfaces.
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We also remark that the number 5 +m in Theorem 2.5 is optimal because

there exist the following examples.

Example 2.7. For an even positive integer m, we take m/2 + 1 distinct

points p, α1, . . . , αm/2 in ∆R\{0,±1}. Let M be either the complex disk

∆R punctured at m+ 1 distinct points 0, α1, . . . , αm/2, 1/α1, . . . , 1/αm/2
or the universal covering of the punctured disk. We set that

ω =
dz

z
∏m/2
i=1 (z − αi)(αiz − 1)

and the map g(z) = z. In a similar manner, we set

ω̂(= ω) =
dz

z
∏m/2
i=1 (z − αi)(αiz − 1)

and the map ĝ = 1/z. We can easily show that the identity map Ψ: M →
M is a conformal diffeomorphism and the metric ds2 = (1 + |g|2)m|ω|2 is

complete. It is also easy to see that the maps g and ĝ share the m+ 4

distinct values

0,∞, 1,−1, α1, . . . , αm/2, 1/α1, . . . , 1/αm/2

and g(p) 6= ĝ(p). On the other hand, the Gaussian curvature Kds2 of the

metric

ds2 = (1 + |g|2)m|ω|2 = (1 + |g|2)m|ωz|2|dz|2

is given by

Kds2(p) =− 2m|g′z|2

(1 + |g|2)m+2|ωz|2
(p) =−

2m(p
∏m/2
i=1 (p− αi)(αip− 1))2

(1 + |p|2)m+2
.

Now for any a divergent curve Γp in M emanating from p, it must tend to

one of the points 0, α1, . . . , αm/2, 1/α1, . . . , 1/αm/2 or boundary of ∆R.

Thus, we have

d(p) =

∫
Γp

(1 + |g|2)m/2|ω|=
∫

Γp

(1 + |g|2)m/2dz

z
∏m/2
i=1 (z − αi)(αiz − 1)

∼ log R→∞

when R→∞.

These show that if g and ĝ share only the m+ 4 distinct values, then

we cannot show a constant C, depending on m and α1, . . . , αq but not the

surface, such that for all p ∈M , (1) is correct.
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2.2 Unicity problem of the holomorphic maps

Applying Theorem 2.5, we get the following result on the unicity problem

of the holomorphic maps on open Riemann surfaces.

Theorem 2.8. [20, Theorem 2.9] Let M, M̂ be two open Riemann sur-

faces with the conformal metrics

ds2 = (1 + |g|2)m|ω|2, dŝ2 = (1 + |ĝ|2)m|ω̂|2

where ω and ω̂ are holomorphic 1-forms, g and ĝ are holomorphic maps

into C on M and M̂ , respectively, and m is a positive integer. We assume

that there exists a conformal diffeomorphism Ψ: M → M̂ and g, ĝ are

nonconstant. Suppose that there exist q distinct values α1, . . . , αq ∈ C such

that g−1(αj) = (ĝ ◦Ψ)−1(αj) (j = 1, . . . , q). If q > 5 +m and either ds2 or

dŝ2 is complete, then g ≡ ĝ ◦Ψ.

Proof of Theorem 2.8. Since ds2 is complete, we may set d(p) =∞ for

all p ∈M. Set A= {p ∈M |g(p)− ĝ(p) 6= 0}, then A is an open subset in M .

By (1),

|Kds2(p)|1/2 · |g(p), ĝ(p)|= 0.

Thus, Kds2(p) = 0 for all p ∈A. So we get g′(p) = (ĝ◦Ψ)′(p) = 0 for all p ∈A
by (9). By Identity Theorem (see [7, Theorem 1.11] for example), we get

that g′(p) = (ĝ◦Ψ)′(p) for all p ∈M. This implies that g − ĝ◦Ψ is a constant

function on M. On the other hand, g−1(αj) = (ĝ ◦Ψ)−1(αj) (j = 1, . . . , q);

we thus get g ≡ ĝ◦Ψ. Theorem 2.8 is proved.

Remark 2.9. We note that the number 5 +m in Theorem 2.8 is also

optimal (see [18]).

§3. Proof of the main theorem

We first recall the notion of chordal distance between two distinct values

in the Riemann sphere C. For each α, β ∈ C we define

|α, β|= |α− β|√
1 + |α|2

√
1 + |β|2

if α 6=∞ and β 6=∞, and |α, β|= |β, α|= 1/
√

1 + |α|2 if β =∞.

Proposition 3.1. [10, Proposition 2.1] Let f and f̂ be mutually dis-

tinct nonconstant meromorphic functions on a Riemann surface M and q

distinct points α1, . . . , αq (q > 4). Assume that f−1(αj) = f̂−1(αj) (1 6 j 6
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q). For a0 > 0 and ε with q − 4> qε > 0, set

λ :=

( q∏
j=1

|f, αj | · log

(
a0

|f, αj |2

))−1+ε

,

λ̂ :=

( q∏
j=1

|f̂ , αj | · log

(
a0

|f̂ , αj |2

))−1+ε

dτ2 := |f, f̂ |2λλ̂ · |f ′|
1 + |f |2

· |f̂ ′|
1 + |f̂ |2

· |dz|2(2)

outside the set E :=
⋃q
j=1 f

−1(αj) and dτ2 = 0 on E. Then, for a suitably

chosen a0, dτ
2 is continuous on M and has strictly negative curvature on

the set {dτ2 6= 0}.

Lemma 3.2. (See [1]) If a continuous nonnegative function v on ∆R is

of class C2 on the set {z ∈∆R; v(z)> 0} and satisfies the condition

∆ log v > v2,

then

v(z) 6
2R

R2 − |z|2
(z ∈∆R).

Lemma 3.3. Let f and f̂ be mutually distinct nonconstant meromorphic

functions on a Riemann surface M satisfying the same assumption as in

Proposition 3.1. Then, for the metric dτ2 defined by (2), there is a positive

real number C such that

dτ2 6 C

(
2R

R2 − |z|2

)2

|dz|2.

Proof. This is an immediate consequence of Proposition 3.1 and

Lemma 3.2.

Lemma 3.4. [12, Lemma 1.6.7] Let dσ2 be a conformal flat metric on

an open Riemann surface M . Then for every point p ∈M , there is a

holomorphic and locally biholomorphic map Φ of a disk (possibly with radius

∞) ∆R0 := {w : |w|<R0} (0<R0 6∞) onto an open neighborhood of p

with Φ(0) = p such that Φ is a local isometry, namely the pull-back Φ∗(dσ2)

is equal to the standard (flat) metric on ∆R0, and for some point a0 with
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|a0|= 1, the Φ-image of the curve

La0 : w := a0 · s (0 6 s < R0)

is divergent in M (i.e., for any compact set K ⊂M , there exists an s0 <R0

such that the Φ-image of the curve La0 : w := a0 · s (s0 6 s < R0) does not

intersect K).

Proof of Theorem 2.5. For each holomorphic local coordinate z defined

on a simply connected open set U of M, we can find a nowhere zero

holomorphic function ζz such that

ds2 = |ζz|2Ψ∗(dŝ2)

⇒ |h|2(1 + |g|2)m|dz|2 = |ζz|2|ĥ ◦Ψ|2(1 + |ĝ ◦Ψ|2)m|dz|2

⇒ |h|(1 + |g|2)m/2 = |ζz||ĥ ◦Ψ|(1 + |ĝ ◦Ψ|2)m/2.(3)

We denote the functions ĝ ◦Ψ, ĥ ◦Ψ by ĝ, ĥ, respectively, for brevity.

Therefore, by (3), for each holomorphic local coordinate z defined on a

simply connected open set U , we can find a nowhere zero holomorphic

function k2 = h · ĥ · ζ such that

ds2 = |h|2(1 + |g|2)m|dz|2 = |ζ|2|ĥ|2(1 + |ĝ|2)m|dz|2

= |k|2(1 + |g|2)m/2(1 + |ĝ|2)m/2|dz|2.(4)

Taking a positive real number η with

q − 4−m
q

> η >max

{
q − 4−m
q + 1

;
q − 4− 2m

q

}
,

we set

τ :=
m

q − 4− qη
.

Then

(5)
1

2
< τ < 1 and

τ

1− τ
> 1,

ητ

1− τ
> 1,

and define the pseudometric

(6) dσ2 := |k|2/(1−τ)

( ∏q
j=1(|g − αj ||ĝ − αj |)1−η

|g − ĝ|2|g′||ĝ′|
∏q
j=1(1 + |αj |2)1−η

)τ/(1−τ)

|dz|2,
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which does not depend on a choice of holomorphic local coordinate z and

so well-defined on M1 =M − E, where

E := {z ∈M ; g′(z) = 0 or ĝ ′(z) = 0 or g(z) = ĝ(z)}.

Take an arbitrary point p in M1. Using the fact that dσ2 is flat on M1, by

Lemma 3.4, there exists a local isometry Φ satisfying Φ(0) = p from a disk

∆R = {z ∈ C; |z|<R} (0<R6∞) with the standard metric ds2
Euc onto an

open neighborhood of p in M1 with the metric dσ2 such that, for a point w0

with |w0|= 1, the Φ−image Γw0 of the curve Lw0 = {w := w0s; 0< s < R}
is divergent in M1. For brevity, we denote the functions g ◦ Φ, ĝ ◦ Φ on ∆R

by g, ĝ, respectively, in the following. On the other hand, from Lemma 3.3,

we have

|g, ĝ|2λλ̂ · |g′|
1 + |g|2

· |ĝ′|
1 + |ĝ|2

6 C0

(
2R

R2 − |z|2

)2

for some positive real number C0.

This implies that

(7) R2 6
4C0(1 + |g(0)|2)(1 + |ĝ(0)|2)

|g(0), ĝ(0)|2λ(0)λ̂(0)|g′(0)||ĝ′(0)|
<∞.

Hence,

Ldσ(Γw0) =

∫
Γw0

dσ =R<∞

where Ldσ(Γw0) denotes the length of Γw0 with respect to the metric dσ2.

Now we prove that Γw0 is divergent in M. Indeed, if not, then Γw0 must

tend to a point p0 ∈ E because Γw0 is divergent in M1 and Ldσ(Γw0)<∞.
Then we consider the following two possible cases:

Case 1. g(p0) = ĝ(p0).

If g(p0) = αj for some j, then g(p0) = ĝ(p0) = αj . Combining with g′(p0) =

(g − αj)′(p0) and ĝ′(p0) = (ĝ − αj)′(p0), the function

λ(z) = |k|2/(1−τ)

( ∏q
j=1(|g − αj ||ĝ − αj |)1−η

|g − ĝ|2|g′||ĝ′|
∏q
j=1(1 + |αj |2)1−η

)τ/(1−τ)

has a pole of order at least 2ητ/(1− τ) at p0. Otherwise, the function

λ(z) has a pole of order at least 2τ/(1− τ) at p0. Taking a local complex

coordinate ζ in a neighborhood of p0 with ζ(p0) = 0, we can write the metric
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dσ2 as

dσ2 = |ζ|−2uγ|dζ|2

with some positive function γ and u> min{ητ/(1− τ); τ/(1− τ)}> 1 by

(5); we thus have the following:

R=

∫
Γa0

dσ > C1

∫
Γa0

|dζ|/|ζ|u =∞,

for some positive constant C1. This contradicts that R is finite.

Case 2. g′(p0)ĝ′(p0) = 0.

Without loss of generality, we may assume that g′(p0) = 0. From (9), we

have ĝ′(p0) = 0. Taking a local complex coordinate ζ := g′ in a neighborhood

of p0 with ζ(p0) = 0, we can write the metric dσ2 as

dσ2 = |ζ|−2τ/(1−τ)γ|dζ|2

with some positive function γ. Since τ/(1− τ)> 1, we have

R=

∫
Γa0

dσ > C1

∫
Γa0

|dζ|/|ζ|τ/(1−τ) =∞,

for some positive constant C2. This also contradicts that R is finite.

So we get that Γw0 is divergent in M.

On the other hand, since Φ is a local isometric, we may take the coordinate

w as a holomorphic local coordinate on M1 and we may write dσ2 = |dw|2.
By (6), we obtain

|k|2 =

( |g − ĝ|2|g′||ĝ′|∏q
j=1(1 + |αj |2)1−η∏q

j=1(|g − αj ||ĝ − αj |)1−η

)τ
.

According to (4), we have

ds2 = |k|2(1 + |g|2)m/2(1 + |ĝ|2)m/2|dw|2

=

( |g − ĝ|2|g′||ĝ′|(1 + |g|2)m/2τ (1 + |ĝ|2)m/2τ
∏q
j=1(1 + |αj |2)1−η∏q

j=1(|g − αj ||ĝ − αj |)1−η

)τ
|dw|2

=

(
µ2

q∏
j=1

(|g, αj | · |ĝ, αj |)ε ·
(

log
a0

|g, αj |2
log

a0
|ĝ, αj |2

)1−ε)τ
|dw|2,
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where µ is the function with dτ2 = µ2|dw|2 as in (2) and ε := η/2. Since the

function xε log1−ε(k/x2)(0< x6 1) is bounded, we obtain that

ds2 6 C3

(
|g, ĝ|2λλ̂ · |g′|

1 + |g|2
· |ĝ′|

1 + |ĝ|2

)τ
· |dw|2

for some positive constant C3. Moreover, using Lemma 3.3, we have

|g, ĝ|2λλ̂ · |g′|
1 + |g|2

· |ĝ′|
1 + |ĝ|2

6 C4 ·
(

2R

R2 − |w|2

)2

.

Thus, we obtain

Φ∗ds6 C5 ·
(

2R

R2 − |w|2

)τ
|dw|

where C5 is a positive real number. This yields that

d(p) = dΓa0
6
∫

Γa0

ds=

∫
La0

Φ∗ds6 C5 ·
∫
La0

(
2R

R2 − |w|2

)τ
|dw|

= C5

∫ R

0

(
2R

R2 − x2

)τ
dx= C6 ·R1−τ

because 0< τ < 1, and dΓa0
denotes the distance of the divergent curve Γa0

in M. Combining with (7), we obtain

(8) d(p) 6 C7

(
(1 + |g(0)|2)(1 + |ĝ(0)|2)

|g(0), ĝ(0)|2λ(0)λ̂(0)|g′(0)||ĝ′(0)|

)(1−τ)/2

.

On the other hand, the Gaussian curvature Kds2 of the metric ds2 = |h|2(1 +

|g|2)m|dz|2 is given by

Kds2 = − 2m|g′z|2

|h|2(1 + |g|2)m+2
=− 2m|ĝ′z|2

|ζ · ĥ|2(1 + |ĝ|2)m+2
(9)

= − 2m|g′||ĝ′|
|k|2(1 + |g|2)

m+2
2 (1 + |ĝ|2)

m+2
2

= − 2m|g′||ĝ′|(
|g−ĝ|2|g′||ĝ′|

∏q
j=1(1+|αj |2)1−η∏q

j=1(|g−αj ||ĝ−αj |)1−η

)τ
(1 + |g|2)

m+2
2 (1 + |ĝ|2)

m+2
2

.(10)

Combining with (8) and (10), we get

|Kds2(p)|d(p)2|g(p), ĝ(Ψ(p))|2 6 C4

(λ(0)λ̂(0))1−τ
.
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Using the property that the function x log(k/x2)(0< x6 1) is bounded, we

have

|Kds2(p)|1/2d(p)|g(p), ĝ(Ψ(p))|6 C

with a constant C depending on α1, . . . , αq but not the surface. The main

theorem is proved.

§4. Applications of the main results

4.1 Minimal surfaces in R3

We first introduce some basic background on minimal surface. Let x=

(x1, x2, x3) :M → R3 be a nonflat minimal surface in R3, or more precisely,

a connected oriented minimal surface in R3. By definition, the Gauss map

G of M is the map which maps each point p ∈M to the unit normal vector

G(p) ∈ S2 of M at p. Instead of G, we study the map g := π ◦G :M →
C := C ∪ {∞}= P1(C) for the stereographic projection π of S2 onto P1(C).

Therefore, we also tell that g is the Gauss map of M. The surface M is

canonically considered as an open Riemann surface with a conformal metric

and g is a meromorphic function on M because of the minimal property of

M.

Set φi := ∂x/∂z (i= 1, 2, 3) and h := φ1 −
√
−1φ2. Then, the Gauss map

g :M → P1(C) is given by

g =
φ3

φ1 −
√
−1φ2

,

and the metric on M induced from R3 is given by

(11) ds2 = |h|2(1 + |g|2)2|dz|2.

Using Theorem 2.5 for m= 2, we get the following theorem.

Theorem 4.1. Let X :M → R3 and X̂ : M̂ → R3 be two nonflat min-

imal surfaces, and assume that there exists a conformal diffeomorphism

Ψ :M → M̂. Let g and ĝ be the Gauss maps of X(M) and X̂(M̂), respec-

tively. Suppose that there are q > 7(= 5 + 2) distinct points α1, . . . , αq in C
such that g−1(αj) = (ĝ ◦Ψ)−1(αj) for every 1 6 j 6 q. Then there exists a

constant C, depending on α1, . . . , αq but not the surface, such that for all

p ∈M , we have

|Kds2(p)|1/2 · d(p) · |g(p), ĝ(p)|6 C (p ∈M),

where Kds2(p) is the Gaussian curvature of the metric ds2 at p and d(p) is

the geodesic distance from p to the boundary of M.
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Repeating the proof of Theorem 2.8, we can see that Theorem 1.2 is a

corollary of Theorem 4.1.

4.2 The constant mean curvature one surfaces in H3

The hyperbolic three-space H3 is the simply connected Riemannian three-

manifold with constant sectional curvature -1, which is represented as

H3 = SL(2, C)/SU(2) = {aa∗; a ∈ SL(2, C)}(a∗ :=t a).

As an analogy of the Enneper–Weierstrass representation formula in mini-

mal surface theory, we have the representation formula for constant mean

curvature one (CMC-1, for short) surfaces in H3 as follows:

Theorem 4.2. [2, 39] Let M̃ be a simply connected Riemann surface

with a base point z0 ∈ M̃ and let (g, ω) be a pair consisting of a meromorphic

function and a holomorphic 1-form on M̃ such that

(12) ds2 = (1 + |g|2)2|ω|2

gives a (positive definite) Riemannian metric on M̃ . Take a holomorphic

immersion F = (Fij) : M̃ → SL(2, C) satisfying F (z0) = id and

(13) F−1dF =

(
g −g2

1 −g

)
ω.

Then f : M̃ →H3 defined by

(14) f = FF ∗

is a CMC-1 surface and the induced metric of f is ds2. Moreover, the second

fundamental form h and the Hopf differential Q of f are given by

h=−Q−Q+ ds2, Q= ωdg.

Conversely, for any CMC-1 surface f : M̃ →H3, there exist a meromorphic

function g and a holomorphic 1-form ω on M̃ such that the induced metric

of f is given by (12), and (14) holds, where the map F : M̃ → SL(2, C) is a

holomorphic null (“null” means that det(F−1dF ) = 0) immersion satisfying

(13).
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Following the terminology of [39], g is called a secondary Gauss map of

f. The pair (g, ω) is called Weierstrass data of f. Let f :M →H3 be a

CMC-1 surface on a (not necessarily simply connected) Riemann surface

M. Then the map F is defined only on its universal covering surface M̃.

Thus, although the pair (ω, g) is not single-valued on M, the hyperbolic

Gauss map of f defined by

G=
dF11

dF21
=
dF12

dF22
, where F (z) =

(
F11(z) F12(z)
F21(z) F22(z)

)
is a single-valued meromorphic function on M. Because we can identify the

ideal boundary S2
∞ of H3 with the Riemann sphere C, the hyperbolic Gauss

map G seems to send each p ∈M to the point G(p) at S2
∞ reached by

the oriented normal geodesics emanating from the surface [2]. The inverse

matrix F−1 is also a holomorphic null immersion and produce a new CMC-1

surface f ] := F−1(F−1)∗ : M̃ →H3 which is called the dual of f [40]. Then,

the Weierstrass data (g], ω]), the Hopf differential Q] and the hyperbolic

Gauss map G] of f ] are given by following formulas:

(15) g] =G, ω] =− Q

dG
, Q] =−Q, G] = g.

By Theorem 4.2 and (15), the induced metric ds2] of f ] is given by

(16) ds2] = (1 + |g]|2)2|ω]|2 = (1 + |G|2)2| Q
dG
|2.

We call the metric ds2] the dual metric of f. The relationship between the

metric ds2 and the dual metric ds2] is given by the following:

Theorem 4.3. [40, 43] The metric ds2 is complete (resp. nondegener-

ate) if and only if the dual metric ds2] is complete (resp. nondegenerate).

Applying Theorem 2.5 to the dual metric ds2], we get the following theorem.

Theorem 4.4. Let f :M →H3, f̂ : M̂ →H3 be two nonflat CMC-1

surfaces, and assume that there exists a conformal diffeomorphism Ψ :M →
M̂. Let G :M → C and Ĝ : M̂ → C be the hyperbolic Gauss maps of f(M)

and f̂(M̂), respectively. Suppose that there exist q > 7(= 5 + 2) distinct

values α1, . . . , αq ∈ C such that G−1(αj) = (Ĝ ◦Ψ)−1(αj) (j = 1, . . . , q).

Then there exists a constant C, depending on α1, . . . , αq but not the surface,

such that for all p ∈M , we have

|Kds2](p)|1/2 · d(p) · |G(p), Ĝ ◦Ψ(p)|6 C,
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where Kds2](p) is the Gaussian curvature of the metric ds2] at p and d(p)

is the geodesic distance from p to the boundary of M.

As a corollary of Theorem 4.4 or Theorem 2.8, we have the following

unicity theorem:

Theorem 4.5. [20, Theorem 4.12] Let f :M →H3, f̂ : M̂ →H3 be two

nonflat CMC-1 surfaces, and assume that there exists a conformal diffeo-

morphism Ψ :M → M̂. Let G :M → C and Ĝ : M̂ → C be the hyperbolic

Gauss maps of f(M) and f̂(M̂), respectively. If G 6≡ Ĝ ◦Ψ and either f(M)

or f̂(M̂) is complete, then G and Ĝ ◦Ψ share at most 6(= 2 + 4) distinct

values.

4.3 Maximal surfaces in the Lorentz–Minkowski three-space R3
1

As introduced by Umehara and Yamada [41], maxfaces are maximal

surfaces with some admissible singularities. It should be remarked that

maxfaces, nonbranched generalized maximal surfaces in the sense of [6] and

nonbranched generalized maximal maps in the sense of [16] are all the same

class of maximal surfaces. The Lorentz–Minkowski three-space R3
1 is the

affine three-space R3 with the inner product

〈, 〉=−(dx1)2 + (dx2)2 + (dx3)2,

where (x1, x2, x3) is the canonical coordinate system of R3. We consider a

fibration

pL : (ξ1, ξ2, ξ3)(∈ C3)→ Re(−
√
−1ξ1, ξ2, ξ3) ∈R3

1.

The projection of null holomorphic immersions into R3
1 by pL gives

maxfaces. Here, a holomorphic map F = (F1, F2, F3) :M → C3 is said to be

null if {(F1)′z}
2 + {(F2)′z}

2 + {(F3)′z}
2 vanishes identically, where ′ = d/dz

denotes the derivative with respect to a local complex coordinate z of M.

Maxfaces in R3
1 have some properties closely related to minimal surfaces

in R3. The following result shows that a maxface can be represented by a

formula, which is an analogue of the Enneper–Weierstrass representation

formula for a minimal surface (see also [24]).

Theorem 4.6. [41, Theorem 2.6] Let M be a Riemann surface and

(g, ω) a pair consisting of a meromorphic function and a holomorphic 1-

form on M such that

(17) dσ2 := (1 + |g|2)2|ω|2
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gives a (positive definite) Riemannian metric on M, and |g| is not identically

1. Assume that

Re

∫
γ
(−2g, 1 + g2,

√
−1(1− g2))ω = 0

for all loops γ in M. Then,

(18) f = Re

∫ z

z0

(−2g, 1 + g2,
√
−1(1− g2))ω

is well-defined on M and gives a maxface in R3
1, where z0 ∈M is a base

point. Moreover, all maxfaces are obtained in this manner. The induced

metric ds2 := f∗〈, 〉 is given by ds2 = (1− |g|2)2|ω|2, and the point p ∈M is

a singular point of f if and only if |g(p)|= 1.

We call g the Lorentzian Gauss map of f. If f has no singularities, then

g coincides with the composition of the Gauss map (i.e., (Lorentzian) unit

normal vector) n :M →H2
± into the upper or lower connected component

of the two-sheet hyperboloid H2
± = H2

+ ∪H2
− in R3

1, where

H2
+ := {n= (n1, n2, n3) ∈R3

1; 〈n, n〉=−1, n1 > 0},

H2
− := {n= (n1, n2, n3) ∈R3

1; 〈n, n〉=−1, n1 < 0},

and the stereographic projection from the north pole (1, 0, 0) of the

hyperboloid onto the Riemann sphere C (see [41, Section 1] for more details).

A maxface is said to be weakly complete if the metric dσ2 as in (17) is

complete. We also remark that (1/2) dσ2 coincides with the pull-back of the

standard metric on C3 by the null holomorphic immersion of f (see [41,

Section 2]).

Applying Theorem 2.5 to the metric dσ2, we can get the following

theorem.

Theorem 4.7. Let f :M →R3
1, f̂ : M̂ →R3

1 be two nonflat maxfaces,

and assume that there exists a conformal diffeomorphism Ψ :M → M̂. Let

g :M → C and ĝ : M̂ → C be the Lorentzian Gauss maps of f(M) and

f̂(M̂), respectively. Suppose that there exist q > 7(= 5 + 2) distinct values

α1, . . . , αq ∈ C such that g−1(αj) = (ĝ ◦Ψ)−1(αj) (j = 1, . . . , q). Then there

exists a constant C, depending on α1, . . . , αq but not the surface, such that

for all p ∈M , we have

|Kdσ2(p)|1/2 · d(p) · |g(p), ĝ ◦Ψ(p)|6 C,
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where Kdσ2(p) is the Gaussian curvature of the metric dσ2 at p and d(p) is

the geodesic distance from p to the boundary of M.

Using the same proof of Theorem 2.8 and Theorem 4.7, we can get the

following result:

Theorem 4.8. [20, Theorem 4.18] Let f :M →R3
1, f̂ : M̂ →R3

1 be two

nonflat maxfaces, and assume that there exists a conformal diffeomorphism

Ψ :M → M̂. Let g :M → C and ĝ : M̂ → C be the Lorentzian Gauss maps

of f(M) and f̂(M̂), respectively. If g 6≡ ĝ ◦Ψ and either f(M) or f̂(M̂) is

weakly complete, then g and ĝ ◦Ψ share at most 6(= 2 + 4) distinct values.

4.4 Improper affine spheres in R3

Improper affine spheres in the affine three-space R3 also have similar

properties to that of minimal surfaces in Euclidean three-space (e.g., see [3]).

In 2005, Mart́ınez [31] discovered the correspondence between improper

affine spheres and smooth special Lagrangian immersions in the complex

two-space C2 and introduced the notion of improper affine fronts, that

is, a class of (locally strongly convex) improper affine spheres with some

admissible singularities in R3. We note that this class is called improper

affine maps in [31], but here, we call this class improper affine fronts,

following Kawakami and Nakajo [23]; the reason is that all of the improper

affine maps are wave fronts in R3 [32, 42]. We also can find more differential

geometry properties of wave fronts in [38]. Moreover, Mart́ınez also gave the

following holomorphic representation for this class.

Theorem 4.9. [31, Theorem 3] Let M be a Riemann surface and (F, G)

a pair of holomorphic functions on M such that Re(FdG) is exact and

|dF |2 + |dG|2 is positive definite. Then the induced map f :M → R3 = C×
R given by

f :=

(
G+ F ;

|G|2 − |F |2

2
+ Re

(
GF − 2

∫
FdG

))
is an improper affine front. Conversely, any improper affine front is given

in this way. Moreover, we set x :=G+ F̄ and n := F −G. Then, Lf := x+√
−1n :M → C2 is a special Lagrangian immersion whose induced metric

dτ2 from C2 is given by

dτ2 = 2(|dF |2 + |dG|2).

In addition, the affine metric h of f is expressed as h := |dG|2 − |dF |2, and

the singular points of f correspond to the points where |dF |= |dG|.
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We remark that Nakajo [32] constructed a representation formula for

indefinite improper affine spheres with some admissible singularities. The

nontrivial part of the Gauss map of Lf :M → C2 ∼= R4 (see [4]) is the

meromorphic function ν :M → C given by ν := dF/dG, which is called the

Lagrangian Gauss map of f . An improper affine front is said to be weakly

complete if the induced metric dτ2 is complete. On the other hand, we have

dτ2 = 2(|dF |2 + |dG|2) = 2(1 + |ν|2)|dG|2.

Now, applying Theorem 2.5 to the metric dτ2, we can get the following

theorem.

Theorem 4.10. Let f :M → R3, f̂ : M̂ → R3 be two improper affine

fronts, and assume that there exists a conformal diffeomorphism Ψ :M →
M̂. Let ν :M → C and ν̂ : M̂ → C be the Lagrangian Gauss maps of f(M)

and f̂(M̂), respectively. Suppose that there exist q > 6(= 5 + 1) distinct val-

ues α1, . . . , αq ∈ C such that ν−1(αj) = (ν̂ ◦Ψ)−1(αj) (j = 1, . . . , q). Then

there exists a constant C, depending on α1, . . . , αq but not the surface, such

that for all p ∈M , we have

|Kdτ2(p)|1/2 · d(p) · |ν(p), ν̂ ◦Ψ(p)|6 C,

where Kdτ2(p) is the Gaussian curvature of the metric dτ2 at p and d(p) is

the geodesic distance from p to the boundary of M.

As a corollary of Theorem 4.10 or Theorem 2.8, we provide the follow-

ing unicity theorem for the Lagrangian Gauss maps of weakly complete

improper affine fronts in R3.

Theorem 4.11. [20, Theorem 4.24] Let f :M → R3, f̂ : M̂ → R3 be two

improper affine fronts, and assume that there exists a conformal diffeomor-

phism Ψ :M → M̂. Let ν :M → C and ν̂ : M̂ → C be the Lagrangian Gauss

maps of f(M) and f̂(M̂), respectively. Suppose that there exist q > 6(=

5 + 1) distinct values α1, . . . , αq ∈ C such that ν−1(αj) = (ν̂ ◦Ψ)−1(αj) (j =

1, . . . , q) and either f(M) or f̂(M̂) is weakly complete, then either ν ≡ ν̂ ◦Ψ

or ν and ν̂ are both constant, that is, f(M) and f̂(M̂) are both elliptic

paraboloids.

4.5 Flat fronts in H3

Flat fronts in H3 are flat surfaces in H3 with some admissible singularities

(see [26, 29] for more details). Let M be a simply connected Riemann surface
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and let L :M → SL(2, C) be a holomorphic Legendrian immersion. The

projection

f := LL∗ :M →H3

gives a flat front in H3. We call L the holomorphic lift of f. Since L is a

holomorphic Legendrian map, L−1dL is off-diagonal (see [13, 28, 29]). Now,

if we set

L−1dL=

(
0 θ
ω 0

)
,

then the pull-back of the canonical Hermitian metric of SL(2, C) by L is

represented as

ds2
L := |ω|2 + |θ|2

for holomorphic 1-forms ω and θ on M. A flat front f is said to be

weakly complete if the metric ds2
L is complete (see [27, 42]). We define a

meromorphic function on M by the ratio of canonical forms

ρ :=
θ

ω
.

We note that a point p ∈M is a singular point of f if and only if |ρ(p)|= 1

[25]. Now we have

ds2
L = |ω|2 + |θ|2 = (1 + |ρ|2)|ω|2.

Applying Theorem 2.5 to the metric ds2
L, we can get the following result.

Theorem 4.12. Let f :M →H3, f̂ : M̂ →H3 be two flat fronts on

simply connected Riemann surfaces, and assume that there exists a con-

formal diffeomorphism Ψ :M → M̂. Let ρ :M → C and ρ̂ : M̂ → C be the

ratios of canonical forms f(M) and f̂(M̂), respectively. Suppose that there

exist q > 6(= 5 + 1) distinct values α1, . . . , αq ∈ C such that ρ−1(αj) =

(ρ̂ ◦Ψ)−1(αj) (j = 1, . . . , q). Then there exists a constant C, depending on

α1, . . . , αq but not the surface, such that for all p ∈M , we have

|Kds2L
(p)|1/2 · d(p) · |ρ(p), ρ̂ ◦Ψ(p)|6 C,

where Kds2L
(p) is the Gaussian curvature of the metric ds2

L at p and d(p) is

the geodesic distance from p to the boundary of M.

By applying Theorem 4.12, we can get the following unicity theorem for the

ratios of canonical forms of weakly complete flat fronts in H3.
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Theorem 4.13. [20, Theorem 4.29] Let f :M →H3, f̂ : M̂ →H3 be

two flat fronts on simply connected Riemann surfaces, and assume that

there exists a conformal diffeomorphism Ψ :M → M̂. Let ρ :M → C and

ρ̂ : M̂ → C be the ratios of canonical forms f(M) and f̂(M̂), respectively.

Suppose that there exist q > 6(= 5 + 1) distinct values α1, . . . , αq ∈ C such

that ρ−1(αj) = (ρ̂ ◦Ψ)−1(αj) (j = 1, . . . , q) and either f(M) or f̂(M̂) is

weakly complete, then either ρ≡ ρ̂ ◦Ψ or ρ and ρ̂ are both constant.
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