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When a droplet spreads on a solid substrate, it is unclear what the correct boundary
conditions are to impose at the moving contact line. The classical no-slip condition is
generally acknowledged to lead to a non-integrable singularity at the moving contact
line, which a slip condition, associated with a small slip parameter, λ, serves to
alleviate. In this paper, we discuss what occurs as the slip parameter, λ, tends to zero.
In particular, we explain how the zero-slip limit should be discussed in consideration
of two distinguished limits: one where time is held constant, t=O(1), and one where
time tends to infinity at the rate t=O(|log λ|). The crucial result is that in the case
where time is held constant, the λ→ 0 limit converges to the slip-free equation, and
contact line slippage occurs as a regular perturbative effect. However, if λ→ 0 and
t→∞, then contact line slippage is a leading-order singular effect.
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1. Introduction
The moving contact line problem is explained as follows. The theory of traditional

macroscopic fluid mechanics imposes the requirement that the velocity of a fluid
in contact with a solid substrate must be equal to the velocity of the substrate
(the ‘no-slip condition’). However, this condition is obviously violated at a moving
contact line, such as what occurs for a spreading droplet. In order to resolve this
difficulty, the no-slip condition can be changed to an alternative condition that allows
for slip. The challenges in resolving the moving contact line problem are to (i)
better understand the current slip models, their advantages and disadvantages, and
(ii) propose alternative slip models that better represent the physics. In this paper, we
shall focus on the former problem, and, in particular, we discuss the distinguished
nature of the zero-slip limit.

Here, we shall deal exclusively with the case that the contact line dynamics is
modelled using the classical Navier slip condition. In two dimensions, where u is the
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velocity parallel to the plane surface and z is measured normally away from it, this
condition imposes

u= λ∂u
∂z

(1.1)

for a fluid in contact with a solid boundary at rest, and λ is the slip coefficient,
which is a measure of the length over which slip is significant. There are a multitude
of papers in the literature on the asymptotics of the contact line problem as the
slip parameter tends to zero (see, e.g., Voinov 1976, Hocking & Rivers 1982 and
Lacey 1982), and our paper seeks to highlight the idea of the non-uniformity of the
perturbation methods as slip tends to zero and for different choices of time scales.
This is most similar to the study of King & Bowen (2001) and Flitton & King (2004).
We provide a more comprehensive listing of the vast literature on the topic of the
moving contact line in § 1.1.

More specifically, in this work, we wish to demonstrate that when time is held at
O(1), the dynamics of contact line spreading converges to a slipless equation as λ→0.
However, in the limit t→∞, a rescaling of time is necessary. Thus, convergence
can be achieved in the zero-slip limit by using a slip-free equation, but only at finite
time. Our analysis seeks to explore this idea of non-uniformity using a combination
of asymptotic techniques, and also accurate numerical results which clearly show the
expected limiting behaviours in the singular regime.

We present an asymptotic analysis of the lubrication equations for a droplet
spreading under the effect of surface tension. In particular, there are two regimes:

(i) λ→ 0 and t= t∗ fixed (1.2a)
(ii) λ→ 0 and t� 1. (1.2b)

We find that in regime (i), contact line slippage is (almost) a ‘regular’ perturbative
effect – that is to say, as λ→ 0, the macroscopic motion of the droplet converges to
the slipless equation (λ= 0), and the apparent contact angle, θapp converges to a value
that can be determined solely by solving this particular equation. The apparent contact
angle is not influenced by the microscopic conditions. In this regime, the contact line
displacement tends to zero as slip tends to zero, and any contact line slippage is a
higher-order effect within the macroscopic region. It should be noted that slippage
remains a leading-order contribution within the inner region near the contact line.

However, in the distinguished limit which involves the dual limit λ→ 0 and t→∞,
the solutions in regime (i) are no longer valid, and the asymptotic approximations
in this regime become disordered. A rescaling of time is necessary; once time is
rescaled, we recover the equivalent analyses of others (cf. Hocking 1981, Hocking
1983 and Cox 1986), and contact line displacement becomes a significant effect. In
particular, θapp is now a function of the unknown contact line location and depends on
the microscopic properties of the substrate. As is well known through these previous
works, the contact line speed is logarithmically small in the slip length, and involves
the key quantity

ε = 1/|log λ|. (1.3)

The principal result of this paper is shown in figure 1, which plots a rescaled
contact line velocity, ȧ(t)/ε, as a function of time for a spreading droplet. The graph
demonstrates that the contact line moves rapidly initially, then slows as time increases.
The two time scales determining the dynamics are clearly visible, and the asymptotic
approximations developed in this paper are shown as determining the contact line
movement in each respective region.
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FIGURE 1. Solid line: rescaled velocity, ȧ(t)/ε = ȧ(t)|log λ|, as a function of time for a
spreading droplet released far from its quasi-static state. Dashed line: the classical quasi-
static prediction of contact line speed via (7.5) and (8.1b) is only valid for large times
(as the slip λ→ 0). Dashed markers: for t = O(1), the slip-free formulation using (6.7a)
and (8.1a) provides a better fit. Numerical computations are for the initial profile (3.4)
and λ= 9× 10−7. The details of this figure are discussed in § 7.

This notion of multiple scalings of time influencing the resultant contact line
asymptotics allows us to better understand the nature of the zero-slip limit. For
example, we seek to better understand the early work by Moriarty & Schwartz
(1992), who studied the quasi-static state (Greenspan 1978) of the moving contact
line, and sought to understand the relationship between the slip coefficient and the
finite difference grid spacing necessary to achieve convergent results. They explained
that

. . . converged finite results, if slip is ignored, can never be obtained. This
is the numerical manifestation of the non-integrable force singularity at a
moving contact-line when slip is not permitted.

One of the goals of our paper is to demonstrate that if time is held at O(1), then
converged numerical results can in fact be obtained; a zero-slip condition can be
applied to the macroscopic model.

We shall begin in § 1.1 by briefly reviewing the literature behind theories on the
moving contact line, with particular emphasis on the classical macroscopic models,
molecular models and mesoscopic models. The discussion in this paper will focus
on the simplest case of a thin spreading droplet, and the mathematical formulation
is presented in § 2. We analyse the t = O(1) problem in §§ 3–6, and relate this to
the classical analyses of, for example, workers such as Hocking (1983) in § 7. We
conclude with a discussion in § 8, focusing on the topic of the role of distinguished
limits in more complicated systems involving contact lines.

1.1. A variety of contact line models
It would be misleading for us to proceed without fully acknowledging the great body
of literature that already exists on the moving contact line problem. Theoretical models
of moving contact lines can be roughly divided into three categories: (i) molecular
kinetic models, (ii) molecular dynamic models and (iii) hydrodynamic models.
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Kinetic theory Blake & Haynes (1969), Blake (1993), Blake & De
Coninck (2002)

Molecular dynamic Koplik, Banavar & Willemsen (1988, 1989), Thompson
& Robbins (1989), Blake et al. (1997), Blake, Bracke
& Shikhmurzaev (1999), Ren & E (2007), De Coninck
& Blake (2008)

Hydrodynamic (macroscopic) Huh & Scriven (1971), Dussan V & Davis (1974),
Voinov (1976), Greenspan (1978), Hocking & Rivers
(1982), Lacey (1982), Hocking (1983, 1992), Cox
(1986), Haley & Miksis (1991), Bertozzi & Pugh (1994),
King & Bowen (2001), Eggers (2004b, 2005), Eggers
& Stone (2004), Ren, Hu & E (2010), Sibley, Nold &
Kalliadasis (2015)

Hydrodynamic (mesoscopic) Shikhmurzaev (1997, 2007), Anderson, McFadden &
Wheeler (1998), Jacqmin (2000), Pismen (2002), Qian,
Wang & Sheng (2003), Wilson et al. (2006), Billingham
(2008), Yue, Zhou & Feng (2010)

TABLE 1. A sample of works using the kinetic, molecular dynamic or hydrodynamic
theories of contact line motion.

A sampling of reference works, separated by these three classifications, is given
in table 1.

The molecular kinetics model of contact lines was first proposed by Blake &
Haynes (1969), and later extended by Blake (1993) and Blake & De Coninck (2002).
In this model, the dynamics of the contact line is described by an absorption and
desorption process of the fluid molecules on the solid surface. The theory provides a
quantitative description for the contact line friction at the microscopic scale, and gives
a link between microscopic quantities, such as the frequency and length of molecular
displacements, and the macroscopic behaviour of the dynamic contact angle.

The search to better understand microscopic details of contact lines leads naturally
to the idea of using molecular dynamics, and studies in this vein include the works
by Koplik et al. (1988, 1989), Thompson & Robbins (1989), Blake et al. (1997,
1999), Ren & E (2007) and De Coninck & Blake (2008). The approach has been
very successful and computations have revealed much in regards to the physical
processes near the contact line. The disadvantage, however, is that such simulations
are limited to systems of small scale and within small temporal intervals. As such, it
remains difficult to relate molecular dynamics to the macroscopic scale.

Lastly, moving contact lines can be studied using hydrodynamic models, and these
include the classical works of, for example, Huh & Scriven (1971), Dussan V & Davis
(1974), Voinov (1976), Hocking & Rivers (1982) and Cox (1986), and the recent
work of Ren et al. (2010). Such models impose slip through a boundary condition on
the macroscopic variables, and thus assume the specification of an effective condition
for the underlying microscopic mechanisms (e.g. the Navier slip condition of (1.1)).
The primary advantage of such approaches is that the usual governing equations (e.g.
Navier–Stokes) are used with little modification, except for a replacement of the no-
slip condition.

As a middle ground between the molecular and classical macroscopic approaches,
it is also possible to incorporate intermolecular forces and more detailed physics of
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Distinguished limits in moving contact lines 111

the finite-width fluid interface into the hydrodynamics. Such mesoscopic continuum
models include the diffuse interface models studied in Jacqmin (2000), Pismen (2002),
Qian et al. (2003) and Yue et al. (2010), as well as the work by Shikhmurzaev (1997,
2007) and Billingham (2008), where interface creation and destruction processes are
modelled.

Our work in this paper is primarily inspired by the body of work following from
Lacey (1982) and Hocking (1983), and thus we shall focus on the standard classical
hydrodynamic model with Navier slip. However, it is important that we mention that
all three models of contact line motion are appreciated, and it is still an active area
of research to establish the advantages and disadvantages of each of the models. For
more details, see the reviews by Dussan V & Davis (1974), Kistler (1993), Pomeau
(2002), Blake (2006) and Lauga, Brenner & Stone (2007), as well as the collected
volume edited by Velarde (2011).

2. Mathematical formulation
We shall consider the symmetrical spreading of a thin viscous droplet of height z=

h(x, t), over a flat surface, where the slip on the surface is governed by the Navier
slip law (1.1). The governing equation (see, e.g., Lacey 1982) is given by

∂h
∂t
+ ∂

∂x

(
h2

(
h
3
+ λ
)
∂3h
∂x3

)
= 0, (2.1)

on the domain 06 x6 a(t). The droplet begins from an initial state h(x, 0)= g(x), and
is subject to symmetry boundary conditions at the origin,

∂h/∂x= 0= ∂3h/∂x3 at x= 0, (2.2)

and the height of the droplet vanishes at the moving edge,

h= 0, at x= a(t). (2.3a)

We assume that the equilibrium angle is θy 6= 0 (partial wetting) and that the contact
line a(t) is advected according to the constitutive relation

βȧ= 1
2 [(∂h/∂x)2 − θ 2

y ] at x= a(t), (2.3b)

where ȧ=da/dt is the velocity of the contact line. This constitutive law can be viewed
as a force balance at the moving contact line, where the friction force on the left-hand
side is balanced by the unbalanced Young stress on the right-hand side (Ren et al.
2010). Other constitutive laws for the advective behaviour are possible (see discussions
in, for example, Haley & Miksis 1991), but the details of our analysis will be largely
independent of this choice. The case of complete wetting is addressed in appendix B.

For convenience, we rescale the variables as follows: ĥ = 3h, x̂ = 3x, â = 3a and
t̂ = t. Writing λ̂ = 9λ and β̂ = β/3, this has the effect of changing the equation to
(dropping hats)

∂h
∂t
+ ∂

∂x

(
h2(h+ λ)∂

3h
∂x3

)
= 0, (2.4)

with boundary conditions (2.2) and (2.3a), and the condition for the contact line (2.3b).
Finally, we introduce local coordinates relative to the contact line. Letting x= a(t)−X
and h(x, t)=H(X, t), the governing equation yields

∂H
∂t
+ ȧ

∂H
∂X
+ ∂

∂X

(
H2(H + λ)∂

3H
∂X3

)
= 0. (2.5)
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3. Asymptotic analysis of the outer region at t=O(1)

We are interested in the solution in the λ→ 0 limit; in this limit, the contact line
speed tends to zero, so we make the expansion

a(t)= a0 + εa1(t)+ ε2a2(t)+ · · ·, (3.1)

where a0 is the initial contact line location. We claim, and this can be verified
a posteriori, that ε� λ. Thus, we expand H = H0 + εH1 + O(ε2, λ), where the first
correction term is indeed O(ε) with the assumption ε� λ. Temporarily keeping the
λ term, we have at leading order

∂H0

∂t
+ ∂

∂X

(
H2

0(H0 + λ)∂
3H0

∂X3

)
= 0. (3.2)

3.1. Leading-order outer equation
Away from X = 0, we may ignore the λ slip term, and this gives for the outer
approximation

∂H0

∂t
+ ∂

∂X

(
H3

0
∂3H0

∂X3

)
= 0. (3.3)

One may solve (3.3) using only the single contact line condition H0(0, t) = 0. This
would be consistent with the idea that the microscopic contact angle cannot be applied
within this outer region.

In this paper, we use a semi-implicit finite difference scheme to numerically solve
the partial differential equation (2.4) and its slip-free reduction (3.3). Within this
scheme, the spatial derivatives are treated implicitly and the nonlinear terms explicitly.
The numerical verification of the results in this paper presents a challenging problem
(cf. further discussion of the issues in Moriarty & Schwartz 1992), and we use a
refined mesh near the contact line to ensure convergent results. The scheme is detailed
in appendix A. The initial condition is mostly unimportant (so long as it begins away
from the quasi-static state), and throughout this work, we shall use an equilibrium
contact angle, θy = 1, and initial condition

h(x, 0)= 3 cos(πx2/18). (3.4)

The numerical solution to (3.3), and its first and second spatial derivatives are
shown in figure 2. It should be noted that the slope remains well behaved as X→ 0,
so H0 provides a well-defined apparent contact angle (figure 2b), given by

θapp(t)∼ ∂H0

∂X

∣∣∣∣
X=0

. (3.5)

Moreover, the second derivative of the solution, i.e. the curvature of the interface,
diverges as log X as X→ 0, and this can be seen in figure 2(c).

Based on the observation from the numerics, we make the series expansion in the
limit that X→ 0,

H0(X, t)= B10(t)X +
∞∑

i=2

(Bi0(t)+ Bi1(t) log X)Xi. (3.6)
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FIGURE 2. (a) The solution to the leading-order outer equation (3.3) at t= 0.005 (solid
line), t = 0.01 (dashed line) and t = 0.03 (dotted line). The contact line is at X = 0 for
equilibrium contact angle θY = 1. (b) The first derivative of the solution versus X. (c) The
second derivative of the solution versus log X. The initial condition used is (3.4).

From (3.3), this gives for the first two orders

O(X): 4B3
10B21 + Ḃ10 = 0, (3.7a)

O(X2 log X): 18B2
10B2

21 + 18B3
10B31 + Ḃ21 = 0, (3.7b)

where we have used dots to denote the time derivative. Moreover, (3.7a) gives the
leading-order relation, 2θ 3

app(∂
2H/∂X2)/ log X + dθapp/dt = 0, between the divergent

curvature with the apparent contact angle and its time evolution.
We now seek to verify the relation between the divergent curvature and the apparent

angle in (3.7a). The slip-free equation (3.3) is solved with the single contact line
condition, H0(0, t)= 0, and the profiles of H0 and its derivatives are shown in figure 2.
At the origin, X= 0, by comparing ∂H0/∂X with X, the value of B10 is extracted, and
by comparing ∂2H0/∂X2 with log X, the value of B21 is extracted (figure 2c). Once the
time-dependent B10 and B21 have been computed, we can verify the relation (3.7a). It
is seen in figure 3 that the numerical solution obeys the relation (3.7a) very well.

3.2. First-order outer equation
Turning to the next order, if we ignore the terms with λ, then we have

∂H1

∂t
+ ȧ1

∂H0

∂X
+ ∂

∂X

(
H3

0
∂3H1

∂X3
+ 3H2

0H1
∂3H0

∂X3

)
= 0. (3.8)

We shall assume that ȧ1(t) = O(1), and the boundary condition also requires that
H1(0, t) = 0. The only consistent leading-order balance of the four groups of terms
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FIGURE 3. Numerical verification of the relation (3.7a) between the contact angle and the
rate of divergence of the curvature. The solid curve is Ḃ10 and the circles are −4B3

10B21,
where B10 and B21 are computed from the numerical solution H0 for θy= 1 and the initial
condition (3.4).

in (3.8) occurs between the second and fourth terms. In this case, we may verify that
as X→ 0, the expansion for H1 follows H1 = O(X log X). The correct expansion for
H1 as X→ 0 is

H1(X, t)=C10(t)X +C11(t)X log X +
∞∑

i=2

(Ci0(t)+Ci1(t) log X)Xi, (3.9)

where the functions Cij(t) are to be determined. This gives the two leading-order
equations:

O(1): ȧ1B10 − B3
10C11 = 0, (3.10a)

O(X log X): 2ȧ1B21 + 6B2
10B21C11 + Ċ11 = 0. (3.10b)

The first equation allows us to solve for C11, while the second one allows us to solve
for B21. In summary, combining (3.6)–(3.7b) and (3.9)–(3.10b), we have as X→ 0 the
inner limit of the outer approximation:

Hout→in = {B10X + B21X2 log X + · · ·} + ε
{(

ȧ1

B2
10

)
X log X +C10X + · · ·

}
. (3.11)

4. Asymptotic analysis of the inner region at t=O(1)

For the outer approximation of the previous section, we did not apply the exact
wall condition given by (2.3b). Moreover, it should be clear that the expression (3.11)
breaks down when ε log X = O(1) or when X = O(e−1/ε); in this smaller region, the
terms in the outer approximation begin to rearrange. However, when H and X are
small, then there is an inner region whose size is determined by the slip parameter, λ.
Thus, the correct scaling for the contact line speed, ε, is given by precisely balancing
the size of the slip region with the predicted breakdown of the outer approximation,
and we require λ=O(e−1/ε). We thus set

ε = 1/|log λ|. (4.1)
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Distinguished limits in moving contact lines 115

For the inner region, we rescale H = λH and X = λs, then (2.5) gives

λ
∂H
∂t
+ ȧ

∂H
∂s
+ ∂

∂s

[
H2
(H + 1)

∂3H
∂s3

]
= 0. (4.2)

We expand H =H0 + εH1 +O(ε2, λ), and this gives the first two orders as

∂

∂s

[
H2

0(H0 + 1)
∂3H0

∂s3

]
= 0, (4.3a)

ȧ1
∂H0

∂s
+ ∂

∂s

[
H2

0(H0 + 1)
∂3H1

∂s3
+ (3H2

0H1 + 2H0H1)
∂3H0

∂s3

]
= 0. (4.3b)

The necessary boundary conditions at s= 0 are given by (2.3a) and (2.3b):

H = 0 and ∂H/∂s= θy + ε(βȧ1/θy)+O(ε2). (4.4a,b)

The leading-order problem is solved, giving

H0(s, t)= θys. (4.5)

The first-order problem can be integrated once and gives

ȧ1H0 + (H3
0 +H2

0)
∂3H1

∂s3
=C(t). (4.6)

With H0 given by (4.5), it can be verified a posteriori that the third derivative of
H1 is O(s−1) as s→ 0, so C(t)≡ 0. The resultant equation is integrated for H1, and
application of the boundary conditions (4.4) gives

H1(s, t) = C1(t)s2 + ȧ1

(
− s

2θ 2
y

+ βs
θy
− s2 log s

2θy

+ log(1+ θys)
2θ 3

y

+ s log(1+ θys)
θ 2

y

+ s2 log(1+ θys)
2θy

)
. (4.7)

We shall assume that H1(s, t) does not diverge faster than s log s as s→∞, so we
set C1(t)=−ȧ1 log θy/(2θy), leaving us with the final first-order solution

H1(s, t) = ȧ1

(
− s

2θ 2
y

+ βs
θy
− s2 log θy

2θy
− s2 log s

2θy

+ log(1+ θys)
2θ 3

y

+ s log(1+ θys)
θ 2

y

+ s2 log(1+ θys)
2θy

)
. (4.8)

It can be noticed that as s→ 0, the third derivative of H1 is O(s−1), so the assumption
made after (4.6) is verified. All together, as s→∞, we have the outer limit of the
inner solution:

Hin→out ∼ θys+ εȧ1

[(
1
θ 2

y

)
s log s+

(
β

θy
+ log θy

θ 2
y

)
s+ · · ·

]
. (4.9)
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5. Asymptotic analysis of the intermediate region at t=O(1)

In general, we cannot expect H to match directly with H (since the out-to-in limit
is a time-dependent angle, and the in-to-out limit is a specified constant angle). We
need an intermediate region to perform the matching, and this is given by the larger
ε parameter. In this region, we write

s= ez/ε, H =Q(z, t)ez/ε, (5.1a,b)

where 0< z< 1 provides the intermediate scaling between the inner and outer regions.
We must now change (4.2) to make use of differentiation in z. Before doing this,
however, let us examine the first time-dependent term in (4.2). This term becomes
λ∂H/∂t = e(z−1)/ε∂Q/∂t. Within the intermediate region, this term is exponentially
small, and should be ignored. Thus, within the intermediate region, we have

ȧ
∂H
∂s
+ ∂

∂s

(
H2
(H + 1)

∂3H
∂s3

)
= 0. (5.2)

Integrating the equation once and setting the constant of integration to zero, then
rewriting in intermediate variables gives

ȧ+Q(Q+ e−z/ε)

(
−ε ∂Q

∂z
+ ε3 ∂

3Q
∂z3

)
= 0. (5.3)

We ignore the exponentially small term and expand the velocity. This gives

(εȧ1 + ε2ȧ2 +O(ε3))+Q2

(
−ε ∂Q

∂z
+ ε3 ∂

3Q
∂z3

)
= 0. (5.4)

It can be noticed that up to order ε3 in the above equation, we can derive a portion
of the solution as Q3 = (c0 + εc1)+ 3(ȧ1 + εȧ2)z+O(ε2), which gives

Q(z, t)= (c0 + 3ȧ1z)1/3 + ε
(

c1 + 3ȧ2z
3(c0 + 3ȧ1z)2/3

)
+O(ε2). (5.5)

We can thus write the asymptotic expansion of the intermediate solution as

Hinterm = (c0 + 3ȧ1z)1/3s+ ε
(

c1 + 3ȧ2z
3(c0 + 3ȧ1z)2/3

)
s+O(ε2). (5.6)

6. Matching of inner, intermediate and outer solutions
In order to perform the matching between the solution in the intermediate region

(5.6) and the solution in the inner region (4.9), we apply van Dyke’s matching rule
(Van Dyke 1975): the two-term expansion of the intermediate solution (2:int), rewritten
in inner coordinates and re-expanded to two terms (2:inner), is equal to the two-term
inner expansion, rewritten in intermediate coordinates, and re-expanded to two terms.
Or, simply, (2:inner)(2:int)= (2:int)(2:inner). We thus have

(2:inner)(2:int) = [c0 + ε(3ȧ1 log s)]1/3s+ ε
[

c1 + 3ȧ2ε log s
3(c0 + 3ȧ1ε log s)2/3

]
s

= c1/3
0 s+ ε

[(
ȧ1

c2/3
0

)
s log s+

(
c1

3c2/3
0

)
s+ · · ·

]
, (6.1)
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which is matched to

(2:int)(2:inner)= θys+ εȧ1

[(
1
θ 2

y

)
s log s+

(
β

θy
+ log θy

θ 2
y

)
s+ · · ·

]
(6.2)

and yields
c0 = θ 3

y and c1 = 3ȧ1
(
βθy + log θy

)
. (6.3a,b)

This leaves the matching of intermediate and outer solutions. Substituting the outer
variables H = λH and X = λs into the intermediate solution (5.6), we have

Hinterm = [c0 + 3ȧ1 (1+ ε log X)]1/3X + ε
[

c1 + 3ȧ2 (1+ ε log X)
3 (c0 + 3ȧ1 (1+ ε log X))2/3

]
X + · · ·. (6.4)

The two-term intermediate limit (2:int) of (5.6), expressed in outer variables and re-
expanded to two terms (2:out), gives

(2:out)(2:int)= (c0 + 3ȧ1)
1/3 X + ε

[(
ȧ1

(c0 + 3ȧ1)2/3

)
X log X +

(
c1 + 3ȧ2

3(c0 + 3ȧ1)2/3

)
X
]
,

(6.5)

whereas from (3.11), we have

(2:int)(2:out)= (B10X + · · ·)+ ε
[(

ȧ1

B2
10(t)

)
X log X +C10X + · · ·

]
. (6.6)

Thus, we have the two equations

B3
10(t)− θ 3

y = 3
da1

dt
, (6.7a)

B2
10(t) ·C10(t)= ȧ1(βθy + log θy)+ ȧ2. (6.7b)

The relation between the contact angle and the contact line speed, (6.7a), is
verified by numerics. The left-hand side of the relation follows from the computation
of the leading-order slip-free outer solution H0 in § 3. The right-hand side requires
an accurate extraction of the limiting contact line velocity as λ → 0. In order to
obtain this value, we plot in figure 4(b) the velocity at fixed values of time and in
decreasing values of the slip length. It should be noted that the plot of the velocity
versus ε = 1/|log λ| appears to tend to a straight line passing through the origin. The
right-hand side of (6.7a), ȧ1, is estimated as the slope of the line joining the origin
and the last data point (λ= 9× 10−7) at the different times.

Finally, a check of the angle–speed relation (6.7a) is given in figure 5. The solid
curve is the plot of (B3

10(t) − θ 3
y )/3, whereas the circles are the extracted values of

ȧ1 at the different times. These two sets of data agree well except for small time, t.
We would expect that for a fixed value of t, the relation would only hold in the limit
λ→ 0. The error in the relation (6.7a) is due to our inability to resolve the contact
line problem for sufficiently small values of slip.

7. Breakdown as t→∞ and recovery of the quasi-static limit
We notice that as t→∞, the above asymptotic analysis fails, since the expansion

(3.1) becomes disordered once the correction to the contact line position a1(t) =
O(1/ε). In the double limit of t → ∞ and λ→ 0, we have a distinguished limit
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FIGURE 4. (a) The velocity of the contact line versus time for the spreading droplet with
θy = 1. From top to bottom, the four curves are the velocities for λ = 9 × 10−4, 9 ×
10−5, 9 × 10−6 and 9 × 10−7. (b) The velocity of the contact line versus ε = 1/|log λ|,
at the time t= 0.005 (left triangles), 0.01 (diamonds), 0.02 (squares), 0.03 (circles), 0.04
(down triangles) and 0.05 (up triangles).

which requires a rescaling of time using τ = εt. From (2.5), this gives

ε
∂H
∂τ
+ ε da

dτ
∂H
∂X
+ ∂

∂X

(
H2(H + λ)∂

3H
∂X3

)
= 0. (7.1)

If we expand H = H0 + εH1 + · · ·, and the velocities da/dτ = da1/dτ + εda2/dτ +
· · ·, then at leading order, we obtain a quasi-static solution, with H0= ((3κ)/(2a3(τ )))
X[2a(τ )−X], where κ can be solved by applying conservation of mass and using the
initial profile of the droplet, κ = ∫ a

0 h(x, 0)dx.
It can be noticed that time dependence only enters into H0 via the a(τ ) term, and

since all the subsequent orders depend solely on derivatives of the previous orders
(with one term multiplying da/dτ ), then the profile shape only depends on time as
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4
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8

10

12

t
0 0.01 0.02 0.03 0.04 0.05

FIGURE 5. Verification of the relation (6.7a) between the contact angle and the contact
line velocity. The solid curve is (B3

10− θ 3
y )/3 versus time, where B10(t) is computed from

the numerical solution of the leading-order outer equation (3.3). The circles are the plot
of ȧ1 at different times, where the data for ȧ1 are computed from the slope of the line
joining the origin and the last data point (λ= 9× 10−7) in figure 4(b).

a function of the droplet location. The classical quasi-static analysis then follows
(cf. Hocking (1981) and other references in § 1.1). In this case, the full outer solution
is given by

H(X, a) = 3κ
2a3

X[2a− X] + ε da1

dτ

[
a4

9κ2

] [
(2a− X) log(2a− X)

+X log X − 2a log(2a)+ 3
2a

X(2a− X)
]
+ · · ·. (7.2)

Since the time-dependent term ∂H/∂t only affects the outer analysis of the previous
sections, then the inner and intermediate solutions, given by (4.5), (4.8) and (5.6),
continue to be valid, and we have for the outer-to-inner and inner-to-outer limits

Hout→in =
[

3κ
a2

X + · · ·
]
+ ε da1

dτ
a4

9κ2
[X log X + {2− log(2a)}X + · · ·] + · · ·, (7.3a)

Hin→out = θys+ ε da1

dτ

[(
1
θ 2

y

)
s log s+

(
1
θy
+ log θy

θ 2
y

)
s

]
+ · · ·. (7.3b)

If we denote θapp as the leading-order outer contact angle (the apparent contact angle),
then we have from (7.3a) θapp = 3κ/a2, which confirms that the apparent contact
angle can be predicted once the contact line location is known. Use of (6.3)–(6.5),
(7.3a) and (7.3b) allows the matching between inner and outer solutions through the
intermediate layer, giving

θ 3
app − θ 3

y = 3
da1

dτ
, (7.4a)

da2

dτ
= da1

dτ

[
−βθy + log

(
e2

2aθy

)]
, (7.4b)
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which play an analogous role to the two equations (6.7a) and (6.7b) for the t=O(1)
problem. Using (7.4a) and (7.4b), we then have a differential equation for the droplet
location, accurate to two orders:

da
dτ
∼ da1

dτ

[
1+ ε

{
−βθy + log

(
e2

2aθy

)}]
= 1

3
[(3κ/a2)3 − θ 3

y ]
[

1+ ε
{
−βθy + log

(
e2

2aθy

)}]
. (7.5)

This is analogous to the results of Hocking (1983) using the alternative constitutive
relationship (2.3b).

The principal result of this paper is shown in figure 1. Here, the rescaled velocity
ȧ(t)/ε is plotted as a function of time for the case of a spreading droplet with slip
coefficient λ = 9 × 10−7. The two time scales determining the dynamics are clearly
visible (note that the shaded region is only illustrative); we indeed confirm that the
classical quasi-static approximation of (7.5) is an excellent fit once time is appreciable.
However, for t = O(1), the slip-free approximation of (6.7a) will capture the correct
dynamics. We note that because the second time scaling is only logarithmically large
in the slip, λ, then for most practical values of the slip, the transition to the quasi-
static regime occurs quite rapidly. However, as λ→ 0, we would indeed expect the
transition point (e.g. in figure 1) to move to infinity.

8. Discussion
The difference between the two distinguished limits is well encapsulated in the two

angle–speed relations (6.7a) and (7.4a) which, although very similar in appearance,
have completely different interpretations:

(i) λ→ 0, t= t∗, θ 3
app(t

∗)− θ 3
y = 3

da1

dt
, (8.1a)

(ii) λ→ 0, t= |log λ|τ , θ 3
app[a(τ )] − θ 3

y = 3
da1

dτ
. (8.1b)

In the case of (i), where t=O(1), the apparent contact angle is a known function
given by the solution of the leading-order zero-slip equation (3.3); thus, the leading-
order slip velocity is also known, and in the limit λ→ 0, contact line slippage is
a ‘regular’ perturbative effect. By ‘regular’, we mean that the contact line position
tends to a constant, a(t∗)→ a0 as λ→ 0. To leading order, one would say that the
contact line is fixed. Thus, (8.1a) provides a closed relation between the apparent
angle and the first-order contact line speed once the λ= 0 equation has been solved.
No microscopic properties are necessary in determining the contact line dynamics at
this order.

However, in the limit that t→∞, significant contact line movement occurs, and
the asymptotic relations used to derive (i) are invalid. Contact line movement can be
brought in by rescaling time. Thus, in the case of (ii), where time is logarithmically
large in the slip number, the apparent angle is no longer a directly known value.
It can only be computed once the droplet location, a(τ ), is known, and this value
must be found by solving an ordinary differential equation for the position, given by
(7.5). Although the methodology we have used to study the t=O(1) problem is very
similar to the methodology used in the classical quasi-static work of, for example,
Hocking (1983), the principal motivation of our work is to highlight this idea of the
non-uniformity within the time variable.
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While the principal setting of our work was the lubrication equations of thin-film
flow, the same ideas hold for slow viscous Stokes flow. The difficulty, however, is
that even the simplest free-surface problems in Stokes flow are too unwieldy to solve,
and so classical works on contact line dynamics in slow flow (e.g. in Cox 1986)
have relied upon very general descriptions of how the inner, intermediate and outer
asymptotics are performed. Moreover, we believe that other contact line models (e.g.
in table 1) will exhibit the same subtleties in their asymptotic analysis; the notion of
a distinguished limit in time is a generic aspect that arises due to the separation of
macroscopic and microscopic time scales.

In a general problem, there may be multiple choices for the velocity scale and the
resultant capillary number. Consider a system that begins at t = 0 with an imposed
(macroscopic) velocity scale of Umacro (for example, this may correspond to forced
flow through a channel with speed Umacro). In this case, this initial macroscopic
velocity sets the capillary number,

Camacro = µUmacro

σ
. (8.2)

The leading-order contact line condition to impose on the outer flow is that the
contact line is fixed. To an observer positioned away from the contact line, the
contact line seems stationary, with surrounding bulk fluid moving at an O(1) velocity.
This is emphasized by the analysis of the t = O(1) scaling of § 3 for the case of
lubrication theory, and where Umacro corresponds to the initial relaxation speed of a
droplet deposited far from its quasi-static state.

However, at large times, the bulk fluid slows down from its initial relaxation
velocity and is now moving at the same rate as the contact line. The macroscopic
flow is now governed by a smaller capillary number:

Cacl = εCamacro, (8.3)

where ε is the contact line velocity. Relative to this velocity scale, the inner limit
of the outer velocity field must now take into account contact line movement. It can
be seen by examining the slow-flow equations and free-surface conditions that in the
limit Cacl→ 0, the fluid interface is flat to leading order. In essence, this justifies the
assumptions found in the slow-flow contact line analysis of Cox (1986), where the
leading-order outer solution consisted of flow in a fixed wedge for small-capillary-
number flow.

8.1. Problems with patching between time-dependent and quasi-static regions
The above discussion highlights the difficulties of studying contact line dynamics in
situations where, in the large-time limit, the quasi-static flow near the contact line is
not the entirety of the flow. Consider the situation of a plate pulled from a bath. Such
a scenario is described by the non-dimensional thin-film equation

∂h
∂t
+ ∂

∂x

[
h2

(
h
3
+ λ
)(

∂κ

∂x
− 1
)
+Camacroh

]
= 0, (8.4)

on the domain x ∈ [0, R(t)], where we use the full nonlinear curvature κ = hxx/[1 +
(hx)

2]3/2. This classical dewetting problem has been studied by, for example, Eggers
(2004a, 2005), Eggers & Stone (2004) and Snoeijer et al. (2006). The point x = 0
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FIGURE 6. Thin-film profiles for a plate pulled from a bath, modelled by (8.4) using
Camacro = 0.017 and λ= 1.3× 10−5. The dashed line is the initial profile.

corresponds to the matching region to the bath, and we use the illustrative boundary
conditions h = 1 and hx = −1. On the right, at x = R(t), we apply the contact line
conditions (2.3). In figure 6, we plot solutions at different times, corresponding to the
capillary number Camacro = 0.017 and slip λ = 1.3 × 10−5. These values have been
chosen specifically to demonstrate the fascinating structure of the solution, and they
have been used in Snoeijer et al. (2006).

In the limit that t→∞, it is seen that the bulk fluid near the bath tends to the
‘Landau–Levich solution’ (cf. Wilson 1982), where the plate is covered by a uniform
film governed by the macroscopic capillary number Camacro. However, in a localized
region near the contact line, the flow is increasingly quasi-static as t→∞, and the
governing capillary number Cacl tends to zero as the slip is taken to zero. The size
of this quasi-static region grows as time increases, and a contact line analysis would
require matching of the solution near the bath with the solution near the contact line,
through an intermediate time-dependent region whose length is a priori unknown.
Compare and contrast this with the situation of a spreading droplet, where in the
limit t→∞, the leading-order solution is globally solved by the quasi-static solution
with constant curvature.

The time-dependent drag-out problem has been studied by, for example, Snoeijer
et al. (2006, 2008), and there it was shown that the analysis is complicated further by
the possibility of multiple solutions at large times. A similar system was studied in
the work of Benilov et al. (2010), where it was demonstrated that for such problems,
there exist an infinite number of zones, logarithmically spaced apart, where the fluid
height oscillates between maxima and minima. The key aspect of such problems
is that, because the solution is only quasi-static near the very tip, an asymptotic
analysis of the sort we have performed here for t = O(1) is made difficult due
to the required patching of multiple regions changing in time. Indeed, problems
such as the case of gravity-driven draining down a vertical wall may not possess a
well-defined limit as λ→ 0 and t=O(1), which is evident in the overturning profiles
of Moriarty, Schwartz & Tuck (1991). For such problems, not only is one required
to contend with distinguished limits in time, as we have done in this paper, but also
distinguished limits between the two (or more) capillary numbers. Such problems
with more complicated global structure are the subject of ongoing investigation.
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Appendix A. Numerical methods
To solve the thin-film equation (2.4) (and its reductions, such as (3.3)) on the time-

dependent domain [0, a(t)], where a(t) is the moving contact line, we introduce the
coordinate transformation

x(ξ , t)= a(t)f (ξ), (A 1)

where the map f (ξ) : [0, 1]→ [0, 1] is monotonic and f (0)= 0, f (1)= 1. The purpose
of the map f is to concentrate most of the grid points near the contact line. In this
work, we use f (ξ)= tanh(ξ/ε)/ tanh(1/ε), where ε= 0.2.

In terms of the new variable, the thin-film equation becomes

∂h
∂t
− xt

xξ

∂h
∂ξ
+ 1

xξ

∂

∂ξ

(
h2(h+ λ)

(
α
∂h
∂ξ
+ β ∂

2h
∂ξ 2
+ γ ∂

3h
∂ξ 3

))
= 0, (A 2)

where we have introduced

α =−xξξξ
x4
ξ

+ 3x2
ξξ

x5
ξ

, β =−3xξξ
x4
ξ

, γ = 1
x3
ξ

, (A 3a−c)

and subscripts are used for partial derivatives.
Equation (A 2) is solved on a uniform mesh covering the fixed domain ξ ∈ [0, 1]

and t ∈ [0, T]. The solution is computed on the mid-grid points (ξi+1/2, tn) = ((i +
1/2)1ξ, n1t), where 1ξ = 1/N and tn = 1/M are the mesh steps in space and time
respectively. The numerical solution is denoted by hn

i+1/2.
We use a semi-implicit scheme to evolve h in time:

hn+1
i+1/2 − hn

i+1/2

1t
−
(

xt

xξ

)n

i+1/2

(
∂h
∂ξ

)n+1

i+1/2

+
(

1
xξ

)n

i+1/2

Rn+1
i+1 − Rn+1

i

1ξ
= 0, (A 4)

for i= 0, 1, . . . ,N − 1. In the above equation, Rn
i is the flux at the grid point (ξi, tn),

which is given by

Rn+1
i = (h2(h+ λ))ni

(
αn

i

(
∂h
∂ξ

)n+1

i

+ βn
i

(
∂2h
∂ξ 2

)n+1

i

+ γ n
i

(
∂3h
∂ξ 3

)n+1

i

)
, (A 5)

for i= 1, 2, . . . ,N − 1 and Rn+1
0 = Rn+1

N = 0.
The spatial derivatives are discretized using the standard finite differences:(

∂h
∂ξ

)n+1

i+1/2

≈ 1
21ξ

(
hn+1

i+3/2 − hn+1
i−1/2

)
, (A 6a)(

∂h
∂ξ

)n+1

i

≈ 1
1ξ

(
hn+1

i+1/2 − hn+1
i−1/2

)
, (A 6b)
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∂2h
∂ξ 2

)n+1

i

≈ 1
21ξ 2

(
hn+1

i+3/2 − hn+1
i−1/2 − hn+1

i+1/2 + hn+1
i−3/2

)
, (A 6c)(

∂3h
∂ξ 3

)n+1

i

≈ 1
1ξ 3

(
hn+1

i+3/2 − 3hn+1
i+1/2 + 3hn+1

i−1/2 − hn+1
i−3/2

)
. (A 6d)

Two ghost points are needed in order to evaluate the derivatives near the boundary.
They are defined using the boundary conditions (2.3a) and (2.2):

hn+1
−1/2 = hn+1

1/2 , hn+1
N+1/2 =−hn+1

N−1/2. (A 7a,b)

In matrix form, the linear system in (A 4) has a banded structure, and it is easily
solved using the LU (lower–upper) factorization to produce hn+1

i+1/2 for i= 0, 1, . . . ,N−
1, the interface at the new time step. After the new interface is obtained, the contact
line a(t) is updated using the condition (2.3b).

Appendix B. Complete wetting
The case of complete wetting, that is, θy = 0 in (2.3b), requires a modification to

the asymptotic analysis of § 3. If we assume again that the velocity is expanded into
powers of ε, then the degenerate boundary condition becomes ∂H/∂X = O(ε), and
thus, at first glance, the inner scaling of § 4 would be such that the inner variables,
H and s, satisfy ∂H/∂s= ε; this would allow the wall-angle condition to be applied
to the leading-order inner solution. However, this is not the case, and one finds that
such a scaling makes it impossible to perform the necessary matching between inner
and outer solutions.

In fact, the correct scaling for the inner region is such that the advective, capillary
and slip terms of (2.5) are all balanced at leading order. This requires H=λH and X=
λε−1/3s. Thus, for the case of complete wetting, the inner length scale is algebraically
larger than that in the case of partial wetting. The inner solution is then expanded into
the series H =H0 + εH1 +O(ε2), and the leading-order problem satisfies

ȧ1 +H0(H0 + 1)
∂3H0

∂s3
= 0, (B 1)

with boundary conditions H0(0) = H′0(0) = 0. The third boundary condition is a
matching condition. As was shown by Hocking (1992), the outer limit of the
leading-order inner solution satisfies H ∼ s[3ȧ1 log s + C]1/3, where the value of
C is chosen to match the inner and outer solutions (through the intermediate layer).
Because this involves the numerical solution of (B 1), we have chosen to only present
the details for the case of partial wetting; however, it should be clear that the main
point of this paper (that of understanding the importance of time rescaling) continues
to hold true, even for the case of complete wetting.
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