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have groups {1, 9, 11, 19 }, {1, 9, 11, 19, 21, 29, 31, 39}, and {1, 9, 11, 19,
21, 29, 31, 39, 41, 49} under multiplication modulo 20, modulo 40, and
modulo 50, respectively; but {1, 9, 11, 19, 21, 29} is not a group under
multiplication modulo  since 3 is not a divisor of 10.30 = 3 × 10

We have discussed some ways to construct multiplicative groups in
modular arithmetic. Are there other different ways to construct such groups?
One can try to do the following exercise.

Exercise: Find new constructions for multiplicative groups in modular
arithmetic, which maybe contain elements of sequences other than
geometric sequences or arithmetic sequences.
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comments and suggestions.
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103.34 Indefinite integration by parts as a translation of
functions

Introduction
We propose a geometrical representation of the formula of integration

by parts as a translation in the vector space of functions to gain some
understanding of the role played by integration constants.

It can serve two purposes: firstly, offering a visual model, possibly
easier to handle by students than algebraic abstraction; secondly, showing
how the interplay between concepts learnt under different subjects,
elementary calculus and basic vector algebra and geometry, can help solving
a problem.
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Geometrical representation of indefinite integration by parts
We know that the sum of two functions is again a function, and the

product of a function by a constant is a function.
Since such properties also apply to vectors, and are distinctive of them,

we will see functions as elements belonging to an infinite-dimensional
vector space, say . Indefinite integration can be seen as a linear mapping in

. That is, if  and  are functions, and  and  are constants, we know that:
�

� f g h k

∫ [hf (x) + kg (x)] dx = h ∫ f (x) dx + k ∫ g (x) dx.

On the other hand we know that indefinite integration does not yield a
single function, because, if  is a completely determined primitive of , then

, where  is an arbitrary constant [1, Section 5.6].

Geometrically this implies that an indefinite integral is not a single point in the
vector space , but a line. Let us name  the vector representing the function
that maps any number  to 1, and  the vector representing the function .

Then we will read the equation  as the parametric equation of

a straight line in , for varying . Compare it to the equation  for
uniform rectilinear motion, where the parameter is time, , instead of .

F f

∫ f (x)dx = F(x) + C C

� 1

x F F

∫ f (x)dx = F + C1

� C r = r0 + vt
t C

Now let us consider the formula of integration by parts:

∫ f (x) g′ (x) dx = f (x) g (x) − ∫ f ′ (x) g (x) dx,

[1, Section 5.9], and rewrite it, after setting ,

and , as

∫ f g′dx = U + C1 f g = V

− ∫ f ′gdx = W + C′1

U + C1 = V + W + C′1. (1)

�

∫f g
′ dx

C1

C″1

U

V

C′1

W
O

1

�

U

V O
1

− ∫f g′  dx

V
+

C″
1

∫ co
s
2  dx
x

− ∫ co
s
2  dx
x

FIGURE 1: Left: Indefinite integration by parts as a translation of lines by a vector, .
Note that  does not belong in the same plane as the two lines, in general. 

Right: A translation working in a plane containing .

V

O
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In Figure 1 left, we see the head of vector  drawing the upper
line, as  varies. The vector translates this line to the lower line, drawn
by . Denoting the translation by  or  is just a conventional
matter. Let us observe that any vector  performs the same
translation as  does, independently of . Which point on the starting line
is mapped to which point on the arrival line depends on , but the arrival
line depends only on the components of  not parallel to . That is why we
do not usually write the formula of integration by parts with a constant. Let
us further remark that we can sum all vectors parallel to , in equation (1):

U + C1

C −V

W + C′1 V −V

V + C″1

V C″
C″

V 1

1

U = V + W + (C′ − C) 1.

Some examples
In an indefinite integration by parts, it may happen that  is parallel to ,

when  is constant. For example, take  and . Then

integration by parts is not useful, because it does not reduce the starting
integral to a different one, thus providing new information for its solution, but
it yields the same integral as before. We can understand this geometrically by
noting that, if  is parallel to , the translation maps the line  to itself.

V 1

f g f (x) =
1
x

g(x) = x

V 1 U + C1

In other cases, integration by parts can relate an indefinite integral not to
itself, but to a multiple, and thus it succeeds in bringing a solution.  Let us
consider the example

∫ cos2 x dx = sin x cos x + x − ∫ cos2 x dx,

and write it in vector form as

U = V − U + C1.
The above equation shows that ,  and  are linearly dependent. Thus the
translation occurs in the plane of the starting line and the origin, that is the
two-dimensional vector subspace spanned by  and . See Figure 1 right.
Geometrically, if  belongs in the plane of two independent vectors,  and

, then also the unknown  belongs in the plane of the known vectors  and
. Hence it can be expressed as a linear combination of them, and the

integral is solved.

U V 1

U 1

V U

1 U V

1

Let us further explore the geometry of such planes, and their role in
indefinite integration. If  is a function and  is a constant, we know that f k

∫ kf (x) dx = k ∫ f (x) dx, (2)

by linearity. As a practical rule, (2) means that integrating the function  is
exactly as difficult as integrating . Algebraically the mapping defined by

, takes a linear combination of  and  to another linear
combination of  and . Geometrically the line  is mapped to a
parallel line  in the plane of the line  and , by a central
dilatation*. See Figure 2 left.

kf
f

F → kF U 1

U 1 U + C1

kU + C′1 r O

* In the elementary geometry of point space, a central dilatation is the transformation
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�

∫e
x sin

x dx

∫ e
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sx dx

− ∫ e
x co

sx dx
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∫2xe
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FIGURE 2: Left: Equation (2) is represented geometrically by lines spanning a plane.
Right: The geometry of equation (3).

Each plane through the origin containing the line of an indefinite
integral is an invariant two-dimensional subspace with respect to dilatations.
It is a locus of integrals exactly as difficult as a given one, and simply
related to it.

There are cases where a double integration by parts first takes off from
such a plane, and finally lands back in it. For example:

∫ex cosx dx = ex sin x − ∫ex sinx dx = ex sinx + ex cosx − ∫ex cosx dx. (3)

The first translation vector, , does not lie in the plane of
 and , nor does the second translation vector,

, but their sum does.  See Figure 2 right.

V1 = ex sin x
U = 1

2ex (sin x + cos x) 1

V2 = ex cos x

Conclusion
Henri Poincaré, one of the greatest mathematicians of last century, in a

work of his [3, Chapter II], wrote that
Mathematics is the art of giving the same name to different things.

As a matter of fact, after giving the name vector to a function, and line to an
indefinite integral, we could easily understand some applications of the
formula of integration by parts geometrically.
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103.35 Hölder's inequality revisited

Based on the same idea provided by Razminia [1], we are going to
present a new proof for Hölder's inequality.

Lemma 1: For all positive numbers  and , we havea1, a2, b1 b2

a1b1 + a2b2 ≤ (ap
1 + ap

2)
1/p (bq

1 + bq
2)

1/q
, (1)

where  with . Moreover, the equality holds when .
1
p

+
1
q

= 1 p, q > 1
ap

1

bq
1

=
ap

2

bq
2

Proof: Let us define the following function

f (x) = (1 + xp)1/p (1 + yq)1/q
− 1 − xy, (2)

with a given . Clearly  is continuous and differentiable, so the critical
points of  can be obtained by solving the following equation

y f (x)
f (x)

d
dx

f (x) = xp − 1 (1 + xp)
1
p − 1 (1 + yq)

1
q − y = 0. (3)

Moving  to the right-hand side of (3), and raising both sides of the equation
to the power , we obtain 

y
q

x(p − 1)q (1 + xp)(1
p − 1)q (1 + yq) = yq.

Now, using the fact that  and , we obtain1
p − 1 = −1

q q (p − 1) = p

xp (1 + xp)−1 (1 + yq) = yq or  (1 + yq) = yq (1 + x−p) ,

from which we conclude that  or, equivalently,  .1 = yqx−p xp = yq (x = y
q
p)

On the other hand, by taking the derivative of (3), which gives 

[(p − 1) xp − 2 (1 + xp)
1
p − 1

+ (1 − p) x2p − 2 (1 + xp)
1
p − 2] (1 + yq)

1
q ,

and after factorisation, it becomes

d2

dx2
 f (x) = (p − 1) xp − 2 (1 + xp)

1
p − 2 (1 + yq)

1
q ,

which is clearly positive and, consequently,  is convex. Based onf (x)
df
dx |(x = yq/p) = f (yq

p) = 0

and the convexity of , we can conclude that  is always non-negative.f (x) f (x)
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