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Abstract

The effects of transgenic corn use and federal biofuel policies on state-level cropping patterns
in the US Corn Belt region are investigated using state-level data from 2000 to 2019. During
this time, producers moved away from diverse cropping patterns and toward simpler rota-
tional practices. Empirical evidence indicates that the intensification of corn acres planted
was positively impacted by the spread of genetically modified (GM) soybeans—used as a
proxy for GM corn for biofuel usage—but the effects of biotech advancements on producer
planting decisions vary across states. This suggests that future policy changes affecting corn
production decisions at the farm level will also be heterogeneous across states.

Introduction

We investigate linkages between increases in the adoption of genetically modified (GM) corn
varieties, corn-based biofuel production, and the associated surge in the derived demand for
corn on corn acreage intensity (CAI) in US Corn Belt states, based on state-level data between
2000 and 2019. We analyze how federal biofuel policies, relative corn (Zea mays) prices to soy-
bean (Glycine max) prices, and farm-level GM soybean adoption—a surrogate variable for GM
corn adoption—rates affected CAI across 11 Corn Belt states over the 20-year period. Results
of our empirical analyses suggest cropping patterns were affected by ethanol production
increases in response to biofuel policy changes, facilitated by the spread of GM crop varieties
and relatively high corn prices. While these factors contributed to an overall increase in corn
production intensity in the Corn Belt, the effects were heterogeneous across states. In turn,
these disparate impacts have varying impacts on crop rotation practices across states, and
thus may have differing policy implications.

Linking GM crop production, ethanol production, and corn acreage intensity

Agricultural land usage has long moved toward increasingly intensive production practices.
Johnston (2014) detailed the conversion of grasslands, wheat, and other small grains toward
corn and soybean production in the US Prairie Pothole Region (which partially overlaps
with the northwestern part of the Corn Belt region). Claassen et al. (2010) reported on the
conversion of marginal production acres (grasslands and hay land) to cropland in the eastern
part of the Northern Great Plains, and Wright and Wimberly (2013) documented grassland
conversions in the western Corn Belt. More broadly, Wallander et al. (2011) documented
an increase in corn and soybean acreage across the United States, which coincided with an
increase in double-cropping and hay land conversion. These developments are reflected in
Table 1, which shows that the 11 US Corn Belt states collectively experienced a major shift
away from small grains, wheat (Triticum) and hay, toward corn and soybeans, in terms of
annual crop acreage averages between a base period spanning from 1996 to 2004 and the
2005 to 2019 period. Between the first and second periods, the regional average of the propor-
tion of corn and soybean acres planted out of total acres planted increased from 36.3 to 40.5%,
and from 32.3 to 33.4%, respectively. The increase in corn acres planted over the two periods
took place at the expense of cropland planted to barley, oats, wheat, and other crops.

US cropping systems are on a path toward increased homogeneity, particularly in the
Midwest (Plourde et al., 2013; Aguilar et al., 2015). The number of crops involved in rotation
cycles declined in the US Corn Belt in recent decades (Wallander et al., 2011; Johnston, 2014;
Fausti, 2015; Stigler, 2019). Reduced rotations lead to decreased biodiversity in insect popula-
tions inhabiting corn fields and provide opportunities for corn pest population increases
(Lundgren and Fausti, 2015). Crop production expansion has negative consequences for crit-
ical wildlife habitat and other ecosystem services provided by wetland and grassland, including
increased soil erosion, additional nutrient runoff, which in turn leads to increased
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sedimentation and leaching to surface and ground water, and may
increase risk and vulnerability to extended periods of drought in
the absence of long periods of rainfall (Claassen et al., 2010;
Wright and Wimberly, 2013; Johnston, 2014). Crop rotation prac-
tices involving multiple crops can help maintain soil fertility,
reduce negative environmental impacts of agricultural production
such as soil erosion and nutrient discharge, reduce crop damage
associated with weed and insect pests, and increase crop product-
ivity (Landis et al., 2008; Claassen et al., 2010; Seifert et al., 2017;
Bowles et al., 2020; Hunt et al., 2020). Instead of using conven-
tional rotation practices, producers increasingly rely on chemical
and genetic technology for maintaining soil fertility and keeping
agricultural pests at bay (Davis et al., 2012; Sindelar et al., 2016;
Hunt et al., 2017). This may exacerbate externalities, including
soil degradation and water pollution (Turner and Rabalais,
2003; Amundson et al., 2015).

The decline in crop diversity partially coincided with changes
in US energy and agricultural policies, the increased usage of GM
crops, and the growth of the ethanol and agricultural seed indus-
tries. US federal and state policies and programs wield much
influence on cropping systems diversity, as evidenced by agricul-
tural producers managing the majority of US farmland in accord-
ance with farm bill guidelines, incentives, and mandates to qualify
for commodity payments or other farm program subsidies
(National Research Council, 2015). Farm policy generally evolves
slowly and unevenly but the 1996 farm bill embodied a major pol-
icy change, by expanding the number of crops qualifying for farm
program payments. This increased farmers’ ability to change
crops, turn marginal lands into crop production, and switch
from crop production to other agricultural uses while retaining
program payments (Claassen et al., 2010). Subsequent farm bills
reversed some of this flexibility, but farmers retained much of
their ability to respond directly to market signals, policy incen-
tives, and technology changes (Mercier, 2011).

One aspect of technology change affecting agriculture over the
past two decades is the widespread adoption of crops that were
developed using genetic engineering, which offers tools and strat-
egies to supplement traditional breeding techniques and can
improve disease resistance, insect resistance, herbicide tolerance,
and drought tolerance of crops (Vincelli, 2016). GM crop technol-
ogy provides a host of benefits at the farm level, such as reducing
labor requirements for crop production and increasing profits
(Fernandez-Cornejo and McBride, 2002; Brookes and Barfoot,
2018). Since GM crop varieties were first introduced for

commercial production in the United States in 1996, farmers rap-
idly adopted herbicide tolerance, insect resistance, and stacked
(both traits) GM corn and soybean varieties in their cropping sys-
tems. US adoption rates of all GM corn and soybean varieties
increased from zero in 1995 to 25 and 54% in 2000, to 86 and
93% in 2010, and to 92 and 94% in 2020, respectively
(Economic Research Service, 2021b).

Numerous authors have studied the rapid adoption and diffu-
sion of the types of GM crop varieties that enable crops to with-
stand herbicide applications or that are toxic to insect pests or
both, and documented an array of implications of the increased
reliance on GM crop varieties (e.g., Cattaneo et al., 2006;
Hutchison et al., 2010; Scandizzo and Savastano, 2010;
Benbrook, 2012; Fernandez-Cornejo et al., 2014; Brester et al.,
2019). A comprehensive study by the National Academies of
Sciences, Engineering, and Medicine (2016) did not find conclu-
sive evidence of increased environmental risks of GM crops rela-
tive to crops bred using conventional methods, but the report’s
authors acknowledged the development of resistance to GM
crop traits as a critical problem for crop production, attributed
mainly to poor resistance-management strategies. The vast major-
ity of these studies focus on the intensive margin effects of GM
crops over a relatively short time period, whereas our work also
considers the extensive margin effects over a relatively long period
of two decades.

The case of target insect resistance development helps explain
observed increases in the number of cropland acres treated with
insecticides in selected locations—impacts that were unlikely to
have been observed in the short run following the adoption and
diffusion of GM crops—as reported by Fausti et al. (2018).
Whether a consequence of poor management practices or the
technology itself, the example of target insect resistance develop-
ment points to the need for considering the long-term effects of
the adoption and diffusion of GM crops (Catacora-Vargas et al.,
2018). One of the contributions of this study is a consideration
of the long-term consequences of GM crop plantings on cropping
patterns.

The widespread adoption of GM crops was previously linked
to the intensification of specific crops in the Midwest
(Heinemann et al., 2014). Cap and Malach (2012) also reported
changes in land use patterns elsewhere and in particular in
Argentina, Brazil, Paraguay, and Bolivia, involving increased
areas planted to soybeans in general and GM soybeans in particu-
lar. More broadly, in assessing the impacts of GM crop technology

Table 1. Acres planted by a major crop over three periods in the Corn Belt, 1996–2019

Crops (planted acres)

Avg. (1996–2004) period 1 Avg. (2005–2019) period 2 Change period 2 vs 1

1000 acres % 1000 acres % 1000 acres %

Corn 64,283 36.3 716,87 40.5 7404 11.5

Soybean 57,103 32.3 59,075 33.4 1972 3.5

Barleya 524 0.3 193 0.1 −331 −63.2

Oatsa 2077 1.2 1348 0.8 −729 −35.1

Wheat 22,331 12.6 18,350 10.4 −3981 −17.8

Other 30,627 17.3 26,221 14.8 −4406 −14.4

Total area 176,945 100 176,874 100 −71 −0.04
aOats: Avena sativa; barley: Hordeum vulgare.
Source: Compiled from USDA data, https://quickstats.nass.usda.gov/.
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across the globe based on farm-level data from 1996 through
2016, Brookes and Barfoot (2018) noted increased production
areas of the four main GM crops (soybean, corn, cotton, and can-
ola), especially of corn and soybeans.

Partially overlapping with the increased use of GM crops is the
rise of biofuels. On the supply side, the development of corn and
soybean-based biofuel conversion technology enabled the use of
biofuels for transportation purposes. California’s decisions to
ban methyl tert-butyl ether (MTBE) as a gasoline additive in
2002 and replace it with ethanol provided the initial impetus
for the nationwide phase-out of MTBE and its replacement by
ethanol. The subsequent nationwide conversion from MTBE to
ethanol led to a rapid increase in the demand for ethanol and
an expansion of the ethanol industry (Bracmort, 2020).

Biofuels were also upheld as an important energy source for
the domestic economy to reduce the US reliance on oil imports
from abroad. To encourage the development of biofuel markets,
US energy policies include programs that set minimum require-
ments for biofuel usage blended with other transportation fuels.
The two primary pieces of legislation are the 2005 Energy
Policy Act, amended by the Energy Independence and Security
Act of 2007. The latter’s Renewable Fuel Standard (RFS) statute
sets minimum targets for renewable fuel volumes that increase
each year, from 9 billion gallons in 2008 to 36 billion gallons in
2022. The RFS further prescribes sub-mandates for four broad-
based biofuel categories (cellulosic, biomass-based diesel,
undifferentiated-advanced, and renewable energy), but it is sub-
ject to waivers that reduce the minimal usage of specific types
of biofuels. For example, while the RFS statute required using
30 billion gallons of renewable fuel in 2020, just over 20 billion
gallons of total renewable fuel were used in practice, correspond-
ing to 11.6% of the total volume of the transportation fuel used.
Due to the insufficient development of advanced biofuels,
cornstarch-based ethanol remains the largest renewable fuel com-
ponent, with an annual maximum use of 15 billion gallons
through 2022 (Bracmort, 2020).

According to the Renewable Fuels Association (2021), the
United States produced 175 million gallons of ethanol in 1980.
Since then, annual production levels initially grew relatively slowly
to 1.6 billion gallons in 2000, but subsequently increased eightfold
to 13.3 billion gallons by 2010, and thereafter enlarged again
much more slowly to 15.8 billion gallons of ethanol in 2019.
Correspondingly, the United States produced 9.9 billion bushels
of corn in 2000, which increased to 12.4 billion bushels in 2010
and 13.6 billion bushels by 2019 (National Agricultural
Statistics Service, 2019). The ethanol industry consumed 0.5,
4.5, and 6.5% of the U.S. corn crop in 1980, 1990, and 2000,
respectively, which increased to 38.5% in 2010, before dropping
to 34.8% of the total U.S. corn supply in 2019 (Economic
Research Service, 2021a).

As growing shares of the total corn output in the United States
were used for ethanol production, the corn-based ethanol industry
grew to a major industry over fewer than 15 years (Cai and Stiegert,
2014). The expansion phase of the ethanol industry coincided with
corn price increases that sent positive market signals to row crop
producers to increase their corn production (Fausti, 2015).

This study reports on the overlapping developments of GM
crop use increases, changing federal farm policies, federal biofuel
laws that mandated ethanol usage in transportation fuels, and
their impacts on changing cropping patterns in the US Corn
Belt region, based on state-level data from 2000 to 2019. Given
differences by state in terms of climate and soil conditions as

well as state policies, understanding the effects of changes in pol-
icy and technology on state cropping patterns must account for
state-level characteristics, which we accomplish by using a
mixed modeling approach that incorporates both random and
fixed effects. An additional contribution of our study is that we
consider the combined and separate impacts of these distinct
but overlapping developments on cropping system changes.
Given the 20-year period, our analysis takes a long-run view of
factors affecting cropping system changes. Our results indicate
that the intensification of corn acres planted was influenced by
the spread of GM soybeans—as a proxy for GM corn for biofuel
usage, which likely contributed to moving toward simpler rota-
tional practices. We further find that the impacts of advancements
in biotechnology on producer planting decisions varied across
states.

Data

Our analysis is based on secondary state-level data on crop
acres planted and GM soybean coverage in 11 northern Corn
Belt states—Iowa, Illinois, Indiana, Nebraska, Kansas, Michigan,
Minnesota, Missouri, Ohio, South Dakota, and Wisconsin—for
each year between 2000 and 2019, resulting in a total of 220
observations. Data on annual crop acres planted were obtained
from the National Agricultural Statistics Service (2019), and
annual GM crop adoption rates from the Economic Research
Service (2019). Ethanol production data were obained from
the Energy Information Administration (2019). State-level data
on GM crop adoption levels from before 2000 are not fully com-
patible with those of subsequent years, so they were not included
in our analysis (Economic Research Service, 2021a, 2021b). A pol-
icy dummy variable was created to reflect the passage of the 2005
Energy Policy Act and the Energy Independence and Security Act
of 2007 with a value of one for the years 2005–2019, zero other-
wise. Annual average corn and soybean prices were collected from
the National Agricultural Statistics Service (2019).

Methodology

Using annual data, we apply a linear mixed regression modeling
approach to estimate a fixed-effects model with random intercepts
by states to investigate the effects of GM crop adoption and the
enactment of ethanol policies on changes in state-level CAI.
This approach enables separating fixed effects (which are constant
across the individual states) from the random effects (which vary
by state). The dependent variable is the ratio of corn acres planted
to total acres planted, referred to as CAI. This variable captures
the increased prominence of the combination of GM corn and
non-GM corn acreage at the expense of small grains and marginal
croplands. Explanatory variables include the ratio of corn prices
to soybean prices (PR), which captures changing national and
international market conditions as well as changes in commodity
and conservation programs. We also include a 2005 ethanol pol-
icy dummy variable (RFS = 1 for years from 2005 to 2019) to cap-
ture structural changes in commodity markets due to the
implementation of the RFS. A caveat of including the dummy
variable is that it would also capture other structural changes
associated with other forces occurring during the same period,
such as the increased use of precision agriculture and other
forms of substituting capital for labor at the farm level. In add-
ition, we include the state-level ratio of soybean acres planted
with GM soybeans. We use that latter as a proxy for corn acres
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planted with GM corn because the dependent variable is defined
as the sum of GM corn and non-GM corn acres planted as a share
of total crop acres planted, which would make the use of GM corn
as a predictor problematic. The use of GM soy to total soy acreage
as a proxy for GM corn is justified because the adoption of the
two GM crop varieties largely overlapped in the Corn Belt, as
indicated by the high correlation coefficient (0.828) between
GM corn and GM soybeans, although the widespread GM soy-
bean adoption process preceded that of GM corn. State dummy
variables were created to measure the random effects of CAI by
state (with Michigan as the base state). Using the above predictors,
the random intercept model provides estimates for CAI by state
over the 20-year transition period. The random intercept model
was estimated with the repeated effect option in the SAS proc
mixed procedure to account for possible state-level heterogeneity
(SAS Institute, 1999). To account for possible endogeneity issues,
the corn to soybean price ratio (PR) was lagged by one year (per-
iod t–1). We expect that data on acres planted are clustered due to
the heterogeneity of individual state characteristics—such as
climate, soil, landscape, and state agricultural and biofuel
policies—leading to dissimilar responses to the introduction of
biotechnology and bioenergy policies during the period covered
by our study. Clustered data refer here to attributes associated
with an individual state’s agricultural sector, such as climate,
soil type, landscape, and state-level agricultural policies that
would result in similar cropping patterns over geographically
related states. The existence of clustered data results in biased
standard errors. Clustering was verified and a correction proced-
ure was implemented (see the Intraclass Correlation Coefficients
(ICC) statistics reported in Table 2).

The renewable fuel laws’ implementation is expected to have a
positive relationship with CAI, as outlined earlier. Also, the corn
to soybean PR is expected to have a positive relationship with
CAI, because a decrease in the relative price of corn to soybeans
would be expected to lessen CAI (as soybean prices rise relative
to corn prices, CAI decreases, and as corn prices rise relative to soy-
bean prices, CAI increases). Lastly, the relationship between the
ratio of GM soybean acres planted over total soybean acres planted
and CAI is expected to be mixed, in the sense that—while CAI is
expected to increase as the proportion of GM soybean acres out
of total corn acres grows during the period when the GM share
increases—it has little or no impact in the long run. The PR

variable captures the market valuation of corn relative to other
crops, the GM soy variable indirectly reflects—in the sense that
GM soy is used as a proxy for GM corn—the supply-side impact
of genetically engineered corn on total corn production, and the
renewable fuels policy dummy variable (RFS) captures the
increased demand for corn due to corn-based ethanol production
policy incentives.

The standard assumptions associated with the linear mixed
model (LMM) are listed in Equations (1–4). Using the standard
vector notation provided on page 121 in the SAS/Stat 9.3 User
Guide (SAS Institute, 2011), we define the general structure of
the model:

CAI = Xb+ Zg+ 1, (1)

g � N(O, G), (2)

1 � N(O, R), and (3)

COV(g, 1) = 0. (4)

The dependent variable CAI (corn acreage intensity) denotes the
vector of dependent variable observations. Matrix X is the design
matrix associated with β, which represents the vector of unknown
fixed-effects parameters. Matrix Z is the design matrix associated
with γ, representing the vector of unknown random-effects para-
meters. We specified the repeated statement option in our model
because we do not want to assume that R is equal to σ2I. The error
term, ε, reflects an unknown random error. Equation (4) states
that γ and ε are independent, which implies that the variance
of CAI (SAS Institute, 1999, p. 2087) can be defined as:

VAR[CAI] = ZGZT + R, (5)

where G and R are the covariance matrices associated with γ and
ε, respectively. The superscript notation ‘T’ denotes the transpose
matrix operation. Examining the correlation between the model’s
residuals and the exogenous variables showed correlation coeffi-
cients of <0.01, suggesting exogeneity. Model design suggests
the only predictor potential for endogeneity to be an issue is
with the corn–soybean PR. To avoid this issue, the corn–soybean
PR was lagged one period. The default covariance structure for
the mixed procedure is variance components (SAS Institute,
1999, p. 2088). While other covariance structures for G and R
were investigated, the variance component structure was selected
based on the ‘Null Model Likelihood Ratio Test’. The LMM pro-
cedure in SAS provides flexibility when dealing with regression
diagnostic issues (SAS Institute, 1999). We first employed a ‘sand-
wich estimator’ approach to produce robust standard errors asso-
ciated with β (Diggle et al., 1994; SAS Institute, 1999, Chapter 41).

The linear form of the general model to be estimated is:

CAIit = a+
∑3

j=1

bjX jit +
∑11

i=1

giZit + 1it , (6)

where i = 1–11, j = 1–3, and t = 1–20.Parameter α is the fixed
intercept, subscript ‘i’ denotes the state, ‘j’ refers to the explana-
tory variables, and ‘t’ denotes time. The other parameters in
Equation (6) have been already explained above.

Table 2. Variance components statistics and global fit statistics

Random intercept model:
simple

Covariance parameter
estimate

Fit
statistics

Random intercept 0.01363** (0.006125)

Residual 0.000498*** (0.000073)

AR(1)a 0.4849*** (0.07783)

ICCb 96.47%

−2 Log likelihood −1025.4

AIC −1019.4

BIC −1018.2
aAR(1) is the autoregressive (1) diagnostic to account for serial correlation and state-level
heterogeneity.
bICC is the Intraclass Correlation Coefficient, given by the ratio of the random intercept to
the sum of the random intercept and the residual, expressed in percentage points.
*** and ** indicate significance at 0.01 and 0.05 levels, respectively; and standard errors in
parentheses.
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Empirical results

Table 3 summarizes changes in cropping patterns in the 11 Corn
Belt states between 1996 and 2019, divided over two sub-periods:
1996–2004 and 2005–2019. The table shows that each state
experienced an increase in corn acres planted from the first to
the second period, measured as a proportion of total acres
planted, as described earlier. However, with the exception of
Iowa and Illinois, all the other nine states experienced an increase
in soybean acres planted from the first to the second period.

Table 4 provides summary statistics of the main variables used
in our analyses, and Table 2 lists the fit statistics and the estimated
ICC for the model. The ICC estimates exceed 90% for the random
intercept model, suggesting that the effects of biotech advance-
ments on producer planting decisions are heterogeneous across
states. Regression diagnostic analyses confirmed that the mixed
model approach was more robust than a simple fixed-effects
model. A restricted maximum likelihood estimation procedure
was employed. To gauge goodness of fit of the mixed model

approach, we ran a simple fixed effect only model. The log likeli-
hood statistic for this comparison model is −1025.4. The Null
Model Likelihood Ratio test rejects the null hypothesis that the
two models are equivalent at P < 0.001. Furthermore, the variance
components estimating procedure found that the variance asso-
ciated with matrix G’s contribution to the variance of matrix V
(the covariance matrix of CAI) was significant at the 5% level
or less for the random intercept model (Table 2). Regression diag-
nostics confirm the decision to select a variance-covariance struc-
ture that corrects for serial correlation in the model (Table 2).

Following Gujarati and Porter (2009, p. 704), we performed a
Hausman test for endogeneity in two steps. First, we regressed the
GM soy to total soy acreage ratio (our proxy for the adoption and
diffusion of GM corn technology at the farm level) on all inde-
pendent variables, including the state dummy variables. We
then obtained the residual (V^) and the predicted value of the
GM soy to total soy acreage ratio from stage 1. In the second
stage, we regressed the CAI variable on the renewable fuels
dummy variable, the lag of the corn to soybean PR, the state

Table 3. Changes in crop area shares in the Corn Belt, by state, 1996–2019

State/

Period

Corn Soybean Barley Oats Wheat Other crops

Acres Acres Acres Acres Acres Acres

Region Planted Planted Planted Planted Planted Planted

As a percent of total principal crop area

Iowa 1996–04 49.8 42.4 0.0 1.0 0.1 6.6

2005–19 55.3 39.4 0.0 0.6 0.1 4.6

Illinois 1996–04 47.2 44.0 0.0 0.3 4.4 4.1

2005–19 52.4 41.9 0.0 0.2 3.1 2.4

Nebraska 1996–04 44.3 22.5 0.0 0.8 10.1 22.3

2005–19 48.8 26.1 0.0 0.6 7.90 16.6

Minnesota 1996–04 36.1 34.9 1.5 1.9 10.4 15.2

2005–19 40.7 36.7 0.5 1.2 7.90 12.9

Indiana 1996–04 45.7 44.1 0.0 0.3 4.4 5.6

2005–19 47.2 44.6 0.0 0.1 3.2 4.8

South Dakota 1996–04 23.8 22.5 0.6 2.4 19.7 31.0

2005–19 30.5 26.5 0.2 1.6 15.9 25.3

Wisconsin 1996–04 45.3 16.8 0.8 5.1 2.2 29.8

2005–19 49.2 21.8 0.4 3.3 3.4 21.9

Ohio 1996–04 32.4 43.6 0.0 1.0 10.4 12.7

2005–19 35.2 46.3 0.0 0.6 7.4 10.5

Kansas 1996–04 13.1 11.3 0.0 0.5 44.5 21.6

2005–19 19.7 16.6 0.1 0.4 39.2 24

Missouri 1996–04 20.7 36.2 0.0 0.3 8.0 34.8

2005–19 24.3 39.1 0.0 0.2 5.9 30.5

Michigan 1996–04 34.6 29.5 0.3 1.3 8.8 25.5

2005–19 37.0 31.0 0.2 1.0 9.1 21.7

Corn Belt 1996–04 36.3 32.3 0.3 1.2 12.6 17.3

2005–19 40.5 33.4 0.1 0.8 10.4 14.8

Source: Compiled from USDA data, https://quickstats.nass.usda.gov/.
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dummies, and both V^ and the predicted value of the GM soy to
total soy acreage ratio from step 1. We then tested for the signifi-
cance of V^ using the OLS regression from step 2. Using a
heteroskedasticity-robust t-test, if the coefficient of V^ is statistic-
ally different from zero, then the GM soy to total soy acreage ratio
is indeed endogenous. Our estimation results show that the coef-
ficient on V^ is not statistically different from zero, so we con-
clude that GM soybeans is not endogenous.

Wooldridge (2019, p. 516) and Pindyck and Rubinfeld (1998)
suggest an alternative approach by using the actual value of the
GM soy to total soy acreage ratio to fit the OLS regression in
step 2. We also followed this approach. Results show that the coef-
ficient of V^ is not statistically different from zero, implying that
the GM soy to total soy acreage ratio is not endogenous. We did
not include GM corn in step 2, because we used GM soybeans as
the instrument for GM corn.

Table 5 reports on the random intercept model estimates for
CAI, by state from 2000 to 2019. The random intercept model
provides estimates for the fixed-effects and random-effects par-
ameter estimates at the regional and state levels, respectively. All
fixed-effects parameter estimates are statistically significant at
the 1% level. These findings suggest that increases in the lagged
corn to soybean PR, in the GM soy to total soy acreage ratio
(our proxy for the adoption and diffusion of GM corn technology
at the farm level), and the passage of the biofuels acts of 2005 and
2007 each positively affected CAI in the Corn Belt region. The
fixed-effects intercept has a value of 0.2498, which can be inter-
preted as an estimate of the regional average of the proportion
of corn acres to total acres planted, indicating that over the
20-year span of our data, CAI averaged 24.9% in the 11 Corn
Belt states. The random intercept coefficients reflect the deviation
of CAI from the regional average. The coefficients for Kansas,
Missouri, and South Dakota are statistically significant and nega-
tive, implying that these states’ intercepts are smaller than the
regional average intercept. The coefficients for Minnesota, Ohio,
and Michigan are not statistically significant, implying that
these states’ intercepts are at the regional average. The random
intercept coefficients of the remaining five states (Iowa, Illinois,
Nebraska, Indiana, and Wisconsin) are statistically significant
and positive, which implies that these states’ intercepts are
above the regional average. The simple mixed model confirms
that the GM soybean adoption rate (representing GM corn

adoption), relative crop prices, and biofuel policy all contributed
to an increase in CAI in the 11 states. Furthermore, the random
intercept estimates confirm heterogeneity in cropping decisions
across states due to individual state attributes, including those
related to agricultural production and state-specific policies.

Synopsis of empirical results

The parameter estimate for the fixed-effects intercept component
of the model of 0.2498 reflects the proportion of corn acres
planted at the regional level, assuming that GM soybean plantings
as a share of total soybean acres planted (our proxy for GM corn
diffusion), biofuel policies, and the PR were unchanged. That is,
the intercept is interpreted as the value of the dependent variable
when all the covariates are set to zero. The positive and significant
parameter estimate of GM soybeans suggests that an increase in
the number of acres planted to GM soybeans planted as a share
of total soybean planting—and by proxy, an increase in GM
corn—positively impacted CAI. Similarly, the positive and signifi-
cant parameter estimate of the RFS dummy variable suggests that
implementation of the renewable fuels standard contributed to
CAI increases compared to the base period prior to 2005.
Finally, the positive and significant parameter estimate of the
PR variable indicates that an increase in the price of corn relative
to the price of soybeans also had a positive impact on CAI in the
Corn Belt overall. Because the two continuous variables are both
expressed as ratios, it is difficult to compare their relative impacts,
but the magnitudes of the two parameter estimates suggest that a
one percentage increase in the PR has a larger impact on CAI
than a one percentage increase in GM soybean plantings as a
share of total soybean plantings.

The random intercepts are interpreted as the state-specific
deviation from the fixed-effects intercept for the region as a
whole, so states without a statistically significant random intercept
(Minnesota, Ohio, and Michigan) had a proportion of corn acres
planted equal to the regional average. Statistically significant posi-
tive random intercept terms indicate states whose proportions of
corn acres planted were above the regional average prior to the
significant increase in GM soy adoption and implementation of
biofuel policies (Iowa, Illinois, Nebraska, Indiana, and
Wisconsin). Conversely, states with statistically significant and
negative coefficients represent those with less corn intensity

Table 4. Descriptive statistics (1996–2019)

Variable Units N Mean St Dev Minimum Maximum

Corn 1000 acres 264 6265 3521.8 2150 14,300

Soybean 1000 acres 264 5303 2695.0 930 11,000

Barley 1000 acres 264 28.8 69.4 0 600

Oats 1000 acres 264 147.4 122.0 0 530

Wheat 1000 acres 264 1804 2609.7 0 11,800

Total acres 1000 acres 264 16,082 6163.4 460 25,021

GM corn Percent 264 58.9 35.8 0 98

GM soybean Percent 264 73.0 34.1 0 98

Corn prices US$/bu 264 3.4 1.4 1.7 6.7

Soybean prices US$/bu 264 8.4 2.9 4.4 14.1

Wheat prices US$/bu 264 4.3 1.5 1.8 8.1
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than the regional average before the widespread diffusion of GM
soy and implementation of biofuel policy incentives (Kansas,
Missouri, and South Dakota).

Discussion

As the proportion of corn and soybean acres out of total crop
acres planted increased between the pre- and post-RFS periods,
total acres planted to small grains and hay declined and producers
moved away from conventional rotation practices in the region.
The empirical evidence generated by a random intercept model
with fixed effects indicates that the intensification of corn acres
planted in the Corn Belt region was positively impacted by bio-
technology advancements in energy and crop production and
past government policy decisions in the areas of energy and agri-
culture. The results also suggest that state-level corn acreage
intensification due to the introduction of GM crops and biofuel
technology was heterogeneous across the 11-state region during
the 20-year period of this study. This suggests that possible
changes in energy policies, relative crop prices, and the ability
of GM technology to continue providing pest protection will
therefore also likely affect crop rotation patterns differently from
state to state.

Cropping pattern changes in general and the growing domin-
ance of corn in US crop production systems in the 11 states had a
host of expected and unexpected consequences. For example, the
relatively high corn prices experienced in the years following the
passage of the renewable fuels standard contributed to a decline in
the production of other crops, price increases of other crops glo-
bally, and an increase in the cost of raising livestock. Corn pro-
duction intensification facilitated in part by the reliance on GM

varieties also resulted in increased corn pest resistance (e.g.,
Gassmann et al., 2011) and increased coverage of planted acres
with insecticide (Fausti et al., 2012, 2018). Neither the extent of
the pest resistance nor the subsequent increase in
insecticide-acreage-coverage were anticipated at the onset of the
widespread use of crop biotechnology.

While based on data collected in the 11-state Corn Belt region,
the results of this study may be of relevance to other areas of the
United States. Corn production has expanded not only in
response to the widespread adoption of GM crop varieties and
biofuel policies, but also due to other forces such as climate
change and plant breeding technology improvements. Thus, the
issues addressed in our study represent a challenge for and are
of critical importance to agriculture in the future throughout
the United States.

Concluding comments

This study explores the overlapping developments of the increased
GM crop acreage as a share of total planted acres, changing fed-
eral agricultural policies, the implementation of federal biofuel
laws mandating ethanol usage in transportation fuels, and their
impacts on changing cropping patterns in the US Corn Belt
region, based on state-level data from 2000 to 2019. Agricultural
land use has long moved toward increased intensity, and numer-
ous studies have documented a variety of intensive margin effects
of GM crop adoption at the farm level. In contrast, our study
emphasizes the extensive margin effects by reporting on develop-
ments over the past two decades that involved an expansion of
corn and soybean acreage at the expense of small grain acreage
and an acceleration of grassland conversions to cropland. The
increased homogeneity in cropland usage corresponded with a
steady move toward simpler crop rotations with associated soil
health concerns and an increased reliance on chemicals to hold
pests at bay. The past two decades have also seen changes in
renewable fuel policies, increased corn production for ethanol
use, and a near complete spread of GM varieties of corn and soy-
beans as a proportion of total corn and soybean acres,
respectively.

Using a mixed modeling approach with both random and
fixed effects, results of the study indicate that the intensification
of corn acres planted was affected by the spread of GM soybean
varieties. While we are unable to make a direct link between the
increased prominence of GM corn as a share of total corn acres
and CAI, the high correlation coefficient (0.828) between GM
corn and GM soy acres suggests that the spread of GM corn is
strongly associated with CAI. Furthermore, these impacts varied
across states, implying that future policy changes affecting corn
production decisions at the farm level will likely be heterogeneous
across states as well.

A key contribution of this study to existing literature is that it
considers long-term consequences of GM soybean plantings (as a
proxy for GM corn plantings) and biofuel policy changes on crop-
ping patterns. An additional contribution is that the study distin-
guishes the effects of changes in biofuel policies and technology
on state-level cropping patterns. Furthermore, our findings sug-
gest that the spread of GM crops, biofuel policies, and relative
crop prices contributed to encouraging expansion of corn produc-
tion onto marginal lands. These slippage effects—unintended
program impacts bringing relatively marginal lands into crop pro-
duction—resulted in adding land with relatively low yield poten-
tial for use in crop production, and may help explain why the

Table 5. Random intercept model estimates for corn acreage intensity, by state,
2000–2019

Random intercept model Coefficients estimate

Fixed effects

Intercept 0.2498*** (0.03360)

GM soybean 0.0577*** (0.01702)

RFS 0.0286*** (0.003470)

Price ratio 0.1700*** (0.01940)

Random effects

Iowa 0.1466*** (0.03604)

Illinois 0.1229*** (0.03605)

Nebraska 0.0824** (0.03605)

Minnesota 0.0080 (0.03604)

Indiana 0.0749** (0.03604)

South Dakota −0.1020*** (0.03606)

Wisconsin 0.0920** (0.03604)

Ohio −0.0419 (0.03606)

Kansas −0.2051*** (0.03605)

Missouri −0.1527*** (0.03604)

Michigan −0.0251 (0.03606)

*** and ** indicate significance at 0.01 and 0.05 levels, respectively; standard errors in
parentheses; type 3 test for fixed effects indicated the interaction coefficient in Models 1–4
are significant (P-value < 0.01); parameter estimates rounded to 4 decimal places.
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rapid adoption of GM crops is not associated with large yield and
income gains at the aggregate level.

This work may lay the foundation for possible future studies
assessing the impacts GM crop adoption, the implementation of
federal biofuel laws, and federal agricultural policies on crop rota-
tions directly. Possible future studies may also be able to further
disaggregate the heterogeneous state-level impacts of federal pol-
icies and GM corn and soybean variety adoption. Also, future
work may be able to further explore the influences of GM corn
adoption, the passage of the renewable fuel laws in the early
2000s, as well as market forces in the context of changing com-
modity programs—including cropland acres released from the
Conservation Reserve Program (CRP), developments in the struc-
ture of production agriculture—including the role of the substitu-
tion of capital for labor and economies of scale in production
agriculture, alterations in the structure of the food manufacturing
industry—which utilizes corn as an input in food production, var-
iations in the derived demand for feed grains—stemming from
meat production, and changes in real cropland values—in part
as a result of outside investments.

Data

The data that support the findings of this study are available from
the corresponding author upon reasonable request.
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