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We introduce the notion of Killing normal Jacobi operator for real hypersurfaces in
the complex quadric Qm = SOm+2/SOmSO2. The Killing normal Jacobi operator
implies that the unit normal vector field N becomes A-principal or A-isotropic. Then
according to each case, we give a complete classification of real hypersurfaces in
Qm = SOm+2/SOmSO2 with Killing normal Jacobi operator.
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1. Introduction

In the complex projective space CPm+1 and the quaternionic projective space
QPm+1 some classifications related to the Ricci tensor and the structure Jacobi
operator were investigated by Kimura [4,5], Pérez [9] and Pérez and Suh [11,12],
Pérez and Santos [10], and Pérez, Santos and Suh [13,14], respectively. When we
consider some Hermitian symmetric spaces of rank 2, we can usually give examples
of Riemannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are
said to be complex two-plane Grassmannians and complex hyperbolic two-plane
Grassmannians, respectively (see [17–19]). These are viewed as Hermitian sym-
metric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler
structure J and the quaternionic Kähler structure J.

The classification problems of real hypersurfaces in the complex 2-plane Grass-
mannian SUm+2/S(U2Um) with certain geometric conditions were mainly investi-
gated in Jeong and Suh [2], Jeong, Machado, Pérez and Suh [3,8], Pérez [9], and
Suh [17–19], where the classification of commuting shape operator, parallelism of
normal and structure Jacobi operators, contact hypersurfaces, parallel Ricci tensor,
and harmonic curvature for real hypersurface in G2(Cm+2) were extensively stud-
ied. Moreover, in [19], we have asserted that the Reeb flow on a real hypersurface
in SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around
a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um).
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As another kind of Hermitian symmetric space with rank 2 of the compact
type different from the above ones, we can give the example of complex quadric
Qm = SOm+2/SOmSO2, which is a complex hypersurface in complex projective
space CPm+1 (see Klein [6], and Smyth [16]). The complex quadric can also be
regarded as a kind of real Grassmann manifolds of the compact type with rank
2 (see Kobayashi and Nomizu [7]). Accordingly, the complex quadric admits two
important geometric structures, a complex conjugation structure A and a Kähler
structure J , which anti-commute with each other, that is, AJ = −JA. Then for
m�2 the triple (Qm, J, g) is a Hermitian symmetric space of the compact type
with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [6] and
Reckziegel [15]).

In addition to the complex structure J there is another distinguished geometric
structure on Qm, namely a parallel rank two vector bundle A which contains an
S1-bundle of real structures, that is, complex conjugations A on the tangent spaces
of Qm. This geometric structure determines a maximal A-invariant subbundle Q of
the tangent bundle TM of a real hypersurface M in Qm as follows:

Q = {X ∈ TzM |AX ∈ TzM for all A ∈ A}.
Moreover, the derivative of the complex conjugation A on Qm is defined by

(∇̄XA)Y = q(X)JAY

for any vector fields X and Y on M and q denotes a certain 1-form defined on M .
Recall that a nonzero tangent vector W ∈ T[z]Q

m is called singular if it is tangent
to more than one maximal flat in Qm. There are two types of singular tangent
vectors for the complex quadric Qm:

(1) If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular.
Such a singular tangent vector is called A-principal.

(2) If there exists a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A)
such that W/||W || = (X + JY )/

√
2, then W is singular. Such a singular

tangent vector is called A-isotropic.

When we consider a real hypersurface M in the complex quadric Qm, under the
assumption of some geometric properties the unit normal vector field N of M in
Qm can be either A-isotropic or A-principal (see [20,22]). In the first case where
N is A-isotropic, we have shown in [20] that M is locally congruent to a tube over
a totally geodesic CP k in Q2k. In the second case, when the unit normal N is A-
principal, we proved that a contact hypersurface M in Qm is locally congruent to
a tube over a totally geodesic and totally real submanifold Sm in Qm (see [22]).

Jacobi fields along geodesics of a given Riemannian manifold M̄ satisfy a well-
known differential equation. Naturally, this classical differential equation inspires
the so-called Jacobi operator. That is, if R̄ is the curvature operator of M̄ , the
Jacobi operator with respect to X at z ∈ M , is defined by

(R̄XY )(z) = (R̄(Y,X)X)(z)

for any Y ∈ TzM̄ . Then R̄X ∈ End(TzM̄) becomes a symmetric endomorphism of
the tangent bundle TM̄ of M̄ . Clearly, each tangent vector field X to M̄ provides
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a Jacobi operator with respect to X (see Pérez and Santos [10], and Pérez, Santos
and Suh [13,14]).

From such a viewpoint, in the complex quadric Qm the normal Jacobi operator
R̄N is defined by

R̄N = R̄(·, N)N ∈ End (TzM), z ∈ M

for a real hypersurface M in Qm with unit normal vector field N , where R̄ denotes
the curvature tensor of the complex quadric Qm. Of course, the normal Jacobi
operator R̄N is a symmetric endomorphism of M in Qm (see Jeong, Machado,
Pérez and Suh [3] and [8]).

The Reeb vector field ξ is Killing on M in Qm if and only if g(∇Xξ, Y ) +
g(∇Y ξ,X) = 0 for any vector fields X and Y on M . This means that the Reeb
flow of the Reeb vector field ξ is isometric. That is, the Reeb vector field has an
isometric Reeb flow.

As a generalization of such a notion of isometric Reeb flow, first Yano [26] defined
the notion of Killing tensor. A skew symmetric tensor Ti1···ir

is called a Killing
tensor of order r if it satisfies

∇i1Ti2···ir+1 + ∇i2Ti1···ir+1 = 0.

Next Blair [1] has applied the notion of Killing tensor to a tensor field of T type
(1, 1) on a Riemannian manifold and a geodesic γ on M . If we denote by γ′ the
tangent vector of the geodesic γ, then Tγ′ is parallel along the geodesic γ for the
Killing tensor field T . Geometrically, this means that (∇γ′T )γ′ = 0 along a geodesic
γ on M . If this is the case for any geodesic on M , we have

(∇XT )X = 0 or equivalently (∇XT )Y + (∇Y T )X = 0

for any vector fields X and Y on M . In this case, we say that the tensor T a Killing
tensor field of type (1, 1).

The normal Jacobi operator R̄N of M in Qm is said to be Killing if the operator
R̄N satisfies

(∇XR̄N )Y + (∇Y R̄N )X = 0

for any X,Y ∈ TzM , z ∈ M . The equation is equivalent to (∇XR̄N )X = 0 for any
X ∈ TzM , z ∈ M , because of linearization. Moreover, we can give the geometric
meaning of Killing Jacobi tensor as follows:

When we consider a geodesic γ with initial conditions such that γ(0) = z and
γ̇(0) = X. Then the transformed vector field R̄N γ̇ is Levi–Civita parallel along the
geodesic γ of the vector field X (see Blair [1] and Tachibana [25]).

In the study of real hypersurfaces in the complex quadric Qm, we considered
the notion of parallel Ricci tensor, that is, ∇Ric = 0 (see Suh [22]). But from the
assumption of Ricci parallel, it was difficult for us to derive the fact that either the
unit normal N is A-isotropic or A-principal. So in [22], we gave a classification with
the further assumption of A-isotropic. But fortunately, when we consider Killing
normal Jacobi operator, first we can assert that the unit normal vector field N
becomes either A-isotropic or A-principal as follows:
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Theorem 1. Let M be a Hopf real hypersurface in Qm, m�3, with Killing normal
Jacobi operator. Then the unit normal vector field N is singular, that is, N is
A-isotropic or A-principal.

Then motivated by such a result, next we give a complete classification for real
hypersurfaces in the complex quadric Qm with Killing normal Jacobi operator as
follows:

Theorem 2. There do not exist any Hopf real hypersurfaces in Qm, m�3 with
Killing normal Jacobi operator.

Usually, Killing normal Jacobi operator is a generalization of parallel normal Jacobi
operator R̄N of M in Qm, that is, ∇XR̄N = 0 for any tangent vector field X on M .
The parallelism of normal Jacobi operator has a geometric meaning that every eigen
space of the normal Jacobi operator R̄N is parallel along any direction on M in
Qm. Then naturally, by theorem 2 above, we give the following

Corollary [24]. There do not exist any Hopf real hypersurfaces in Qm, m�3 with
parallel normal Jacobi operator.

2. The complex quadric

For more background to this section, we refer to [6,7,15,20–23]. The complex
quadric Qm is the complex hypersurface in CPm+1 which is defined by the equation
z2
0 + · · · + z2

m+1 = 0, where z0, . . . , zm+1 are homogeneous coordinates on CPm+1.
We equip Qm with the Riemannian metric g which is induced from the Fubini-
Study metric ḡ on CPm+1 with constant holomorphic sectional curvature 4. The
Fubini-Study metric ḡ is defined by ḡ(X,Y ) = Φ(JX, Y ) for any vector fields X and
Y on CPm+1 and a globally closed (1, 1)-form Φ given by Φ = −4i∂∂̄ log fj on an
open set Uj = {[z0, z1, . . . , zm+1] ∈ CPm+1|zj �=0}, where the function fj denotes
fj =

∑m+1
k=0 tkj t̄kj , and tkj = ((zk)/(zj)) for j, k = 0, . . . ,m + 1. Then naturally the

Kähler structure on CPm+1 induces canonically a Kähler structure (J, g) on the
complex quadric Qm.

The complex projective space CPm+1 is a Hermitian symmetric space of the spe-
cial unitary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by
o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of the action of the stabilizer S(Um+1U1).
The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomo-
geneity one. The orbit containing o is a totally geodesic real projective space
RPm+1 ⊂ CPm+1. The second singular orbit of this action is the complex quadric
Qm = SOm+2/SOmSO2. This homogeneous space model leads to the geometric
interpretation of the complex quadric Qm as the Grassmann manifold G+

2 (Rm+2)
of oriented 2-planes in Rm+2. It also gives a model of Qm as a Hermitian symmetric
space of rank 2. The complex quadric Q1 is isometric to a sphere S2 with constant
curvature, and Q2 is isometric to the Riemannian product of two 2-spheres with
constant curvature. For this reason, we will assume m � 3 from now on.
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In another way, the complex projective space CPm+1 is defined by using the Hopf
fibration

π : S2m+3→CPm+1, z→[z],

which is said to be a Riemannian submersion. Then naturally, we can consider the
following diagram for the complex quadric Qm as follows:

Q̃ = π−1(Q) ĩ−−−−→ S2m+3⊂Cm+2

π

⏐⏐� π

⏐⏐�
Q = Qm i−−−−→ CPm+1

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of
orthonormal 2-frames in Rm+2, which is given by

Q̃ = {x + iy ∈ Cm+2|g(x, x) = g(y, y) = 1
2 and g(x, y) = 0},

where g(x, y) =
∑m+2

i=1 xiyi for any x = (x1, . . . , xm+2) and y = (y1, . . . , ym+2) ∈
Rm+2. Then the tangent space is decomposed as TzS

2m+3 = Hz ⊕ Fz and TzQ̃ =
Hz(Q) ⊕ Fz(Q) at z = x + iy ∈ Q̃, respectively, where the horizontal subspaces Hz

and Hz(Q) are given by Hz = (Cz)⊥ and Hz(Q) = (Cz ⊕ Cz̄)⊥, and Fz and Fz(Q)
are fibres which are isomorphic to each other. Here Hz(Q) becomes a subspace of
Hz of real codimension 2 and orthogonal to the two unit normals −z̄ and −Jz̄.
Explicitly, at the point z = x + iy ∈ Q̃ it can be described as

Hz = {u + iv ∈ Cm+2| g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}

and

Hz(Q) = {u + iv ∈ Hz| g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},

where Cm+2 = Rm+2 ⊕ iRm+2, and g(u, x) =
∑m+2

i=1 uixi for any u = (u1, . . . ,
um+2), x = (x1, . . . , xm+2) ∈ Rm+2.

These spaces can be naturally projected by the differential map π∗ as π∗Hz =
Tπ(z)CPm+1 and π∗Hz(Q) = Tπ(z)Q, respectively. This gives that at the point
π(z) = [z] the tangent subspace T[z]Q

m becomes a complex subspace of T[z]CPm+1

with complex codimension 1 and has two unit normal vector fields −z̄ and −Jz̄
(see Reckziegel [15]).

Now let us denote by Az̄ the shape operator of Qm in CPm+1 with respect to
the unit normal −z̄. Then, by virtue of the Weingarten equation, it is defined by
Az̄w = ∇̄wz̄ = w̄ for a complex Euclidean connection ∇̄ induced from Cm+2 and all
w ∈ T[z]Q

m. That is, the shape operator Az̄ is just a complex conjugation restricted
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to T[z]Q
m. Moreover, it satisfies the following for any w ∈ T[z]Q

m and any λ ∈ S1⊂C

A2
λz̄w = Aλz̄Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄ ¯̄w

= |λ|2w = w.

Accordingly, A2
λz̄ = I for any λ ∈ S1. So the shape operator Az̄ becomes an anti-

commuting involution such that A2
z̄ = I and AJ = −JA on the complex vector

space T[z]Q
m and

T[z]Q
m = V (Az̄) ⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ T[z]Q
m is the (+1)-eigenspace and JV (Az̄) = iRm+2 ∩

T[z]Q
m is the (−1)-eigenspace of Az̄. That is, Az̄X = X and Az̄JX = −JX,

respectively, for any X ∈ V (Az̄).
Geometrically, this means that the shape operator Az̄ defines a real structure

on the complex vector space T[z]Q
m, or equivalently, is a complex conjugation

on T[z]Q
m. Since the real codimension of Qm in CPm+1 is 2, this induces an

S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex
conjugations.

There is a geometric interpretation of these conjugations. The complex quadric
Qm can be viewed as the complexification of the m-dimensional sphere Sm. Through
each point [z] ∈ Qm there exists a one-parameter family of real forms of Qm which
are isometric to the sphere Sm. These real forms are congruent to each other under
the action of the centre SO2 of the isotropy subgroup of SOm+2 at [z]. The isometric
reflection of Qm in such a real form Sm is an isometry, and the differential at [z] of
such a reflection is a conjugation on T[z]Q

m. In this way, the family A of conjugations
on T[z]Q

m corresponds to the family of real forms Sm of Qm containing [z], and
the subspaces V (A) ⊂ T[z]Q

m correspond to the tangent spaces T[z]S
m of the real

forms Sm of Qm.
The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature

tensor R̄ of Qm can be described in terms of the complex structure J and the
complex conjugations A ∈ A:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that the complex structure J and each complex conjugation A are anti-
commute, that is, AJ = −JA for each A ∈ A.

For every unit tangent vector W ∈ T[z]Q
m there exist a conjugation A ∈ A and

orthonormal vectors X,Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0
and t = π/4. When W = X for X ∈ V (A), t = 0, there exist many kinds of maximal
2-flats RX + RZ for Z ∈ V (A) orthogonal to X ∈ V (A). So the tangent vector X
is said to be singular. When W = (X + JY )/

√
2 for t = π/4, it becomes also a
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singular tangent vector, which belongs to many kinds of maximal 2-flats given by
R(X + JY ) + RZ for any Z ∈ V (A) orthogonal to X ∈ V (A) or R(X + JY ) + RJZ
for any JZ ∈ JV (A). If 0 < t < π/4 then the unique maximal flat containing W is
RX ⊕ RJY .

3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost
contact metric structure. Note that ξ = −JN , where N is a (local) unit normal
vector field of M and η the corresponding 1-form defined by η(X) = g(ξ,X) for
any tangent vector field X on M . The tangent bundle TM of M splits orthogonally
into TM = C ⊕ Rξ, where C = ker(η) is the maximal complex subbundle of TM .
The structure tensor field φ restricted to C coincides with the complex structure J
restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z ∈ M
as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.
Then we want to introduce an important lemma which will be used in the proof

of our main theorem in the introduction.

Lemma 3.1 [20]. For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz.

(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vec-
tors X,Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4].
Then we have Qz = Cz 
 C(JX + Y ).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field
ξ = −JN satisfies the following

Sξ = αξ,

where S denotes the shape operator of the real hypersurface M with the smooth
function α = g(Sξ, ξ) on M . When we consider the transform JX by the Kähler
structure J on Qm for any vector field X on M in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . Then we now consider the equation of Codazzi

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y )

+ g(X,AN)g(AY,Z) − g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z).
(3.1)
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Putting Z = ξ in (3.1) we get

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(φX, Y ) + g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the contrary, we have

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)

= (Xα)η(Y ) − (Y α)η(X) + αg((Sφ + φS)X,Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y ) − 2g(ξ,AN)g(Y,Aξ) + 2g(Y,AN)g(ξ,Aξ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(ξ,AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ,Aξ)η(Y )

+ 2g(ξ,AN)g(Y,Aξ)η(X) − 2g(Y,AN)g(ξ,Aξ)η(X)

+ αg((φS + Sφ)X,Y ) − 2g(SφSX, Y ).

Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ,AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ,Aξ)η(Y )

− 2g(ξ,AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ,Aξ)η(X).

(3.2)

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 � t � π/4 (see proposition 3 in
[15]). Note that t is a function on M . First of all, since ξ = −JN , we have

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.

(3.3)
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This implies g(ξ,AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

− 2g(X,AN)g(ξ,Aξ)η(Y ) + 2g(Y,AN)g(ξ,Aξ)η(X).

(3.4)

4. Killing normal Jacobi operator and a key lemma

By the equation of Gauss, the curvature tensor R(X,Y )Z for a real hypersurface
M in Qm induced from the curvature tensor R̄ of Qm can be described in terms of
the complex structure J and the complex conjugation A ∈ A as follows:

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY

+ g(SY,Z)SX − g(SX,Z)SY

for any X,Y,Z ∈ TzM , z ∈ M .
Now let us put

AX = BX + ρ(X)N,

for any vector field X ∈ TzQ
m, z ∈ M , ρ(X) = g(AX,N), where BX and ρ(X)N ,

respectively, denote the tangential and normal component of the vector field AX.
Then Aξ = Bξ + ρ(ξ)N and ρ(ξ) = g(Aξ,N) = 0. Then it follows that

AN = AJξ = −JAξ = −JBξ

= −(φBξ + η(Bξ)N).

By the equation of Gauss, the normal Jacobi operator R̄N for a real hypersurface
M in Qm induced from the curvature tensor R̄ of Qm can be described in terms of
the complex structure J and the complex conjugations A ∈ A as follows:

R̄N (Y ) = Y + 3η(Y )ξ + g(AN,N)AY − g(AY,N)AN − g(AY, ξ)Aξ.

for any Y ∈ TxM , x ∈ M . Now the derivative of R̄N is given by

(∇XR̄N )Y = ∇X(R̄N (Y )) − R̄N (∇XY ). (4.1)

Here we note that the connection ∇ on M in Qm gives

(∇XA)Y = ∇̄X(AY ) − A∇XY

= (∇̄XA)Y + A∇̄XY − A∇XY

= q(X)JAY + Aσ(X,Y )

= q(X)JAY + g(SX, Y )AN.
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So naturally, it follows that

(∇XA)ξ = ∇̄X(Aξ) − A∇Xξ

= (∇̄XA)ξ + A∇̄Xξ − A∇Xξ

= q(X)JAξ + g(SX, ξ)AN.

From this, together with (4.1) and Killing normal Jacobi operator, it follows
that

0 = (∇XR̄N )Y + (∇Y R̄N )X

= 3{g(φSX, Y ) + g(φSY,X)}ξ + 3{η(Y )φSX + η(X)φSY }
+ {q(X)g(JAN,N) − g(ASX,N) − g(AN,SX)}AY

+ {q(Y )g(JAN,N) − g(ASY,N) − g(AN,SY )}AX

+ g(AN,N){q(X)JAY + q(Y )JAX + 2g(SX, Y )AN}
− {q(X)g(JAY,N) + q(Y )g(JAX,N) + 2g(SX, Y )g(AN,N)}AN

+ g(AY, SX)AN + g(AX,SY )AN

− g(AY,N){(∇̄XA)N + A∇̄XN} − g(AX,N){(∇̄Y A)N + A∇̄Y N}
− {g((∇̄XA)Y, ξ) + g((∇̄Y A)X, ξ)}Aξ

− {g(AY, φSX + σ(X, ξ)) + g(AX,φSY + σ(Y, ξ))}Aξ

− g(AY, ξ){(∇XA)ξ + A∇Xξ} − g(AX, ξ){(∇Y A)ξ + A∇Y ξ}.

(4.2)

Here we have used the equation of Gauss ∇̄Xξ = ∇Xξ + σ(X, ξ), where σ(X, ξ)
denotes the normal bundle T⊥M valued second fundament tensor on M in Qm.
From this, putting Y = ξ and using g(Aξ,N) = 0, (∇̄XA)Y = q(X)JAY , and
∇̄XN = −SX we have

0 = 3φSX + g(AN,N){q(X)JAξ + q(ξ)JAX + 2αη(X)AN}
− {q(X)g(Aξ, ξ) + q(ξ)g(AX, ξ) + 2αη(X)g(AN,N)}AN

+ g(Aξ, SX)AN + αη(AX)AN − g(AX,N){(∇̄ξA)N + A∇̄ξN}
− {g((∇̄XA)ξ, ξ) + g((∇̄ξA)X, ξ)}Aξ

− {g(Aξ, φSX + σ(X, ξ)) + g(AX, σ(ξ, ξ))}Aξ

− g(Aξ, ξ){(∇XA)ξ + A∇Xξ} − g(AX, ξ){(∇ξA)ξ + A∇ξξ}.

(4.3)

On the contrary, we know the following

(∇̄ξA)N = q(ξ)JAN, σ(ξ, ξ) = g(Sξ, ξ)N = αN, ∇̄ξξ = αN.
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Substituting these formulas into (4.3) gives the following

0 = 3φSX + g(AN,N){q(X)JAξ + q(ξ)JAX + 2αη(X)AN}
− {q(X)g(Aξ, ξ) + q(ξ)g(AX, ξ) + 2αη(X)g(AN,N)}AN

+ g(Aξ, SX)AN + αη(AX)AN

− {q(X)g(JAξ, ξ) + q(ξ)g(JAX, ξ)}Aξ

− {g(Aξ, φSX) + g(Aξ, αη(X)N) + g(AX,αN)}Aξ

− g(Aξ, ξ){q(X)JAξ + A(φSX + αη(X)N)}
− g(AX, ξ){q(ξ)JAξ + αAN}.

(4.4)

From this, by putting the Reeb vector field X = ξ and using JAξ = −AN , we
have

0 = g(AN,N){−2q(ξ)AN + 2αAN} − {q(ξ)g(Aξ, ξ) + 2αg(AN,N)}AN

+ 2αη(Aξ)AN − q(ξ)g(JAξ, ξ)Aξ − g(Aξ, ξ){q(ξ)JAξ + αAN}
− g(Aξ, ξ){q(ξ)JAξ + αAN}.

(4.5)

This gives that q(ξ)g(AN,N)AN = 0, which implies that q(ξ) = 0 or
g(AN,N) = 0. The latter case means that the unit normal vector field N is
A-isotropic.

Summing up the above discussions, we can assert an important lemma as follows:

Lemma 4.1. Let M be a Hopf real hypersurface in Qm, m�3, with Killing normal
Jacobi operator. Then the unit normal vector field N is singular, that is, N is
A-isotropic or A-principal.

Proof. In the above discussion, when q(ξ) �= 0, we have proved that the unit normal
N is A-isotropic. Now let us consider the case that q(ξ) = 0. Then taking the inner
product of (4.4) with the unit normal N gives

0 = g(AN,N)q(X)g(JAξ,N) + 2αg(AN,N)2η(X)

− {q(X)g(Aξ, ξ) + 2αη(X)g(AN,N)}g(AN,N)

+ g(Aξ, SX)g(AN,N) + αη(AX)g(AN,N) + αg(AX,N)g(AN,N)

− g(Aξ, ξ){q(X)g(JAξ,N) + g(AφSX,N) + αη(X)g(AN,N)}
− αg(AX, ξ)g(AN,N)

= −q(X)g(AN,N)2 + g(Aξ, SX)g(AN,N) + αg(AX,N)g(AN,N)

− g(Aξ, ξ)g(AφSX,N).

(4.6)

From this, putting X = ξ and using q(ξ) = 0, it follows that

g(Aξ, Sξ)g(AN,N) = αg(Aξ, ξ)g(AN,N) = 0.

Here, if the Reeb function α �=0, then g(AN,N) = 0 gives that the unit normal
vector field N is A-isotropic.

https://doi.org/10.1017/prm.2018.27 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.27


290 Young Jin Suh

When the Reeb function α is vanishing, by the formula in § 3, that is,

Y α = (ξα)η(Y ) − 2g(ξ,AN)g(Y,Aξ) + 2g(Y,AN)g(ξ,Aξ),

it follows that

g(Y, (AN)T )g(ξ,Aξ) = 0.

Since in the second case we have assumed that N is not A-isotropic, we know
g(ξ,Aξ)�=0. So it follows that (AN)T = 0. This means that

AN = (AN)T + g(AN,N)N = g(AN,N)N.

Then it implies that

N = A2N = g(AN,N)AN = g2(AN,N)N.

This gives that g(AN,N) = ±1, that is, we can take the unit normal N such that
AN = N . So the unit normal N is A-principal, that is, AN = N . �

5. Proof of the main theorem with A-isotropic normal vector field

In this section, let us assume that the unit normal vector field N is A-isotropic.
Then the normal vector field N can be put

N =
1√
2
(Z1 + JZ2)

for Z1, Z2 ∈ V (A), where V (A) denotes a (+1)-eigenspace of the complex conjuga-
tion A ∈ A. Then it follows that

AN =
1√
2
(Z1 − JZ2), AJN = − 1√

2
(JZ1 + Z2), and JN =

1√
2
(JZ1 − Z2).

From this, together with (3.3) and the anti-commuting property AJ = −JA, it
follows that

g(ξ,Aξ) = g(JN,AJN) = 0, g(ξ,AN) = 0 and g(AN,N) = 0.

By virtue of these formulas for an A-isotropic unit normal, the normal Jacobi
operator R̄N is given by

R̄N (Y ) = Y + 3η(Y )ξ − g(AY,N)AN − g(AY, ξ)Aξ.

Now let us assume that the normal Jacobi operator R̄N on M is Killing. Then it
gives that

0 = (∇XR̄N )Y + (∇Y R̄N )X

= 3(∇Xη)(Y )ξ + 3η(Y )∇Xξ + 3(∇Y η)(X)ξ + 3η(X)∇Y ξ

− g(∇X(AN), Y )AN − g(∇Y (AN),X)AN

− g(AN,Y )∇X(AN) − g(AN,X)∇Y (AN)

− g(Y,∇X(Aξ))Aξ − g(X,∇Y (Aξ))Aξ

− g(Aξ, Y )∇X(Aξ) − g(Aξ,X)∇Y (Aξ).

(5.1)
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On the contrary, by using the equation of Gauss we know that

∇X(AN) = ∇̄X(AN) − σ(X,AN)

= (∇̄XA)N + A∇̄XN − σ(X,AN)

= q(X)JAN − ASX − σ(X,AN),

= q(X)Aξ − ASX − σ(X,AN),

and

∇X(Aξ) = ∇̄X(Aξ) − σ(X,Aξ)

= (∇̄XA)ξ + A∇̄Xξ − σ(X,Aξ)

= q(X)JAξ + A{φSX + η(SX)N} − σ(X,Aξ)

= −q(X)AN + AφSX + η(SX)AN − σ(X,Aξ).

Now we use the facts that σ(ξ,AN) = g(Sξ,AN)N = αg(ξ,AN)N = 0 and
σ(ξ,Aξ) = αg(ξ,Aξ)N = 0 for an A-isotropic unit normal N in the above equations.
Then the two equations become the following respectively,

∇ξ(AN) = q(ξ)Aξ − ASξ − σ(ξ,AN) = {q(ξ) − α}Aξ,

and

∇ξ(AN) = −q(ξ)AN + AφSξ + η(Sξ)AN − σ(ξ,Aξ)

= −{q(ξ) − α}AN.

By putting Y = ξ and substituting these formulas into (5.1), we have

0 = 3φSX − g({q(X)Aξ − ASX − σ(X,AN)}, ξ)AN

− g({q(ξ) − α}Aξ,X)AN − g(AN,X){q(ξ) − α}Aξ

− g(ξ, q(X)AN + AφSX + η(SX)AN − σ(X,Aξ))Aξ

+ g(X, {q(ξ) − α}AN)Aξ + g(Aξ,X){q(ξ) − α}AN

= 3φSX + g(ASX, ξ)AN − g(ξ,AφSX)Aξ

= 3φSX + g(Aξ, SX)AN − g(AN,SX)Aξ.

(5.2)

The formula (5.2) means that the vector field φSX ∈ Span{Aξ,AN}. From this
fact, together with the formulas Aξ = φAN and AN = −φAξ into (5.2), it follows
that

0 = 3φSX + g(φAN,SX)AN + g(φAξ, SX)Aξ

= 3φSX − g(AN,φSX)AN − g(Aξ, φSX)Aξ

= 3φSX − φSX.

This gives that φSX = 0, which implies SX = αη(X)ξ, because φSX ∈
Span{Aξ,AN} = Q⊥. Then the hypersurface M is totally η-umbilical, that is, the
shape operator S commutes with the structure tensor φ. Then by theorem B in the
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introduction, M is locally congruent to a tube over a totally geodesic CP k in Q2k.
But the tube is not η-umbilical. Accordingly, we assert that there do not exist any
hypersurfaces with Killing normal Jacobi operator.

6. Proof of the main theorem with A-principal normal vector field

In this section, let us consider a real hypersurface M in Qm with Killing normal
Jacobi operator for the case that the unit normal N is A-principal. In this case, the
normal Jacobi operator R̄N is given by

R̄N (X) = X + 2η(X)ξ + AX,

where AX = BX = (AX)T denotes the tangential part of the AX = BX + ρ(X)N .
In this case, we must have ρ(X) = 0 for an A-principal normal N . Then differenti-
ating the above ones gives

(∇XR̄N )Y = ∇X(R̄N (Y )) − R̄N (∇XY )

= 2(∇Xη)(Y )ξ + 2η(Y )∇Xξ + (∇XB)Y.
(6.1)

Now let us consider that the normal Jacobi operator R̄N is Killing. Then it follows
that

0 = (∇XR̄N )Y + (∇Y R̄N )X

= 2{(∇Xη)(Y )ξ + (∇Y η)(X)ξ} + 2η(Y )∇Xξ + 2η(X)∇Y ξ

+ (∇XB)Y + (∇Y B)X.

(6.2)

From this, by putting Y = ξ, it follows that

0 = 2∇Xξ + (∇XB)ξ + (∇ξB)X. (6.3)

On the contrary, for an A-principal unit normal N the derivative of the complex
conjugation can be given as follows:

(∇XB)Y = (∇XA)Y

= ∇X(AY ) − A∇XY

= ∇̄X(AY ) − σ(X,AY ) − A∇XY

= (∇̄XA)Y + A(∇̄XY ) − σ(X,AY ) − A∇XY

= q(X)JAY + A{∇XY + σ(X,Y )} − σ(X,AY ) − A∇XY

= q(X)JAY + g(SX, Y )N − g(SX,AY )N.

(6.4)

From this, by puttig Y = ξ we have

(∇XB)ξ = (∇XA)ξ

= q(X)JAξ + g(SX, ξ)N − g(SX,Aξ)N

= −q(X)Jξ + 2αη(X)N

= −q(X)N + 2αη(X)N
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and

(∇ξB)X = (∇ξA)X

= (∇ξB)X

= q(ξ)JAX + g(Sξ,X)N − g(SX,Aξ)N

= q(ξ)JAX + 2αη(X)N.

Then substituting these formulas into (6.4) and using Aξ = −ξ, we have

0 = 2φSX − q(X)N + 2αη(X)N

+ q(ξ){φAX − η(X)N} + 2αη(X)N.

From this, taking the tangential and normal part, respectively, we have

0 = 2φSX + q(ξ)φAX, and

0 = −q(X) + 4αη(X) − q(ξ)η(X).
(6.5)

From the second equation of (6.5) we know that

q(X) = {4α − q(ξ)}η(X). (6.6)

Then q(ξ) = 2α. Here we note that the 1-form q on M vanishes on C = ξ⊥, that is,
(6.6) gives q(X) = 0 on any X ∈ C, where ξ⊥ denotes the orthogonal complement
of the Reeb vector field ξ in TzM , z ∈ M .

On the contrary, by applying the structure tensor φ to (6.5), and using q(ξ) = 2α,
we have

0 = −2SX + 2αη(X)ξ − q(ξ)AX − q(ξ)η(X)ξ

= −2SX − q(ξ)AX.

That is, we have

2SX = −q(ξ)AX. (6.7)

From this, if we apply the complex conjugation A again, it follows that

2ASX = −q(ξ)X. (6.8)

Since we have assumed that M is Hopf, we may consider an eigenvector X ∈ C such
that SX = λX. Then (6.8) implies that

2λAX = −q(ξ)X = −2αX. (6.9)

Then from (6.9) we can consider two cases as follows:
First, we consider that at least one of the principal curvature λ vanishes. Then

q(ξ) = 2α = 0. From this, together with the Reeb function α vanishing and q(X) =
0 on C in (6.6), the 1-form q identically vanishes on M . But this gives a contradiction
for a complex hypersurface Qm in CPm+1, because ∇̃X z̄ = −Az̄X + q(X)Jz̄, where
{z̄, Jz̄} denotes two unit normals of Qm in CPm+1, and ∇̃ a connection defined on
the complex projective space CPm+1 (see Smyth [16]).
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Next, let us consider the case that any principal curvatures in (6.9) are non-
vanishing, that is, λ �=0. Then (6.9) implies that

2λX = 2λA2X = −q(ξ)AX =
q(ξ)2

2λ
X.

From this q(ξ)2 = 4λ2, so it follows that q(ξ) = ±2λ.
Now let us check two subcases as follows:
Subcase 2.1. q(ξ) = 2λ.
In this case, (6.9) gives that AX = −X for any X ∈ C. From this, together

with AN = N and Aξ = −ξ, the expression of the complex conjugation A on the
decomposition TzQ

m = [N ] ⊕ [ξ] ⊕ [C] becomes the following

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 · · · 0
0 −1 0 · · · 0 0 · · · 0
0 0 −1 · · · 0 0 · · · 0
...

...
...

. . .
...

... · · · ...
0 0 0 · · · −1 0 · · · 0
0 0 0 · · · 0 −1 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 0 · · · −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then TrA = −2(m − 1). But it is known that TrA should vanish, by virtue
of TzQ

m = V (A) ⊕ JV (A), where V (A) = {X ∈ TzQ
m|AX = X} and JV (A) =

{X ∈ TzQ
m|AX = −X}. This gives a contradiction.

Subcase 2.2. q(ξ) = −2λ.
The formula (6.9) gives that AX = X for any X ∈ C. From this, also together

with AN = N and Aξ = −ξ, the expression of the complex conjugation A on the
decomposition TzQ

m = [N ] ⊕ [ξ] ⊕ [C] becomes the following

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 · · · 0
0 −1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0
...

...
...

. . .
...

... · · · ...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then TrA = 2(m − 1). But as mentioned above, the trace of the complex
conjugation TrA should vanish. Even in this case we have a contradiction.

Summing up the above discussions, we conclude that there do not exist any real
hypersurfaces in Qm with Killing normal Jacobi operator for an A-principal unit
normal N .
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