Real hypersurfaces in the complex quadric with Killing normal Jacobi operator

Young Jin Suh

Department of Mathematics and Research Institute of Real & Complex Manifolds, College of Natural Sciences, Kyungpook National University, Daegu 41566 Republic of Korea (yjsuh@knu.ac.kr)

(MS received 28 August 2016; accepted 21 February 2017)

We introduce the notion of Killing normal Jacobi operator for real hypersurfaces in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. The Killing normal Jacobi operator implies that the unit normal vector field N becomes \mathfrak{A} -principal or \mathfrak{A} -isotropic. Then according to each case, we give a complete classification of real hypersurfaces in $Q^m = SO_{m+2}/SO_mSO_2$ with Killing normal Jacobi operator.

Keywords: killing normal Jacobi operator; *α*-isotropic; *α*-principal; Kähler structure; complex conjugation; complex quadric.

2010 Mathematics subject classification: Primary: 53C40. Secondary 53C55.

1. Introduction

In the complex projective space $\mathbb{C}P^{m+1}$ and the quaternionic projective space $\mathbb{Q}P^{m+1}$ some classifications related to the Ricci tensor and the structure Jacobi operator were investigated by Kimura [4, 5], Pérez [9] and Pérez and Suh [11, 12], Pérez and Santos [10], and Pérez, Santos and Suh [13, 14], respectively. When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $SU_{m+2}/S(U_2U_m)$ and $SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians, respectively (see [17–19]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler structure \mathfrak{J} .

The classification problems of real hypersurfaces in the complex 2-plane Grassmannian $SU_{m+2}/S(U_2U_m)$ with certain geometric conditions were mainly investigated in Jeong and Suh [2], Jeong, Machado, Pérez and Suh [3, 8], Pérez [9], and Suh [17–19], where the classification of commuting shape operator, parallelism of normal and structure Jacobi operators, contact hypersurfaces, parallel Ricci tensor, and harmonic curvature for real hypersurface in $G_2(\mathbb{C}^{m+2})$ were extensively studied. Moreover, in [19], we have asserted that the Reeb flow on a real hypersurface in $SU_{2,m}/S(U_2U_m)$ is isometric if and only if M is an open part of a tube around a totally geodesic $SU_{2,m-1}/S(U_2U_{m-1}) \subset SU_{2,m}/S(U_2U_m)$.

© 2018 The Royal Society of Edinburgh

As another kind of Hermitian symmetric space with rank 2 of the compact type different from the above ones, we can give the example of complex quadric $Q^m = SO_{m+2}/SO_mSO_2$, which is a complex hypersurface in complex projective space $\mathbb{C}P^{m+1}$ (see Klein [6], and Smyth [16]). The complex quadric can also be regarded as a kind of real Grassmann manifolds of the compact type with rank 2 (see Kobayashi and Nomizu [7]). Accordingly, the complex quadric admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, AJ = -JA. Then for $m \ge 2$ the triple (Q^m, J, g) is a Hermitian symmetric space of the compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [6] and Reckziegel [15]).

In addition to the complex structure J there is another distinguished geometric structure on Q^m , namely a parallel rank two vector bundle \mathfrak{A} which contains an S^1 -bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^m . This geometric structure determines a maximal \mathfrak{A} -invariant subbundle \mathcal{Q} of the tangent bundle TM of a real hypersurface M in Q^m as follows:

$$\mathcal{Q} = \{ X \in T_z M | AX \in T_z M \text{ for all } A \in \mathfrak{A} \}.$$

Moreover, the derivative of the complex conjugation A on Q^m is defined by

$$(\bar{\nabla}_X A)Y = q(X)JAY$$

for any vector fields X and Y on M and q denotes a certain 1-form defined on M.

Recall that a nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m . There are two types of *singular* tangent vectors for the complex quadric Q^m :

- (1) If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -principal.
- (2) If there exists a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -isotropic.

When we consider a real hypersurface M in the complex quadric Q^m , under the assumption of some geometric properties the unit normal vector field N of M in Q^m can be either \mathfrak{A} -isotropic or \mathfrak{A} -principal (see [20, 22]). In the first case where N is \mathfrak{A} -isotropic, we have shown in [20] that M is locally congruent to a tube over a totally geodesic $\mathbb{C}P^k$ in Q^{2k} . In the second case, when the unit normal N is \mathfrak{A} -principal, we proved that a contact hypersurface M in Q^m is locally congruent to a tube over a totally geodesic and totally real submanifold S^m in Q^m (see [22]).

Jacobi fields along geodesics of a given Riemannian manifold M satisfy a wellknown differential equation. Naturally, this classical differential equation inspires the so-called *Jacobi operator*. That is, if \overline{R} is the curvature operator of \overline{M} , the Jacobi operator with respect to X at $z \in M$, is defined by

$$(\bar{R}_X Y)(z) = (\bar{R}(Y, X)X)(z)$$

for any $Y \in T_z \overline{M}$. Then $\overline{R}_X \in \text{End}(T_z \overline{M})$ becomes a symmetric endomorphism of the tangent bundle $T\overline{M}$ of \overline{M} . Clearly, each tangent vector field X to \overline{M} provides

a Jacobi operator with respect to X (see Pérez and Santos [10], and Pérez, Santos and Suh [13, 14]).

From such a viewpoint, in the complex quadric Q^m the normal Jacobi operator \bar{R}_N is defined by

$$\bar{R}_N = \bar{R}(\cdot, N)N \in End(T_zM), \quad z \in M$$

for a real hypersurface M in Q^m with unit normal vector field N, where \overline{R} denotes the curvature tensor of the complex quadric Q^m . Of course, the normal Jacobi operator \overline{R}_N is a symmetric endomorphism of M in Q^m (see Jeong, Machado, Pérez and Suh [3] and [8]).

The Reeb vector field ξ is *Killing* on M in Q^m if and only if $g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) = 0$ for any vector fields X and Y on M. This means that the Reeb flow of the Reeb vector field ξ is isometric. That is, the Reeb vector field has an *isometric Reeb flow*.

As a generalization of such a notion of isometric Reeb flow, first Yano [26] defined the notion of *Killing tensor*. A skew symmetric tensor $T_{i_1\cdots i_r}$ is called a *Killing tensor* of order r if it satisfies

$$\nabla_{i_1} T_{i_2 \cdots i_{r+1}} + \nabla_{i_2} T_{i_1 \cdots i_{r+1}} = 0.$$

Next Blair [1] has applied the notion of Killing tensor to a tensor field of T type (1,1) on a Riemannian manifold and a geodesic γ on M. If we denote by γ' the tangent vector of the geodesic γ , then $T\gamma'$ is parallel along the geodesic γ for the Killing tensor field T. Geometrically, this means that $(\nabla_{\gamma'}T)\gamma' = 0$ along a geodesic γ on M. If this is the case for any geodesic on M, we have

$$(\nabla_X T)X = 0$$
 or equivalently $(\nabla_X T)Y + (\nabla_Y T)X = 0$

for any vector fields X and Y on M. In this case, we say that the tensor T a Killing tensor field of type (1,1).

The normal Jacobi operator \bar{R}_N of M in Q^m is said to be *Killing* if the operator \bar{R}_N satisfies

$$(\nabla_X \bar{R}_N)Y + (\nabla_Y \bar{R}_N)X = 0$$

for any $X, Y \in T_z M$, $z \in M$. The equation is equivalent to $(\nabla_X \overline{R}_N)X = 0$ for any $X \in T_z M$, $z \in M$, because of linearization. Moreover, we can give the geometric meaning of Killing Jacobi tensor as follows:

When we consider a geodesic γ with initial conditions such that $\gamma(0) = z$ and $\dot{\gamma}(0) = X$. Then the transformed vector field $\bar{R}_N \dot{\gamma}$ is Levi–Civita *parallel* along the geodesic γ of the vector field X (see Blair [1] and Tachibana [25]).

In the study of real hypersurfaces in the complex quadric Q^m , we considered the notion of parallel Ricci tensor, that is, $\nabla \text{Ric} = 0$ (see Suh [22]). But from the assumption of Ricci parallel, it was difficult for us to derive the fact that either the unit normal N is \mathfrak{A} -isotropic or \mathfrak{A} -principal. So in [22], we gave a classification with the further assumption of \mathfrak{A} -isotropic. But fortunately, when we consider Killing normal Jacobi operator, first we can assert that the unit normal vector field N becomes either \mathfrak{A} -isotropic or \mathfrak{A} -principal as follows:

THEOREM 1. Let M be a Hopf real hypersurface in Q^m , $m \ge 3$, with Killing normal Jacobi operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A} -isotropic or \mathfrak{A} -principal.

Then motivated by such a result, next we give a complete classification for real hypersurfaces in the complex quadric Q^m with Killing normal Jacobi operator as follows:

THEOREM 2. There do not exist any Hopf real hypersurfaces in Q^m , $m \ge 3$ with Killing normal Jacobi operator.

Usually, Killing normal Jacobi operator is a generalization of parallel normal Jacobi operator \bar{R}_N of M in Q^m , that is, $\nabla_X \bar{R}_N = 0$ for any tangent vector field X on M. The parallelism of normal Jacobi operator has a geometric meaning that every eigen space of the normal Jacobi operator \bar{R}_N is parallel along any direction on M in Q^m . Then naturally, by theorem 2 above, we give the following

COROLLARY [24]. There do not exist any Hopf real hypersurfaces in Q^m , $m \ge 3$ with parallel normal Jacobi operator.

2. The complex quadric

For more background to this section, we refer to [6, 7, 15, 20-23]. The complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ which is defined by the equation $z_0^2 + \cdots + z_{m+1}^2 = 0$, where z_0, \ldots, z_{m+1} are homogeneous coordinates on $\mathbb{C}P^{m+1}$. We equip Q^m with the Riemannian metric g which is induced from the Fubini-Study metric \bar{g} on $\mathbb{C}P^{m+1}$ with constant holomorphic sectional curvature 4. The Fubini-Study metric \bar{g} is defined by $\bar{g}(X,Y) = \Phi(JX,Y)$ for any vector fields X and Y on $\mathbb{C}P^{m+1}$ and a globally closed (1,1)-form Φ given by $\Phi = -4i\partial\bar{\partial}\log f_j$ on an open set $U_j = \{[z^0, z^1, \ldots, z^{m+1}] \in \mathbb{C}P^{m+1} | z^j \neq 0\}$, where the function f_j denotes $f_j = \sum_{k=0}^{m+1} t_j^k \bar{t}_j^k$, and $t_j^k = ((z^k)/(z^j))$ for $j, k = 0, \ldots, m+1$. Then naturally the Kähler structure on $\mathbb{C}P^{m+1}$ induces canonically a Kähler structure (J,g) on the complex quadric Q^m .

The complex projective space $\mathbb{C}P^{m+1}$ is a Hermitian symmetric space of the special unitary group SU_{m+2} , namely $\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1)$. We denote by $o = [0, \ldots, 0, 1] \in \mathbb{C}P^{m+1}$ the fixed point of the action of the stabilizer $S(U_{m+1}U_1)$. The special orthogonal group $SO_{m+2} \subset SU_{m+2}$ acts on $\mathbb{C}P^{m+1}$ with cohomogeneity one. The orbit containing o is a totally geodesic real projective space $\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^m as the Grassmann manifold $G_2^+(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2} . It also gives a model of Q^m as a Hermitian symmetric space of rank 2. The complex quadric Q^1 is isometric to a sphere S^2 with constant curvature, and Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason, we will assume $m \ge 3$ from now on.

In another way, the complex projective space $\mathbb{C}P^{m+1}$ is defined by using the Hopf fibration

$$\pi: S^{2m+3} \to \mathbb{C}P^{m+1}, \quad z \to [z],$$

which is said to be a Riemannian submersion. Then naturally, we can consider the following diagram for the complex quadric Q^m as follows:

$$\begin{split} \tilde{Q} &= \pi^{-1}(Q) \xrightarrow{\tilde{i}} S^{2m+3} \subset \mathbb{C}^{m+2} \\ \pi & \downarrow & \pi \\ Q &= Q^m \xrightarrow{i} \mathbb{C}P^{m+1} \end{split}$$

The submanifold \tilde{Q} of codimension 2 in S^{2m+3} is called the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2} , which is given by

$$\tilde{Q} = \{x + iy \in \mathbb{C}^{m+2} | g(x, x) = g(y, y) = \frac{1}{2} \text{ and } g(x, y) = 0\},\$$

where $g(x,y) = \sum_{i=1}^{m+2} x_i y_i$ for any $x = (x_1, \ldots, x_{m+2})$ and $y = (y_1, \ldots, y_{m+2}) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_z S^{2m+3} = H_z \oplus F_z$ and $T_z \tilde{Q} = H_z(Q) \oplus F_z(Q)$ at $z = x + iy \in \tilde{Q}$, respectively, where the horizontal subspaces H_z and $H_z(Q)$ are given by $H_z = (\mathbb{C}z)^{\perp}$ and $H_z(Q) = (\mathbb{C}z \oplus \mathbb{C}\bar{z})^{\perp}$, and F_z and $F_z(Q)$ are fibres which are isomorphic to each other. Here $H_z(Q)$ becomes a subspace of H_z of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J\bar{z}$. Explicitly, at the point $z = x + iy \in \tilde{Q}$ it can be described as

$$H_z = \{ u + iv \in \mathbb{C}^{m+2} | g(x, u) + g(y, v) = 0, \quad g(x, v) = g(y, u) \}$$

and

$$H_z(Q) = \{u + iv \in H_z | g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0\}$$

where $\mathbb{C}^{m+2} = \mathbb{R}^{m+2} \oplus i\mathbb{R}^{m+2}$, and $g(u, x) = \sum_{i=1}^{m+2} u_i x_i$ for any $u = (u_1, \dots, u_{m+2}), x = (x_1, \dots, x_{m+2}) \in \mathbb{R}^{m+2}$.

These spaces can be naturally projected by the differential map π_* as $\pi_* H_z = T_{\pi(z)} \mathbb{C}P^{m+1}$ and $\pi_* H_z(Q) = T_{\pi(z)}Q$, respectively. This gives that at the point $\pi(z) = [z]$ the tangent subspace $T_{[z]}Q^m$ becomes a complex subspace of $T_{[z]}\mathbb{C}P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J\bar{z}$ (see Reckziegel [15]).

Now let us denote by $A_{\bar{z}}$ the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to the unit normal $-\bar{z}$. Then, by virtue of the Weingarten equation, it is defined by $A_{\bar{z}}w = \bar{\nabla}_w \bar{z} = \bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from \mathbb{C}^{m+2} and all $w \in T_{[z]}Q^m$. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted

to $T_{[z]}Q^m$. Moreover, it satisfies the following for any $w \in T_{[z]}Q^m$ and any $\lambda \in S^1 \subset \mathbb{C}$

$$\begin{aligned} A_{\lambda\bar{z}}^2 w &= A_{\lambda\bar{z}} A_{\lambda\bar{z}} w = A_{\lambda\bar{z}} \lambda \bar{w} \\ &= \lambda A_{\bar{z}} \lambda \bar{w} = \lambda \bar{\nabla}_{\lambda\bar{w}} \bar{z} = \lambda \bar{\lambda} \bar{w} \\ &= |\lambda|^2 w = w. \end{aligned}$$

Accordingly, $A_{\lambda\bar{z}}^2 = I$ for any $\lambda \in S^1$. So the shape operator $A_{\bar{z}}$ becomes an anticommuting involution such that $A_{\bar{z}}^2 = I$ and AJ = -JA on the complex vector space $T_{[z]}Q^m$ and

$$T_{[z]}Q^m = V(A_{\bar{z}}) \oplus JV(A_{\bar{z}}),$$

where $V(A_{\bar{z}}) = \mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (+1)-eigenspace and $JV(A_{\bar{z}}) = i\mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (-1)-eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}}X = X$ and $A_{\bar{z}}JX = -JX$, respectively, for any $X \in V(A_{\bar{z}})$.

Geometrically, this means that the shape operator $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]}Q^m$, or equivalently, is a complex conjugation on $T_{[z]}Q^m$. Since the real codimension of Q^m in $\mathbb{C}P^{m+1}$ is 2, this induces an S^1 -subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}(TQ^m)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q^m can be viewed as the complexification of the *m*-dimensional sphere S^m . Through each point $[z] \in Q^m$ there exists a one-parameter family of real forms of Q^m which are isometric to the sphere S^m . These real forms are congruent to each other under the action of the centre SO_2 of the isotropy subgroup of SO_{m+2} at [z]. The isometric reflection of Q^m in such a real form S^m is an isometry, and the differential at [z] of such a reflection is a conjugation on $T_{[z]}Q^m$. In this way, the family \mathfrak{A} of conjugations on $T_{[z]}Q^m$ corresponds to the family of real forms S^m of Q^m containing [z], and the subspaces $V(A) \subset T_{[z]}Q^m$ correspond to the tangent spaces $T_{[z]}S^m$ of the real forms S^m of Q^m .

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ implies that the Riemannian curvature tensor \overline{R} of Q^m can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$\begin{split} R(X,Y)Z &= g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ \\ &+ g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY. \end{split}$$

Note that the complex structure J and each complex conjugation A are anticommute, that is, AJ = -JA for each $A \in \mathfrak{A}$.

For every unit tangent vector $W \in T_{[z]}Q^m$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$W = \cos(t)X + \sin(t)JY$$

for some $t \in [0, \pi/4]$. The singular tangent vectors correspond to the values t = 0and $t = \pi/4$. When W = X for $X \in V(A)$, t = 0, there exist many kinds of maximal 2-flats $\mathbb{R}X + \mathbb{R}Z$ for $Z \in V(A)$ orthogonal to $X \in V(A)$. So the tangent vector Xis said to be singular. When $W = (X + JY)/\sqrt{2}$ for $t = \pi/4$, it becomes also a

singular tangent vector, which belongs to many kinds of maximal 2-flats given by $\mathbb{R}(X + JY) + \mathbb{R}Z$ for any $Z \in V(A)$ orthogonal to $X \in V(A)$ or $\mathbb{R}(X + JY) + \mathbb{R}JZ$ for any $JZ \in JV(A)$. If $0 < t < \pi/4$ then the unique maximal flat containing W is $\mathbb{R}X \oplus \mathbb{R}JY$.

3. Some general equations

Let M be a real hypersurface in Q^m and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X) = g(\xi, X)$ for any tangent vector field X on M. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathbb{R}\xi$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure Jrestricted to \mathcal{C} , and $\phi\xi = 0$.

At each point $z \in M$ we define a maximal \mathfrak{A} -invariant subspace of $T_z M$, $z \in M$ as follows:

$$\mathcal{Q}_z = \{ X \in T_z M \mid AX \in T_z M \quad \text{for all } A \in \mathfrak{A}_z \}.$$

Then we want to introduce an important lemma which will be used in the proof of our main theorem in the introduction.

LEMMA 3.1 [20]. For each $z \in M$ we have

- (i) If N_z is \mathfrak{A} -principal, then $\mathcal{Q}_z = \mathcal{C}_z$.
- (ii) If N_z is not \mathfrak{A} -principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_z = \cos(t)X + \sin(t)JY$ for some $t \in (0, \pi/4]$. Then we have $\mathcal{Q}_z = \mathcal{C}_z \ominus \mathbb{C}(JX + Y)$.

We now assume that M is a Hopf hypersurface. Then the Reeb vector field $\xi = -JN$ satisfies the following

$$S\xi = \alpha\xi,$$

where S denotes the shape operator of the real hypersurface M with the smooth function $\alpha = g(S\xi,\xi)$ on M. When we consider the transform JX by the Kähler structure J on Q^m for any vector field X on M in Q^m , we may put

$$JX = \phi X + \eta(X)N$$

for a unit normal N to M. Then we now consider the equation of Codazzi

$$g((\nabla_X S)Y - (\nabla_Y S)X, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).$$
(3.1)

Putting $Z = \xi$ in (3.1) we get

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $-2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$
 $- g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi).$

On the contrary, we have

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X)$
= $(X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi SX, Y).$

Comparing the previous two equations and putting $X = \xi$ yields

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi).$$

Reinserting this into the previous equation yields

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $-2g(\xi, AN)g(X, A\xi)\eta(Y) + 2g(X, AN)g(\xi, A\xi)\eta(Y)$
+ $2g(\xi, AN)g(Y, A\xi)\eta(X) - 2g(Y, AN)g(\xi, A\xi)\eta(X)$
+ $\alpha g((\phi S + S\phi)X, Y) - 2g(S\phi SX, Y).$

Altogether this implies

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) + 2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y) - 2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$$
(3.2)

At each point $z \in M$ we can choose $A \in \mathfrak{A}_z$ such that

$$N = \cos(t)Z_1 + \sin(t)JZ_2$$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \pi/4$ (see proposition 3 in [15]). Note that t is a function on M. First of all, since $\xi = -JN$, we have

$$AN = \cos(t)Z_1 - \sin(t)JZ_2,$$

$$\xi = \sin(t)Z_2 - \cos(t)JZ_1,$$

$$A\xi = \sin(t)Z_2 + \cos(t)JZ_1.$$

(3.3)

This implies $q(\xi, AN) = 0$ and hence

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) - 2g(X, AN)g(\xi, A\xi)\eta(Y) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$$
(3.4)

4. Killing normal Jacobi operator and a key lemma

By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in Q^m induced from the curvature tensor \overline{R} of Q^m can be described in terms of the complex structure J and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$\begin{split} R(X,Y)Z &= g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \\ &+ g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY \\ &+ g(SY,Z)SX - g(SX,Z)SY \end{split}$$

for any $X, Y, Z \in T_z M, z \in M$. Now let us put

$$AX = BX + \rho(X)N,$$

for any vector field $X \in T_z Q^m$, $z \in M$, $\rho(X) = g(AX, N)$, where BX and $\rho(X)N$, respectively, denote the tangential and normal component of the vector field AX. Then $A\xi = B\xi + \rho(\xi)N$ and $\rho(\xi) = q(A\xi, N) = 0$. Then it follows that

$$AN = AJ\xi = -JA\xi = -JB\xi$$
$$= -(\phi B\xi + \eta (B\xi)N).$$

By the equation of Gauss, the normal Jacobi operator \bar{R}_N for a real hypersurface M in Q^m induced from the curvature tensor \overline{R} of Q^m can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$ as follows:

$$\bar{R}_N(Y) = Y + 3\eta(Y)\xi + g(AN, N)AY - g(AY, N)AN - g(AY, \xi)A\xi.$$

for any $Y \in T_x M$, $x \in M$. Now the derivative of \overline{R}_N is given by

$$(\nabla_X \bar{R}_N)Y = \nabla_X(\bar{R}_N(Y)) - \bar{R}_N(\nabla_X Y).$$
(4.1)

Here we note that the connection ∇ on M in Q^m gives

$$(\nabla_X A)Y = \bar{\nabla}_X (AY) - A\nabla_X Y$$

= $(\bar{\nabla}_X A)Y + A\bar{\nabla}_X Y - A\nabla_X Y$
= $q(X)JAY + A\sigma(X,Y)$
= $q(X)JAY + g(SX,Y)AN.$

So naturally, it follows that

$$(\nabla_X A)\xi = \nabla_X (A\xi) - A\nabla_X \xi$$

= $(\bar{\nabla}_X A)\xi + A\bar{\nabla}_X \xi - A\nabla_X \xi$
= $q(X)JA\xi + g(SX,\xi)AN.$

From this, together with (4.1) and Killing normal Jacobi operator, it follows that

$$\begin{split} 0 &= (\nabla_X \bar{R}_N)Y + (\nabla_Y \bar{R}_N)X \\ &= 3\{g(\phi SX, Y) + g(\phi SY, X)\}\xi + 3\{\eta(Y)\phi SX + \eta(X)\phi SY\} \\ &+ \{q(X)g(JAN, N) - g(ASX, N) - g(AN, SX)\}AY \\ &+ \{q(Y)g(JAN, N) - g(ASY, N) - g(AN, SY)\}AX \\ &+ g(AN, N)\{q(X)JAY + q(Y)JAX + 2g(SX, Y)AN\} \\ &- \{q(X)g(JAY, N) + q(Y)g(JAX, N) + 2g(SX, Y)g(AN, N)\}AN \\ &+ g(AY, SX)AN + g(AX, SY)AN \\ &- g(AY, N)\{(\bar{\nabla}_X A)N + A\bar{\nabla}_X N\} - g(AX, N)\{(\bar{\nabla}_Y A)N + A\bar{\nabla}_Y N\} \\ &- \{g((\bar{\nabla}_X A)Y, \xi) + g((\bar{\nabla}_Y A)X, \xi)\}A\xi \\ &- \{g(AY, \phi SX + \sigma(X, \xi)) + g(AX, \phi SY + \sigma(Y, \xi))\}A\xi \\ &- g(AY, \xi)\{(\nabla_X A)\xi + A\nabla_X\xi\} - g(AX, \xi)\{(\nabla_Y A)\xi + A\nabla_Y\xi\}. \end{split}$$

Here we have used the equation of Gauss $\overline{\nabla}_X \xi = \nabla_X \xi + \sigma(X,\xi)$, where $\sigma(X,\xi)$ denotes the normal bundle $T^{\perp}M$ valued second fundament tensor on M in Q^m . From this, putting $Y = \xi$ and using $g(A\xi, N) = 0$, $(\overline{\nabla}_X A)Y = q(X)JAY$, and $\overline{\nabla}_X N = -SX$ we have

$$0 = 3\phi SX + g(AN, N) \{q(X)JA\xi + q(\xi)JAX + 2\alpha\eta(X)AN\} - \{q(X)g(A\xi,\xi) + q(\xi)g(AX,\xi) + 2\alpha\eta(X)g(AN,N)\}AN + g(A\xi, SX)AN + \alpha\eta(AX)AN - g(AX,N)\{(\bar{\nabla}_{\xi}A)N + A\bar{\nabla}_{\xi}N\} - \{g((\bar{\nabla}_{X}A)\xi,\xi) + g((\bar{\nabla}_{\xi}A)X,\xi)\}A\xi - \{g(A\xi, \phi SX + \sigma(X,\xi)) + g(AX, \sigma(\xi,\xi))\}A\xi - g(A\xi,\xi)\{(\nabla_{X}A)\xi + A\nabla_{X}\xi\} - g(AX,\xi)\{(\nabla_{\xi}A)\xi + A\nabla_{\xi}\xi\}.$$

$$(4.3)$$

On the contrary, we know the following

$$(\bar{\nabla}_{\xi}A)N = q(\xi)JAN, \quad \sigma(\xi,\xi) = g(S\xi,\xi)N = \alpha N, \quad \bar{\nabla}_{\xi}\xi = \alpha N.$$

https://doi.org/10.1017/prm.2018.27 Published online by Cambridge University Press

Substituting these formulas into (4.3) gives the following

$$0 = 3\phi SX + g(AN, N) \{q(X)JA\xi + q(\xi)JAX + 2\alpha\eta(X)AN \} - \{q(X)g(A\xi, \xi) + q(\xi)g(AX, \xi) + 2\alpha\eta(X)g(AN, N)\}AN + g(A\xi, SX)AN + \alpha\eta(AX)AN - \{q(X)g(JA\xi, \xi) + q(\xi)g(JAX, \xi)\}A\xi - \{g(A\xi, \phi SX) + g(A\xi, \alpha\eta(X)N) + g(AX, \alpha N)\}A\xi - g(A\xi, \xi) \{q(X)JA\xi + A(\phi SX + \alpha\eta(X)N)\} - g(AX, \xi) \{q(\xi)JA\xi + \alpha AN \}.$$
(4.4)

From this, by putting the Reeb vector field $X = \xi$ and using $JA\xi = -AN$, we have

$$0 = g(AN, N)\{-2q(\xi)AN + 2\alpha AN\} - \{q(\xi)g(A\xi, \xi) + 2\alpha g(AN, N)\}AN + 2\alpha \eta(A\xi)AN - q(\xi)g(JA\xi, \xi)A\xi - g(A\xi, \xi)\{q(\xi)JA\xi + \alpha AN\} - g(A\xi, \xi)\{q(\xi)JA\xi + \alpha AN\}.$$
(4.5)

This gives that $q(\xi)g(AN, N)AN = 0$, which implies that $q(\xi) = 0$ or g(AN, N) = 0. The latter case means that the unit normal vector field N is \mathfrak{A} -isotropic.

Summing up the above discussions, we can assert an important lemma as follows:

LEMMA 4.1. Let M be a Hopf real hypersurface in Q^m , $m \ge 3$, with Killing normal Jacobi operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A} -isotropic or \mathfrak{A} -principal.

Proof. In the above discussion, when $q(\xi) \neq 0$, we have proved that the unit normal N is \mathfrak{A} -isotropic. Now let us consider the case that $q(\xi) = 0$. Then taking the inner product of (4.4) with the unit normal N gives

$$0 = g(AN, N)q(X)g(JA\xi, N) + 2\alpha g(AN, N)^2 \eta(X) - \{q(X)g(A\xi, \xi) + 2\alpha \eta(X)g(AN, N)\}g(AN, N) + g(A\xi, SX)g(AN, N) + \alpha \eta(AX)g(AN, N) + \alpha g(AX, N)g(AN, N) - g(A\xi, \xi)\{q(X)g(JA\xi, N) + g(A\phi SX, N) + \alpha \eta(X)g(AN, N)\} - \alpha g(AX, \xi)g(AN, N) = -q(X)g(AN, N)^2 + g(A\xi, SX)g(AN, N) + \alpha g(AX, N)g(AN, N) - g(A\xi, \xi)g(A\phi SX, N).$$
(4.6)

From this, putting $X = \xi$ and using $q(\xi) = 0$, it follows that

$$g(A\xi, S\xi)g(AN, N) = \alpha g(A\xi, \xi)g(AN, N) = 0.$$

Here, if the Reeb function $\alpha \neq 0$, then g(AN, N) = 0 gives that the unit normal vector field N is \mathfrak{A} -isotropic.

When the Reeb function α is vanishing, by the formula in § 3, that is,

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi),$$

it follows that

$$g(Y, (AN)^T)g(\xi, A\xi) = 0.$$

Since in the second case we have assumed that N is not \mathfrak{A} -isotropic, we know $g(\xi, A\xi) \neq 0$. So it follows that $(AN)^T = 0$. This means that

$$AN = (AN)^T + g(AN, N)N = g(AN, N)N$$

Then it implies that

$$N = A^2 N = g(AN, N)AN = g^2(AN, N)N.$$

This gives that $g(AN, N) = \pm 1$, that is, we can take the unit normal N such that AN = N. So the unit normal N is \mathfrak{A} -principal, that is, AN = N.

5. Proof of the main theorem with \mathfrak{A} -isotropic normal vector field

In this section, let us assume that the unit normal vector field N is \mathfrak{A} -isotropic. Then the normal vector field N can be put

$$N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$$

for $Z_1, Z_2 \in V(A)$, where V(A) denotes a (+1)-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), \quad AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \text{ and } JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).$$

From this, together with (3.3) and the anti-commuting property AJ = -JA, it follows that

$$g(\xi, A\xi) = g(JN, AJN) = 0, \ g(\xi, AN) = 0 \text{ and } g(AN, N) = 0.$$

By virtue of these formulas for an \mathfrak{A} -isotropic unit normal, the normal Jacobi operator \bar{R}_N is given by

$$\bar{R}_N(Y) = Y + 3\eta(Y)\xi - g(AY, N)AN - g(AY, \xi)A\xi.$$

Now let us assume that the normal Jacobi operator \bar{R}_N on M is Killing. Then it gives that

$$0 = (\nabla_X R_N)Y + (\nabla_Y R_N)X$$

= $3(\nabla_X \eta)(Y)\xi + 3\eta(Y)\nabla_X\xi + 3(\nabla_Y \eta)(X)\xi + 3\eta(X)\nabla_Y\xi$
 $-g(\nabla_X(AN), Y)AN - g(\nabla_Y(AN), X)AN$
 $-g(AN, Y)\nabla_X(AN) - g(AN, X)\nabla_Y(AN)$
 $-g(Y, \nabla_X(A\xi))A\xi - g(X, \nabla_Y(A\xi))A\xi$
 $-g(A\xi, Y)\nabla_X(A\xi) - g(A\xi, X)\nabla_Y(A\xi).$
(5.1)

https://doi.org/10.1017/prm.2018.27 Published online by Cambridge University Press

On the contrary, by using the equation of Gauss we know that

$$\nabla_X(AN) = \bar{\nabla}_X(AN) - \sigma(X, AN)$$

= $(\bar{\nabla}_X A)N + A\bar{\nabla}_X N - \sigma(X, AN)$
= $q(X)JAN - ASX - \sigma(X, AN),$
= $q(X)A\xi - ASX - \sigma(X, AN),$

and

$$\nabla_X(A\xi) = \bar{\nabla}_X(A\xi) - \sigma(X, A\xi)$$

= $(\bar{\nabla}_X A)\xi + A\bar{\nabla}_X \xi - \sigma(X, A\xi)$
= $q(X)JA\xi + A\{\phi SX + \eta(SX)N\} - \sigma(X, A\xi)$
= $-q(X)AN + A\phi SX + \eta(SX)AN - \sigma(X, A\xi)$

Now we use the facts that $\sigma(\xi, AN) = g(S\xi, AN)N = \alpha g(\xi, AN)N = 0$ and $\sigma(\xi, A\xi) = \alpha g(\xi, A\xi)N = 0$ for an \mathfrak{A} -isotropic unit normal N in the above equations. Then the two equations become the following respectively,

$$\nabla_{\xi}(AN) = q(\xi)A\xi - AS\xi - \sigma(\xi, AN) = \{q(\xi) - \alpha\}A\xi,$$

and

$$\nabla_{\xi}(AN) = -q(\xi)AN + A\phi S\xi + \eta(S\xi)AN - \sigma(\xi, A\xi)$$
$$= -\{q(\xi) - \alpha\}AN.$$

By putting $Y = \xi$ and substituting these formulas into (5.1), we have

$$0 = 3\phi SX - g(\{q(X)A\xi - ASX - \sigma(X, AN)\}, \xi)AN$$

$$-g(\{q(\xi) - \alpha\}A\xi, X)AN - g(AN, X)\{q(\xi) - \alpha\}A\xi$$

$$-g(\xi, q(X)AN + A\phi SX + \eta(SX)AN - \sigma(X, A\xi))A\xi$$

$$+g(X, \{q(\xi) - \alpha\}AN)A\xi + g(A\xi, X)\{q(\xi) - \alpha\}AN$$

$$= 3\phi SX + g(ASX, \xi)AN - g(\xi, A\phi SX)A\xi$$

$$= 3\phi SX + g(A\xi, SX)AN - g(AN, SX)A\xi.$$
(5.2)

The formula (5.2) means that the vector field $\phi SX \in \text{Span}\{A\xi, AN\}$. From this fact, together with the formulas $A\xi = \phi AN$ and $AN = -\phi A\xi$ into (5.2), it follows that

$$0 = 3\phi SX + g(\phi AN, SX)AN + g(\phi A\xi, SX)A\xi$$

= $3\phi SX - g(AN, \phi SX)AN - g(A\xi, \phi SX)A\xi$
= $3\phi SX - \phi SX$.

This gives that $\phi SX = 0$, which implies $SX = \alpha \eta(X)\xi$, because $\phi SX \in$ Span $\{A\xi, AN\} = Q^{\perp}$. Then the hypersurface M is totally η -umbilical, that is, the shape operator S commutes with the structure tensor ϕ . Then by theorem B in the

introduction, M is locally congruent to a tube over a totally geodesic $\mathbb{C}P^k$ in Q^{2k} . But the tube is not η -umbilical. Accordingly, we assert that there do not exist any hypersurfaces with Killing normal Jacobi operator.

6. Proof of the main theorem with \mathfrak{A} -principal normal vector field

In this section, let us consider a real hypersurface M in Q^m with Killing normal Jacobi operator for the case that the unit normal N is \mathfrak{A} -principal. In this case, the normal Jacobi operator \overline{R}_N is given by

$$\bar{R}_N(X) = X + 2\eta(X)\xi + AX,$$

where $AX = BX = (AX)^T$ denotes the tangential part of the $AX = BX + \rho(X)N$. In this case, we must have $\rho(X) = 0$ for an \mathfrak{A} -principal normal N. Then differentiating the above ones gives

$$(\nabla_X \bar{R}_N)Y = \nabla_X (\bar{R}_N(Y)) - \bar{R}_N (\nabla_X Y)$$

= $2(\nabla_X \eta)(Y)\xi + 2\eta(Y)\nabla_X \xi + (\nabla_X B)Y.$ (6.1)

Now let us consider that the normal Jacobi operator \overline{R}_N is Killing. Then it follows that

$$0 = (\nabla_X \bar{R}_N)Y + (\nabla_Y \bar{R}_N)X$$

= 2{(\nabla_X \eta)(Y)\xi + (\nabla_Y \eta)(X)\xi} + 2\eta(Y)\nabla_X \xi + 2\eta(X)\nabla_Y \xi
+ (\nabla_X B)Y + (\nabla_Y B)X. (6.2)

From this, by putting $Y = \xi$, it follows that

$$0 = 2\nabla_X \xi + (\nabla_X B)\xi + (\nabla_\xi B)X.$$
(6.3)

On the contrary, for an \mathfrak{A} -principal unit normal N the derivative of the complex conjugation can be given as follows:

$$(\nabla_X B)Y = (\nabla_X A)Y$$

$$= \nabla_X (AY) - A\nabla_X Y$$

$$= \bar{\nabla}_X (AY) - \sigma(X, AY) - A\nabla_X Y$$

$$= (\bar{\nabla}_X A)Y + A(\bar{\nabla}_X Y) - \sigma(X, AY) - A\nabla_X Y$$

$$= q(X)JAY + A\{\nabla_X Y + \sigma(X, Y)\} - \sigma(X, AY) - A\nabla_X Y$$

$$= q(X)JAY + g(SX, Y)N - g(SX, AY)N.$$
(6.4)

From this, by puttig $Y = \xi$ we have

$$(\nabla_X B)\xi = (\nabla_X A)\xi$$

= $q(X)JA\xi + g(SX,\xi)N - g(SX,A\xi)N$
= $-q(X)J\xi + 2\alpha\eta(X)N$
= $-q(X)N + 2\alpha\eta(X)N$

and

$$(\nabla_{\xi}B)X = (\nabla_{\xi}A)X$$

= $(\nabla_{\xi}B)X$
= $q(\xi)JAX + g(S\xi, X)N - g(SX, A\xi)N$
= $q(\xi)JAX + 2\alpha\eta(X)N.$

Then substituting these formulas into (6.4) and using $A\xi = -\xi$, we have

$$0 = 2\phi SX - q(X)N + 2\alpha\eta(X)N$$
$$+ q(\xi)\{\phi AX - \eta(X)N\} + 2\alpha\eta(X)N.$$

From this, taking the tangential and normal part, respectively, we have

$$0 = 2\phi SX + q(\xi)\phi AX, \text{ and} 0 = -q(X) + 4\alpha\eta(X) - q(\xi)\eta(X).$$
(6.5)

From the second equation of (6.5) we know that

$$q(X) = \{4\alpha - q(\xi)\}\eta(X).$$
(6.6)

Then $q(\xi) = 2\alpha$. Here we note that the 1-form q on M vanishes on $\mathcal{C} = \xi^{\perp}$, that is, (6.6) gives q(X) = 0 on any $X \in \mathcal{C}$, where ξ^{\perp} denotes the orthogonal complement of the Reeb vector field ξ in $T_z M$, $z \in M$.

On the contrary, by applying the structure tensor ϕ to (6.5), and using $q(\xi) = 2\alpha$, we have

$$0 = -2SX + 2\alpha\eta(X)\xi - q(\xi)AX - q(\xi)\eta(X)\xi$$
$$= -2SX - q(\xi)AX.$$

That is, we have

$$2SX = -q(\xi)AX. \tag{6.7}$$

From this, if we apply the complex conjugation A again, it follows that

$$2ASX = -q(\xi)X. \tag{6.8}$$

Since we have assumed that M is Hopf, we may consider an eigenvector $X \in \mathcal{C}$ such that $SX = \lambda X$. Then (6.8) implies that

$$2\lambda AX = -q(\xi)X = -2\alpha X. \tag{6.9}$$

Then from (6.9) we can consider two cases as follows:

First, we consider that at least one of the principal curvature λ vanishes. Then $q(\xi) = 2\alpha = 0$. From this, together with the Reeb function α vanishing and q(X) = 0 on C in (6.6), the 1-form q identically vanishes on M. But this gives a contradiction for a complex hypersurface Q^m in $\mathbb{C}P^{m+1}$, because $\tilde{\nabla}_X \bar{z} = -A_{\bar{z}}X + q(X)J\bar{z}$, where $\{\bar{z}, J\bar{z}\}$ denotes two unit normals of Q^m in $\mathbb{C}P^{m+1}$, and $\tilde{\nabla}$ a connection defined on the complex projective space $\mathbb{C}P^{m+1}$ (see Smyth [16]).

Next, let us consider the case that any principal curvatures in (6.9) are non-vanishing, that is, $\lambda \neq 0$. Then (6.9) implies that

$$2\lambda X = 2\lambda A^2 X = -q(\xi)AX = \frac{q(\xi)^2}{2\lambda}X.$$

From this $q(\xi)^2 = 4\lambda^2$, so it follows that $q(\xi) = \pm 2\lambda$.

Now let us check two subcases as follows:

Subcase 2.1. $q(\xi) = 2\lambda$.

In this case, (6.9) gives that AX = -X for any $X \in \mathcal{C}$. From this, together with AN = N and $A\xi = -\xi$, the expression of the complex conjugation A on the decomposition $T_z Q^m = [N] \oplus [\xi] \oplus [\mathcal{C}]$ becomes the following

	[1	0	0	• • •	0	0	• • •	0
A =	0	-1	0		0	0		0
	0	0	-1	• • •	0	0	• • •	0
	:	÷	÷	۰.	÷	÷		÷
	0	0	0		-1	0		0
	0	0	0		0	-1		0
	:	÷	÷	:	÷	:	۰.	÷
	0	0	0		0	0		-1

Then TrA = -2(m-1). But it is known that TrA should vanish, by virtue of $T_zQ^m = V(A) \oplus JV(A)$, where $V(A) = \{X \in T_zQ^m | AX = X\}$ and $JV(A) = \{X \in T_zQ^m | AX = -X\}$. This gives a contradiction.

Subcase 2.2. $q(\xi) = -2\lambda$.

The formula (6.9) gives that AX = X for any $X \in C$. From this, also together with AN = N and $A\xi = -\xi$, the expression of the complex conjugation A on the decomposition $T_zQ^m = [N] \oplus [\xi] \oplus [\mathcal{C}]$ becomes the following

	Γ1	0	0		0	0		0]
A =	0	-1	0	• • •	0	0	• • •	0
	0	0	1		0	0	• • •	0
	:	÷	÷	۰.	÷	÷		:
	0	0	0		1	0		0
	0	0	0	•••	0	1	• • •	0
	:	÷	÷	÷	÷	÷	۰.	÷
	0	0	0	•••	0	0	• • •	1

Then TrA = 2(m-1). But as mentioned above, the trace of the complex conjugation TrA should vanish. Even in this case we have a contradiction.

Summing up the above discussions, we conclude that there do not exist any real hypersurfaces in Q^m with Killing normal Jacobi operator for an \mathfrak{A} -principal unit normal N.

Acknowledgements

The present author would like to express his deep gratitude to the referee for his/her careful reading of this paper and useful comments to develop the first version of our manuscript. This work was supported by grants Proj. No. NRF-2015-R1A2A1A-01002459 and Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea.

References

- 1 D. E. Blair. Almost contact manifolds with Killing structure tensors. *Pacific J. of Math.* **39** (1971), 285–292.
- 2 I. Jeong and Y. J. Suh. Real hypersurfaces of type A in complex two-plane Grassmannians related to commuting shape operator. *Forum Math.* **25** (2013), 179–192.
- I. Jeong, C. J. G. Machado, J. D. Pérez and Y. J. Suh. Real hypersurfaces in complex twoplane Grassmannians with D[⊥]-parallel structure Jacobi operator. *International J. Math.* 22 (2011), 655–673.
- 4 M. Kimura. Real hypersurfaces and complex submanifolds in complex projective space. *Trans. Amer. Math. Soc.* **296** (1986), 137–149.
- 5 M. Kimura. Some real hypersurfaces of a complex projective space. Saitama Math. J. 5 (1987), 1–5.
- 6 S. Klein. Totally geodesic submanifolds in the complex quadric. *Diff. Geom. Its Appl.* **26** (2008), 79–96.
- 7 S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, vol. II, (A Wiley-Interscience Publ., John Wiley & Sons, Inc., New York, 1996).
- 8 C. J. G. Machado, J. D. Pérez, I. Jeong and Y. J. Suh. D-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians. Ann Mat Pura Appl. 193 (2014), 591–608.
- 9 J. D. Pérez. Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space. Ann Mat Pura Appl. **194** (2015), 1781–1794.
- 10 J. D. Pérez and F. G. Santos. Real hypersurfaces in complex projective space with recurrent structure Jacobi operator. *Diff. Geom. Appl.* **26** (2008), 218–223.
- 11 J. D. Pérez and Y. J. Suh. Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0.$ Diff. Geom. and Its Appl. 7 (1997), 211–217.
- 12 J. D. Pérez and Y. J. Suh. Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space. *Acta Math. Hungar.* **91** (2001), 343–356.
- 13 J. D. Pérez, F. G. Santos and Y. J. Suh. Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ -parallel. *Diff. Geom. Appl.* **22** (2005), 181–188.
- 14 J. D. Pérez, F. G. Santos and Y. J. Suh. Real hypersurfaces in complex projective space whose structure Jacobi operator is *D*-parallel. *Bull. Belg. Math. Soc. Simon Stevin* 13 (2006), 459–469.
- 15 H. Reckziegel. On the geometry of the complex quadric. In *Geometry and Topology of Submanifolds VIII* (Brussels/Nordfjordeid 1995). F. Dillen, B. Komrakov, U. Simon, I. Van de Woestyne and L. Verstraelen (eds), pp. 302–315 (River Edge, NJ: World Sci. Publ., 1995).
- 16 B. Smyth. Differential geometry of complex hypersurfaces. Ann. Math. 85 (1967), 246–266.
- 17 Y. J. Suh. Real hypersurfaces of type B in complex two-plane Grassmannians. Monatsh. Math. 147 (2006), 337–355.
- 18 Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. Royal Soc. Edinb. A. 142 (2012), 1309–1324.
- 19 Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. 100 (2013), 16–33.
- 20 Y. J. Suh. Real hypersurfaces in the complex quadric with Reeb parallel shape operator. International J. Math. 25 (2014), 1450059, 17pp.
- 21 Y. J. Suh. Real hypersurfaces in the complex quadric with Reeb invariant shape operator. Diff. Geom. Appl. 38 (2015a), 10–21.

- 22 Y. J. Suh. Real hypersurfaces in the complex quadric with parallel Ricci tensor. Advances in Math. 281 (2015b), 886–905.
- 23 Y. J. Suh. Real hypersurfaces in the complex quadric with harmonic curvature. J. Math. Pures Appl. 106 (2016), 393–410.
- 24 Y. J. Suh. Real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Math. Nachr. 290 (2017), no. 2–3, 442–451.
- 25 S. Tachibana. On Killing tensors in a Riemannian space. *Tohoku Math. J.* **20** (1968), 257–264.
- 26 K. Yano. Some remarks on tensor fields and curvature. Ann. of Math. 55 (1952), 328–347.