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have groups {1, 9, 11, 19 }, {1, 9, 11, 19, 21, 29, 31, 39}, and {1, 9, 11, 19,
21, 29, 31, 39, 41, 49} under multiplication modulo 20, modulo 40, and
modulo 50, respectively; but {1, 9, 11, 19, 21, 29} is not a group under
multiplication modulo 30 = 3 x 10 since 3 is not a divisor of 10.

We have discussed some ways to construct multiplicative groups in
modular arithmetic. Are there other different ways to construct such groups?
One can try to do the following exercise.

Exercise: Find new constructions for multiplicative groups in modular
arithmetic, which maybe contain elements of sequences other than
geometric sequences or arithmetic sequences.
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103.34 Indefinite integration by parts as a translation of
functions
Introduction

We propose a geometrical representation of the formula of integration
by parts as a translation in the vector space of functions to gain some
understanding of the role played by integration constants.

It can serve two purposes: firstly, offering a visual model, possibly
easier to handle by students than algebraic abstraction; secondly, showing
how the interplay between concepts learnt under different subjects,
elementary calculus and basic vector algebra and geometry, can help solving
a problem.
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Geometrical representation of indefinite integration by parts

We know that the sum of two functions is again a function, and the
product of a function by a constant is a function.

Since such properties also apply to vectors, and are distinctive of them,
we will see functions as elements belonging to an infinite-dimensional
vector space, say &. Indefinite integration can be seen as a linear mapping in
. That is, if f and g are functions, and 4 and & are constants, we know that:

j[hf(x) + kg(0)]dx = h jf(x)dx + kjg(x)dx.

On the other hand we know that indefinite integration does not yield a
single function, because, if F' is a completely determined primitive of f, then

ff(x)dx=F (x)+C, where C is an arbitrary constant [1, Section 5.6].

Geometrically this implies that an indefinite integral is not a single point in the
vector space ¥, but a line. Let us name 1 the vector representing the function
that maps any number x to 1, and F the vector representing the function F.

Then we will read the equation ff (x)dx = F + C1 as the parametric equation of

a straight line in &, for varying C. Compare it to the equation r = r( + vt for
uniform rectilinear motion, where the parameter is time, ¢, instead of C.

Now let us consider the formula of integration by parts:
[fogwdr = fFmew - [f(gwax,
[1, Section 5.9], and rewrite it, after setting J.fg’dx =U+Cl,fg=YV
and - [f'gdx = W + C'L,as
U+Cl=V+W+C(C1 (1)

FIGURE 1: Left: Indefinite integration by parts as a translation of lines by a vector, V.
Note that O does not belong in the same plane as the two lines, in general.
Right: A translation working in a plane containing O.
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In Figure 1 left, we see the head of vector U + C1 drawing the upper
line, as C varies. The vector —V translates this line to the lower line, drawn
by W + C’1. Denoting the translation by V or —V is just a conventional
matter. Let us observe that any vector V + C”1 performs the same
translation as V does, independently of C”. Which point on the starting line
is mapped to which point on the arrival line depends on C”, but the arrival
line depends only on the components of V not parallel to 1. That is why we
do not usually write the formula of integration by parts with a constant. Let
us further remark that we can sum all vectors parallel to 1, in equation (1):

U=V+W+(C-0)L1.

Some examples
In an indefinite integration by parts, it may happen that V is parallel to 1,

when fg is constant. For example, take f(x)=— and g(x) =x. Then
X

integration by parts is not useful, because it does not reduce the starting
integral to a different one, thus providing new information for its solution, but
it yields the same integral as before. We can understand this geometrically by
noting that, if V is parallel to 1, the translation maps the line U + C1 to itself.

In other cases, integration by parts can relate an indefinite integral not to
itself, but to a multiple, and thus it succeeds in bringing a solution. Let us
consider the example

2 . 2
fcos xdx = sinx cosx + x — J.cos x dx,

and write it in vector form as
U=V -U+CL

The above equation shows that U, V and 1 are linearly dependent. Thus the
translation occurs in the plane of the starting line and the origin, that is the
two-dimensional vector subspace spanned by U and 1. See Figure 1 right.
Geometrically, if V belongs in the plane of two independent vectors, U and
1, then also the unknown U belongs in the plane of the known vectors V and
1. Hence it can be expressed as a linear combination of them, and the
integral is solved.

Let us further explore the geometry of such planes, and their role in
indefinite integration. If f is a function and k is a constant, we know that

[k ydx = k [f @, )

by linearity. As a practical rule, (2) means that integrating the function kf is
exactly as difficult as integrating f. Algebraically the mapping defined by
F — kF, takes a linear combination of U and 1 to another linear
combination of U and 1. Geometrically the line U + C1 is mapped to a
parallel line kU + C’1 in the plane of the line r and O, by a central
dilatation”. See Figure 2 left.

* In the elementary geometry of point space, a central dilatation is the transformation
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FIGURE 2: Left: Equation (2) is represented geometrically by lines spanning a plane.
Right: The geometry of equation (3).

Each plane through the origin containing the line of an indefinite
integral is an invariant two-dimensional subspace with respect to dilatations.
It is a locus of integrals exactly as difficult as a given one, and simply
related to it.

There are cases where a double integration by parts first takes off from
such a plane, and finally lands back in it. For example:

J‘ex cosx dx = e sinx — Iex sinx dx = €"sinx + e" cosx — J‘ex cosxdx. (3)

The first translation vector, V; = e sinx, does not lie in the plane of
U = le'(sinx + cosx) and 1, nor does the second translation vector,
V, = ¢* cosx, but their sum does. See Figure 2 right.

Conclusion

Henri Poincaré, one of the greatest mathematicians of last century, in a
work of his [3, Chapter II], wrote that

Mathematics is the art of giving the same name to different things.

As a matter of fact, after giving the name vector to a function, and line to an
indefinite integral, we could easily understand some applications of the
formula of integration by parts geometrically.
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103.35 Holder's inequality revisited

Based on the same idea provided by Razminia [1], we are going to
present a new proof for Holder's inequality.

Lemma 1: For all positive numbers ay, a,, by and b,, we have

/i Y
by + aby < (df + )" (6] + 59" (1)
11 . . d _d
where ~ + — = 1 with p, g > 1. Moreover, the equality holds when —— = ——.
P q bl bi

Proof: Let us define the following function

Fo =0 +"0 + )" -1 -y, @)

with a given y. Clearly f (x) is continuous and differentiable, so the critical
points of f (x) can be obtained by solving the following equation

d ) - )
SF =2 (1) 1+ y) -y =0 3)

Moving y to the right-hand side of (3), and raising both sides of the equation
to the power g, we obtain

»-14q (= 1)a q q

X (1 + ) (1 +y9) =y

Now, using the factthat | — 1 = =l and g(p — 1) = p, we obtain
#(1 + xp)_l(l +3) = ylor (1 +y) = (1 +x7),

from which we conclude that 1 = y%x” or, equivalently, X’ = y? (x = y%).
On the other hand, by taking the derivative of (3), which gives

[ = D21+ 2P 7+ (1= )21+ Y (1 + ),

and after factorisation, it becomes

d2 1_, 1
—f@) = (- D2+ (1 + YY),
dx?

which is clearly positive and, consequently, f (x) is convex. Based on
df ’
& _ 0
dx (=) f (y )

and the convexity of f (x), we can conclude that f (x) is always non-negative.
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