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Abstract

We sharpen earlier work of Dabrowski on near-perfect power values of the quartic form x4 − y4, through
appeal to Frey curves of various signatures and related techniques.
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1. Introduction

The fact that the equation x4 − y4 = z2 has no solutions in positive integers x, y and z
was deduced centuries ago by Fermat, as an early application of the method of infinite
descent. An analogous statement for the more general equation x4 − y4 = zn, with n ≥ 2
and gcd(x, y) = 1, is of much more recent vintage, following work of Darmon [6],
Darmon and Merel [8] and Ribet [17] (see also [3]).

Via similar techniques to [8] and [17], based essentially upon the modularity of
Galois representations attached to (Frey) elliptic curves, Dabrowski [5] proved that
the equation

x4 − y4 = 2αpβzn (1.1)

has, for p a fixed prime with p , 2k ± 1 for k an integer, no solutions in coprime
positive integers x, y and suitably large prime exponent n. Somewhat stronger results
have been obtained in a number of papers, under the additional assumption that y is
prime; see, for example, [1, 12, 18, 22].

Our first result sharpens the conclusions of [5].

Theorem 1.1. If p is prime and α, β are nonnegative integers, then there exists an
effectively computable constant n0 = n0(p) such that (1.1) has no solutions in nonzero
coprime integers x, y, z and prime n ≥ n0, unless p = 22 j

+ 1 for some integer j ≥ 1 and
xy ≡ 1 mod 2.
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An almost immediate corollary of this is the following result.

Corollary 1.2. If p is prime with p , 22 j
+ 1 for any integer j ≥ 1, then (1.1) has at

most finitely many solutions in nonzero coprime integers x, y, z, nonnegative integers
α, β and integer n ≥ 3.

We observe that the results of [5] fail to apply to Fermat and Mersenne primes (the
latter a presumably infinite set), while Theorem 1.1 (and hence Corollary 1.2) is valid
for all primes except Fermat primes (a set that is expected to contain only p = 5,17,257
and 65 537). For these excluded primes, we have a rather weaker conclusion; for
simplicity, we restrict our statement to (1.1) with α = 0 and β = 1.

Theorem 1.3. If p is prime with p = 22 j
+ 1 for some integer j ≥ 3, then there exists an

effectively computable constant n0 = n0(p) such that the equation

x4 − y4 = pzn (1.2)

has no solutions in nonzero integers x, y, z and prime n ≥ n0 with either(
−10(2 j−2 − 1)

n

)
= −1 or

(
−6(2 j−1 − 3)

n

)
=

(
−6(2 j−2 − 1)

n

)
= −1.

If p ∈ {5,17}, (1.2) has no solutions in coprime positive integers x, y, z and prime n > 5.

Note that for p = 257, this eliminates large primes n in all but the following residue
classes:

1, 7, 11, 49, 53, 59, 77, 103 mod 120.

For p = 65 537, it excludes rather fewer primes.
It is worth observing that the obstruction to solving (1.2) for all suitably large prime

n, if p is a Fermat prime, arises from the identity

(2k + 1)4 − (2k − 1)4 = (22k + 1)2k+3,

which provides a nontrivial solution to (1.2), if p = 22 j
+ 1, upon taking k = 2 j−1 (with

n = 7 and n = 11, for p = 257 and p = 65 537, respectively).
As we shall see, an admissible value for n0(p) is

n0(p) =
( √

8(p + 1) + 1
)2(p−1)

. (1.3)

In practice, for reasonably small values of p, we can be much more precise. By way
of example, we have the following result.

Theorem 1.4. If p is prime with 2 ≤ p < 50, p , 5, 17, and α, β are nonnegative
integers, then (1.1) has no solutions in coprime positive integers x, y, z and prime n > 5.

We remark that with some work, one can treat the smaller exponents n ∈ {2, 3, 4, 5},
via Chabauty-type techniques and other means. Presumably, the only nontrivial

https://doi.org/10.1017/S0004972720000441 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000441


40 M. A. Bennett [3]

solutions to (1.1) with 2 ≤ p < 257 correspond to

n = 2 and either p ≡ 5, 7 mod 8 or p ∈ {41, 137},
n = 4, p = 5, x = 3, y = 1, z = 2,
n = 5, p = 17, x = 5, y = 3, z = 2,

n = 4, p = 239, x = 120, y = 119, z = 13.

We observe further that the restriction to coprime solutions to (1.1) is a necessary
one. Indeed, if we fix any prime p > 2, then the identity( p + 1

2

)4
−

( p − 1
2

)4
=

( p2 + 1
2

)
p

leads to solutions to (1.2) for every n ≡ 1 mod 4, upon taking

x =

( p + 1
2

)( p2 + 1
2

)(n−1)/4
, y =

( p − 1
2

)( p2 + 1
2

)(n−1)/4
, z =

p2 + 1
2

.

We proceed as follows. In Section 2, we use elementary factoring arguments to
reduce the study of (1.1) to a number of ternary equations of signature (n, n, n) and
(n, n, 2), which we can treat through appeal to work of Kraus [10], Ivorra [9], and
the author and Skinner [2]. This use of multiple Frey curves corresponding to different
signatures has become quite common in the literature, and has typically been employed
to rather less modest effect. Section 3 contains the proof of Theorem 1.3, which
uses recent criteria for certain isomorphisms to be symplectic. In Section 4 we prove
Theorem 1.4, which requires a somewhat more careful analysis of local properties of
our Frey curves. Finally, in Section 5, we discuss the situation when, in (1.1), the
exponent n is small, relative to the prime p. In such circumstances, things are rather
less clear-cut than is the case for larger exponents.

2. Factoring and Frey curves

In this section we begin by proving Theorem 1.1 and Corollary 1.2. Suppose that
n ≥ 2 and that we have a solution to (1.1) in positive, coprime integers x, y and z, with
α and β nonnegative integers such that β . 0 mod n. Without loss of generality, x > y.

2.1. xy even. Assume first that xy is even (so that z is odd and α = 0). Factoring, we
have one of 

x − y = an

x + y = bn

x2 + y2 = pβcn

or 
x ± y = an

x ∓ y = pβbn

x2 + y2 = cn,
(2.1)
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for positive odd integers a, b and c. We thus find that either

a2n + b2n = 2pβcn (2.2)

or
a2n + p2βb2n = 2cn. (2.3)

Note that if p ≡ −1 mod 4, we are necessarily in cases (2.1) and (2.3).

2.2. xy odd. If, conversely, we suppose that xy is odd (so that either z is even or
α ≥ 4), then either 

x ± y = 2γan

x ∓ y = 2bn

x2 + y2 = 2pβcn
(2.4)

or 
x ± y = 2γ1 an

x ∓ y = 2γ2 pβbn

x2 + y2 = 2cn,

where a,b and c are coprime, odd positive integers, and γ, γ1 and γ2 are suitably chosen
integers with γ ≥ 2, min{γ1, γ2} = 1 and max{γ1, γ2} ≥ 2. We thus find that either

22γ−2a2n + b2n = pβcn (2.5)

or
22γ1−2a2n + 22γ2−2 p2βb2n = cn. (2.6)

Once again, only the latter case can occur if p ≡ −1 mod 4. Our key result that
eliminates the possibility of (1.1) having solutions when p is a Mersenne prime is
the following proposition, a straightforward consequence of the observation that (2.6)
defines ternary equations of both signatures (n, n, n) and (n, n, 2).

Proposition 2.1. If a, b, c, γ1 and γ2 are positive integers with

min{γ1, γ2} = 1 and max{γ1, γ2} ≥ 2,

then (2.6) has no solutions in integers n ≥ 3.

Proof. If γ1 = 1, (2.6) can be rewritten as

a2n − cn = (2γ2−1 pβbn)2 (2.7)

which has, by the main theorem of Darmon and Merel [8], no solutions in nonzero
coprime integers for n ≥ 4. If n = 3, any such solutions correspond to rational points

(X,Y) =

(
−

c
a2 ,

2γ2−1 pβbn

a3

)
on the elliptic curve Y2 = X3 + 1 . This curve has rank 0 over Q and torsion subgroup
of order 6, containing the point at infinity and those given by

(X,Y) ∈ {(−1, 0), (0,−1), (0, 1), (2,−3), (2, 3)}.
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Since b and c are positive, it follows that (2.7) has no solutions in nonzero coprime
a, b and c if n ≥ 3.

If γ2 = 1, (2.6) becomes

22γ1−2a2n − cn = (pβbn)2. (2.8)

Since γ1 ≥ 2, this equation has, via [2, Theorem 1.2], no solutions in coprime integers
a and c, provided n ≥ 7 is prime. Further, it has no solutions modulo 4 for even n.

For n ∈ {3, 5}, solutions to (2.8) correspond to rational points (X, Y) with X < 0
and Y > 0 on the (hyper)elliptic curve Y2 = Xn + 22k for 0 ≤ k ≤ n − 1. If n = 5, by
Mulholland [14, Theorem 5.1], no such points exist. If n = 3, each of the curves
Y2 = X3 + 22k has rank 0; once again the torsion points fail to correspond to nontrivial
solutions to (2.8). �

An almost immediate consequence is the following result.

Corollary 2.2. If x, y and z are coprime positive integers with x and y odd, then (1.1)
has no solutions in prime p ≡ −1 mod 4, nonnegative integers α and β and integer
n ≥ 3.

To complete the proof of Theorem 1.1, it remains, then, to treat (2.2), (2.3) and
(2.5). We will show that for suitably large prime exponents n, the first two of these
never have nontrivial solutions. We obtain a like conclusion for the third equation,
unless p is a Fermat prime.

2.3. Ternary equations of signature (n, n, n). To solve (2.2), (2.3) and (2.5), we
will begin by appealing to results on ternary equations of signature (n, n, n). In general,
suppose we have a solution to an equation of the shape

Aαn + Bβn = Cγn,

in integers A, B,C, α, β, γ, with gcd(Aα, Bβ) = 1 and n ≥ 7 prime. Without loss of
generality, suppose further that

Aαn ≡ −1 mod 4 and Bβn ≡ 0 mod 2

and consider the elliptic curve

F : Y2 = X(X − Aαn)(X + Bβn).

If we denote by
ρF

n : Gal(Q/Q)→ GL2(Fn)

the representation of Gal(Q/Q) on the n-torsion points F[n], then, combining work
of Wiles [21], Taylor and Wiles [20] and Ribet [16] (see Kraus [10, Théorème 1] for
details), there necessarily exists a weight-2 cuspidal newform

f = q +
∑
`≥2

c`( f )q`
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of level N, for

N =



∏
q|ABC

q if ν2(ABC) = 4 and αβγ ≡ 1 mod 2,

23
∏

q|ABC

q if ν2(ABC) = 2 or 3 and αβγ ≡ 1 mod 2,

25
∏

q|ABC

q if ν2(ABC) = 1 and αβγ ≡ 1 mod 2,

2
∏

q|ABC

q otherwise,

where each product is taken over odd primes q, with the property that if we write
K = K f = Q(c2, c3, . . .), there exists some prime ideal n | n with

a`(F) ≡ c`( f ) mod n for all prime ` - Nnαβγ (2.9)

and
± (` + 1) ≡ c`( f ) mod n for all prime ` - Nn, ` | αβγ. (2.10)

Here, for shorthand, we write F ∼n f and say that F arises modulo n from f .
Further, from Kraus [10, Théorème 1], we either have

n <
((N

6

∏
l|N

l prime

(
1 +

1
l

))1/2
+ 1

)2g+
0 (N)

,

where g+
0 (N) denotes the dimension of the space of cuspidal, weight-2, level-N

newforms, or K = Q and F ∼n E, for an elliptic curve E/Q of conductor N with full
rational 2-torsion.

In the case of (2.2), (2.3) and (2.5), necessarily N = 2κ · p, where κ ∈ {0, 1, 3, 5}. To
classify these p for which there exist elliptic curves of corresponding conductors and
full rational 2-torsion, we turn to work of Ivorra [9].

Proposition 2.3. If p > 2 is prime, then there exists an elliptic curve E/Q with full
rational 2-torsion and conductor N = 2κ · p precisely when E is isogenous to

E′ : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

for ai, p and κ as follows:

p κ (a1, a2, a3, a4, a6)
3 3, 4, 5 (0,±1, 0, 1, 0), (0,±1, 0,−2, 0)
3 6 (0,±1, 0,−4,±2), (0,±1, 0, 3,±3)
5 3, 4, 6 (0, 0, 0,−2,±1), (0, 0, 0,−8,±8)
7 3, 4, 6 (0, 0, 0, 1,±2), (0, 0, 0, 4,±16)
17 0 (1,−1, 1,−1, 0)

2k − 1 1 (1, 2k−2, 0, 2k−4, 0), k ≥ 5
2k − 1 4 (0,−2k − 2, 0,−2k − 1, 0), k ≥ 5
2k + 1 1 (1,−2k−2, 0,−2k−4, 0), k ≥ 8
2k + 1 4 (0, 2k + 2, 0, 2k + 1, 0), k ≥ 8.
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For (2.2) and (2.3), we have N = 25 · p and hence, from Proposition 2.3, either p = 3
or, using the fact that g+

0 (25 · p) = p − 1 (see Martin [13, Theorem 1]), it follows that
n < n0(p), where this latter quantity is as defined in (1.3).

For (2.5), we necessarily have p ≡ 1 mod 4 and N ∈ {p,2p,8p}, whence Proposition
2.3 implies p = 5 (and N = 40, γ = 2), p = 17 (and N = 17, γ = 3) or p = 2k + 1 for
k ≥ 8 (whence N = 2p). This completes the proof of Theorem 1.1, for all p > 3.

To treat the case of (2.3) with p = 3, we will use a Frey curve of signature (n, n, 2).
Suppose that n ≥ 7 is prime and consider the curve

E : Y2 = X3 + 2 · 3βbnX2 + 2 · cnX.

Appealing to [2, Proposition 4.3], we have E ∼n f where f is a weight-2 cuspidal
newform f , with trivial character and level 128. All such forms have K = Q and
c3( f ) = ±2, while, from β > 0, a3(E) = 0, contradicting

a3(E) ≡ c3( f ) mod n.

This completes the proof of Theorem 1.1. Corollary 1.2 is now almost immediate,
since (1.1) has, for fixed exponent n ≥ 3, at most finitely many coprime solutions x, y
and z, via a result of Darmon and Granville [7] (which itself is a consequence of
Faltings’s theorem).

3. Applications of symplectic criteria

To prove Theorem 1.3, we begin by supposing that we have a solution to (1.2) in
coprime integers x, y and z, where n > 5 is prime. We have either xy even, whereby
F ∼n f for a newform of level N = 32p, or xy odd, so that, from (1.2), necessarily
γ ≥ 5 in (2.4), whence F ∼n f for a newform of level N = 2p. There are no newforms
at level N = 10. A short Magma computation reveals that, for p ∈ {5, 17},

c3( f ) ∈ {±2,±2
√

2}

if f has level 34 or 160, or if N = 32 · 17 and K f = Q. Since our Frey curve E has
full rational 2-torsion (whereby a`(E) ≡ ` + 1 mod 4 for primes ` of good reduction),
it follows from (2.9) and (2.10) that

0,±4 ≡ ±2,±2
√

2 mod n,

contradicting n > 5. For higher-dimensional forms at level 32 · 17, we have c3( f ) = θ
where θ satisfies one of

θ2 − 2 = 0, θ2 − 10 = 0 or θ3 ± 2θ2 − 4θ ∓ 4 = 0.

Once again (2.9) and (2.10) contradict n > 5.
We may thus suppose that p = 2k + 1 with k = 2 j ≥ 8 and that we have a

corresponding solution in integers a, b, c, γ and β to (2.5), with prime n > n0(p), β = 1
and γ ≡ −2 mod n. Define elliptic curves

Ep : Y2 + XY = X3 − 2k−2X2 − 2k−4X
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and
Fp : Y2 = X(X + pcn)(X + 22γ−2a2n).

Then, from [10, Théorème 1] and Proposition 2.3, by a slight abuse of notation,
Fp ∼n Ep, so that, in particular, the curves have isomorphic n-torsion modules Ep[n]
and Fp[n]. Since these curves have multiplicative reduction at 2 and p, the fact that
n > p allows us to apply Kraus and Oesterlé [11, Proposition 2] with ` ∈ {2, p} to
conclude that Ep[n] and Fp[n] are symplectically isomorphic if and only if(ν`(∆(Ep))/ν`(∆(Fp))

n

)
= 1,

where ν`(∆(Ep)) and ν`(∆(Fp)) denote the exponents of ` occurring in the prime
factorisations of the minimal discriminants of Ep and Fp, respectively. Since these
minimal discriminants satisfy

∆(Ep) = 22k−8 p2 and ∆(Fp) = 24γ−12 p2(a2b2c)2n,

taking ` = p implies that Ep and Fp are necessarily symplectically isomorphic and
hence we have a contradiction from the choice of ` = 2, whenever( (2k − 8)(γ − 3)

n

)
= −1.

Since γ ≡ −2 mod n and k = 2 j for j ≥ 3, this is equivalent to(
−10(2 j−2 − 1)

n

)
= −1.

Let us next view (2.5) as one of signature (n, n, 2) (by considering b2n as (bn)2), and
write

Gp : Y2 + XY = X3 +

(
±bn − 1

4

)
X2 − 22γ−8a2nX,

with minimal discriminant

∆(Gp) = 24γ−16 p(a4b2)n.

From Ivorra [9, Théorème 1], we find that Gp ∼n Ep, where Ep is either

Ep,1 : Y2 + XY = X3 − 2k−6X

or
Ep,2 : Y2 + XY = X3 + 2k−3X2 + 22k−8X.

Note that Gp does not (necessarily) have full rational 2-torsion. For these curves, we
have minimal discriminants

∆(Ep,1) = 22k−12 p and ∆(Ep,2) = 24k−16 p.

https://doi.org/10.1017/S0004972720000441 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000441


46 M. A. Bennett [9]

Once again applying Kraus and Oesterlé [11, Proposition 2] with ` ∈ {2, p}, we reach
a contradiction provided( (2k − 12)(γ − 4)

n

)
= −1 and Gp ∼n Ep,1

or ( (k − 4)(γ − 4)
n

)
= −1 and Gp ∼n Ep,2.

From γ ≡ −2 mod n and k = 2 j for j ≥ 3, these are equivalent to(
−6(2 j−1 − 3)

n

)
= −1 and Gp ∼n Ep,1

and (
−6(2 j−2 − 1)

n

)
= −1 and Gp ∼n Ep,2.

This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4

From the arguments leading to Theorem 1.1 and Proposition 2.1, we are left to
treat (2.2), (2.3) and (2.5) with prime p satisfying 7 ≤ p < 50, p , 17, and exponents
n ≥ 7 prime and bounded above by n0(p). Arguing as previously, and applying (2.9)
and (2.10), there necessarily exist a weight-2, cuspidal newform f of level N = 2p or
N = 32p, and an ideal n | n in K f , such that, for every odd prime ` - np,

c`(F) ≡ κ mod n,

where either κ = ±(` + 1) or

|κ| < 2
√
` and κ ≡ ` + 1 mod 4.

Note that, if K f = Q, we can actually obtain these congruences in the case ` = n as
well. A relatively short computation in Magma using admissible ` < 100 contradicts
our assumption that n ≥ 7 in almost all cases. In fact, if N = 2p (where we may restrict
attention to p ≡ 1 mod 4 and (2.5)), we are left to treat only one form f of level 2p
for (p, n) = (13, 7), and only one form of level 32p for (p, n) = (43, 11). For these
pairs (p, n), we will work somewhat more carefully. If we have a solution to (2.5) with
(p, n) = (13, 7), then the obstruction to reaching our desired conclusion corresponds to
an elliptic curve E (that is, K f = Q), denoted 26b in Cremona’s tables, for which

a`(E) ≡ ` + 1 mod 7

for all odd primes ` , 13. We may thus suppose, in particular, that our solution to (2.5)
has the property that 3 | abc. Since c divides a sum of two coprime squares, necessarily
3 | a or 3 | b. Treating (2.5) as having signature (7, 7, 2) (by considering 22γ−2a14 or b14

as squares if 3 | a or 3 | b, respectively) and appealing to [2], we construct a Frey curve
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F with F ∼7 f for a form of level 27 · 13 if 3 | a and level 2 · 13 if 3 | b, and, in either
case, a3(F) = 0. We check via Magma that this, in every case, contradicts (2.9).

To complete the proof of Theorem 1.4, it remains to handle the case of (2.3) with
(p, n) = (43, 11). Considering 432βb2n as a square, as previously we may construct an
(11, 11, 2) Frey curve F, this time with a43(F) = 0 and F ∼11 f for a newform of level
128, so that 0 ≡ ±6 mod 11. This contradiction finishes our proof.

5. A few comments

The fact that our techniques enable us to show that (1.1) has no coprime solutions
only when the prime exponent n is suitably large as a function of p is not entirely an
artefact of our approach. Indeed, it is not difficult, given n > 2, to construct what are
likely infinite sets of primes p for which even the more restrictive (1.2) has nontrivial
solutions.

By way of example, if k is a positive integer and a > b are odd positive integers,
then, setting

x =
a2k

+ b2k

2
and y =

a2k
− b2k

2
,

we have
x4 − y4 = (ab)2k

Fk(a, b),

where

Fk(a, b) =
a2k+1

+ b2k+1

2
.

Since the polynomial x2k+1
+ 1 is irreducible, our expectation is that Fk(a, b) will take

on prime values infinitely often.
If n > 3 is prime, we may set

x = 2n−3an + bn and y = 2n−3an − bn,

so that
x4 − y4 = (22n−6a2n + b2n) (2ab)n.

We note that the polynomial x2n + 22n−6 is irreducible for all primes n > 3 (but not for
n = 3), via a classical result of Capelli [4], and hence we once again expect that the
form 22n−6a2n + b2n is prime infinitely often. It is worth mentioning that, despite this
expectation, the smallest primes constructed here can be quite large. If, for example,
we take n = 19, the smallest prime for which we find a solution to (1.2) via this
approach is given by

p = 3 740 434 668 995 905 047 343 202 488 519 402 432 937.

Finally, if n = 3, we set

x =
a3 + b3

2
and y =

a3 − b3

2
,
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where
a = s3 − 3st2 − 3s2t + t3

and
b = s3 + 3s2t − 3st2 − t3,

for s and t coprime integers of opposite parity. From this,

x4 − y4 = G(s, t)(ab(s2 + t2))3,

where G(s, t) is equal to

s12 + 114s10t2 − 705s8t4 + 1436s6t6 − 705s4t8 + 114s2t10 + t12,

an irreducible form. Once again, we expect that G(s, t) is prime infinitely often.
If n = 2, it is a pleasant exercise in elementary number theory to prove the following

result.

Proposition 5.1. If p is prime, the equation

x4 − y4 = pz2 (5.1)

has infinitely many solutions in coprime, nonzero integers x, y and z if p is a congruent
number, and no such solutions if p is a noncongruent number.

In particular, from work of Nagell [15] and Stephens [19], (5.1) has no nonzero
solutions for p ≡ 3 mod 8, and infinitely many nontrivial solutions whenever p ≡
5, 7 mod 8; the case p ≡ 1 mod 8 is more subtle, since, for example, 17 is
noncongruent and 41 is congruent.
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